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Abstract

The automated and semi-automated analysis of source
code has remained a topic of intense research for more than
thirty years. During this period, algorithms and techniques
for source-code analysis have changed, sometimes dramat-
ically. The abilities of the tools that implement them have
also expanded to meet new and diverse challenges. This
paper surveys current work on source-code analysis. It also
provides a road map for future work over the next five-year
period and speculates on the development of source-code
analysis applications, techniques, and challenges over the
next 10, 20, and 50 years.

1 Introduction

The tremendous increase in the amount of software in
use each year produces a growing demand for programmers
and programmer productivity. Hiring additional program-
mers is costly and ineffective if the system under consider-
ation cannot be broken down into pieces. Given the com-
plexity of modern software, a more viable solution is tool
support. Of growing interest are tools based on source-code
analysis. Such tools provide information to programmers
that can be used to coordinate their efforts and improve their
overall productivity.

From one perspective, source-code analysis is a means
to an end. Under this view, the end is of paramount impor-
tance. It first must be defined. Only then can techniques
for analyzing the source code in order to achieve this end be
considered. Well over half of the FoSE papers within this
volume represent ends for which source-code analysis plays
an important role.

The other end of the spectrum is captured by the say-
ing “if you build it, they will come.” Those who hold this
perspective believe that a tool capable of extracting gener-
ally useful information from the source code will find ap-
plication. One advantage of this approach occurs when the
information developed finds unforeseen application. For
example, when working on making really small quantum

dots, Michael Bowers, a Vanderbilt graduate student, was
recently surprised when rather than a dull blue light, a bright
white glow covered his work table [22]. This unexpected
discovery is expected to replace the incandescent light bulb.

Regardless of perspective, a clear definition of source-
code analysis is needed to guide the discussion herein.

Source code analysis is the process of extracting
information about a program from its source code
or artifacts (e.g., from Java byte code or execution
traces) generated from the source code using au-
tomatic tools. Source code is any static, textual,
human readable, fully executable description of
a computer program that can be compiled auto-
matically into an executable form. To support dy-
namic analysis the description can include docu-
ments needed to execute or compile the program,
such as program inputs.

1.1 Why Source-Code Analysis

As the first compilers were being introduced, realtm pro-
grammers would compile their code and then “tweak” the
output assembler code. Sometimes this “tweaking” was to
improve performance. Other times it was simply to reflect
a personal preference of the programmer. Once tweaked,
future updates that might be better made on the high-level
source require one of three choices: (1) changing the high-
level source, recompiling, and re-tweaking, (2) performing
the change on the lower-level assembly code (a rather cum-
bersome task), or (3) abandoning the tweaking. Human na-
ture being what it is, in time the final option won out (with
the help of improved compiler technology and faster hard-
ware).

Paralleling early software development, modern soft-
ware projects often begin with the construction of models
(e.g., using the UML). These “higher level” models sup-
port, among other things, declarative testable properties that
can be automatically proven. Eventually, these models are
“compiled” to a “lower level” representation: source code.
Unfortunately, this source code is incomplete and thus re-
quires “tweaking.” At present, both representations are
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maintained in parallel for awhile, but time pressures lead
inevitably to an exclusive focus on the source code. Hu-
man nature being what it is, two separate formalizations will
never be maintained for long.

Until such models (or some other replacement) are fully
executable, the source, despite its flaws such as opaqueness,
size, and intertwined ideas, is definitively “the truth,” “the
system,” or at least the only place where the question “what
does this program mean?” can be answered with certainty.

1.2 Scope

Included in the scope of the paper are both static and dy-
namic source-code analysis. In both cases, the extracted in-
formation must be consistent with language semantics and
should help a programmer gain insight as to the source
code’s meaning. Such information is often described as a
model; thus, source-code analysis can be viewed as model
extraction followed by state-space exploration.

The extracted information should be higher order in that
it moves away from lexical concerns and conveys abstract
semantic information. Often times this information (e.g.,
points-to information) serves as the input to other down-
stream analyses, tools, or techniques.

Two restrictions are used to bound the scope of the tech-
niques considered herein. The first restriction is the assump-
tion that the domain of application is software engineering,
thus removing from consideration topics such as compiler
theory, formal language theory, parallelism and paralleliz-
ing code, and migration. The second restriction is that
the output not be source code. This draws a line between
source-code analysis and source-code manipulation (e.g.,
transformation). This restriction removes from considera-
tion program translation, restructuring, and refactoring sys-
tems and other systems for source-code modification. It
also rules out some things traditionally thought of as source-
code analysis: for example, program slicing [15, 12, 115],
which extracts a computation that is potentially scattered
throughout a program from intervening irrelevant state-
ments. Slicing has been proposed for use in many areas
of software analysis [77, 69, 32, 91, 56, 11, 20, 42, 51].
However, its output is a program.

