
94 Int. J. Computer Applications in Technology, Vol. 31, Nos. 1/2, 2008

Copyright © 2008 Inderscience Enterprises Ltd.

A component-based and aspect-oriented model
for software evolution

Nicolas Pessemier, Lionel Seinturier*
and Laurence Duchien
INRIA-Futurs – LIFL, Projet Jacquard/GOAL,
Bâtiment M3, 59655 Villeneuve d’Ascq, France
E-mail: nicolaspessemier@gmail.com
E-mail: Lionel.Seinturier@lifl.fr E-mail: Laurence.Duchien@inria.fr
*Corresponding author

Thierry Coupaye
France Telecom R&D,
28 chemin du Vieux Chêne,
BP98, 38243 Meylan, France
E-mail: thierry.coupaye@orange-ftgroup.com

Abstract: Component-Based Software Development (CBSD) and Aspect-Oriented Software
Development (AOSD) are solutions to support software evolution by decomposing a software
system into concerns. In this paper, we propose Fractal Aspect Component (FAC), a general
and symmetrical model for components and aspects. FAC decomposes a software system into
regular components and aspect components which embody crosscutting concerns. We reify the
relationship between an aspect component and a component, called an aspect binding, as
a first-class runtime entity. The evolution of the system can be expressed by adding or removing
components (aspect or regular) and by setting bindings (regular or crosscutting).

Keywords: aspect-oriented software development; AOSD; component-based software
development; CBSD; crosscutting concern; aspect component; aspect binding; aspect domain.

Reference to this paper should be made as follows: Pessemier, N., Seinturier, L., Duchien, L.,
and Coupaye, T. (2008) ‘A component-based and aspect-oriented model for software evolution’,
Int. J. Computer Applications in Technology, Vol. 31, Nos. 1/2, pp.94–105.

Biographical notes: Nicolas Pessemier is a PhD student in Computer Science at the University
of Lille. His research interests include the merging of component-based software development
and aspect-oriented software development.

Lionel Seinturier is a Research Associate at INRIA in Lille, France. He works on Software
Engineering Techniques for designing and implementing middleware. From 1999 to 2003,
he was an Assistant Professor in the Computer Science department of the University Pierre
et Marie Curie, Paris, France. He received his PhD in computer science from CNAM, Paris,
in December 1997. Before joining academia, he worked as a Research Engineer for
France Telecom’s R&D Department, on the integration of the ATM network technology
with CORBA middleware. He is the co-author of one book and of 25 international
publications. His current research interests include aspect-oriented and component-based
software engineering.

Laurence Duchien is Professor at University of Lille in the INRIA Jacquard project-team.
Until 2001, she was Associate Professor in the Computer Science Department at CNAM,
Paris, France. She received her PhD from the University Pierre et Marie Curie, Paris, in 1988 and
her Habilitation à Diriger des Recherches from University Joseph Fourier, Grenoble, France,
in 1999. Her research interests include design methodologies, architecture description languages,
and aspect-oriented and component-based software engineering.

Thierry Coupaye is senior research expert and head of the Distributed Software Architectures and
Infrastructures research group at France Telecom R&D Division. He completed his PhD in
Computer Science from the UJF Grenoble University, France, in 1996 in the area of active
databases (Event-Condition-Action rules) and worked afterwards as a Teaching and Research
Assistant at INPG Technological University. Then he worked as a researcher at the European
Bioinformatics Institute (EMBL-EBI) in Cambridge, UK, in the area of semi-structured data
management for genomics, and then in the Dassault Systems and University of Grenoble Joint

 A component-based and aspect-oriented model for software evolution 95

Laboratory on large-scale software deployment. His research interests include middleware
architecture, reflexive component-based systems, aspect-oriented programming and autonomic
computing.

1 Introduction
Software evolution is the subject of many studies both in
academia and in industry. Indeed, a major part of current
software development is devoted to software maintenance.
Software systems need to evolve continuously to meet new
software requirements (Parnas, 2002). Concern became
a central concept to cope with software evolution by
decomposing a software system into smaller and more
comprehensible modules. CBSD and AOSD propose
solutions for this decomposition. CBSD structures a
program by separating concerns into reusable components.
AOSD modularises crosscutting concerns into aspects,
by identifying tangled and scattered code into systems.

However, it has been shown that the issues of code
tangling and scattering arise at the level of CBSD as well
(Duclos et al., 2002; Lieberherr et al., 1999). The integration
of AOSD into CBSD is thus an important step in software
development and has been proposed several times (Lagaisse
and Joosen, 2005, Mezini and Ostermann, 2003, Suvée
et al., 2003). However this one-way integration leads to
drawbacks for software evolution. Indeed, most current
AOSD approaches are asymmetric. This means that aspects
and components are, structurally speaking, different entities:
they are composed using different rules. Thus, the system
becomes difficult to maintain and evolve because of the two
dimension to consider.

In this paper, we propose a general and symmetrical
model for components and aspects. The approach improves
software evolution by taking advantage of CBSD and
AOSD approaches. It provides a support for AOSD to the
component approach, and applies CBSD concepts to
AOSD. Our proposal relies on three main notions: aspect
component, aspect domain, and aspect binding. An aspect
component is a contractually specified component which
embodies a crosscutting concern. An aspect domain is the
reification of the components picked out by an aspect
component. An aspect binding is a binding between a
regular component and an aspect component.

Our unified model for components and aspects
raises software evolution to a higher level of abstraction,
which is a fundamental issue to tackle (Mens et al., 2005).
We propose the co-evolution between design models
(an architecture of components and aspects) and the source
code (implementation of our model, providing strong
reflection capabilities). Indeed, we validate our model
by extending a reflective and general component model,
named Fractal (Bruneton et al., 2004) and its ADL.

