
DisCComp − A Formal Model for
Distributed Concurrent Components

Andreas Rausch 1

Fachbereich für Informatik − AG Softwarearchitektur
Technische Universität Kaiserslautern
D-67653 Kaiserslautern, Germany

Abstract

Most large-scaled software systems are structured in distributed components to manage complexity and
have to cope with concurrent executed threads. System decomposition and concurrent flow of execution are
orthogonal. A sound semantic model that is powerful enough to handle distributed concurrent components
but also realistic enough to provide a foundation for component technologies actually in use is still missing.
Therefore, the paper introduces such an operational semantics for distributed concurrent component-based
systems. Based on this formal model, UML-based modeling techniques are introduced. Tool support for
modeling, code generation, and system execution is provided.

Keywords: Software Architecture, Distributed Systems, Component-based Software, Concurrency,
Operational Semantics, UML-based Description Techniques, Code Generation

1 Introduction

Software engineers are confronted with steadily increasing complexity of the software
systems under development. On the other hand, we depend more and more on these
software systems in our daily life. Hence, software engineers have to guarantee their
dependability. Nevertheless, the development of software systems still includes a
high level of uncertainty. More than 70 % of the development projects are not
successful [1].

To deliver large-scaled software systems, like for instance enterprise applications,
the software architecture is a key success factor. Its - usually hierarchical – decom-
position into components is crucial for development and maintenance of software
systems.

Moreover, enterprise applications are usually interactive software systems and
have to serve multiple users at the same time. For that reasons these kinds of

1 Email: rausch@informatik.uni-kl.de

Electronic Notes in Theoretical Computer Science 176 (2007) 5–23

1571-0661/$ – see front matter © 2007 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.02.029

http://www.elsevier.com/locate/entcs
mailto:rausch@informatik.uni-kl.de

software systems are distributed systems and have to serve concurrently multiple
user requests. To sum up, these software systems have to cope with distributed
concurrent components.

To implement those kinds of software systems with distributed concurrent com-
ponents usually an object-oriented programming language like Java or C++ is used.
Programming languages like Java offer basic constructs for concurrent programs, like
for instance the util.concurrent library. Developing large-scaled distributed and con-
current systems based on these primitives is error-prone. Higher-level abstractions
are needed. To cope with distribution and network communication, component
technologies like CORBA, J2EE, and .NET are broadly used. These technologies
basically provide a component model and a remote method call. Thereby they lift
the structuring of systems from objects to components and the concept of a blocking
synchronous method call within a single process to a distributed environment.

The provided component model of the underlying component technology is used
for the hierarchical component structure and their distribution given by the software
architecture. The remote method call is used to abstract from distribution and
concurrent thread execution. Thereby concurrently executed threads “jump” from
one possible remote component to another during system execution.

In fact threads cannot jump from one component to another remote component
in case of a method call. However the used component technology simulates this
behavior by blocking the calling thread in the calling component, starting a new
thread in the remote component to process the requested method, and finally re-
activating the blocked calling thread after the results of the remote computation
are available. For programmers using those technologies it looks like a single thread
jumping from one component to another. Hence the predominant programming
model in distributed concurrent component systems is based on concurrent thread
execution and distributed component structure which are orthogonal.

In practice, before programmers start coding different specification artifacts have
to be created to model the system under development. The primary focus is on the
description of the component structure of the system using description languages
like the UML [2]. UML provides diagrams for static and dynamic behaviour. These
techniques may be extended with elements describing more precise aspects of be-
haviour, such as JML [3] and OCL [4]. When it comes to integrate and refine these
different parts of the models towards an implementation a clear semantical model of
the relationship between the concurrent control flow and the component structure
is missing, yet.

Various approaches have been elaborated to extend UML and to come up with a
precise semantics for distributed and parallel systems [5,6,7]. All these approaches
are based on active objects. Each concurrently executed thread belongs exclusively
to a single object. Thereby, the established model - concurrent threads jumping
from one component resp. object to another - is simply ignored.

Moreover, various formal models for modelling concurrent systems have been
elaborated over the last several decades: Although Hoares CSP approach is of gen-
eral nature it does not incorporate modern component-based programming paradigms

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–236

[9]. In the theoretical foundation of object-oriented languages provided by Martin
Abadi and Luca Cardelli [10], in Focus [11], and in *-Calculus [12] concurrency is
modelled in the sense of active objects resp. components or agents. But again, it
does not support concurrent threads jumping from one object resp. component or
agent to another.

Finally early approaches to integrate of the mentioned component technologies
– CORBA, J2EE, and .NET - with UML have been developed, like for instance
the UML/EJB mapping specification [8]. Again, a precise semantic mapping be-
tween the specification language and the programming platform is still a matter of
research.

