FuseJ: An architectural description language for unifying
aspects and components

Davy Suvée
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium

dsuvee@vub.ac.be

ABSTRACT

In this paper, we propose a novel component architecture
and language that aims at achieving a natural unification
between aspects and components. In order to modularize
crosscutting concerns, this approach does not introduce a
specialized aspect construct. Instead, an expressive aspect-
oriented composition mechanism is proposed that is applied
upon existing component modules. When employing this
unified component architecture, regular components are ac-
cessed through the use of gates. The behaviour behind these
homogeneous gates is combined using expressive connectors
that are able to describe both regular and aspect-oriented
interactions. We present the FuseJ architectural description
language, which realizes the unified component architecture
in the setting of the JavaBeans component model. A first
proof-of-concept implementation of the FuseJ language is
available. In this paper, we evaluate the impact of the uni-
fied component architecture and language onto several soft-
ware engineering properties, in particular comprehensibility,
evolvability and predictability.

Keywords
Aspect-Oriented Software Development, Component-Based
Software Development, Unification.

1. INTRODUCTION

Component-Based Software Development (CBSD) is a soft-
ware engineering paradigm that aims at improving the reusa-
bility of individual components and component composi-
tions. Ideally, when building component-based applications,
a number of off-the-shelf, third-party components are brought
together into a single application. In order to keep such
third-party components independently deployable, CBSD
demands that components never explicitly refer to nor rely
on other specific components [18]. With the advent of Aspect-
Oriented Software Development (AOSD) on the other hand,
a software engineer is able to cleanly modularize crosscut-

Bruno De Fraine
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium

bdefrain@vub.ac.be

Wim Vanderperren
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussels, Belgium

wvdperre@vub.ac.be

ting concerns such logging [11], contract verification [19] and
security policies [20]. Without AOSD, the implementation
of these concerns remains scattered over and tangled with
the different modules of the system, making it hard to add,
edit and remove them afterwards.

Currently, a wealth of technologies are available that aim
at integrating aspect-oriented ideas into a component-based
context. Examples of such technologies are JAC [14], OIF
[9], JBoss/AOP [10], EAOP [6], and JAsCo [17]. All of these
approaches however focus at introducing new programming
languages or frameworks for modularizing crosscutting con-
cerns: aspects are either specified in a dedicated language
or are required to implement a particular set of interfaces.
Hence, an aspect is considered, treated and implemented
as a different kind of entity within the application. But
can this differentiation between aspects and components re-
ally be justified? Inherently, the behaviour provided by as-
pects is not that different from component behaviour. Both
implement some functionality required within the applica-
tion, and only the way in which they interact with the rest
of the software system differs. The introduction of a sep-
arate aspect construct however has several disadvantages.
Firstly, the implied crosscutting composition mechanism of
an aspect module resides itself tangled with the behaviour
of the concern, inherently ruling out other ways of inte-
grating its behaviour within the application. Secondly, the
reusability and applicability of existing components is con-
strained. Nowadays, several mature, feature-rich compo-
nents are available which for instance allow managing the
security issues within an application. At the moment how-
ever, there is no straightforward solution available for in-
tegrating these existing components in an aspect-oriented
fashion. One can either wrap these components in an aspect
module or refactor their entire implementation towards an
aspect. Both tasks however are cumbersome and error-prone
and sometimes even impossible as components are often only
available as black-box entities.

Instead of introducing a specialized aspect module, we pro-
pose to apply aspect-oriented composition mechanisms upon
existing module constructs. As such, independently spec-
ified components can be deployed in both a regular and
aspect-oriented fashion. An analog concept is found in the
context of the preparation of a dinner. First, one goes to a

Submitted to the AOSD 2005 Workshop on Software Engineering Properties food store and buys the required ingredients such as pota-

of Languages for Aspect Technologies (SPLAT '05).

toes and eggs. Depending on the recipe at hand, one only

decides at the moment of preparation whether these pota-
toes and eggs should be integrated into the dish either boiled
or fried. It is evident that these basic ingredients can be
bought without predefined stipulations about their use: the
customer is able to employ them in the way he/she desires.
Obtaining a similar concept for aspect-orientation, would
allow one to buy existing components and only decide at
application composition time whether a component should
be integrated into the software application in a regular or
aspect-oriented fashion.