In our extension, called Fractal Aspect Component
(FAC for short), we introduce the notions of aspect
component, aspect binding and aspect domain to the
component model itself and to the ADL.

The remainder of this paper is organised as follows.
In Section 2 we introduce our general model for
components and aspects. Section 3 presents the mapping of
our model to the Fractal component model. Section 4
illustrates FAC with an example. Section 5 presents related
work around the merging of components and aspects and
around software evolution. Section 6 concludes and gives
some open issues.

2 A general model
This section describes the three main concepts we introduce
to support AOSD in a component model: aspect component,
aspect binding, and aspect domain. Section 2.1 introduces
AOSD main concepts and CBSD principles. Section 2.2
gives the motivations of our model. Section 2.3
describes our three main concepts. Then, we discuss in
Section 2.4 the benefits we can derive from our symmetric
approach.

2.1 Background
This section provides some general definitions on AOSD
and CBSD.

Aspect-Oriented Software Development (AOSD) aims at
modularising crosscutting concerns, which cuts across
multiple objects, components or any other software entity.
Even if no standardisation exists for AOSD concepts, most
of AOSD approaches use the following terminology and
concepts:

• Aspect. An aspect is the modularisation of a
crosscutting concern. Approaches such as AspectJ
(Kiczales et al., 2001), AspectWerkz (Vasseur, 2005),
or JAsCo (Vanderperren and Suvée (2004)) consider
aspects as different entities from those that compose
the base system. These approaches are said to be
asymmetric. Some other approaches such as FuseJ
(Suvée, 2005), HyperJ (Lai et al., 2000), or our
proposal adopt a symmetrical approach: aspects are
represented as components. It increases the reusability
of aspects because components are conceived as highly
reusable entities. We elaborate on component and
aspect symmetry in the following sections.

96 N. Pessemier et al.

• Advice code. Advice codes implement the behaviour
of an aspect. Similarly to classes and methods,
the behaviour of an aspect can be split into several
advice codes. Several types of advice code exist:
before, around, after returning, or after throwing.

• Join point. A join point is a point in the execution of a
program. Aspects are added on join points. Generally,
join points are method invocations or calls, exception
catch blocks, or field accesses.

• Pointcut. A pointcut designates a set of join points.
It is used to specify where advice codes will apply.
Some approaches such as JAsCo (Vanderperren and
Suvée, 2004) JBoss AOP (Burke et al., 2005), or
CaesarJ (Mezini and Ostermann, 2003) separate the
pointcut definition from the advice code definition.
It increases the reusability of advice codes. Pointcuts
are frequently tied to the application because their
definition is based on identifiers (class, method, field
names) specific to applications.

• Weaving. The process of weaving an aspect to a set of
base objects consists in assembling these entities
together to produce the final application extended with
the behaviours defined in the aspects. We distinguish
static (compile time) weaver from dynamic (runtime)
weaver.

Component-Based Software Development (CBSD) is a
development paradigm that aims to improve software
development and to reduce costs by assembling systems
from software components. A software component is
understood as

“(...) a unit of composition with contractually
specified interfaces and explicit context
dependencies only. A software component can
be deployed independently and is subject to
composition by third parties.” (Szyperski,
2002).

When describing a computer software system, software
engineers often talk about the architecture of the system,
where an architecture is generally considered as a
component assembly. Thus, Architecture Description
Languages (ADLs) are often used jointly with a component
model. ADLs frequently use the notions of component,
binding, and composite-component (Medvidovic and
Taylor, 2000). A binding is a contractually specified
relationship between two component interfaces or ports.
Composite-components encapsulate other components
defining a hierarchy of components to represent a system.

2.2 Motivations
When merging AOSD and CBSD two dimensions have to
be considered: the integration of aspect-oriented principles
into component-based systems, and the application
of component-based principles to Aspect-Oriented
Programming.

The integration of AOSD into CBSD is motivated by the
code tangling issue inherent in CBSD (Duclos et al., 2002;
Lieberherr et al., 1999). Indeed, whatever the choices made
to design a component assembly are, some components mix
different concerns, and a same concern is often spread over
several components. Thus, the code tangling and the code
scattering issues, which generally appear in object-oriented
programs, arise in component-based systems, as well.

On the other hand the application of CBSD concepts to
AOSD is less investigated. Most AOSD approaches such as
AspectJ, use an asymmetric representation of an aspect.
In other words, aspects and components are two different
types of entities. It appears that the weaving of an aspect on
a set of components uses different composition rules than
the composition of components together. The weaving of an
aspect uses pointcut declarations, which are tied to the
structure of the base components. Consequently, when
the system evolves, namely the structure of those
components, the efforts to maintain the whole system are
multiplied. In addition, the implicit relationships created
between the piece of advice code (which compose an
aspect) and the advised components, are never explicitly
discernible and can surely not be individually manipulated
at runtime. In brief, state of the art AOSD approaches fails
in making the aspect-component composition evolvable
(Tourwé et al., 2003).

 2.3 Overview
In our proposal we realise a twofold integration of CBSD
and AOSD. We introduce three main concepts: aspect
component, aspect domain, and aspect binding. These three
notions are closely related to the three main concepts of the
component approach: component, composite, and binding.

