
The Slam Project: Debugging System Software via Static Analysis�

Thomas Ball and Sriram K. Rajamani

ftball,sriramg@microsoft.com
Microsoft Research

http://research.microsoft.com/slam/

Abstract. The goal of the Slam project is to check whether
or not a program obeys \API usage rules" that specify what
it means to be a good client of an API. The Slam toolkit
statically analyzes a C program to determine whether or
not it violates given usage rules. The toolkit has two unique
aspects: it does not require the programmer to annotate
the source program (invariants are inferred); it minimizes
noise (false error messages) through a process known as
\counterexample-driven re�nement". Slam exploits and ex-
tends results from program analysis, model checking and au-
tomated deduction. We have successfully applied the Slam
toolkit to Windows XP device drivers, to both validate be-
havior and �nd defects in their usage of kernel APIs.

Context. Today, many programmers are realizing the ben-
e�ts of using languages with static type systems. By pro-
viding simple speci�cations about the form of program data,
programmers receive useful compile-time error messages or
guarantees about the behavior of their (type-correct) pro-
grams. Getting additional checking beyond the con�nes of
a particular type system generally requires programmers to
use assertions and perform testing. A number of projects
have started to focus on statically checking programs against
user-supplied speci�cations, using techniques from program
analysis [18, 19], model checking [21, 17, 22], and automated
deduction [16, 12].

Speci�cation. The goal of the Slam project is to check
temporal safety properties of sequential C programs [7].
Roughly stated, temporal safety properties are those proper-
ties whose violation is witnessed by a �nite execution trace
(see [24] for a formal de�nition). A simple example of a
safety property is that a lock should be alternatingly ac-
quired and released. We encode temporal safety properties
in a language called Slic (Speci�cation Language for Inter-
face Checking) [9], which allows the de�nition of a safety
automaton [30, 29] that monitors the execution behavior of
a program at the level of function calls and returns. The

�Presented by the �rst author.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed for
pro�t or commercial advantage and that copies bear this no-
tice and the full citation on the �rst page. To copy oth-
erwise, to republish, to post on servers or to redistribute
to lists, requires prior speci�c permission and/or a fee.
POPL '02, Jan. 16-18, 2002 Portland, OR USA
Copyright 2002 ACM ISBN 1-58113-450-9/02/01...$5.00

automaton can read (but not modify) the state of the C
program that is visible at the function call/return interface,
maintain a history, and signal when a bad state occurs. We
have developed Slic speci�cations for a variety of Windows
XP driver properties, ranging from simple locking proper-
ties (such as given above) to complex properties dealing with
completion routines, plug-and-play, and power management.

Given a program P and a Slic speci�cation S, a pre-
processor creates an instrumented program P 0 such that a
unique label ERROR is reachable in P 0 if-and-only-if P does
not satisfy S. The goal then shifts to determining whether
or not the ERROR label is reachable in P 0, a generally unde-
cidable problem.

Design. The basic design of the Slam process is to iterate
the creation, analysis and re�nement of program abstrac-
tions, until either a feasible execution path in P 0 to ERROR

is found, the program P 0 is validated (ERROR is shown not
to be reachable), or we run out of resources or patience.

The Slam process creates a sound boolean program ab-
straction B0 of the C program P 0.1 Boolean programs have
all the control-
ow constructs of C programs, but contain
only boolean variables. Each boolean variable in B0 con-
servatively tracks the state of a predicate (boolean expres-
sion) in the C program. Boolean programs are created au-
tomatically using the technique of predicate abstraction [20].
If a reachability analysis of B0 determines that the label
ERROR is not reachable in B0 then it is not reachable in
P 0. It is possible that B0 may be too coarse an abstrac-
tion of P 0 (that is, ERROR is reachable in B0 via a path p
but ERROR is not reachable in P 0 via p). We apply a method
known as counterexample-driven re�nement [23, 28, 27] to
create a more precise boolean program (by adding new pred-
icates/boolean variables) that does not contain the spurious
path p (or other paths that are spurious for the same reason
p is). Termination of the Slam process is addressed below.