In this paper, we present the first steps towards a new com-
ponent architecture, which aims at achieving a natural unifi-
cation between aspects and components. Within this unified
architecture, all functionalities required by an application
are implemented as regular software components. The core
idea of this unified architecture is to augment each of these
components with a dedicated interface that exposes their
services through the use of gates. Gates provide centralized
access to the internal functionality offered by a component
and allow their behaviour to be composed in both a regu-
lar and aspect-oriented fashion by making use of expressive,
declaratively specified connectors. The next section of this
paper sketches an overview of the main ideas and concepts of
the unified component architecture. Section 3 presents the
FuseJ architectural description language, which is a prac-
tical realization of the unified component architecture for
the JavaBeans component model. Section 4 describes the
internals of the container-based execution model that em-
powers the FuseJ language. Section 5 presents the impact
of the unified component architecture, and in particular the
FuseJ language, upon several software engineering proper-
ties, such as comprehensibility, predictability and evolvabil-
ity. Finally, we end up by giving an overview of some related
work and present our conclusions.

2. TOWARDS THE UNIFIED COMPONENT
ARCHITECTURE

In order to achieve a seamless integration between aspects
and components, a novel unified component architecture,
as illustrated in figure 1, is proposed. When adopting this
architecture, each concern required within the software sys-
tem is mapped upon a regular component. The behaviour of
these components is implemented by employing some base
component language and no additional language constructs
are provided for implementing possible aspect-oriented in-
teractions. Hence, concerns that are typically employed in
an aspect-oriented context, such as logging or security, no
longer require a dedicated aspect module, but can have one
multi-purpose implementation. As already mentioned in the
introduction, we consider each component to be a black-
box entity that is specified and deployed independently from
other specific components [18].

In general, components offer one or more functionalities,
which we call services. In order for other components to
employ these services, each component is provided with a
gate interface. The intention of a gate is twofold:

1. Delimit and expose the internal implementation of the
component.

2. Offer a homogeneous access-point for enabling both

Figure 1: Unified component architecture

regular and aspect-oriented interactions with other com-
ponents.

Each gate provides access to a specific service by binding it
to one or more concrete methods implemented by the com-
ponent. Hence, the gate interface of a component describes
the set of possible joinpoints, which can be employed in both
a regular and aspect-oriented fashion. For this, a gate acts as
a two-way communication channel. Incoming gate commu-
nication has following semantics: ezecute the service of the
component the gate provides access to. As such, when trig-
gering the behaviour of a gate, the internal methods to which
this gate is bound, are executed. Outgoing gate communi-
cation on the other hand has following semantics: whenever
the service of the component the gate provides access to is
executed, trigger some additional behaviour. This additional
behaviour depends on the services of the other gate(s) the
outgoing communication is referring to. Hence, whenever
one of the services of a component is executed through its
corresponding gate, the gate itself is able to trigger some ad-
ditional behaviour. The component composition illustrated
in figure 1 features three components, namely C;, C3 and
C5. Components Cy and C» each expose 3 gates, while com-
ponent C3 exposes 2 gates to access its provided services.
The specification of how these gates interact (in a regular
or an aspect-oriented way) with the gates offered by other
components is not specified in the gate itself, but is deferred
until the component composition process.

The interaction between gates is described by making use
of expressive connectors. A connector is responsible for
describing the regular and aspect-oriented interactions be-
tween one (or more) gate(s), as this interactional descrip-
tion is omitted in both the component and gate specifi-
cation. Connectors that specify regular component inter-
actions are quite similar to the connectors found in most
component models. They are mainly employed for gluing
together the independently specified behaviour of two or
more gates by resolving possible syntactic incompatibilities
concerning method names and argument types. Connectors
that specify aspect-oriented interactions are an extension
of connectors that describe regular component interactions:
additionally they allow specifying how the behaviour of one
gate crosscuts the behaviour of another gate. The compo-
nent composition illustrated in figure 1 employs two connec-
tors in order to specify the interaction between the involved
gates. When the behaviour of the first gate of component

C1 is executed, it automatically triggers an additional inter-
action through connector A which, depending on the type
of this connector, is regular or aspect-oriented.

Deferring the aspect-oriented interaction specification to the
component composition mechanism itself (i.e. gates and
connectors) has multiple advantages. The reusability of
components is increased, as a developer does not need to
decide at implementation time whether a component is sup-
posed to interact in a regular or an aspect-oriented fash-
ion. All concerns are implemented as plain components and
a connector is responsible for specifying how the interac-
tion between the involved components takes place. As a
result, the services offered by a component can be employed
in both regular and aspect-oriented fashion at the same time
and additionally this allows reusing existing components in
an aspect-oriented setting. The next section illustrates the
FuseJ language, which is a practical realization of the unified
component architecture.