Aspect component

An aspect component (AC for short) embodies a
crosscutting concern. It is a regular component providing as
services pieces of advice code. Each advice code is
encapsulated into a provided interface. Figure 1 represents a
conceptual view of an aspect component which provides an
advice interface. This interface represents the behaviour
which will be woven around a set of regular components. A
component is considered as an aspect component as soon as
it provides at least an advice interface. The aspect
component notion is similar to the notion of Aspectual
Component proposed in 1999 by Lieberherr et al. (1999) to
express each aspect separately in a modular structure.

Figure 1 An aspect component

 A component-based and aspect-oriented model for software evolution 97

Aspect binding

An aspect binding is the reification of the individual
relationship between an aspect component and a regular
component where the aspect component applies.
A regular component exposes a set of join points on which
aspect components can be woven. When weaving is
performed, aspect bindings are created from each
component where a join point is picked out by a pointcut to
the aspect component associated to this pointcut. The notion
of aspect binding is close to the pointcut interface notion
proposed by Gudmundson and Kiczales (2001).

Basically, an aspect binding is set between a component
and an aspect component. More precisely it is set between
an intercepted interface of a component and the advice
interface of an aspect component. This leads us to the
definition of our join point model.

Join point model

Our join point model is composed of two different types
of join points: incoming calls on provided interface
operations, and outgoing calls on required interface
operations (see Figure 2). This choice is motivated by the
fact that we consider AOSD in a component world. Since
components are black boxes, it is rather natural to consider
only join points on externally visible elements, i.e., exported
and imported interfaces. Taking into account other kinds of
join points, such as the ones on implementations, would
break component encapsulation. Yet, for cases where this
would be necessary, we believe that a best practice is to use
a combination of component-based and implementation
(e.g., object) based aspect-oriented tools.

Figure 2 Join point model

The level of interception we define is very similar, at the
component level, to the composition filters approach
(Aksit et al., 1992), which defines IN and OUT filters on
objects to intercept messages.

Pointcut language

The pointcut language we use to select join points is based
on a pointcut expression, divided in two parts:

• A keyword that specifies if the incoming calls
(keyword SERVER) or outgoing calls (keyword
CLIENT) or both of them (no keyword) must be
selected

• Three regular expressions separated by semicolons that
specify which components, interfaces, and operations
must be selected.

Figure 3 gives the grammar of the language and Table 1
gives some examples of PcDs. The regular expressions rely
on the java.util.regexp package.

Figure 3 Pointcut language grammar

Table 1 Pointcut language: examples

Pointcut expressions Captured elements

;;deposit*:void Every incoming and outgoing
methods returning void that start
with deposit in any component
and interface

CLIENT B;*;deposit* Every outgoing methods named
deposit in any interface of a
component named B

SERVER B;ITransfert;* Every incoming method in the
interface ITransfert in a
component named B

Pointcut expressions are used to weave an aspect component
on a set of components. When an interface of a component
matches the expression, the interface is bound to the aspect
component. In order to keep clarity over crosscutting
relationships defined within our system, we introduce the
notion of aspect domain, which we detail next.

Aspect domain

An aspect domain is the reification of the components
picked out by an aspect component. The goal of an aspect
domain is to keep an overview on all the components
affected by an aspect. It offers an abstraction on each aspect
component woven on a set of components. It can be seen as
a reification of the notion of pointcut.

Figure 4 illustrates the notion of aspect domain. In the
first part of the figure an aspect component AC1 is woven
on the components A and B. In the second part, an aspect
component AC2 is woven on B and C. After this two
weavings, two aspect components apply on B, and B is now
shared by three composite-components: the two aspect
domains AC1 and AC2 and the composite-component of the
original architecture.

Composition of aspect components and components

Although an aspect component is a regular component,
the composition of the two kinds of entities can be done
using regular or aspect bindings. The composition
rules between aspect components and regular components
follows:

• The component-to-component interaction is the
classical client-server interaction. The client
component uses a service provided by a server
component interface. This kind of interaction
exists in every component model using the notion
of binding.

98 N. Pessemier et al.

• The component-to-aspect component interaction is
managed by an aspect binding. Many technical services
such as logging, persistence or transaction can be
plugged in the system using aspect bindings towards
aspect components. It is worth using aspect bindings
when a concern is crosscutting and applies on several
components (mostly technical services but not
exclusively).

• The aspect component-to-component interaction,
using a regular binding, is used as an AOSD best
practice. In Figure 5 we can see this kind of interaction
between the aspect component and various policy
components. In this example, changing a transaction
policy is performed through a reconfiguration between
the aspect component and the components providing
policies. This type of interaction illustrates the real role
of an aspect component. An aspect component can be
seen as a specific connector to integrate a crosscutting
concern, which itself is represented as a regular
component. It manages the interactions between
base concerns implemented with base components and
a crosscutting concern also implemented with base
components.

• The aspect component-to-aspect component interaction
can be managed with two types of bindings: a regular
binding between two aspect components expresses a
collaboration of the two aspects. An aspect binding
between two aspect components expresses that the
second aspect is woven on the first one. However the
consequences of such operations are not debated in this
paper.

Figure 4 Aspect domains

Integration model

Figure 5 shows how crosscutting concerns are integrated
to a base application using our model. Two component
assemblies are composed together in this figure.
The components A, B, C, D, and E constitute the base
application (left-hand side of the figure). The aspect
component and the two service policy components represent

the crosscutting concern (right-hand side of the figure)
which has to be integrated into the base application.

In a full-fledged component approach, the amount of
modifications to obtain the same result requires numerous
and tricky modifications. For example, the components
would have to be stopped, manually adapted and
reconfigured, to finally be restarted. Moreover, once
integrated to the system, it seems difficult to remove one of
these concerns in an easy and proper way. With our
approach, the removal of the crosscutting concern is
achieved by unsetting the aspect bindings.