To sum up, there is still a large gap between the predominant programming
model - concurrent threads jumping from one distributed component to another
- and the existing formal as well as informal specification techniques. Even so,
both are used by software engineers. Hence, they have to bridge the gap similar
to a circus artist. This is a dangerous error prone task. Consequently, we need
a sound semantic model that is powerful enough to handle concurrent distributed
components but also realistic enough to provide a foundation for component and
programming technologies actually in use.

The rest of the paper is structured as follows: The next section introduces a
simple program to show the most important behavioral aspects of distributed con-
current component-based systems. In the following Sections 3 to 6, an operational
semantics for distributed concurrent component-based software systems is elabo-
rated. In Section 7 we show how this kind of distributed concurrent component-
based software system can be modeled using UML. In Section 8 a short introduction
into the modeling, code generation, and system execution tool environment for the
presented approach is given. A short conclusion rounds the paper up.

2 Concurrent Program Sample

Assume a simple computer game board application, like a chess game. The human
user enters his game move. The computer performs the corresponding changes on
the game board data, then the computer calculates its move, and finally executes
its move on the game board. While the computer calculates its move, the computer
game usually allows the user to switch the game board side. Note that this is one
reason why this simple application has to be concurrent. Whenever the computer is
processing the move request of the user, it still must react to side switch requests.
Accepting user input during periods of prolonged processing time is a typical reason
for interactive systems to be concurrent.

The Java program shown in Figure 1 is a concurrent program demonstrating the
controller of such a computer game board application. The class SimulatedUser
simulates the user. The move or the switch button is pressed randomly by the
user. The operating system (class OperationSystem) receives either the move or
the switch event. It creates a new thread to call the registered event handler of the
application. Hence, a formal model for concurrent component-based systems has to

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 7

import java.util.Random;

public class SimulatedUser {
public static void main(String[] args) {

// initialize os
OperationSystem theOS = new OperationSystem();

// user can either make a game move or switch
// the board side - randomized decided
while (!(new Random().nextInt(100) == 50)) {
if (new Random().nextInt(10) < 7) {

// game moves are sequentialzed; the corresponding
// button is disabled until the previous move ends
synchronized (FourWins.gameMoveButtonDisabeled) {

theOS.gameMoveEvent(); }
} else { theOS.switchSideEvent(); } } } }

public class OperationSystem {
// initialize the only application of the os
private FourWins theFourWinsApp = new FourWins();

// for each received user event provide a thread in the
// os and call the corresponding handler on the app
public void gameMoveEvent() {

new Thread(new Runnable() {
public void run() {theFourWinsApp.gameMove();}

}).start(); }

public void switchSideEvent() {
new Thread(new Runnable() {

public void run() {theFourWinsApp.switchSide();}
}).start(); } }

public class FourWins {
static public Boolean gameMoveButtonDisabeled = new Boolean(false);
private boolean humanPlayerNext = true;
private boolean computerPlayerIsCalculating = false;

public void gameMove() {
// disable game move button - user cannot perform
// another move until this move has been finished
synchronized (gameMoveButtonDisabeled) {// human game move is simulated

synchronized (FourWins.class) {
if (humanPlayerNext) {

System.out.print("H");
humanPlayerNext = false; computerPlayerIsCalculating = true;} }

// simulating computer calculating period to give the human the
// chance to switch board side resulting in an double H output
try {Thread.sleep(0,1);}
catch (InterruptedException e) { e.printStackTrace();}
// computer game move is simulated
synchronized (FourWins.class) {

computerPlayerIsCalculating = false;
if (!humanPlayerNext) {
System.out.print("C");
humanPlayerNext = true;} } } }

public void switchSide() {
// either computer or human game move is simulated
// depending on the actual active move in gameMove()
synchronized (FourWins.class) {

if (!computerPlayerIsCalculating) {
System.out.print("C");}

else {humanPlayerNext = true;} } } }

Fig. 1. Concurrent program sample

support asynchronous message communication as well as concurrent method calls.
The class FourWins implements the controller of such a computer game board

application. Instead of performing real moves on the game board our sample pro-
gram prints ‘H’s and ‘C’s to illustrate whether a human move has been performed
or a computer move. Repeated calling of gameMove() causes an initially alter-

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–238

nating sequence of ‘H’s and ‘C’s. Whereas calling switchSide() may result in a
‘CC’ or a ‘HH’ on the standard output. This depends on whether the concurrent
switchSide() is called before the computer has completed the calculation of his
move (‘HH’) or thereafter (‘CC’).