3. FUSEJ LANGUAGE

In this section, the FuseJ architectural description language
is introduced. The FuseJ language illustrates a practical re-
alization of the unified component architecture, introduced
in section 2, by mapping its ideas and concepts onto a real-
world component model. Our first proof-of-concept lan-
guage targets the JavaBeans component model [16]. Al-
though JavaBeans does not provide a full-fledged component
infrastructure, it is an ideal testing framework for our first
language experiments, as we are not exposed to all the bells
and whistles provided by mature component models such as
Enterprise JavaBeans [5] and Microsoft COM/DCOM [8].
In this section, a first prototype language for gates as well
as for connectors is presented. Keep in mind that at the
moment the FuseJ language does not support all possible
aspect-oriented interactions among components. Identifying
and representing this set of required interactions is subject
to future research.

Consider a hotel booking case study which employs three
components: the BookingService, the PaymentService and
the DiscountService components. The first two compo-
nents provide a user with regular component features, such
as book a hotel or bill a particular amount of money onto
a customers credit card. The latter component provides
a number of business specific services such as calculate a
discounted price of n percent. Business-rules have already
been identified as typical examples of crosscutting concerns
[4], as their implementation is almost always scattered and
tangled with the base implementation of the software sys-
tem. In addition, these features are volatile to change as
their behaviour needs to be added, changed and removed
quite frequently in order to adhere to the new business re-
quirements of a company. Using FuselJ, all three presented
components are implemented as regular JavaBeans, inde-
pendent of whether they implement crosscutting or non-
crosscutting concerns. In the next two subsections, we il-
lustrate how these components are specified and composed
using the FuseJ architectural description language.

3.1 FuseJ Gate Language
The FuseJ gate language provides a set of declarative lan-
guage constructs that allow augmenting each component

1 interface BookingService for BookingServiceComponent {
2

3 gate BookHotel {

4 binds:

5 Float bookHotel(String hotelname);

6 exposes:

7 String inputHotelName = hotelname;

8 Float outputPrice = returnvalue;

9 }

10

11 outputgate ChargeForHotel {

12 binds:

13 void fireChargeRequest(ChargeEvent event);

14 exposes:

15 ChargeEvent chargeEvent = event;

16}

17

18 }

Figure 2: Gate interface for the booking service
component

1 interface DiscountService for DiscountServiceComponent {
2

3 inputgate Discount {

4 binds:

5 Float getDiscountPrice(Float price, Float percent);
6 exposes:

7 Float inputPrice = price;

9 Float discountPercentage = percent;

10 Float outputPrice = returnvalue;

11 }

12

13 }

Figure 3: Gate interface for the discount service
component

with a dedicated interface that describes an overview of
the functional services it provides. Each gate description
is bound to one or more methods provided by a component
and explicitly delimits and exposes their internal implemen-
tation. Figure 2 illustrates the gate interface description of
the BookingService component.

The BookingService interface groups together two gates,
namely BookHotel and ChargeForHotel. Each gate itself is
responsible for specifying whether it can receive incoming
communication, trigger outgoing communication or both.
The BookHotel gate (lines 3-9) allows initiating the execu-
tion of its internal functionality from outside the compo-
nent and is itself able to trigger additional aspect-oriented
or component-based interactions. The ChargeForHotel gate
(lines 11-16) on the other hand, declares itself as an output
gate. As such, it is impossible to execute the behaviour of
this gate from outside the component. In fact, this gate
merely throws an event to charge a customer when he/she
books a particular hotel. The Discount gate (lines 3-11)
of the DiscountService gate interface illustrated in figure 3
declares itself as being an input gate. Hence, it remains pos-
sible to execute its internal functionality, but the gate itself
will not trigger interactions with other gates, for instance to
apply additional discounts on the already discounted price.

A gate specification typically consists out of two parts: a
binding and an ezposition description. The binding part
maps a gate onto one or more methods that are part of the
internal implementation of the component. The BookHotel
gate for instance, is mapped onto the bookHotel method.
As such, when triggering the behaviour of this gate, the

1 interface PaymentService for PaymentServiceComponent {
2

3 gate ChargeAmount {

4 binds:

5 void chargeAmount (String ccnumber, Float amount);
6 exposes:

7 String inputCCNumber = ccnumber;

8 Float inputAmount = amount;

9 }

10

11 gate ReserveAmount {

12 binds:

13 void reserveAmount (String ccnumber, Float amount);
14 exposes:

15 String inputCCNumber = ccnumber;

16 Float inputAmount = amount;

17}

18

19 outputgate BillingActions {

20 binds:

21 void *Amount (String ccnumber, Float amount);