Figure 5 Integration model

Compared to an aspect-oriented approach, with our
approach, the relationships between aspects and components
are reified as aspect domains and aspect bindings which are
manipulable entities. In addition, these notions are
expressed in terms of component-based notions
(components, bindings and composite-components), instead
of being implicit in the code of aspects.

2.4 Discussion on software evolution
The main contribution of our model is to bring AOSD
notions at the level of CBSD. This is done by a
twofold integration of the AOSD and CBSD approaches.
Thus, benefits are derived from both approaches. The issue
of code tangling and code scattering stated in Section 2.2 is
addressed by the composition of aspect components using
aspect bindings and aspect domains (comparable to the use
of advices and pointcuts in state of the art AOSD
approaches). The issue of reification over crosscutting
relationships (also stated in Section 2.2) in AOSD
approaches is addressed by the use of explicit aspect
domains and aspect bindings to represent pointcuts.
The remainder of this section elaborates on the solutions we
propose to these issues.

Revisiting concern tangling and concern scattering with
aspect components

Our approach follows the classical pointcut/advice model of
AOSD. The novelty of our approach is to represent these
concepts as component-based concepts. Thus, crosscutting
concerns are well modularised into aspect components as it
is usually addressed by AOSD approaches (Kiczales and
Mezini, 2005).

 A component-based and aspect-oriented model for software evolution 99

Reflection over crosscutting relationships

In existing AOSD languages, the relationship between an
aspect and the objects containing join points picked out by
the aspect is explicit in the source code but is implicit at
runtime. Indeed, this relationship is structurally defined by a
pointcut in the source code, but is lost when the woven code
is executed. In our model, we propose to reify crosscutting
relationships of a system with aspect bindings and aspect
domains.

An aspect domain structurally represents a pointcut.
In the context of a reflective component model, aspect
domains can be introspected and reconfigured as
components using an API (concrete details are given in
Section 3). Compared to aspect domains, aspect bindings
are more fine-grained entities to show a concrete
relationship between an aspect component and a component.
There is no real equivalent to this notion in current AOSD
terminology. An aspect binding also offers strong reflection
capabilities to specify which operations and interfaces of a
component have to be aspectised by the aspect component
behaviour.

In Ebraert et al. (2005), the authors identify several
pitfalls in unanticipated software evolution. One of them is
concerned by the finding of dependencies. We have seen
that AOSD approaches fail in clearly representing
dependencies between aspects and components, especially
in asymmetrical approaches. In our model dependencies
are fully identified (component dependencies, and aspect
dependencies), and are represented as first class entities of
the model. Authors also state that static and dynamic
information about the architecture of the system is a key
feature for software evolution. They argue that reflection or
meta-object protocol manipulations are indispensable in the
process of software evolution.

Towards a co-evolution between a component architecture
and source code

In Kwon et al. (1998), authors survey the state of the art
on software maintenance, in particular tools that need to
be investigated to cope with legacy systems. The objective
of our proposal is not to provide a full support for
system maintenance, nor to provide tools for complex
software evolution, such as the migration of legacy code.
We propose to take into account the process of evolution
by providing the co-evolution between design models
(an architecture of components and aspects) and the source
code. This co-evolution becomes possible as soon as
strong reflection capabilities are provided by the model
to manipulate and reconfigure components and aspect
components.

The next section presents the mapping of our model to a
general and reflective component model named Fractal.
Our extension of Fractal is called Fractal Aspect Component
and has been validated with two implementations. These
implementations provide runtime weaving of aspect
components onto Fractal components by using our concepts

of aspect domain and aspect binding, which offer runtime
information about the aspect component woven on base
components.

3 Mapping onto fractal
This section presents the mapping of the main notions
presented in the previous section onto the Fractal
component model, which is a general and extensible
component model supporting regular dynamic bindings.
Our extension of Fractal is called FAC for Fractal Aspect
Component. Section 3.1 presents the Fractal component
model, and Section 3.2 proposes our extension FAC.

3.1 Fractal: A general and reflective component
model supporting dynamic bindings

Fractal is an ObjectWeb1 consortium project that
proposes an extensible and modular component model
(Bruneton et al., 2004). This section describes Fractal main
features. Note that Fractal is independent of any
programming language. Several implementations exist in
different languages such as Java, SmallTalk, C, C++, and
the languages supported by the .NET platform.

Contrary to component models for application servers
such as EJB or .NET, Fractal is a general and reflective
component model for developing complex software
systems, such as operating systems and middleware.
Besides the notion of component, Fractal uses other notions:
composite-component (offering different views and
abstractions on a system), shared component (a component
directly nested by several composite component), dynamic
binding (between components). Fractal is a reflective
component model and offers introspection (system
monitoring), and reconfiguration capabilities (modification
of the system architecture).

A Fractal component has two parts: a content and a
membrane. The content of a composite component is built
as a set of sub-components, and the content of a primitive
component implements its provided services.

A component membrane can offer a level of control
and a level of interception. The level of control is a set of
interfaces to manage the non-functional properties of a
component such as life cycle, bindings, content, name,
or attributes management. This set can be extended by the
addition of new control interfaces to a component
membrane. The interception mechanism reifies messages
sent by and received on component interfaces. These
messages can be modified, discarded or delivered to the
component.

An interface is an access point to a component
comparable to the notion of a port in several component
models, like ArchJava (Aldrich et al., 2002) or CCM
(OMG, 2002). A Fractal component offers external and
internal interfaces. External interfaces are accessed from the
outside of the component, while internal interfaces are only
accessible from the composite’s sub-components.