However, concerning the concurrent game board control the simple Java program
is fully featured. As one can see, managing the concurrency in the case of these two
simple interleaving functions is a complex issue for a programmer. The concurrent
threads share common variables. Hence, the proposed operational semantics for
concurrent components has to support a shared global state.

Finally, the class FourWins could serve as an observable which can be observed
for visualization or analyzing purpose 2 . Other components may add themselves
as observers. Thereby object instances may be created and deleted. Moreover the
connections between these objects represented by references and pointers may be
changed during system execution like for instance by adding a new observer to
the list of observers within the class FourWins. Thus, the operational semantics
introduced in the next section has to support those kinds of dynamically changing
structures.

3 Basic Concepts

This section elaborates the basic concepts of the proposed formal model for dis-
tributed concurrent component-based software systems. Such a model incorporates
two levels: The instance level and the description level [13].

Fig. 2. Instance level of concurrent components

The description level - described in Section 7 - contains a normalized abstract
description of a subset of common instance level elements with similar properties.

2 The observer mechanism is not shown in the code sample.

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 9

The instance level - described in the Sections 3 to 6 - is the reliable semantic foun-
dation of the description level. It provides an operational semantics for distributed
concurrent components - it is an abstraction of existing programming models like
CORBA, J2EE, and .NET. Thereby, it defines the universe of all possible software
systems that may be specified at the description level and implemented using the
mentioned programming models.

The instance level of our proposed formal model for distributed concurrent com-
ponents must be powerful enough to handle the most difficult behavioral aspects as
presented in the previous section:
• dynamically changing structures,
• shared global state,
• asynchronous message communication, and
• concurrent method calls.

Figure 2 summarizes these behavioral aspects of the formal model for distributed
concurrent components at the instance level on an abstract level. Thereby, software
systems consist of a set of disjoint instances during run-time: system, component,
interface, attribute, connection, message, thread, and value. In order to uniquely
address these basic elements of the instance level we introduce the infinite set IN-
STANCE of all instances:
INSTANCE =def { SYSTEM ∪ COMPONENT ∪ INTERFACE ∪ ATTRIBUTE ∪
CONNECTION ∪ MESSAGE ∪ THREAD ∪ VALUE }

The presented four behavioral aspects of distributed concurrent component-
based systems are described in the following.

3.1 Structural Behavior

A system may change its structure dynamically. Some instances may be created
or deleted (ALIVE). New attributes resp. interfaces may be assigned to interfaces
resp. components (ALLOCATION resp. ASSIGNMENT). Interfaces may have a di-
rected connection to other interfaces (CONNECTS):
ALIVE =def INSTANCE → BOOLEAN
ASSIGNMENT =def INTERFACE → COMPONENT
ALLOCATION =def ATTRIBUTE → INTERFACE

CONNECTS =def CONNECTION → {{ from, to } | from, to ∈ INTERFACE}

3.2 Valuation Behavior

A system’s state space is not only determined by its current structure but also by
the values of the component’s attributes. Mappings of attributes or parameters to
values of appropriate type are covered by the following definition:
VALUATION =def ATTRIBUTE → VALUE

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–2310

3.3 Communication Behavior

Sequences of messages represent the fundamental units of asynchronous communi-
cation. In order to model message-based asynchronous communication, we denote
the set of arbitrary finite message sequences with MESSAGE∗. Within each obser-
vation point components process message sequences arriving at their interfaces and
send message sequences to other interfaces:
EVALUATION =def INTERFACE → MESSAGE∗

3.4 Execution Behavior

Besides asynchronous communication, synchronous method calls performed by con-
current executed threads is the predominant execution mechanism in contemporary
software systems. Each method is called at a certain interface (CALL). Hence, to
model a thread’s call stack, we denote the set of arbitrary finite method call se-
quences with (INTERFACE × CALL)∗ . Each thread has its own method call history
- its call stack (EXECUTION). Note that threads may change the hosting component
in case of a method call at an interface belonging to another component:
EXECUTION =def THREAD → (INTERFACE × CALL)∗

3.5 System Snapshot

Based on the former definitions, we are now able to characterize a snapshot of a
software system. Such a snapshot captures the current structure, variable valuation,
actual received messages, and current method calls. Let SNAPSHOT denote the type
of all possible system snapshots:
SNAPSHOT =def ALIVE×ASSIGNMENT×ALLOCATION×CONNECTS
×VALUATION×EVALUATION×EXECUTION

4 System Behavior

In contrast to related approaches like [11], we do not focus on timed streams but on
execution streams. We regard observation points as an infinite chain of execution
intervals of various lengths. Whenever a thread’s call stack changes - in case of a
new method call or a method return - a new observation point is reached. We use
the set of natural numbers N as an abstract axis of those observation points, and
denote it by E for clarity.