1.3 Outline

The remainder of this paper is organized as follows:
First, the stages of a typical source code analysis is consid-
ered. This is followed by a brief look at current source-code
analysis techniques. The core of the paper, in Sections 4
and 5, considers the future of source-code analysis. The
paper concludes with a brief summary.

The remaining sections include many observations based
on conversations with researchers and practitioners active

in the field. Often their comments were provided “off the
record” as they could not be asked to obtain corporate ap-
proval or were providing intuitions rather than a well re-
searched positions. When possible, these comments are fur-
ther documented using publicly available published works.

2 Anatomy of a Source Code Analysis

This section describes the three components of a source-
code analysis: the parser, the internal representation, and
the analysis of this representation. The first part parses the
source code into one or more internal representations. In
essence this step converts the concrete syntax into an ab-
stract syntax better suited to a particular analysis. Most
parsers are compiler-based and process the entire lan-
guage [27, 35]. When only a subset of the concrete syn-
tax must be processed, lighter-weight techniques can be ap-
plied. For example, an island grammar [87] allows portions
(islands) of the concrete syntax to be parsed while ignor-
ing the remainder. Parsing is the necessary evil of most
source-code analysis. While not theoretically difficult, the
complexities of modern programming languages, in par-
ticular those that are not LR(1) [40] and those incorporat-
ing some kind of preprocessor, significantly impede source-
code analysis.

The second part of a source-code analysis is the inter-
nal representation. Many internal representations find their
roots in compiler technology. They abstract a particular as-
pect of the program into a form more suitable for automated
analysis. In essence, an abstraction is a sound, property-
preserving transformation to a typically smaller domain (for
example, replacing values with their types). Some inter-
nal representations are produced directly by the parser (e.g.,
the control-flow graph), while others require the result of
prior analyses (e.g., dependence graphs require prior points-
to analysis).

There are almost as many internal representations as
there are source-code analyses. Some classic examples in-
clude the control-flow graph (CFG), the call graph, and
the abstract syntax tree [40]. Other more popular inter-
nal representations include static single-assignment (SSA)
form, which modifies the control-flow graph such that ev-
ery variable is assigned exactly once thus making def-use
chains explicit [31, 44]. SSA form simplifies and improves
the precision of a variety of data-flow analyses. The value
dependence graph (VDG) improves (at least for some anal-
yses) on the results obtained using SSA form. The VDG
represents control flow as data flow and thus simplifies anal-
ysis [114].

Two- and three-valued logical structures that map prob-
lems into a collection of predicates that produce one of two
or one of three values are also used [104]. The predicates
abstract features of the program (e.g., p(v) might represent
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the predicate “does p point to v”). The three-valued ap-
proach allows an analysis to return true positive results, true
negative results, and a collection with unknown status. The
two valued approach must include the unknown with one of
the other two.

Finite-state automata have been used to represent analy-
sis of event-driven systems and the transitions in distributed
programs where they provide an excellent formalism for the
abstraction of program models [106].

Finally, in support of interoperability, some internal rep-
resentations are “internal” to the entire analysis, but exter-
nal to the individual tools used in that analysis. Examples
include XML and srcML [26].

Dynamic analysis often makes use of a trace file. Simply
recording a complete trace takes considerable space. Ball
and Larus describe an algorithm for instrumenting a pro-
gram introducing minimal overhead [5]. Their approach
concisely captures an execution history and thus a pro-
gram’s dynamic control flow while greatly compressing the
trace. Other systems capture the state of the computation
by sampling features that can be later used with statistical
analysis techniques.

The most common internal representation is the graph
(especially if its degenerate forms such as the tree are in-
cluded). Many other “higher-level” representations are rep-
resented internally as graphs. For example, constraint sys-
tems and logical structures can be efficiently represented as
graphs [38, 104]. One widely used graph is the dependence
graph. The statement-level version (in which vertices rep-
resent the statements and predicates of the program) was
introduced in work with parallelizing and highly optimiz-
ing compilers [39]. These graphs have since been used in
many other analyses [60, 59, 6]. A related graph, the Mod-
ule Dependency Graph, used by the Bunch tool, represents
programs at a coarser level of granularity. Its vertices repre-
sent the modules of the system and edges the dependencies
between them [79].

Other example graphs include dynamic call graphs [95,
92] and XTA graphs built in support of dynamic
reachability-based interprocedural analysis [95]. These
techniques are required to analyze languages such as Java
that include dynamic class loading. Finally, the Trace Flow
Graph is used to represent concurrent programs [25]. It con-
sists of a collection of CFGs with additional vertices and
edges to represent inter-task control flow.

The third and final part of a source-code analysis is the
actual analysis. Analyses can be classified along six di-
mensions: static versus dynamic, sound versus unsound,
safe versus unsafe, flow sensitive versus flow insensitive,
context sensitive versus context insensitive, and complex-
ity. A slightly different classification that focuses on object-
oriented analysis is discussed by Ryder [102].