100 N. Pessemier et al.

A binding is a communication channel between a client
interface and a server interface. A client interface uses
operations provided by a server interface.

Component assemblies (see Figure 6) can be described
with the Fractal Architecture Description Language (ADL),
which is XML-based. Figure 7 presents the syntax of the
ADL. It presents the architecture description of the example
of Figure 3. Lines 2–4, and 9 show the definition of server
interfaces (role = “server”). Lines 4–10s define the
component A and Lines 11–15 the component B.
Lines 16–17 are binding declarations of the binding between
the server interface r of the composite and the server
interface r of component A, and the binding between the
client interface s of the component A and the server
interface s of the component B.

Figure 6 A component assembly

Figure 7 A component assembly (XML code)

The use of XML files to describe a Fractal architecture
and its weaving tasks is not necessary. In Fractal, the
XML-based Fractal ADL uses the Fractal API to instantiate
components. The Fractal ADL can be seen as a front-end for
the API.

In brief, Fractal is a general component model that is
implemented in several programming languages. The model
is reflective and open and provides a clear separation
between the functional properties of a component and its
level of control. Given these properties, the Fractal
component model appears to be perfectly well suited to the
integration of our three main concepts: aspect component,
aspect binding, and aspect domain. The next section
described how we have performed this integration.

3.2 Fractal Aspect Component (FAC)
FAC is our mapping of the general model exposed in
Section 2 on the Fractal component model. As said
previously, our notions of aspect component, aspect
binding, and aspect domain are represented as component
notions. Thus, their mapping to Fractal is quite
straightforward. However, some particular elements still
need to be defined, such as the advice interface of an aspect
component, the interception mechanism used to capture join
points.

The remainder of this section describes the advice
component interface and introduce the weaving interface,
before discussing implementation issues.

The Aspect Component Interface (ACI)

The Aspect Component Interface (ACI) follows the AOP
Alliance API,2 an open source initiative to define a common
API for AOP frameworks. Figure 8 presents the Advice Java
interface and an implementation example of this interface.

Figure 8 The Advice interface

We have already seen, while defining our join point model
that aspect components apply on component methods
exposed by client and server interfaces. The context
captured at a join point is then related to the context of an
invocation of a Fractal interface. Thus, the parameter of
the invoke method is a reification of a Fractal interface
invocation. It provides a set of methods to introspect the
join point, to get for instance the name of the component.

 A component-based and aspect-oriented model for software evolution 101

The argument of the invocation can also be modified,
the intercepted method can be called (proceed), and the
reference of the intercepted component can be retrieved.

The proceed call denotes the original method call.
The code written before and after proceed() represents the
before and after advices of AOSD. If more than one aspect
applies on a given join point, the proceed call will trigger
the next aspect, till the original method code is reached.
If proceed is omitted the original method call will not apply.
This can be useful to prevent, for example, the execution of
the intercepted method.

Weaving Interfaces

The Weaving Interface (WI) of a component plays a key role
in FAC. It manages the weaving of aspect components
around the interfaces of the component it controls. In the
context of Fractal, we chose to represent the WI as a control
interface in the component membrane. The WI uses the
interception mechanism, which is provided by the
membrane of components to intercept incoming and
outgoing calls on its functional interfaces, and then,
delegates the calls to the aspect components bound to
(with an aspect binding) these operations. The weaving
interface in FAC has three main objectives:

• Set/unset aspect bindings to aspect components

void setAspectBinding(Component comp,
 ItfPointcutExp regExp,
 AspectComponent ac);
void unsetAspectBinding(AspectComponent ac);

• Automatically weave an aspect component around
a set of components following a pointcut declaration
(this weaving task will automatically create an aspect
domain, add the components which match the pointcut
declaration into this aspect domain, and bind with
aspect bindings the aspect component and the impacted
components)

void weave(Component rootComp,
 AspectComponent ac,
 ItfPointcutExp pExp,
 String aspectDomain);
void unweave(Component rootComp,
 Component ac);

• Provide a set of operation to order/re-order aspect
components which apply on an interface operation.

String[] changeACorder(String acName,
 int newPosition);

In FAC, a component supporting the weaving interface is
called an aspectisable component. Otherwise, no aspects can
be woven to this component. Since the weaving of an aspect
component using the weaving interface is recursive and
traverse the component hierarchy, if the component
controlled by the WI is a composite component the weaving
is also performed by its sub-components. A weaving
operation can be initiated on the system as a whole

(top-level composite) or on any sub system (intermediate
composite).

All the operations provided by the interface can be
invoked either with the Fractal ADL (extended with FAC
notions) or directly at runtime.

The following piece of XML code presents the
architecture of a Fractal assembly where a directive
(tag <weave>) weaves a traceAC component (defined
lines 2–4) to each component of the composite C
(rootComp=“this” line 12), which has an interface operation
starting with “s” and returning “void”.

The aspect domain of this weaving will be automatically
created and the composite representing this domain will be
named “D” (adomain = “D” line 12}).

01 <definition name = “C”>
02 <component name = “traceAC”/>
03 <interface name = “ACI” role=“server”
04 signature = “AspectComponent”/>
05 </component>
06 <component name = “A”/>
07 <interface name=“itf1” role = “client”
08 signature = “Itf1”/>
09 </component>
10 <component name = “B”/>
11 <interface name = “itf1” role = “server”
12 signature = “Itf1”/>
13 </component>
14 <binding client = “A.itf1” server=“B.itf1”/>
15 <weaving ac = “traceAC” pcd = “*;*;s*:void”
16 rootComp = “this” adomain = “D”/>
17 </definition>

Every reconfiguration operations including the ones of our
extension: setting/unsetting of aspect binding, weaving of an
aspect component are dynamic operations.