Furthermore, we assume an observation synchronous model because of the re-
sulting simplicity and generality. This means that there is a global order of all ob-
servation points and thereby of all method calls and returns. Note that this is not
a critical constraint. Existing distributed component environments like CORBA,
J2EE, and .NET control and manage all method calls and returns. Such a com-
ponent environment may transparently force a global order of all method calls and
returns.

We use execution streams, i.e. finite or infinite sequences of elements from a
given domain, to represent histories of conceptual entities that change over observa-

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 11

tion points. An execution stream - more precisely, a stream with discrete execution
interval - of elements from the set X is an element of the type
XE =def N+ → X, where N+ =def N \ {0}

Thus, an execution stream maps each observation point to an element of X.
The notation xe is used to denote the element of the valuation x ∈ XE at the
observation point e ∈ E with xe = x(e).

Execution streams may be used to model the behavior of software systems.
Accordingly, SNAPSHOTE is the type of all system snapshot histories or simply the
type of the behavior relation of all possible software systems:
SNAPSHOTE =def ALIVEE×ASSIGNMENTE× ALLOCATIONE × CONNECTSE ×
VALUATIONE×EVALUATIONE×EXECUTIONE

Let SnapshotEs ⊆ SNAPSHOTE be the behavior relation of an arbitrary system
s ∈ SYSTEM 3 . A given snapshot history snapshots ∈ SnapshotEs is an execution
stream of tuples that capture the changing snapshots snapshotes over observation
points e ∈ E.

Obviously, a couple of consistency conditions can be defined on a formal behavior
SnapshotEs ⊆ SNAPSHOTE . For instance, it may be required that all attributes
obtain the same activation state as the interface they belong to:
∀a ∈ Attributes, i ∈ Interfaces, e ∈ E.allocatione

s(a) = i ⇒ alivee
s(a) =alivee

s(i)
Or furthermore, instances that are deleted are not allowed to be reactivated: ∀i ∈
Instances, e, n,m ∈ E. e < n < m∧ alivee

s(i) ∧ ¬aliven
s (i) ⇒ ¬alivem

s (i)
We can imagine plenty of those consistency conditions. A full treatment is

beyond the scope of this paper, as the resulting formulae are rather lengthy. A
deeper discussion of this issue can be found in [14,15].

5 Thread Behavior

A system’s observable behavior is a result of the composition of all thread behaviors.
To show this coherence, we first have to provide the behavior formalization of a single
thread. In practice, transition relations are an adequate behavior representation.
In our formal model we use a novel kind of transition relation: in contrast to a
‘normal’ transition relation - a relation between a state and its successor state - the
presented transition relation is a relation between a certain part of the system-wide
current snapshot and a certain part of the threads’ wished system-wide successor
snapshot after performing a method call or return:
BEHAVIOR =def SNAPSHOT → SNAPSHOT

Let behaviort ⊆ BEHAVIOR be the behavior of a thread t ∈ THREADs in the
system s ∈ SYSTEM . The informal meaning of the thread behavior is as follows:
Each thread performs a sequence of operations represented by transition relations.
Each operation resp. transition relation transition ∈ behaviort can intuitively be
seen as an atomic piece of program code, which has the following structure:

3 In the remainder of this paper we will use this shortcut. Whenever we want to assign a relation X
(element x) to a system s ∈ SYSTEM we say Xs(xs).

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–2312

(i) The thread evaluates the part of the system-wide snapshot, which is relevant
of its execution. If this part of the system-wide snapshot fits, given by the first
snapshot of the tuple transition,

(ii) the thread requests a set of changes on the system-wide snapshot. Thus, the
thread wants the system to be consistent with the system-wide successor snap-
shot in the next step given by the second snapshot of the tuple transition.

(iii) Finally, the thread wants to perform a new method call or return. Again
this is given by a call-stack change described in the function executiont ⊆
EXECUTION, which is part of the second snapshot in the tuple transition.

Note that the behavior relation of threads is a function, not a relation. Thus,
non-determinism cannot be expressed. To represent non-determinism under speci-
fication of thread’s behavior could especially be a probate solution. However this is
not a general restriction of the proposed approach.

6 Behavior Composition

Consequently, we need some specialized run-time system that asks all threads - one
by one - if one wants to perform a new method call or return from a method call.
Whenever a thread wants to perform a new method call or return, which means
that its behavior relation fires, the run-time system composes a new well-defined
system-wide successor snapshot based on the thread’s requested changes and the
current system-wide snapshot.

Hence, such a run-time system is similar to a virtual machine. It observes and
manages the execution of all threads. Again, this is not a critical constraint even in
a concurrent and distributed environment. Existing distributed component environ-
ments like CORBA, J2EE, and .NET control and manage all executed components
within the environment. In Section 8 we show how the proposed approach can be
implemented by extending such an existing and widely used component environment
like CORBA, J2EE or .NET.