We expect the Slam process to work well for programs
whose behavior is governed by an underlying �nite state pro-
tocol. Seen in this light, the goal of Slam is to tease out
the underlying \protocol" state machine from the code, to
a level of precision that is good enough to �nd real errors

1Of course, whenever one hears a claim that an analysis of C code
is \sound", one must ask \sound with respect to what assumptions?"
because of the (potential) use of arbitrary pointer arithmetic. In
Slam, we guarantee soundness under the assumption that the C pro-
gram obeys a \logical memory model' in which the expressions *p and
*(p+i) refer to the same object. Another analysis (see the work on
CCured presented at this symposium [25]) is needed to discharge the
\logical memory" assumption.

or validate the code. For example, while a video card driver
may have a huge data path, most of this data has no bearing
on the driver's interaction with the operating system. How-
ever, some of the driver data de�nitely are relevant to this
interaction, and correlations between these data may need
to be tracked.

Implementation. Three basic tools comprise the Slam

toolkit (in addition to the Slic preprocessor):

� C2bp, a tool that transforms a C program P into a
boolean program BP(P;E) with respect to a set of
predicates E [2, 3]. C2bp translates each procedure
of the C program separately, enabling it to scale to
large programs. Using the theory of abstract interpre-
tation [13], we have characterized the precision of the
boolean program abstractions created by C2bp [4].

� Bebop, a tool for performing reachability analysis of
boolean programs [6, 8]. Bebop combines interproce-
dural data
ow analysis in the style of [26] with Binary
Decision Diagrams [10, 11] (BDDs) to eÆciently rep-
resent the reachable states of the boolean program at
each program point.

� Newton, a tool that discovers additional predicates to
re�ne the boolean program, by analyzing the feasibility
of paths in the C program.

The Slam process starts with an initial set of predicates E0

derived from the Slic speci�cation, and iterates the follow-
ing steps:

1. Apply C2bp to construct the boolean program
BP(P 0; Ei).

2. Apply Bebop to check if there is a path pi in
BP(P 0; Ei) that reaches the ERROR label. If Bebop de-
termines that ERROR is not reachable, then P satis�es
the Slic speci�cation and the process terminates.

3. If there is such a path pi, then Newton checks if pi
is feasible in P 0. There are three possible outcomes:
\yes", the process terminates with an error path pi;
\no", in which case Newton �nds a set of predicates
Fi that \explain" the infeasibility of path pi in P 0;
\maybe", the incompleteness of the underlying theo-
rem prover may cause this outcome, in which case user
input is required.

4. Let Ei+1 := Ei [Fi, and i := i+1, and proceed to the
next iteration.

Termination: Theory and Practice. We have proved a
strong relationship between a process based on iterative re-
�nement of abstractions (such as in Slam) and traditional
�xpoint analyses with widening (which is used to ensure
the termination of abstract interpretations in domains with
in�nite ascending chains) [5]. Using widening, the latter
process always will terminate, but it may not give a de�-
nite result (\error found" or \program validated"). We have
shown that if there is an oracle that can provide a \widening
schedule" that causes the latter method to terminate with
a de�nite result then an iterative re�nement process (which
does not rely on an oracle) will terminate with a de�nite
result. Intuitively, this means that iterative re�nement has
the e�ect of exploring the entire state space of all possible
sequences of widenings.

In practice, the Slam process has terminated for all
drivers within 20 iterations. Our major concern has been
with the overall running time of the process. So far, we are
able to analyze programs on the order of 10,000 lines, and
abstractions with several hundred boolean variables in the
range of minutes to a half hour. In practice, we �nd that
most of the predicates Slam generates are simple equalities
with possible pointer dereferences. For this class of predi-
cates, we believe it is possible to scale the Slam process to
several 100,000 lines of code through optimizations outlined
below.

A major expense in the Slam process is the reacha-
bility step (Bebop), which has worst case running time
O(N(GL)3), where N is the size of the boolean program, G
is the number of global states, and L is the maximum num-
ber of local states over all procedures. The number of states
is exponential (in the worst-case) in the maximal number of
variables in scope.

The key to scaling for the Slam process is in control-
ling the complexity of the boolean program abstraction.
Satyaki Das has implemented a predicate abstraction tech-
nique based on successive approximations [15] in the Slam
toolkit, which has proven quite useful in this regard. Also
relevant here is the paper on \lazy abstraction" in this sym-
posium [21].

Additionally, there is substantial overhead in having to
iterate the Slam process many times, which can be ad-
dressed by both the \lazy abstraction" method as well as
methods for heuristically determining a \good" initial set
of predicates. Westley Weimer has implemented an algo-
rithm in Slam that, given the set of predicates present in
the Slic speci�cation, determines what other predicates in
the C program will very likely be needed in the future. This
technique, based on the value-
ow graph [14], greatly re-
duces the number of iterations of the Slam process.