Static analysis does not account for program input; thus
the result must be applicable to all executions of the pro-
gram. This inevitability forces approximations to be made.
In contrast, dynamic analysis takes program input into ac-
count (typically a single input). This allows greater preci-
sion; however, the results are only guaranteed to be correct
for the particular input. Some techniques sit in between.
They take into consideration a collection of initial states
that, for example, satisfy a predicate.

The notion of algorithm soundness originated in math-
ematical logic where a deductive system is sound with re-
spect to a semantics if it only proves valid arguments. A
sound analysis makes correctness guarantees; thus, the out-
put of a sound static analysis is guaranteed to be valid for all
executions of the program. The output of a sound dynamic
analysis is guaranteed to be valid for the execution of the
program on which it was collected. Unsound analyses make
no such guarantees, but can often quickly produce correct or
“close enough to be useful” results. While a sound analy-
sis provides guarantees, it often does so at the cost of pre-
cision. For example, sound analyses typically produce a
larger number of false positives. Finally, unsound analyses
can exploit “information that is unavailable to sound anal-
yses” [62]. Examples of this kind of information include
information present in comments and identifiers. Ratiu and
Deißenböck describe how to exploit non-structural infor-
mation such as identifiers in maintaining and extracting the
mapping between the source code and real world concepts,
which can help detect semantic defects such as (logical) re-
dundancies [97].

Static analysis is traditionally described as safe, mean-
ing that the answer is precise on “one side.” For example,
a reaching-definitions computation can determine that cer-
tain assignments definitely do not reach a given use, but the
remaining assignments may or may not reach the use. This
output thus represents a safe approximation to the set of all
reaching assignments. Sagiv et al. present a static-analysis
technique based on a three-valued logic [104], which does
“one better” by capturing indecision as a third value. Thus
again using reaching-definition as an example, a definition
could be labeled “reaches,” “does not reach,” or “might
reach.”

A flow-sensitive analysis considers a program’s flow of
control; thus, given the sequence p = &a; q = p; p = &b, a
flow-sensitive points-to analysis can determine that q can-
not point to b. In contrast a flow-insensitive analysis treats
the statements of a program as an unordered collection and
must produce conservative results that are safe for any order.
In the above example, a flow-insensitive points-to analysis
must include that q might point to a or b. This reduction
in precision comes with a reduction in computational com-
plexity.
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Context affects interprocedural analysis. A context-
sensitive analysis respects the stack model of procedure call
and return. Thus, when procedure P is called from call-site
c1, results from the analysis of P are propagated (only) back
to c1. In contrast, a context-insensitive analysis would prop-
agate the result from P back to all call-sites on P. Context-
insensitive analysis need only maintain a single approxima-
tion for each procedure, but the summary must be safe for
all calls, which lowers the precision of the information.

Finally, most analysis problems have a spectrum of so-
lutions that represent precision-effort trade-offs. For exam-
ple, imprecise points-to sets can be computed in near linear
time, while the computation of flow- and context- sensitive
points-to sets is NP-hard [72].

The third part of a source-code analysis includes anal-
yses used to build the representations discussed at the be-
ginning of this section, those used in the applications dis-
cussed in the next section, and those described in Sec-
tion 4. As an example, reachability analysis is a common
analysis [98, 13]. Questions such as “Can procedure P
(transitively) call procedure Q?” can be framed as graph-
reachability questions on the program’s call-graph. Simi-
larly, the question “Does the value assigned to x at state-
ment s reach a use of x at statement t?” begins with the
reachability question “is there a path from s to t in the pro-
gram’s control-flow graph?”

The remainder of this section considers points-to anal-
ysis as a representative example of a source-code analy-
sis [72, 23, 116, 100]. Points-to analysis was chosen as it is
a challenging problem that is an essential precursor to many
other source-code analyses. Traditionally, points-to analy-
sis techniques are partitioned into four groups depending on
their flow and context sensitivity.

Three algorithms are considered as representative exam-
ples. The first two have the same precision and are flow-
and context-insensitive while the third is flow and context-
sensitive. The first two read in normalized assignment state-
ments output by the parser (the first part of the analysis).
These statements, which represent the pointer manipula-
tions in the program, have one of four forms.

p = q p = ∗q
p = &q ∗p = q

The first algorithm is Andersen’s graph closure-based al-
gorithm [1]. The graph built by Andersen’s algorithm con-
sists of vertices that represent memory locations and edges
that represent relations between vertices. Vertices are cre-
ated for variables, addresses of variables, and dereferences
of variables. The graph contains four kinds of edges (named
A, G, R, and W ) that are defined as follows:

1. p A→ q =df q is in the points-to set of p.

2. p G→ q =df points-to(q) ⊆ points-to(p).

3. p R→ q =df p represents the dereference of q

4. p W→ q =df p represents the dereference of variable x
and ∗x = q.