To sum up, the main task of such a run-time system is to determine the next
system snapshot snapshote+1

s from the current snapshot snapshotes ∈ SnapshotEs . In
essence, we can provide formulae to calculate the system behavior from the ini-
tial configuration snapshot0s, the behavior relations {behaviort1 , ..., behaviortn} of all
threads t1, ..., tn ∈ THREADs, n ∈ N, and external stimulations via asynchronous
messages and synchronous method calls at free interfaces. Note that free inter-
faces are interfaces that are not connected with other interfaces and thus can be
stimulated from the environment.

Before we can come up with the final formulae to specify the run-time system,
we need a new operator on relations. This operator takes a relation X and replaces
all tuples of X with tuples of Y if the first element of both tuples is equal 4 :

4 Note that the “standard” notation πi1,...,in (R) denotes the set of n-tuples with n ∈ N∧n ≤ r as a result
of the projection on the relation R. Whereas in each tuple in πi1,...,in (R) contains the elements at the
position i1, ..., in of the corresponding tuple from R with 1 ≤ ik ≤ r, with k ∈ {1, ..., n} ⊆ N.

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 13

X"Y =def {a|a ∈ Y ∨ (a ∈ X ∧ π1({a}) ∩ π1(Y) = ∅)}
We are now able to provide the complete formulae to determine the next system

snapshot snapshote+1
s :

next-snapshot: SNAPSHOT → SNAPSHOT
next-snapshot(snapshotes) =def snapshote+1

s =
= (alivee+1

s , assignmente+1
s , allocatione+1

s , connectse+1
s , valuatione+1

s , evaluatione+1
s ,

executione+1
s)

alivee+1
s =alivee

s"π1(behaviornext thread (snapshotes))
!π1(message execution(snapshotes))

∧
assignmente+1

s =assignmentes"π2(behaviornext thread (snapshotes)) ∧
allocatione+1

s =allocatione
s"π3(behaviornext thread (snapshotes)) ∧

connectse+1
s =connectses"π4(behaviornext thread (snapshotes)) ∧

valuatione+1
s =valuatione

s"π5(behaviornext thread (snapshotes)) ∧
evaluatione+1

s =π6(behaviornext thread(snapshotes)) ∧
executione+1

s =executione
s"π7(behaviornext thread (snapshotes))

!π7(message execution(snapshotes))

Intuitively spoken, the next system snapshot snapshote+1
s is a tuple. Each el-

ement of this tuple, for instance assignmente+1
s , is a function that is determined

simply by merging the former function assignmentes and the ‘delta-function’ of
π2(behaviornext thread(snapshotes)). This ‘delta-function’ includes all ‘wishes’ of the next
relevant thread determined by the function next thread.

This intuitive understanding does not completely hold for alivee+1
s , evaluatione+1

s

and executione+1
s . In alivee+1

s and executione+1
s , not only the wishes of thread

next thread have to be included. These wishes must contain the thread’s actual
method call or return. Additionally they may contain new parallel threads created
by the current thread.

Moreover, alivee+1
s and executione+1

s also contain the result of the application
of the function message execution(snapshotes). This function includes new threads
created to process the asynchronous messages. Thereby, for each asynchronous mes-
sage - given by evaluatione

s which is included in snapshotes - a new thread is created
in alivee+1

s to execute the corresponding request in executione+1
s . message execution

is defined as follows:
message execution: SNAPSHOT → SNAPSHOT
message execution(snapshotes) =def snapshot’ = (alive’, ∅, ∅, ∅, ∅, ∅, execution’).
∀i ∈ Interfaces,m ∈ Messages.m ∈ evaluatione

s(i) ⇔
⇔ ∃t′ ∈ Threads.¬alivee

s(t′)∧ alive’(t′)∧ execution’(t′) = {(i, m)}
Intuitively spoken for each asynchronous message a new thread is activated and

the corresponding call stack is initialized. As all asynchronous messages are with
each observation point transformed to corresponding concurrently executed threads,
the new system snapshot has only to contain the new asynchronous messages, as
denoted by evaluatione+1

s = π6(behaviort(snapshotes)).
Note that thereby, the delivery of asynchronous message takes some time, exactly

one observation point. To model network latency or network failure one would have
to provide a more sophisticated function message execution. Thus, not only delay

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–2314

and loss of asynchronous messages could be integrated but also network related
failures in executing method calls.