Challenges. We summarize by discussing some of the chal-
lenges inherent in the endeavor of checking user-supplied
properties of software.

Speci�cation burden. The creation of correct speci�cations
is a hard problem requiring human time and energy (in the
extreme, it is as hard as writing a program). If the e�ort
put into developing speci�cations is not paid back in terms
of discovered defects, then there is little incentive to develop
speci�cations in the �rst place. We focused our speci�cation
e�ort at the level of the API so that speci�cations may be
reused across di�erent programs using the API. Slic spec-
i�cations can be partial. We started by �rst specifying a
small set of errors in Slic, and then gradually enlarging the
set. Nevertheless, the complexity of the device driver API
meant that it took considerable e�ort to arrive at a use-
ful speci�cation that found real defects. The \chicken and
egg" problem of speci�cations is the topic of a paper in this
symposium [1].

Annotation burden. By \annotation", we mean a modi�ca-
tion to the program text inserted by a programmer explic-
itly to help an analysis tool make progress. Examples of
such annotations include loop invariants and pre- and post-
conditions for procedures, such as required by the ESC-Java
tool [16]. In Slam, annotations are not required. Instead,
the abstract �xpoint analysis of the Bebop tool discovers
inductive invariants (loop invariants as well as procedure
call summaries) expressed as a boolean combination of the
predicates that are input to the C2bp tool.

Output. Generating good explanations of errors and their
causes is a complicated a�air, made more diÆcult as the
expressivity of the speci�cation language increases. When
the Slam toolkit �nds an error, it presents it as an error
path in the source code using an interface that resembles
a source level debugger. However, there is sometimes an
overwhelming amount of detail in these traces. We are de-
veloping techniques for presenting both short and detailed
summaries of errors.

Soundness/Completeness/Usefulness. An analysis is
\sound" if every true error is reported by the analysis, \com-
plete" if every reported error is a true error (no noise),
and \useful" if it �nds errors that someone (programmers,
testers, customers) cares about. Defect detection tools such
as LCLint [19], Metal [18] and PRE�x [12] are neither sound
nor complete, yet are demonstrably useful. Slam is sound
(relative to the assumptions stated before), incomplete and
is starting to demonstrate usefulness in the domain of device
drivers.

Acknowledgements. Many people have contributed to
the Slam project. We have been fortunate to have many
excellent interns who helped push the project forward over
the summer months of 2000 and 2001. Sagar Chaki, Rupak
Majumdar and Todd Millstein were 2000 summer interns.
Sagar Chaki, Satyaki Das, Robby and Westley Weimer were
2001 summer interns. We have had a long and fruitful col-
laboration with Andreas Podelski, who has helped us un-
derstand the theoretical limits of the Slam approach.

The Slam toolkit would not be possible without the soft-
ware it builds upon. We thank Manuvir Das for providing
us his one-level
ow analysis tool. We thank the develop-
ers of the AST toolkit at Microsoft Research, and Manuel
F�ahndrich for providing us his OCaml interface to the AST
toolkit. Additionally, we have made good use of the publi-
cally available OCaml language, the Simplify and Vampyre
theorem provers, and the BDD libraries of CMU and Col-
orado.

Thanks also to the members of the Software Productiv-
ity Tools research group at Microsoft Research for many
enlightening discussions on program analysis, programming
languages and device drivers. Finally, thanks to Jim Larus,
who initially suggested device drivers as an interesting ap-
plication domain.

References

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining speci�cations.
In POPL '02. ACM, January 2002.

[2] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auto-
matic predicate abstraction of C programs. In PLDI 01: Pro-
gramming Language Design and Implementation, pages 203{
213. ACM, 2001.

[3] T. Ball, T. Millstein, and S. K. Rajamani. Polymorphic predi-
cate abstraction. Technical Report MSR-TR-2001-10, Microsoft
Research, 2001.

[4] T. Ball, A. Podelski, and S. K. Rajamani. Boolean and carte-
sian abstractions for model checking C programs. In TACAS
01: Tools and Algorithms for Construction and Analysis of
Systems, LNCS 2031, pages 268{283. Springer-Verlag, 2001.

[5] T. Ball, A. Podelski, and S. K. Rajamani. On the relative com-
pleteness of abstraction re�nement. Technical Report MSR-TR-
2001-106, Microsoft Research, 2001.