22 exposes:

23 String inputCCNumber = ccnumber;

24 Float inputAmount = amount;

25}

26

27 }

Figure 4: Gate interface for the payment service
component

bookHotel method is in fact executed. When a gate is
mapped upon multiple methods implemented within the
same component, this is either specified by enumerating the
involved methods one by one or by making use of a regular
expression. This concept is illustrated by the BillingActions
gate (lines 19-25) of the PaymentService component inter-
face illustrated in figure 4. Although a dedicated gate is
available for both the chargeAmount and reserveAmount
methods, the BillingActions gate is mapped on both. As
such, when acting as output gate, this allows to attach some
additional gate interactions (for instance logging) whenever
a customer is being billed, either by charging or reserving a
particular amount of money onto his/her credit card. When
acting as an input gate, this allows for multicast abilities,
i.e. all methods specified by the gate are executed one by
one. The BillingActions gate however declares itself as
output gate, as generally both charging and reserving a par-
ticular amount of money at the same time does not make
much sense. The gate exposition part describes the proper-
ties of a gate, such as the input arguments and return value.
This allows to selectively expose those properties that can
employed and/or altered when this gate is involved in one
or more interactions with other gates. The BookHotel gate
of the BookingService component exposes two properties:
the inputHotelName property that refers to the name of the
hotel that a customer wants to book and the outputPrice
property that refers to the total price that needs to be
charged for booking a particular hotel. The latter property
is the return value of the method on which this gate has been
mapped and is denoted using the returnvalue keyword.

Providing each component with a dedicated gate interface
could seem overkill in some cases. This declarative specifi-
cation however allows one to explicitly expose the services
provided by a component and delimits the way other com-
ponents are able to interact and influence their internal be-
haviour. As such, the comprehensibility, predictability and
analyzability of single components and component compo-

sitions is improved. For combining several independently
specified components into a working software system, FuselJ
connectors are employed.

3.2 FusedJ Connector Language

FuseJ connectors are responsible for declaratively specify-
ing the overall architecture of the application. For this, each
connector combines one (or more) gate(s) and describes how
these gates should interact (i.e. regular or aspect-oriented
interaction). The hotel booking case study requires two con-
nectors in order to fulfil its functionality. The first connec-
tor is responsible for charging a particular amount of money
onto a customer’s credit card when he/she books a hotel.
The task of the second connector is to assign a particu-
lar discount, depending on business-specific properties. The
first connector is a typical example of a regular, component-
based interaction. The BookingService component throws
a charge event and the PaymentService component is re-
sponsible to take the appropriate actions in order to bill the
customers credit card. The specification of this component-
based interaction is illustrated in the BookingPayment con-
nector shown in figure 5.

connector BookingPayment {

1

2

3 execute:

4 PaymentService.ChargeAmount;

5 for:

6 BookingService.ChargeForHotel;

7 where:

8 PaymentService.ChargeAmount . inputCCNumber =

9 BookingService.ChargeForHotel.chargeEvent.visaNumber;

10 PaymentService.ChargeAmount . inputAmount =

11 BookingService.ChargeForHotel.chargeEvent.amount;
12

13 }

Figure 5: BookingPayment connector describing a
regular component interaction

Each FuseJ connector specifies one (or more) gate inter-
actions(s), which are typically built up out of two parts,
namely a connection part and a mapping part. The con-
nection part (lines 3-6) describes the interaction between the
two involved gates. In this case, the BookingPayment con-
nects the ChargeForHotel gate of the BookingService com-
ponent with the ChargeAmount gate of the PaymentService
component. The interaction specifies that the behaviour of
the ChargeAmount gate should be executed for each trig-
gering (i.e. throwing of an event) of the ChargeForHotel
gate. As such, whenever a customer books a hotel through
the BookingService component, he/she gets charged by em-
ploying the PaymentService component. The mapping part
of the connector (lines 7-11) is used for translating the in-
volved properties of the gates and possibly resolving syntac-
tic incompatibilities, i.e. distinct method name and argu-
ment types. In this case, the chargeEvent property of the
ChargeForHotel gate is mapped upon the inputCCNumber
property and inputAmount property of the ChargeAmount
gate.