The initial graph fragments for each normalized assignment
are as follows.

p = q p G→ q

p = ∗q p G→∗q R→ q

p = &q p G→&q A→ q

∗p = q ∗p R→ p and ∗p W→ q

After construction of the initial graph, the following
rules are applied until a fixed point is reached.

Rule 1: a G→ b A→ c ⇒ a A→ c

Rule 2: a R→ b A→ c ⇒ a G→ c

Rule 3: a G→ b and a W→ c ⇒ b G→ c

For example, Rule 1 states that if points-to(b) ⊆
points-to(a) and c is a member of points-to(b) then c is also
a member of points-to(a) (i.e., add the edge a A→ c to the
graph). The final points-to set for variable v is extracted
from the closed graph as the set of all variables labeling
vertices reachable via an A→ edge from the vertex for v.

The second algorithm is based on the work of Fahndrich
et al. [38]. Their analysis is actually a general constraint
solver. The following description is specialized to the prob-
lem of pointer analysis. Unlike the Andersen algorithm, the
Fahndrich algorithm, does not compute a complete closure
of the graph. Rather, the points-to set for a variable v is
computed “on the fly” as needed.

The approach manipulates a graph that involves “ref”
structures, which are used to represent dereferencing and
taking the address of variables. The graph can be thought
of as having three parts (often drawn as columns). Column
1 entries, denoted by ref(V, V ), represent the addresses of
variables. Column 2 entries, denoted simply as V , represent
variables. Column 3 entries represent two forms of deref-
erenced variables. Dereferences on the right-hand side of
an assignment are denoted by ref(V, ∅), while left-hand side
dereferences are denoted by ref(1, V ), where “1” represents
the universal set.

The Fahndrich algorithm finds paths from Column 1 en-
tries to Column 3 entries. Take, for example, a path from
Column 1 entry ref(V, V ) to Column 3 entry ref(A, B).
In terms of the constraint solver, this path is equivalent to
the constraint ref(V, V ) ⊆ ref(A, B). Because both terms
are ref terms, the corresponding arguments yield additional
constraints. These constraints differ in that the first argu-
ment of a ref is contravariant, while the second is covari-
ant [38]. The contravariant constraint generates the new
constraint V ⊆ A, while the covariant constraint generates
the new constraint B ⊆ V . These new constraints are rep-
resented as new edges in Column 2 of the graph.
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In the case of pointer analysis, the algorithm repeats the
following process until there are no changes. For each entry
ref(1, V ) in Column 3, let P represent its points-to set (i.e.,
entries from Column 1 that have a path to ref(1, V )). For
each such entry ref(U, U) in P , add an edge (in Column 2)
from V to U . This edge arises from the constraints U ⊆ 1
and V ⊆ U . Next, for each entry ref(V, ∅) in Column 3,
let Q represent its points-to set. For each entry ref(U, U)
in Q, add an edge (in Column 2) from U to V . This edge
arises from the constraints U ⊆ V and ∅ ⊆ U . When no
changes occur, the points-to set for each variable V contains
all the variables A for which there is a path from ref(A, A)
to V . It is obtained by walking edges backwards from V
and gathering up vertices from Column 1.

Fahndrich et al. describe four optimizations that dramat-
ically improve the constraint solver’s efficiency. Two are
essential for pointer analysis. The first collapses cycles
found in Column 2. Cycles occur when a set of variables
must all have the same points-to set: for example, when
A ⊆ B ⊆ C ⊆ A. Collapsing such cycles to a single vertex
avoids significant redundant work.

The second optimization caches points-to sets associated
with Column 2 vertices. The cache is invalidated on the
start of each iteration of the main loop. Note that within an
iteration the cache may be out of date (always a subset of
the actual points-to set). This only occurs as the result of a
change; thus, an updated value will be computed and used
on subsequent iterations. In general, both cycle collaps-
ing (strongly-connected component collapsing) and caching
(memorization) improve the efficiency of graph-based anal-
ysis algorithms [13].

The third example point-to algorithm, described recently
by Hackett and Aiken, performs flow- and context- sensi-
tive analysis [47]. The algorithm is summary-based follow-
ing in the line of Liang and Harrold, and others [75, 36, 73].
To obtain context sensitivity, a meta-level description of the
aliasing impact of each function is maintained. Consider,
for example, two calls to the identity function such as a =
id(p) and b = id(q). Rather than summarizing the output
alias state as a concrete collection of aliased locations, a
single graph is used to describe how an input aliases config-
uration is mapped to an output configuration.

This algorithm exploits patterns in the alias relationships
(discovered through empirical study) to achieve an order of
magnitude performance improvement over past algorithms.
Four levels of summary information are maintained: global,
type, function, and local. The savings come from storing
information at the highest level possible. For example, con-
sider a binary tree with parent pointers. At the local level,
each tree node must be associated with the collection of lo-
cations that are potential parents. Using a type level pattern,
these alias relationships can be summarized once using pat-
tern aliases(tree.parent, tree).