[6] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker
for Boolean programs. In SPIN 00: SPIN Workshop, LNCS
1885, pages 113{130. Springer-Verlag, 2000.

[7] T. Ball and S. K. Rajamani. Automatically validating temporal
safety properties of interfaces. In SPIN 01: SPIN Workshop,
LNCS 2057, pages 103{122. Springer-Verlag, 2001.

[8] T. Ball and S. K. Rajamani. Bebop: A path-sensitive interpro-
cedural data
ow engine. In PASTE 01: Workshop on Program
Analysis for Software Tools and Engineering, pages 97{103.
ACM, 2001.

[9] T. Ball and S. K. Rajamani. SLIC: A speci�cation language
for interface checking. Technical Report MSR-TR-2001-21, Mi-
crosoft Research, 2001.

[10] R. Bryant. Graph-based algorithms for boolean function manip-
ulation. IEEE Transactions on Computers, C-35(8):677{691,
1986.

[11] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Sym-
bolic model checking: 1020 states and beyond. Information and
Computation, 98(2):142{170, 1992.

[12] W. R. Bush, J. D. Pincus, and D. J. Siela�. A static analyzer
for �nding dynamic programming errors. Software-Practice and
Experience, 30(7):775{802, June 2000.

[13] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed
lattice model for the static analysis of programs by construc-
tion or approximation of �xpoints. In POPL 77: Principles of
Programming Languages, pages 238{252. ACM, 1977.

[14] M. Das. Uni�cation-based pointer analysis with directional as-
signments. In PLDI 00: Programming Language Design and
Implementation, pages 35{46. ACM, 2000.

[15] S. Das and D. L. Dill. Successive approximation of abstract tran-
sition relations. In LICS 01: Symposium on Logic in Computer
Science, 2001.

[16] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe. Ex-
tended static checking. Technical Report Research Report 159,
Compaq Systems Research Center, December 1998.

[17] M. Dwyer, J. Hatcli�, R. Joehanes, S. Laubach, C. Pasareanu,
Robby, W. Visser, and H. Zheng. Tool-supported program ab-
straction for �nite-state veri�cation. In ICSE 01: Software En-
gineering, pages 177{187, 2001.

[18] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
rules using system-speci�c, programmer-written compiler exten-
sions. In OSDI 00: Operating System Design and Implemen-
tation. Usenix Association, 2000.

[19] D. Evans. Static detection of dynamic memory errors. In PLDI
'96, pages 44{53. ACM, May 1996.

[20] S. Graf and H. Sa��di. Construction of abstract state graphs with
PVS. In CAV 97: Computer Aided Veri�cation, LNCS 1254,
pages 72{83. Springer-Verlag, 1997.

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy
abstraction. In POPL '02. ACM, January 2002.

[22] G. Holzmann. Logic veri�cation of ANSI-C code with Spin.
In SPIN 00: SPIN Workshop, LNCS 1885, pages 131{147.
Springer-Verlag, 2000.

[23] R. Kurshan. Computer-aided Veri�cation of Coordinating Pro-
cesses. Princeton University Press, 1994.

[24] L. Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions on Software Engineering, SE-3(2):125{143,
1977.

[25] G. Necula, S. McPeak, and W. Weimer. CCured: Type-safe
retro�tting of legacy code. In POPL '02. ACM, January 2002.

[26] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural
data
ow analysis via graph reachability. In POPL 95: Prin-
ciples of Programming Languages, pages 49{61. ACM, 1995.

[27] V. Rusu and E. Singerman. On proving safety properties by in-
tegrating static analysis, theorem proving and abstraction. In
TACAS 99: Tools and Algorithms for Construction and Anal-
ysis of Systems, LNCS 1579, pages 178{192. Springer-Verlag,
1999.

[28] H. Sa�idi and N. Shankar. Abstract and model check while you
prove. In CAV 99: Computer-aided Veri�cation, LNCS 1633,
pages 443{454. Springer-Verlag, 1999.

[29] F. B. Schneider. Enforceable security policies. ACM Transac-
tions on Information and System Security, 3(1):30{50, Febru-
ary 2000.

[30] M. Y. Vardi and P. Wolper. An automata theoretic apporach to
automatic program veri�cation. In LICS 86: Logic in Computer
Science, pages 332{344. IEEE Computer Society Press, 1996.