The BookingDiscount connector, which is an example of an
aspect-oriented interaction, is illustrated in figure 6. The
purpose of this connector is to assign a discount of 15 per-
cent whenever a customer books a hotel during the Christ-
mas holidays. To enable this crosscutting interaction, the

BookingDiscount connector connects the BookHotel gate of
the BookingService component with the Discount gate of
the DiscountService component. The interaction specifies
that the behaviour of the Discount gate should be triggered
around the behaviour of the BookHotel gate. Other aspect-
oriented interactions, such as before and after can also be
employed. The mapping part of this connector (lines 7-10)
illustrates that a gate property should not necessarily be
mapped onto another gate property. In this case, the dis-
count percentage property is set on the constant value 15
(line 10). An additional triggering condition is set to this
interaction by employing a when clause (lines 11-12): the 15
percent discount should only be attributed when the cus-
tomer books a hotel during the Christmas holidays. This
when clause always expects a Boolean value and in this case
employs the ChristmasHolidayDate gate of a DateService
component to retrieve the required information. As such,
the reusable DiscountService component can be employed
in order to realize different kinds of discounts by fine-tuning
it in a corresponding connector.

connector BookingDiscount {

1

2

3 execute:

4 DiscountService.Discount;
5 around:

6 BookingService.BookHotel;
7

8

where:
DiscountService.Discount.inputPrice =

9 BookingService.BookHotel.outputPrice;
10 DiscountService.Discount.discountPercentage = 15;
11 when:
12 DateService.ChristmasHolidayDate.outputValue;
13
14 }

Figure 6: BookingDiscount connector describing an
aspect-oriented component interaction

4. FUSEJ EXECUTION MODEL

In order to make the FuseJ language operational, we propose
a novel container-based execution model which is compliant
with the JavaBeans standard. The core idea behind this
model is to enable both regular and aspect-oriented inter-
actions between JavaBeans without having to fall back on
specialized weaving mechanisms such as running the appli-
cation in debug mode, using dedicated class loaders or em-
ploying advanced instrumentation APIs such as JPLIS (Java
Programming Language Instrumentation Services). At the
same time, we still aim at providing a dynamic weaving
mechanism which allows attaching and detaching interac-
tions between components at run-time of the application.
At the moment, the FuseJ implementation is built up out
two main components: the gate preprocessor and the FuseJ
runtime execution environment, whose functionalities are
shortly sketched in the following two subsections.

4.1 Gate Interface Preprocessor

Remember that a software engineer is able to augment each
component with an interface that describes its provided ser-
vices through the use of gates. This interface is employed
by the FuseJ runtime execution environment to generate
a container that hosts a particular instance of that com-
ponent and enables it to participate in both regular and
aspect-oriented interactions. The task of this preprocessor
is twofold:

1. Translate each gate specified within the interface to-
wards a dedicated Java 1.5 annotation instance. These
annotation instances, which mainly package a set of
meta-data, contain all information related to a par-
ticular gate, such as its name, type and the values it
exposes.

2. Resolve the bindings of gates upon their described
component. As each gate can be bound to several
methods or events specified using regular expressions,
these bindings are statically resolved in order to opti-
mize the run-time performance of a gate.

The generated meta-data is integrated within the compo-
nent by making use of the Javassist [3] byte-code manipula-
tion tool: gate annotations are attached at the level of the
component type and their corresponding bind annotations
are attached at the level of methods and events. Notice that
this integration process does not alter the semantics of the
component itself. The employed process merely integrates
meta-data and, unlike weaved-based AOP approaches, does
not invasively change the functionality offered by the com-
ponent. As such, each component becomes a self-contained
unit that can be immediately deployed within the Fusel
run-time execution model.

The gate interface preprocessor can either be employed by
the component vendor in order to make its component com-
patible with the FuseJ execution environment or it can be
used by a component deployer to document and restrict ac-
cess to the involved components.

4.2 FuseJ Execution Environment

The FuseJ execution environment is responsible for man-
aging the deployment of both components and connectors.
When a component is deployed for the very first time, a ded-
icated container for this component is automatically gener-
ated. For this, the execution environment inspects the anno-
tations that are provided by the self-describing component.
This generated container wraps the deployed component,
inherently ruling out unsolicited interaction. The container
automatically installs its corresponding gates, which act as
central access-points to the functionality of the component.
The implementation of these gates internally contains their
exposed values and provides a mechanism for the attachment
and detachment of regular and aspect-oriented interactions.
As such, each gate itself is aware of its interactions with
other components. After this generation process, the com-
ponent is activated within the execution environment and
ready for communication with other components. Notice
that a component, which does not contain gate annotations,
can still be automatically deployed within the FuseJ exe-
cution environment. The JavaBeans standard describes the
way a component should provide its internal functionality.
These coding conventions for instance specify the availabil-
ity of a dedicated getter and setter method for each property
of a JavaBean. As such, when no gate interface is retrieved
from a component, all methods (including getters-setters)
and events, are automatically exposed as gates for this com-
ponent.