To complete the formal model, the function next thread has to be defined:
next thread : → THREAD

This function returns the next thread to be visited by the run-time system. To
provide a simple but general model we propose a round-robin model. Therefore, a
given strict order of all active system’s threads is required. next thread follows this
given order and provides the next relevant thread to be visited and integrated into
the system-wide snapshot by the run-time system.

Note that one can integrate additional features into the model providing other
implementations of the function next thread, like for instance non-determinism and
priority-based thread scheduling. Non-determinism could be used to model an un-
sure execution order or to support under-specification.

Whenever concurrent threads or components are executed, inconsistency or
deadlocks may occur. A deadlock concerning elements explicitly modeled in the
semantics - like for instance two threads each locking an attribute and waiting to
get the lock on the other’s thread attribute - cannot occur in this model as all
threads are visited one by one and each thread has to release all blocked resources
after it has been visited. However, deadlocks on a higher level, like for instance one
thread waits for a given condition to become true and another thread waits for this
thread to make another condition true, can not be detected in advance.

The model does not suppress inconsistent situations but it helps to detect them.
In order to ensure that the next system snapshot snapshote+1

s is well-defined, a single
basic condition must be satisfied: all elements in the wished successor snapshot given
by behaviornext thread(snapshotes) that cause a change in the resulting next system
snapshot must not be changed after the thread next thread has made his last method
call or method return.

For instance, assume that a thread performs a method call. The value of an
attribute is 5 as the thread has started the method call execution and the thread
wants to change the value to 7 as it returns from this method call. At the observation
point where the thread returns from the method call the value of the attribute is
already 6, as another thread has changed the value in the meantime. Hence, a
possible inconsistency caused by concurrent thread execution occurs.

A run-time system implementing the function next snapshot has to calculate the
next system snapshot. Thereby it can observe this consistency predicate and verify
whether such a possible inconsistency situation occurs or not. If the run-time system
detects such a possible inconsistent situation it may stop the system execution for
reliability reasons. Note that this formal consistency concept for concurrent threads
is similar to optimistic locking techniques in databases.

7 Description Technique

The operational semantics presented in the previous sections represents the instance
level. It defines our understanding of distributed concurrent component-based soft-

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 15

Fig. 3. Component structure of observer pattern.

ware systems. Based on the operational semantics we can provide run-time consis-
tency checks as discussed in the previous section. Moreover the operational seman-
tics is the semantic foundation of the description level.

The description level contains a set of proper specification and modeling tech-
niques to elaborate and specify distributed concurrent components. Once the de-
scription level is formally founded based on the operational semantics, we may
generate executable code out of the specifications which are then executed within
the run-time environment (cf. Section 8).

The presented description technique is based on UML. Consider the well-known
observer pattern [16]. Figure 3 shows a simple component-based version of the ob-
server pattern. The component Data represents the observable object of the observer
pattern. It provides exactly one Observable interface. This interface encapsulates
the state to be observed represented by the attribute sState. Whenever the state
of sState is changed, the method notify() is called. This results in sending an

Fig. 4. Textual description of the method notify().

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–2316

asynchronous message update() to all interfaces Observer which are connected via
a connection Observation. Additionally to the normal observable functionality,
the interface Observable provides the method deploy(). Calling deploy() results
in creating a new component View with a corresponding interface Observer and
attaching the interface to the Observable interface of the called component Data.

In order to specify the behavior of methods and message processing for each
method and for each message, an UML activity diagram is provided. Here, we use an
extended version of UML activity diagrams or alternatively a textual representation
of those kinds of activity diagrams.

Figure 4 shows the textual and Figure 5 the graphical variant of the UML activity
diagram describing the behavior of the method notify(). Thereby, first a sequence
of the connected Observer interfaces is requested. Then, to each Observer interface
in this sequence the asynchronous message notify() is sent.

All first class elements of the operational semantics are explicitly represented
in the description technique, like components, interfaces, connections, attributes,
messages, and methods. Moreover, for each primitive operation in the operational
semantics a specific textual and graphical construct is available.

For instance, Figure 6 shows the textual description of the method deploy().
As already mentioned, calling this method results in creating a new component
View with a corresponding interface Observer and attaching the interface as new
observer. Within the description of this, method specific syntactical constructs for
creating components, interfaces, and connections are provided. The proposed de-

Fig. 5. Graphical description of the method notify().

scription technique contains specific syntactical constructs for all first class elements

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 17

and for all primitive operations. Except for threads, no specific representation is pro-
vided. As our operational semantics manages the integration of concurrent executed
threads within a component-based system, there is no need for handling concurrency
issues, like for instance synchronized statements, semaphores, and monitors, on the
specification level. Hence the error prone task of programmers to synchronize var-
ious parts of the code of components as shown in Figure 1 is no longer needed.
Especially in a component-based programming model it is very important to avoid
those kind of fine-grained code synchronization used in Figure 1 as it damages
component encapsulation.