Implementation issues

The mapping of our general model for component and
aspect on the Fractal component model has been validated
with two different implementations in Java. Our first
implementation extends the reference implementation of the
Fractal component model in Java called Julia (Bruneton
et al., 2004). Julia uses a mixin (Bracha and Cook, 1990)
mechanism to program the level of control of components.
The second implementation extends another implementation
of the Fractal component model in Java, called AOKell
(Seinturier et al., 2005), which uses AspectJ (Kiczales et al.,
2001) aspects to implement control membranes.

4 Illustration: the Comanche example

This section illustrates the evolution of a component based
application to a new crosscutting concern using aspect
components, aspect bindings and aspect domains. The
application is a minimal HTTP server, called Comanche,
which is included in the Fractal distribution.

102 N. Pessemier et al.

Section 4.1 shows the decomposition of the application into
components. Then, we study in Section 4.2 the evolution of
this application to a new requirement, which appears to be a
crosscutting concern: a monitoring aspect to manage
resources (files and threads).

4.1 The Comanche architecture
To implement a component-based version of the Comanche
web server, we first identify the services of the application,
then we associate them to components, and finally we
distinguish the relationships and dependencies between
components.

We start by identifying the services of the application.
Two main services are immediately identified: a request
receiver service and a request processor service. Likewise,
we can see that the request processor uses a request analyser
service, and a logger service, before effectively responding
to a request. This response is itself constructed by using a
file server service, or an error manager service. This can be
generalised into a request dispatcher service that dispatches
requests to several request handlers sequentially, until one
handler can manage the request.

After the services have been specified, one must assign
them to components. In the case of Comanche, we will use
one component per service. We therefore have the seven
following components: request receiver, request analyser,
request dispatcher, file request handler, error request
handler, scheduler and logger.

Now that the components have been identified, we
determine the dependencies between them, and we organise
them into composite components. The topside of Figure 9
shows the resulting architecture.

Figure 9 The Comanche architecture

In Fractal the reconfiguration of a component assembly
can be achieved at runtime. However if a crosscutting
concern has to be plugged to this component architecture,
the transformations can rapidly become too heavy to
manage. In the case of our particular example, we can
see that a crosscutting concern that would impact two
or more components would incur too many changes
(stop the components, replace the components, and restart

the components, and finally reconnect them), and
consequently the application would have to be unavailable
for a moment.

With aspect components, aspect bindings, and aspect
domains, FAC offers an alternative solution to cleanly
modularise this crosscutting concern. It brings the
crosscutting support that is missing to the component model
to manage crosscutting concerns, and it keeps the
advantages of Fractal, which offers strong reflection and
dynamicity properties.

4.2 A monitoring aspect
In this section we show how to extend the Comanche
architecture with a monitoring concern. The monitor
controls the number of resources used within the system: the
number of running threads, and the number of created files.
This concern influences several components, namely
Scheduler, and File. The overall architecture is presented in
Figure 10.

Figure 10 The Comanche architecture: a monitoring aspect

We first create an empty composite MonitoringAspect
that is added to the Comanche composite (see Figure 9).
This composite represents the monitoring concern we want
to add to the system. This composite is composed of several
sub-components: an aspect component to intercept the
creation of a thread, an other one for the creation of a file,
and a regular component, which is notified by both aspect
components and manages the resources.

This schema follows the integration model presented in
Figure 5. If different thread or file policies are required, the
regular bindings between the two aspect components and
the MonitoringManagement component can be connected to
an other component representing another policy.

Once dynamically added to the system, the two aspect
components are then woven to the architecture, using the
weaving interface of the Comanche composite for example.
The weaving interface (which is a Fractal control interface)
can be called directly at runtime, or by using an XML file
for Fractal ADL. In the latter case the XML file will also
call the API.

 A component-based and aspect-oriented model for software evolution 103

In the following piece of code we can see that two
aspect domains are created threadAD and fileAD.

<weave root = “comanche” aspectComponent =
“threadAC”
 pointcutExp = “s;*;*schedule*”
 aspectDomain = “threadAD”/>
<weave root = “comanche” aspectComponent = “fileAC”
 pointcutExp = “frh;*;*"
 aspectDomain = “fileAD”/>

Once woven to the application, the aspect bindings
are automatically created by the weaving operation.
These bindings can be manipulated and unset, dynamically
afterwards. The introspection capabilities provided by the
aspect control interface of components allow to keep an
overview of the domain of application of the two aspect
components.

For instance, the weaving interface of the File
component can give a representation of aspect components
that applies on its filerequest interface and specifically
on its handleRequest method. If we weave another AC on
the File component, we can re-order afterwards the aspect
components on this particular method.

The main difference with usual AOSD approaches
working with components is that in FAC, pointcut
declarations and advices are seen as components and
bindings. Indeed, the process of weaving an aspect in FAC
consists in the setting of bindings and the adding of a
composite-component (called an aspect domain).

5 Related work
In this section, we compare FAC with different kinds of
approaches. Firstly, we focus on approaches using a
symmetric representation of components and aspects. Then,
we study some component models providing support for
software evolution.

5.1 Unification of the notions of component and
aspect

FuseJ (Suvée, 2005), which is the follow-up project by the
JAsCo (Suvée et al., 2003) team, mainly focuses on the
nature of an aspect that is represented as a regular bean
component. The approach is symmetric: all concerns are
implemented as plain components. Components in FuseJ are
equipped with gates. A gate is a kind of interface to specify
component services: aspect-oriented and regular services.
The connectors (extension of JAsCo connectors) specify the
types of interaction between gates. FuseJ defines regular
and aspect-oriented connectors.