When a connector is deployed within the execution environ-
ment, a JavaBean that manages the interaction between the

involved gates is automatically generated. This connector
allows to automatically attach and detach itself from a gate
and is as such able to influence the interactional behaviour
between the involved components at run-time. Note that
this connector component also gets deployed within the exe-
cution environment, similar to a regular component. Hence,
this connector component is automatically wrapped within a
container, such that it can again be employed to initiate spe-
cific interactions with other components, for instance when
it gets attached/detached.

4.3 Prototype Implementation

Currently, a first prototype of FuseJ execution model has
been developed. At the moment, tool support includes the
gate interface preprocessor, the FuseJ runtime execution en-
vironment and an administration GUI window (illustrated
in figure 7) that allows introspecting, adapting and deploy-
ing components and connectors within the system. In the
future, the development of a visual plugin for Eclipse [7]
is envisioned. This should further ease the development of
component-based applications using FuselJ.

Figure 7: The FuseJ administration window

5. IMPACT ON SOFTWARE ENGINEERING
PROPERTIES

This section sketches the impact of the unified component
architecture, and in particular the FuseJ architectural de-
scription language, on software engineering properties, such
as comprehensibility, predictability, evolvability and seman-
tic interactions.

5.1 Comprehensibility

One of the common critiques on AOP is that it makes it
more difficult to grasp a total overview of the control-flow
within the application as one needs to consider two pro-
gramming dimensions at the same time. FuseJ aims at
easing this development and management process. In the
first place, comprehensibility is enhanced by modularizing
both crosscutting and non-crosscutting concerns as indepen-
dently deployable components. Hence, this allows to ana-
lyze, comprehend and evolve (non-)crosscutting concerns in
total isolation. In addition, components need to explicitly
declare their set of possible interaction points (joinpoints)
which simplifies the analysis of possible interactions with

other components. The declarative FuseJ connector lan-
guage in turn allows describing the interactions between
independent components in a modular fashion. As both
regular and aspect-oriented interactions are specified within
the same dimension, it becomes easier to comprehend the
total control-flow of the application. Each connector de-
scribes one specific interaction, which makes it possible to
observe this entity in total isolation. The declarative nature
of these connectors should also be able to contribute to the
semi-automatic detection of possible conflicting semantic in-
teractions. Finally, the FuseJ execution environment explic-
itly supports the incremental development and integration
of aspects within a component-based application: one first
builds up a subsystem of the application, and interconnects
these separate parts later on in order to compose the total
application in an iterative fashion.

5.2 Predictability

In traditional AOP approaches, an aspect itself is responsi-
ble for defining the set of joinpoints it wants to advise. As
such, there is no implied limit on the expressive power of
traditional aspects: as long as one is able to describe the
joinpoint, one is able to advise it. In many cases however,
this sometimes leads to unforeseen and unpredictable be-
haviour. When the FuseJ language is however employed,
each component itself describes the set of joinpoints that
can possibly be advised through the use of gates. As such,
other components are only able to initiate communication
(both regular and aspect-oriented) on those specific inter-
action points. Although this limits the expressivity of the
FuseJ approach in a way, it makes it easier to predict and
analyze the resulting outcome of composition between the
involved components.

5.3 Evolvability

FuseJ supports evolvability at the level of the component
composition itself, as well as at the level of a single compo-
nent. The proposed execution model inherently supports the
incremental development of component-based applications:
by attaching new or detaching existing connectors, possibly
at run-time, one is able to add and remove functionalities
to the built-up application in a modular fashion. FuselJ also
supports the evolution of single components. All concerns,
both crosscutting and non-crosscutting, can evolve in total
isolation, as no hard links between them are maintained. In
general, as long as the interface of the component remains
constant, its corresponding gates do not require any adap-
tation and the component composition should remain valid.
In case the original interface of the component is changed,
the intermediate gate layer is able to handle these possible
syntactic or semantic differences by rebinding gates onto the
newly refactored component interface. As such, the compo-
nent composition remains valid and does not require any
adaptation whatsoever.

Also, the use of gates makes it impossible to advise the inter-
nal behaviour of the component itself. Although each gate
is bound to a particular method implemented by a compo-
nent, internal calls to these bound methods will not induce
the triggering of possible regular and aspect-oriented inter-
actions. As such, even when the internal implementation
of a component evolves without changing the components
interface, the resulting behaviour of the component compo-

sition remains intact and will not trigger unforeseen compo-
nent behaviour.