Flow sensitivity is supported by labeling edges in the
graph with boolean predicates that describe intraprocedural
control-flow paths. For example, b B→a says that b points
to a provided B is true. The labels require boolean satisfi-
ability; however, as the algorithm only requires this on an
intraprocedural level it is within the capability of existing
theorem provers as function size is relatively constant re-
gardless of program size.

Looking ahead to Section 5, this work is an excellent ex-
ample of an emerging pattern in computer science where,
“better” takes on a statistical sense. For instance branch
prediction does not guarantee performance improvement it
is only statistically likely based on empirical study of typi-
cal programs.

In this case, although flow- and context-sensitive points-
to analysis is in general NP-hard, it becomes possible to ef-
ficiently solve a subset of the problem, namely that found in
existing C code. Hackett and Aiken found that aliasing has
a great deal of structure in real programs and that just nine
programming idioms account for nearly all aliasing found
in their study.

3 Applications of Source Code Analysis

From its beginning in the compiler community, the use
of source-code analysis has spread into a variety of software
engineering tasks. This section lists many of these applica-
tions. Those appearing in italics are covered in more detail
after the list as representative examples; those marked with
a † are considered elsewhere in this volume.

• architecture recovery [8, 105, 21]
• assertion discovery [37]
• automotive software engineering† [94]
• clone detection [80, 71, 21]
• comprehension [19, 28, 101, 21]
• debugging [108, 90, 45, 24]
• empirical software engineering research† [110]
• fault location [83, 64]
• middleware† [61]
• model checking in formal analysis† [34]
• model-driven development† [41]
• optimization techniques in software engineering† [48]
• performance analysis† [117]
• program evolution [9, 118]
• quality assessment [107, 66]
• reverse engineering† [21]
• safety critical† [54]
• software maintenance [52, 30]
• software reliability engineering† [78]
• software versioning [112, 43]
• specification semantics [113]
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• symbolic execution [2, 67]
• testing† [10, 53]
• tools and environments† [119]
• validation (conformity checking)
• verification, sound formal [18]
• verification, unsound syntactic [17, 29, 65]
• visualizations of analysis results [14, 93, 99, 4, 16]
• web application development† [63]

Debugging. The first representative example is debug-
ging, which is one of the hardest, yet least systematic activ-
ities in software engineering. The popularity of debugging
and debuggers as a research topic has waxed and waned
over the years. Perhaps this is due to the ever increasing
complexity of the problem imposed by steadily more com-
plex compiler back ends and new language features (e.g.,
reflection). In many ways debugging technology has lagged
behind the advances in language design and other software
development tools such as IDEs. Some recent debugging
innovations that counter this trend include algorithmic de-
bugging, delta debugging, and statistical debugging.

Algorithmic debugging uses programmer responses to a
series of questions generated automatically by the debugger.
There are two clear goals for future algorithmic debuggers:
first, reducing the number of questions asked in order to find
the bug, and second, reducing the complexity of these ques-
tions [109]. For example, the first of these is possible by
automatically generating heuristics for asking and answer-
ing higher-level questions.

Delta debugging systematically narrows the difference
between two executions: one that passes a test and one that
fails. This is done by combining states from these two ex-
ecutions to automatically isolate failure causes. At present
the combination is syntactically defined in terms of the in-
put, but a more sophisticated combination might use depen-
dence information to narrow down the set of potential vari-
ables and statements to be considered.

Finally, the Sober tool uses statistical methods, akin
to hypothesis testing, to automatically localize software
faults [76]. Using predicate execution patterns from cor-
rect and incorrect executions, Sober identifies predicates
that have statistically different behaviors in the two execu-
tions. These are output as fault-relevant predicates.

Clone detection The second representative example,
clone detection, is typically defined as identifying simi-
lar sequences of code (according to some similarity mea-
sure) [21]. Many different algorithms for detecting clones
have been proposed. They use a variety of source-code anal-
yses. For example, some are based directly on the program
text. These include techniques that compare whole files,
strings, substrings, or identifiers (e.g., using latent seman-
tic indexing). More structured techniques compare tokens
(e.g., using suffix trees or parameterized strings). Some re-

cent approaches have used more powerful source-code anal-
yses including dynamic programming, data mining, pro-
gram dependence graphs, and execution traces.

Reverse Engineering. Reverse engineering is an at-
tempt to analyze (typically) source code to determine the
know-how which has been used to create it [21]. Pattern-
matching approaches in reverse engineering aim to incor-
porate domain knowledge and system documentation in the
software architecture extraction process. Most existing ap-
proaches focus on structural relationships (such as the gen-
eralization and association relationships) to find design pat-
terns. However, behavioral recovery, a more challenging
task, should be possible using data mining approaches such
as sequential pattern discovery. This is useful as some pat-
terns are structurally identical but differ in behavior. Dy-
namic analysis can be useful in distinguishing such patterns.