Figure 7 illustrates an extended UML sequence diagram. This sequence diagram
shows an observer component attached to an observable component. First the mes-
sage deploy() is called. A new observer is created and attached to the observable.
Then the state of the observable is changed. This results in calling notify(), which
leads to sending asynchronous messages update() to all attached observers. Once
the messages are processed, the observers request the new state from the observable
component. Figure 7 illustrates a possible thread structure and concurrency situ-

Fig. 6. Textual description of the method deploy().

ation. Each thread is shown by a grey box. The communication sequences shown
within these boxes are performed by the corresponding thread.

Thread 1 and Thread 2 could be the same thread. This depends on the caller.
Either both have the same caller, then Thread 1 and Thread 2 are identical, or the
callers are different, then Thread 1 and Thread 2 are not identical. Moreover Thread
3 and Thread 4 are newly created threads to process the received asynchronous
messages update().

In addition, Figure 7 illustrates that the sequence is split up into several obser-
vation points applying our operational semantics. These observation points are the
points in execution to synchronize all concurrently executed threads. As discussed
in Section 4, an observation point exists for each method call or method return
following our operational semantics. Consequently, for each thread entering as well
as leaving the communication sequence an observation point exists. Moreover, as
shown in Thread 2, threads may be divided into several observation points. Either
as a method call is performed within the thread - in our case the method notify()
is called - or another thread causes an observation point - in our case Thread 3

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–2318

Fig. 7. Interleaving threads and corresponding observation points given by the operational semantics.

causes two additional observation points within the execution of Thread 2.

8 Tool Support

In order to apply the presented concepts in practice, proper tool support is a key
success factor. As already mentioned, we have developed a tool support for model-
ing, code generation and system execution - called DesignIt [17].

Software engineers can use DesignIt to model the component-based software
system. To do this, the software engineer uses a CASE tool to develop a UML-
based model of the desired component-based software systems. In doing so, the
description techniques presented in the previous section should be used - component
diagrams for the static structure and syntax, and activity diagrams to model the
behavior of methods and messages.

Currently, the CASE tool Together is supported directly. All modeling samples,
the UML profile defining UML extensions, and the XML generator are implemented

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 19

as plug-ins for Together. However, any other CASE tool may be used. For this, a
corresponding XML generator has to be provided.

Fig. 8. Development cycle using DesignIt.

As shown in Figure 8, a XML file is generated out of the UML model (step
1). This XML file is a simple textual representation of the UML model. We could
have used XMI as textual representation. XMI has to support the complete bunch
of UML elements. We only need the proposed extended component and activity
diagrams for the DesignIt environment. To keep the following processing tasks
simple, we have decided to define our own simple XML representation with respect
to the proposed extended component and activity diagrams.

XSLT transformations are used to generate the complete Java program code out
of the XML files (step 2). The resulting Java components are then executed and
debugged within the run-time system (step 3). When defects are detected in this
step, the program can be debugged and analyzed.

Once the problem is identified, it can be solved by changing the UML model (step
4). Afterwards, the whole cycle can be iteratively applied until the implementation
is correct. To sum up, the DesignIt tool environment supports pure forward code
generation. As the code is generated completely - no more coding is required - there
is no need for backward code engineering.

The execution and debugging environment of DesignIt is distributed itself. It is
implemented using CORBA as distribution and network communication technique.
The execution environment is a CORBA server. For each component type, a sepa-
rate CORBA server is started. Even the debugger is started within an own CORBA
server. Hence, the execution environment, the debugger, and each component type
can be executed on a separate computer.

Figure 9 shows a screenshot of the debugging environment of DesignIt. On
the top level of the tree, each available server is shown. In the shown case, three
additional distributed servers exist: one for the runtime environment, one for all

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–2320

instances of component type CB, and the other for all instances of component type
CA. Moreover, for each component instance the current status and its syntactical
interface are shown.

Fig. 9. Debugging Environment of DesignIt.

Using this debugging environment, asynchronous messages or method calls from
outside the system can be initiated. Once the messages resp. method calls are stored
in the run-time environment, the whole distributed and concurrent system can be
executed step by step. Each step represents an observation point in the sense of our
operational semantics. Once an inconsistency appears, the debugging environment
stops the system execution and informs the software engineer about the presence of
a possible inconsistency situation as discussed in Section 6. The software engineer
then can analyze the situation and fix the model until it is correct.