Regular connectors are in charge of functional
connections between gates, and aspect-oriented connectors
are in charge of weaving a component behaviour to an other
component. All the connections defined by a component can
be consulted locally. However, FuseJ does not yet propose a
global description of a component architecture with its
connections. The component is quite limited for the

moment. Moreover, so far, only before and after advices are
supported.

DAOP-ADL (Pinto et al., 2003) is a component and
aspect-based language to specify the architecture of an
application in terms of components, aspects and a set of
rules between them. As Fractal ADL, DAOP-ADL is a
XML-based language. This language is interpreted by the
DAOP platform, a dynamic component and aspect platform.
Component interactions, with DAOP, are performed
through the platform. With Fractal, interactions are fully
decentralised and are under the responsibility of each
component (more precisely the binding control of each
component). In our opinion, this leads to a solution which is
more efficient and more scalable.

5.2 Software evolution of components
K-Component (Dowling and Cahill, 2001) is a component
model for building context-adaptive applications.
The model reifies the structure of the application and
describes adaptation contracts written with an Adaptation
Contract Description Language (ACDL) to dynamically
reconfigure the application. The representation of
the architecture is defined with a typed graph. Thus,
the reconfiguration of the architecture is performed through
a graph transformation. The K-Components are defined
using the OMG-IDL3 language and C++ idioms. The main
drawback of this approach is that adaptation is always
realised through reconfiguration of the component
architecture. We have seen in Section 2 that the evolution of
an application through reconfiguration is hard. Some
crosscutting concerns may not be captured using this
process.

SAFRAN (P-C. David, 2006) is an extension of the
Fractal component model to support dynamic adaptation of
components. Adaptation policies can be dynamically set to
individual components introducing a new control interface
to manage the setting/unsetting of these policies. This new
interface is comparable to the weaving interface in FAC,
which manages the weaving of aspect component to the
base application. The weaving interface in FAC is more
general purpose than the adaptation interface of SAFRAN.
Moreover aspect components in FAC can be bound to
several components, whereas local adaptation policies are
set to each individual components in SAFRAN.

6 Conclusion
In this paper we have presented a general model for
components and aspects and its mapping on the Fractal
component model called FAC (short for Fractal aspect
component). This model improves software evolution by
taking benefits from AOSD and CBSD. We realise a
twofold integration of both approaches to address the code
tangling and code scattering issues inherent in CBSD, which
limit evolution, and we leverage the AOSD approach by
giving a support for the evolution of aspect.

104 N. Pessemier et al.

Our model introduces three main notions: aspect
component, aspect domain, aspect binding, which are
related to the notions of component, binding, and composite
component in component-based models. A crosscutting
concern is embodied by a regular Fractal component called
an aspect component. We have shown that an aspect
component is an encapsulation of an advice code. An aspect
domain is the reification of the components picked out by an
aspect component. The implicit relationship between a
woven aspect component and the component where the
aspect component applies is a first-class entity called an
aspect binding.

The long-term objective of FAC is to work with aspects
at three different levels (Pessemier et al., 2005). The first
level is what we have shown with the implementation of the
Fractal component model with aspects. The second level is
FAC itself with the notions of aspect component, aspect
binding, and aspect domain that can be mapped to each
implementation of the Fractal component model. Join points
at this level are interface invocations on components.
And finally, we want to consider a third level, an
architectural level, where join points are architectural
operations and transformations.

Acknowledgement

This work was partially funded by France Telecom under
the external research contract number 46 131 097.

References
Aksit, M., Bergmans, L. and Vural, S. (1992) ‘An object-oriented

language-database integration model: The composition-filters
approach’, in Lehrmann Madsen, O. (Ed.): ECOOP’92: Proc.
European Conference on Object-Oriented Programming,
Springer, Berlin, Heidelberg, pp.372–395.

Aldrich, J., Chambers, C. and Notkin, D. (2002) ‘ArchJava:
Connecting software architecture to implementation’,
ICSE’02: Proc. of the International Conference on Software
Engineering, Orlando FL, USA.

Bracha, G. and Cook, W. (1990) ‘Mixin-based inheritance’,
in Meyrowitz, N. (Ed.): Proceedings of the Conference on
Object-Oriented Programming: Systems, Languages, and
Applications Proceedings of the European Conference on
Object-Oriented Programming, ACM Press, Ottawa, Canada,
pp.303–311.

Bruneton, E., Coupaye, T., Leclercq, M., Quema, V. and
Stefani, J-B. (2004) ‘An open component model and its
support in Java’, Proceedings of the International Symposium
on Component-based Software Engineering, Edinburgh,
Scotland.

Burke, B., Khan, K., Rainone, F., Pedersen, S., Fleury, M.,
Brock, A., Hussenet, C. and Culpepper, M. (2005)
JBoss-AOP, www.jboss.org/developers/projects/jboss/aop

Dowling, J. and Cahill, V. (2001) ‘The k-component architecture
meta-model for self-adaptive software’, in Yonezawa, A. and
Matsuoka, S., (Eds.): Metalevel Architectures and Separation
of Crosscutting Concerns 3rd Int’l Conf. LNCS 2192,
Springer-Verlag. Kyoto, Japan, pp.81–88.

Duclos, F., Estublier, J. and Morat, P. (2002) ‘Describing and
using non functional aspects in component based
applications’, AOSD ‘02: Proceedings of the 1st International
Conference on Aspect-Oriented Software Development,
ACM Press, New York, NY, USA, pp.65–75.