5.4 Semantic Interactions

At the moment, the FuseJ language does not provide explicit
language support to detect and resolve possible conflicting
semantic interactions between components. When a gate
is involved in two or more regular or aspect-oriented inter-
actions, they are handled sequentially, depending on their
type and the order in which their corresponding connec-
tors were loaded in the execution environment. Although
this mechanism allows a user to define precedence between
multiple interactions, it merely provides an ad-hoc solution
which should be made more explicit at the language level.
Also, the current solution does not provide the expressive
power required to describe that some interactions should be
ignored when other specific interactions are also applicable.
Although still an open issue that needs to be resolved, we
are considering an approach that employs a set of dedicated
combinator components which are, on their turn, able to
describe the relationships between the corresponding con-
nector components.

6. RELATED WORK

Several aspect-oriented technologies have been introduced
which also aim at not introducing a specialized aspect mod-
ule. Multi-Dimensional Separation Of Concerns (MDSOC),
is one of the first approaches which support the modulariza-
tion of multiple concerns simultaneously, without one domi-
nating the other [12]. The practical realization of MDSOC is
HyperJ for Java [13]. HyperJ captures each concern (cross-
cutting or not) in a so called hyperslice. Similar to FuselJ,
HyperJ employs pure Java for describing hyperslices, allow-
ing easier integration of existing components. Hypermodules
are used to compose a set of hyperslices in order to build up
the application. One of the main difference between HyperJ
and FuseJ however is that FuseJ concentrates on describ-
ing interactions between components, while HyperJ focuses
on describing mappings. In many cases, their approach re-
quires components to share common method names and ar-
guments, which easily gives raise to problems when combin-
ing independently specified third-party components. At the
implementation level, HyperJ merges all mapped hyperslices
using byte-code transformations. As such, hyperslices lose
their identity at run-time. FuseJ on the other hand, allows
components to remain first-class entities, even at run-time.
As such, replacing or deleting a component dynamically is
still possible.

Composition Filters [2] is an aspect-oriented approach that
allows expressing crosscutting concerns by attaching filters
to existing classes. ConcernlJ [15] is one of the practical real-
izations of the Composition Filters approach that modular-
izes all concerns of an application into the concern construct.
As such, no specific aspect construct exists. The ConcernJ
language does however induce a major refactoring of exist-
ing code in order to be able to modularize regular classes as
concerns. FuseJ however, is backward compatible with reg-
ular JavaBeans which can be immediately incorporated into
the approach. Furthermore, likewise to HyperJ, ConcernJ
invasively alters the concerns in order to insert crosscutting
behaviour. This property renders the ConcernJ approach
less suitable to be employed in a component-based context.

Invasive Software Composition is a component-based ap-
proach that unifies several software engineering techniques,
such as architecture systems and generic and aspect-oriented
programming [1]. Invasive Software Composition aims at
improving the reusability of software components. To this
end, software components are equipped with both explicit
and implicit hooks. These hooks are composed using a sep-
arate composition mechanism. Hence, hooks are similar to
the gate concept of FuseJ. FuseJ gates are however only
able to depend on the component’s public interface, while
hooks can be attached at any programming construct. As
such, hooks are able to describe a finer level of granularity
and the resulting composition has more expressive power.
The downside however is that, as the internals of a com-
ponent are subject to evolution, this could easily break the
composition later on. Similar to HyperJ, Invasive Software
Composition merges the components into one application at
run-time. Undoubtedly, merging components renders a very
efficient output but makes components lose their identity.

7. CONCLUSIONS

In this paper, we present the first steps towards a natural
unification between aspects and components. In our opin-
ion, a specialized aspect construct is not necessarily required
in order to modularize crosscutting concerns. Inherently,
the behaviour provided by aspects is not that different from
component behaviour: both implement some functionality
required within the application and it is only the way in
which they interact that differs. Therefore, we propose to
employ an expressive aspect-oriented composition mecha-
nism which can be applied upon existing components. In
order to support this idea, a unified component architec-
ture is proposed where the internals of regular components
are accessed through the use of gates. Homogeneous gates
are combined by making use of expressive connectors that
describe both regular and aspect-oriented interactions. The
FuselJ architectural description language is proposed that re-
alizes the unified component architecture for the JavaBeans
component model. A first proof-of-concept implementation
of the FuseJ language is available. In our opinion, achieving
a unified architecture for aspects and components eases the
development and management of component-based applica-
tions and has a positive impact onto software engineering
properties such as comprehensibility, evolvability and pre-
dictability.