3.1 Two Applications on the Fringe

The definition of source-code analysis laid out in Sec-
tion 1.2 focuses the paper on techniques that do not output
source code. This was done to remove from consideration
techniques such as transformation and refactoring. How-
ever, it also draws the paper away from several source-code
analysis techniques that produce “throw way code.” This
section briefly considers two such approaches.

The first throw-away code example generates code used
in testability transformation, a form of program transforma-
tion in which the goal is not to preserve the standard seman-
tics of a program, but to preserve test sets that are adequate
with respect to some chosen test adequacy criterion [7]. The
transformed program is used in the test-case generation pro-
cess and then discarded. Thus, it is merely a “means to an
end,” rather than an “end” in itself. One advantage of this
approach is that the transformation process need not pre-
serve the traditional meaning of a program. For example, in
order to cover a chosen branch, it is only required that the
transformation preserve the set of test–adequate inputs for
the branch.

The second throw-away code example, “programs as an-
swers,” begins with the observation that “the most important
requirement imposed by applications in software engineer-
ing results from the fact that programmers are faced with the
result of the analysis. They should be able to understand it
and relate it to the source program [85].” Thus, when the
consumer is a programmer, one can easily advocate using
source code as the “language” of the result. For example,
source has been used to communicate partial answers to un-
decidable problems [50]. The underlying philosophy of this
approach is that undecidable hypotheses can be “answered”
by a partly automated system which returns neither “true”
nor “false”, but rather a program that computes the answer.
To answer a question the program source is first augmented
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to make the question explicit in the code. An amorphous
slice [49] taken with respect to the output of the augmenta-
tion produces a program that computes the property of in-
terest. The resulting test program is significantly simpler
than the original program, thereby simplifying the process
of investigating the original hypothesis.

A symmetric idea is to use source as the input to a tool
(not the input being analyzed but the input controlling the
analysis). For example, Martin et al. present a query tool in
which a query is in essence a code excerpt corresponding
to the shortest amount of code that would violate a design
rule [81].

4 Current Research Challenges

This section first considers three general principles that
guide future research work on source-code analysis and
then describes a collection of relevant research areas.

Principal 1: Power Hungry is Good. Techniques that
require significant processing power (in terms of CPU cy-
cles and memory) will benefit from increased processing
power. While there is doubt regarding the continuance of
Moore’s law, for the next three to eight years the trend is
expected to continue [88]. Of particular value to many anal-
yses is an increase in available memory. Classic source-
code analyses, such as points-to analysis, typically run out
of space before running out of time. Unfortunately, given
present code size, Moore’s Law would need to hold for
some time before existing precise solutions to many data
flow problems become feasible for larger programs [89]. In
the interim, algorithmic improvement and more intelligent
management of the memory hierarchy are needed. The re-
cent alias pattern discovery work of Hackett and Aiken is
an excellent example of such management [47].

One class of power-hungry techniques that will continue
to benefit from increases in processing power are genetic
algorithms [82, 48]. An example of this approach is the
Bunch tool [86], which uses search to perform software
clustering. Its output is an architectural-level view of a sys-
tem’s structure obtained directly from the source code. The
current tool considers a program at the class level. A fac-
tor of ten increase in computing power would allow finer
grained analysis (e.g., the method level); thus, improving
the precision of the modularization presented to the engi-
neer.

Principal 2: Less is More. Does this movement that
started in graphic design speak to source-code analysis?
Any programmer who has set out to write an analysis tool
confronts significant obstacles. First, simple parsing is not
as simple as it should be. For example, C++ is not LR(n)
(for any n!). Furthermore, the presence of casting, pointer
arithmetic, dynamic class loading, reflection, and the like,
complicate semantic analysis. This leads to the question

“how good a tool would I need to create for programmers to
use a ‘simple’ language?” Language design seems headed
in the opposite direction (Fortran “9x” is an excellent ex-
ample). Against an increasing need for higher precision
source-code analysis, modern languages increasingly re-
quire tools to handle only partially known behavior (in the
case of Java this is caused by features such as generics, user-
defined types, plug-in components, reflection, and dynamic
class loading). These features increase flexibility at run-
time, but compromise static analysis. In considering each
of the following research areas, consider also the role that
analysis quality should play in the language design debate.

Principal 3: Of C3P0 and Han Solo. The tasks that ma-
chines tend to be good at are tedious bookkeeping tasks. In
contrast, programmers are better able to make “ah ha” type
discoveries. This suggests the use of semi-automatic analy-
sis where peak performance is obtained through a symbiotic
relationship between the two. However, programmers can
be quickly overrun (for example, by too many false posi-
tives). Effective techniques for the problems described in
this section may involve creative use of the programmer in
providing key human insight.