Ebraert, P., D’Hondt, T., Vandewoude, Y. and Berbers, Y. (2005).
‘Pitfalls in unanticipated dynamic software evolution’,
RAM-SE'05-ECOOP'05 Workshop on Reflection, AOP, and
Meta-Data for Software Evolution, Proceedings, Fakultat fur
Informatik, Universitat Magdeburg, Glasgow UK, 15 July,
pp.41–50.

Gudmundson, S. and Kiczales, G. (2001) ‘Addressing
practical software development issues in AspectJ
with a pointcut interface’, in Bergmans, L., Glandrup, M.,
Brichau, J. and Clarke, S. (Eds.): Workshop on Advanced
Separation of Concerns (ECOOP 2001), Budapest,
Hungary.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and
Griswold, W. (2001) ‘Getting started with AspectJ’,
Communications of the ACM, Vol. 44, No. 10, pp.59–65.

Kiczales, G. and Mezini, M. (2005) ‘Aspect-oriented programming
and modular reasoning’, ICSE ‘05: Proceedings of the 27th
International Conference on Software Engineering, ACM
Press, New York NY, USA, pp.49–58.

Kwon, O., Boldyreff, C. and Munro, M. (1998) Survey
on a Software Maintenance Support Environment,
Technical Report 2/98, Centre for Software Maintenance,
School of Engineering and Applied Science, University
of Durham, UK.

Lagaisse, B. and Joosen, W. (2005) ‘Component-based
open middleware supporting aspect-oriented software
composition’, Proceedings of the International Symposium on
Component-based Software Engineering, Edinburgh,
Scotland, pp.139–154.

Lai, A., Murphy, G~C. and Walker, R~J. (2000) ‘Separating
concerns with HyperJ: an experience report’, ICSE’00: Proc.
of the International Conference on Software Engineering,
Limerick, Ireland.

Lieberherr, K., Lorenz, D. and Mezini, M. (1999) Programming
with Aspectual Components, Technical Report
NU-CCS-99-01, College of Computer Science, Northeastern
University, Boston, MA.

Medvidovic, N. and Taylor, R~N. (2000) ‘A classification and
comparison framework for software architecture description
languages’, IEEE Transaction on Software Engineering,
Vol. 26, No. 1, January, pp.70–93.

Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S.,
Hirschfeld, R. and Jazayeri, M. (2005) ‘Challenges in
software evolution’, Proc. Int'l Workshop on Principles of
Software Evolution (IWPSE 2005), Lisbon, Portugal.

Mezini, M. and Ostermann, K. (2003) ‘Conquering aspects with
Caesar’, Proceedings of the 2nd International Conference
on Aspect-Oriented Software Development (AOSD'03),
ACM Press, Boston, USA, pp.90–100.

OMG (2002) CORBA Components, v3.0 (full specification),
Document formal/02-06-65, June.

Parnas, D.L. (2002) ‘On the criteria to be used in decomposing
systems into modules’, Software Pioneers: Contributions to
Software Engineering, Springer-Verlag New York, Inc.,
New York, NY, USA, pp.411–427.

David, P-C. (2006) ‘An approach for developing self-adapting
fractal components’, SC 06: Software Composition, LNCS,
Vienna, Austria.

 A component-based and aspect-oriented model for software evolution 105

Pessemier, N., Barais, O., Seinturier, L., Coupaye, T. and
Duchien, L. (2005) ‘A three level framework for
adapting component-based systems’, Second International
Workshop on Coordination and Adaptation Techniques for
Software Entities (WCAT05), Glasgow, Scotland.

Pinto, M., Fuentes, L. and Troya, J~M. (2003) ‘DAOP-ADL:
an architecture description language for dynamic
component and aspect-based development’, Proc. Generative
Programming and Component Engineering (GPCE'03),
Erfurt, Germany.

Seinturier, L., Pessemier, N., Duchien, L. and Coupaye, T. (2006)
‘A component model engineered with components
and aspects’, CBSE ’06: Proceedings of the 9h International
SIGSOFT Symposium on Component-based Software
Engineering, Springer-Verlag, Vasteras, Sweden,
LNCS 4063, pp.139–156, http://www.lifl.fr/~seinturi/aokell
/javadoc/overview.html

Suvée, D. (2005) FuseJ website, http://ssel.vub.ac.be/fusej/
Suvée, D., Vanderperren, W. and Jonckers, V. (2003) ‘JAsCo:

an aspect-oriented approach tailored for component based
software development’, Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development
(AOSD‘03), ACM Press, pp.21–29.

Szyperski, C. (2002) Component Software: Beyond
Object-Oriented Programming, Addison-Wesley, Longman
Publishing Co., Inc.

Tourwé, T., Brichau, J. and Gybels, K. (2003) ‘On the existence of
the aosd-evolution paradox’, in Bergmans, L., Brichau, J.,
Tarr, P. and Ernst, E. (Eds.): SPLAT: Software Engineering
Properties of Languages for Aspect Technologies, Boston,
USA, pp.1–5.

Vanderperren, W. and Suvee, D. (2004) ‘JAsCoAP: adaptive
programming for component-based software engineering’,
in Lieberherr, K. (Ed.): 3rd International Conference on
Aspect-Oriented Software Development (AOSD-2004), ACM
Press, Lancaster, UK.

Vasseur, A. (2005) Aspectwerkz website, http://aspectwerkz.
codehaus.org

Notes
1http://objectweb.org
2http://aopalliance.sourceforge.net

Websites
http://www.lifl.fr/~seinturi/aokell/javadoc/overview.html
http://fractal.objectweb.org/aokell