The proposed FuseJ gate and connector language is only a
first prototype of our ideas. At the moment, the expres-
siveness of the FuseJ connectors do not cover the complete
aspect-oriented composition possibilities. Investigating on
how to integrate more advanced joinpoint designators, such
as cflow, is subject to future research. However, we encoun-
tered more involved problems when aspects are modularized
as regular components. The proceed concept for instance,
allows an aspect to specify whether the original method it
wraps should still be executed. When implementing aspects
as regular components however, a proceed concept is not
available. As such, advanced language mechanisms for the
connector will need to be developed that enable this kind
of specification. However, we always keep mind that our in-
troduced language mechanisms should keep the composition
easy to understand, and not make things more complicated.
In order to validate our approach, we are considering real-

life experiments, to check whether an unified approach for
both aspects and component is really feasible.

8. ACKNOWLEDGMENTS

Davy Suvée and Bruno De Fraine are supported by a doc-
toral scholarship from the Institute for the promotion of In-
novation by Science and Technology in Flanders (IWT or in
Dutch: Instituut voor de aanmoediging van Innovatie door
Wetenschap en Technologie in Viaanderen).

9. REFERENCES

[1] U. ABmann. Invasive Software Composition. Springer,
1st edition, 2003.

[2] L. Bergmans, M. Aksit, and B. Tekinerdogan. Aspect
composition using composition filters. In Kluwer,
editor, Proceedings of the Symposium on Software
Architectures and Component Technology: The State
of the Art in Software Development, 2001.

[3] S. Chiba and M. Nishizawa. An easy-to-use toolkit for
efficient java bytecode translators. In Proceedings of
the second International Conference on Generative
Programming and Component Engineering, Erfurt,
Germany, Sept. 2003.

[4] M. Cibran, M. D’Hondt, and V. Jonckers.
Aspect-oriented programming for connecting business
rules. In Proceedings of the 6th International
Conference on Business Information Systems, pages
1-6, Colorado Springs, USA, June 2003.

[5] S. Denninger and 1. Peters. Enterprise JavaBeans.
Addison Wesley, 1st edition, 2000.

[6] R. Douence, O. Motelet, and M. Siidholt. A formal
definition of crosscuts. In Proceedings of the 3rd
International Conference on Reflection, pages
170-186, Kyoto, Japan, Sept. 2001.

[7] Eclipse Consortium. Eclipse IDE Framework.
http://www.eclipse.org/.

[8] G. Eddon and H. Eddon. Inside Distributed COM.
Microsoft Press, 1st edition, 1998.

[9] R. Filman. Applying aspect-oriented programming to
intelligent systems. In Proceedings of the ECOOP
2000 workshop on Aspects and Dimensions of
Concerns, Cannes, France, June 2000.

[10] JBOSS Group. JBoss/AOP website.
http://www.jboss.org.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proceedings European Conference on
Object-Oriented Programming, pages 220-242,
Atlanta, USA, Oct. 1997.

[12] H. Ossher and P. Tarr. Multi-dimensional separation
of concerns and the hyperspace approach. In Kluwer,
editor, Proceedings of the Symposium on Software
Architectures and Component Technology: The State
of the Art in Software Development, 2000.

(13]

(14]

(15]

(16]

(17]

H. Ossher and P. Tarr. Using multidimensional
separation of concerns to (re)shape evolving software.
Communications of the ACM, 44(10):43-50, 2001.

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
Jac: A flexible solution for aspect-oriented
programming in java. In Proceedings of the 3rd
International Conference on Reflection, pages 1-24,
Kyoto, Japan, Sept. 2001.

P. Salinas. Adding Systemic Crosscutting and
Super-Imposition to Composition Filters. MSc. Thesis,
Vrije Universiteit Brussel, Belgium, 2001.

Sun Microsystems, Inc. JavaBeans(TM) Specification
1.01.
http://java.sun.com/products/javabeans/docs/spec.html.

D. Suvée, W. Vanderperren, and V. Jonckers. Jasco:
an aspect-oriented approach tailored for component
based software development. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software
Development, pages 21-29, Boston, USA, Mar. 2003.

C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison Wesley,
Reading, Massachusetts, USA, 1st edition, 1998.

W. Vanderperren, D. Suvée, and V. Jonckers.
Combining aosd and cbsd in pacosuite through
invasive composition adapters and jasco. In
Proceedings of Node 2003 International Conference,
pages 3650, Erfurt, Germany, Sept. 2003.

B. Vanhaute, B. D. Win, and B. D. Decker. Building
frameworks in aspectj. In Proceedings of the ECOOP
2001 workshop on Advanced Separation of Concerns,
Budapest, Hungary, June 2001.