The remainder of this section describes a collection of
research areas that have seen recent interest or are expected
to over the next three to eight years. It considers these anal-
yses in a rough progression from those that are established,
but continue to need work, through emerging techniques
that should receive additional attention, and finally toward
“new” ideas that deserve exploitation.

Pointer analysis. Pointer analysis is the archetypical ex-
ample of a source-code analysis. The results are essential to
many other down-stream analyses, yet after years of work
the problem is still “unsolved” [57]. Research has produced
improvements; unfortunately, the problem is complex [58]
and thus warrants further research.

Many down-stream analyses need the precision of a
flow- and context-sensitive points-to analysis. One ap-
proach to providing this precision is to factor in the require-
ments of the down-stream analysis [46]. This allows the
points-to analysis to focus on those facets of the problem
of interest to the down-stream analysis at not more than the
necessary level of precision.

Concurrent Program Analysis. Current trends in hard-
ware design (e.g., dual core processors) make it clear that
future processing power will come from multiple process-
ing units. This increases the need for analysis tools that can
help programmers author, maintain, comprehend, and oth-
erwise manage concurrent programs. It also suggests that
successful future source-code analysis algorithms will be
those designed to run concurrently.

An example technique that can exploit significant par-
allel processing power is symbolic execution. For exam-
ple, consider its applications to automatic test-input genera-
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tion. Recent advances in decision procedures coupled with
increases in processor speed make it possible to consider
interprocedural symbolic execution. The challenge in do-
ing so is the exponential number of program paths to be
considered. Abstraction techniques can reduce the number
of paths. This reduction can be based on a program spec-
ification or on problem-specific abstraction. For example,
to generate test inputs for branch coverage, a rather simple
technique removes all program paths that do not include a
branch that needs to be covered. Other examples include
the analysis of distributed concurrent programs including
internet (web) centric applications.

Dynamic Analysis. Another technique that can exploit
increased (parallel) processing power is dynamic analysis.
Multiple processors also raise the possibility of real-time
dynamic analysis. Thus, while the program is being written
or debugged, speculative execution of the program can be
used to gather information that a programmer could use.
One example is the dynamic analysis and test of COTS
component-based systems where techniques automatically
derive behavioral models by monitoring component execu-
tions and then dynamically check these models to detect
possible misbehaviors and incompatibilities when the com-
ponents are replaced with new components or used as part
of new systems.

Recent research has included investigations with un-
sound techniques. (The output of a sound analysis is guar-
anteed to be valid. Unsound analysis makes no such guaran-
tees.) For example, the Daikon tool makes use of multiple
executions of a program to discover potential program in-
variants (properties that always hold at a given point in the
program) [37]. The technique is unsound in that the asser-
tions are not guaranteed to be valid on all program execu-
tions. However, in practice, Daikon has proven quite useful.
This kind of analysis is one that can easily exploit multiple
processors in the multiple executions of the program. Fu-
ture research on source-code analysis should consider other
(unsafe) (dynamic) analysis techniques that combine results
from multiple executions.

Analyzing Executables. The static analysis of executa-
bles can be used to recover intermediate representations of
quality (similar) to those produced from the source code [3].
Here analysis must be carried out to, for example, recover
information about the contents of memory locations and
how they are manipulated by the executable. Another exam-
ple models an abstraction of the stack by using stack based
instructions to statically detect obfuscated calls (primarily
used by malicious code) [70]. One advantage of analyz-
ing binaries is that library stubs are not necessary as the
technique can directly analyze library code (although sys-
tem calls still need to be modeled). When source is lost or
missing, these techniques grow in importance.

Information retrieval. Information retrieval (IR) is a

well established field that has blossomed in the last fifteen
years with the growth of the Internet and the huge amounts
of information available in electronic form.

Existing applications of IR techniques to source-code
analysis include automatic link extraction, concept loca-
tion, software and website modularization, reverse engi-
neering, software reuse impact analysis, quality assessment,
and software measurement. These applications treat code as
text rather than considering its structure. For example, such
techniques might estimate a language model for each “doc-
ument” (e.g., source file, class, error log, requirements, etc.)
and then use a Bayesian classifier to score each. Much of
this work has a strong focus on program identifiers. For
example, IR’s cosine similarity has been used to rate the
relative quality of modules from within a program produc-
ing a semi-automatic quality assessment [74]. Unlike other
approaches that consider non-source code documents (e.g.,
the requirements), this approach focuses exclusively on the
code. It divides each source code module (currently a func-
tion) into two documents: one includes the comments and
the other the executable source code. The cosine similarity
between the two is measured and used as a proxy for qual-
ity. Empirical evidence supports this use. The technique
fills the gap where automated techniques have been found
lacking and where direct human assessment is prohibitively
expensive.

To date, the application of IR has concentrated on pro-
cessing the text from source and non-source software arti-
facts (which can be just as important as source) using only
a few well-developed IR techniques. Given the growing
importance of non-source documents, source-code analysis
should in time, develop new IR-based algorithms specifi-
cally designed for dealing with source code.