9 Conclusion

The ability to develop and maintain distributed concurrent component-based soft-
ware systems is essential for modern software engineering. To bridge the gap be-
tween the vertical component-based decomposition of software systems and the
horizontal concurrent execution flow in software systems, an operational semantic
for distributed concurrent components has been elaborated. This model also in-
cludes hierarchical components - software systems that contain components which
are again composed out of so-called sub-components. This has not been presented
in the paper but it is included in the complete formal semantics in [15].

This model provides a sound and realistic semantic foundation for this kind of
software systems: it is powerful enough to handle dynamically changing structures,
shared global state, asynchronous message communication, and concurrent method

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 21

execution. The overall system behavior can be calculated from the concurrently
executed threads and their behavior relations. Based on the operational semantics
inconsistent system states, especially caused by the concurrent execution, can be
detected during run-time and further system execution can be stopped.

Moreover, textual and graphical description techniques have been presented to
describe this kind of concurrent component-based software systems. A complete
and formally founded semantically mapping of the description techniques to the
operational semantics has not been presented in the paper. This has already been
elaborated in [15].

Based on this semantics complete code generation and execution within the run-
time environment is supported. Tool support for modeling, code generation and
system execution has been implemented and used in small case studies. However,
further improvement has to be done.

Moreover tool support for reasoning on the specifications could be addressed.
Currently in [15] concepts for reasoning about the changes of component composi-
tion in case of component evolution are already elaborated and implemented. Fur-
ther tool support concerning the consistency between specification and code may
be a worth full improvement.

Case studies and industrial experiences have to be undertaken to show whether
the proposed approach is of practical relevance or not. The formal model could be
extended to integrate the concept of exceptions. Moreover, additional description
techniques like for instance sequence diagrams to model system traces and test cases
could be integrated. The tool support may be extended to integrated run-time test
and verification, failure analysis assistance, and code generation for additional target
platforms.

10 Acknowledgements

My thanks to Christian Bartelt, Arnd Poetzsch-Heffter, Marcus Reitz, Marcus
Seiler, Thomas Ternit for input and comments to this work.

References

[1] Standish Group International, Inc. Collaborating on Project Success. Software Magazine,
February/March 2001. Wiesner Publishing. 2001.

[2] Object Management Group. OMG Unified Modeling Language Specification, Version 2.0. Technical
Report, OMG. 2005.

[3] Gary T. Leavens, Albert L. Baker, Clyde Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. Technical Report 98-06d, Iowa State University, Department of
Computer Science. 1999.

[4] Jos B. Warmer, Anneke G. Kleppe. The Object Constraint Language (Second Edition). Addison Wesley
Publishing Company. 2004.

[5] Stephen J. Mellor, Marc Balcer. Executable UML. Addison-Wesley Professional. 2002.

[6] Luigi Lavazza, Gabriele Quaroni, Matteo Venturelli. Combining UML and formal notations for modeling
real-time systems. Proceedings of the 8th European software engineering conference. 2001.

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–2322

[7] Marc Richters. A Precise Approach to Validating UML Models and OCL Constraints. Logos Verlag
Berlin. 2001.

[8] UML/EJB Mapping Specification. Java Community Process Document JSR26, 2001.

[9] Charles A. Hoare. Communicating Sequential Processes. Prentice Hall. 1985.

[10] Martin Abadi, Luca Cardelli. A Theory Of Objects. Springer Verlag. 1996.

[11] Manfred Broy, Ketil Stlen. Specification and Development of Interactive Systems. Springer Verlag. 2001.

[12] Handbook of Process Algebra. Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, Editors. Elsevier,
ISBN: 0-444-82830-3, 2001.

[13] D. Harel, B. Rumpe. Meaningful Modeling: What’s the Semantics of “Semantics”?. In: IEEE Computer,
Volume 37, No. 10, pp 64-72, IEEE, October 2004.

[14] Klaus Bergner, Manfred Broy, Andreas Rausch, Marc Sihling, Alexander Vilbig. A Formal Model for
Componentware. In Foundations of Component-Based Systems, Cambridge University Press. 2000.

[15] Andreas Rausch. Componenteware: Methodik des evolutionären Architekturentwurfs. PhD Thesis,
Technische Universität München. Herbert Utz Verlag. 2001.

[16] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. Design Patterns, Elements of Reusable
Object-Oriented Software. Addison Wesley Publishing Company. 1995.

[17] DesignIt. Homepage of DesignIt. http://designit.informatik.tu-muenchen.de. 2005.

A. Rausch / Electronic Notes in Theoretical Computer Science 176 (2007) 5–23 23

	Introduction
	Concurrent Program Sample
	Basic Concepts
	Structural Behavior
	Valuation Behavior
	Communication Behavior
	Execution Behavior
	System Snapshot

	System Behavior
	Thread Behavior
	Behavior Composition
	Description Technique
	Tool Support
	Conclusion
	Acknowledgements
	References