Data Mining. The mining of software-related data
repositories has only started. It represents a shift to
“discovery-driven” analyses, which sift through large
amounts of data and automatically (or semi-automatically)
discover important information [84]. These techniques re-
quire significant computing resources and the application
of techniques such as pattern recognition, neural networks,
association measures, and decision trees, which have ad-
vanced dramatically in recent years.

Data mining techniques include classification trees,
Bayesian belief networks, clustering, and statistical tests.
For example, classification trees have been one of the tools
of choice for building classification models in software en-
gineering. They are built by selecting attributes (one at a
time) from the data. Branches are introduced for each value
the selected attribute can have. The algorithm for building
classification trees seeks to find attributes within the data
that provide maximum segregation of data records at each
level of the tree. Trees are evaluated based on training data
and refined (e.g., to improve the order of the attributes). In
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this way a classification tree can be used to discover classi-
fication rules for a chosen attribute of a data set by system-
atically subdividing the information contained in the data
set.

Most existing research has been conducted by software
engineering researchers, who often reuse simple data min-
ing techniques such as association mining and clustering. A
wider selection of data mining techniques should see more
general application that removes the requirement that ex-
isting systems fit the features provided by existing mining
tools. For example, API usage patterns often involve more
than two API method calls or involve orders among API
method calls, leaving mining for frequent item sets insuffi-
cient. Finally, the mining of API usage patterns in devel-
opment environments as well as many other tasks pose re-
quirements that cannot be satisfied by reusing existing sim-
ple miners in a black-box way. Thus, there is demand for
the adaptation or development of more advanced data min-
ing methods.

Multi-Language Analysis. Multi-language analysis
grows more important as (primarily web-based) systems are
built of many parts composed of many languages [111]. Of
particular challenge are large systems that contain different
languages and domains.

The Confluence of Static and Dynamic Analysis. The
simplest combination (akin to parallel play) is a tool that
uses both static and dynamic analysis to achieve a goal. For
example, Martin et al. describe an error detection tool that
checks if a program conforms to certain design rules [81].
This system “automatically generates from a query a pair
of complementary checkers: a static checker that finds all
potential matches in an application and a dynamic checker
that traps all matches precisely as they occur.” The static
analyzer finds all potential matches conservatively using a
context-sensitive, flow-insensitive, inclusion-based pointer
alias analysis, while the dynamic analyzer instruments the
source program to catch all violations precisely as the pro-
gram runs.

Slightly more sophisticated combinations often use static
analysis to limit the need for instrumentation in the dynamic
analysis. Path testing tools use this approach as does Mar-
tin et al.’s error detection tool, where “static results are also
useful in reducing the number of instrumentation points for
dynamic analysis.” They report that the combination proves
able to address a wide range of debugging and program
comprehension queries.

In the “other direction,” Gupta et al. present an algorithm
that integrates dynamic information from a program’s exe-
cution into a static analysis [45]. The resulting technique is
more precise than the static analysis and less costly than the
dynamic analysis.

Heuzeroth et al. consider the problem of reverse engi-
neering design patterns using a more integrated (though se-

quential) combination of static and dynamic analysis [55].
In this case, static analysis is used first to extract structures
regarding potential patterns and then dynamic analysis ver-
ifies that pattern candidates have the correct behavior. Here
the static analysis does more than improve the efficiency
of the dynamic approach. The two truly compliment each
other.

Closer still to true integration is a combination that, in
essence, iterates the two to search for test data input. This
technique applies a progression of ever more complex static
analysis with (genetic-based) search. This synergistic ar-
rangement allows low-cost static analysis to remove “ob-
vious” uninteresting paths. It then applies relatively naive,
but inexpensive dynamic search. If more test data is needed,
more sophisticated static and then dynamic techniques are
applied. All these techniques, however, fall short of a truly
integrated combination of static and dynamic techniques.
Future combinations should better integrate the two.

Non-functional properties. The trend towards portable
computing brings back issues such as memory footprint and
compiled code speed. While these issues have faded in im-
portance in the context of modern desktops, the rising use of
portable and embedded computing has caused them to cycle
around again. In addition, portable computing also raises is-
sues such as power consumption. This raises the possibility
of analysis aimed at limiting the number of functional units
that must be active.

Self Healing Systems. Corrupt data structures can
cause unacceptable program execution. Data structure re-
pair (which eliminates inconsistencies) can enable a pro-
gram to continue to execute acceptably in the face of oth-
erwise fatal data structure corruption errors [33]. A recent
approach to achieving dependable systems is to incorporate
“self-healing” real-time data structure repair. A taxonomy
of such techniques is provided by Koopman [68]. While
no consensus-based definition of the term “self-healing”
exists, intuitively, these systems automatically repair inter-
nal faults. Relevant aspects of self-healing systems include
fault models, system responses, system completeness, and
design context.

An example of a self-healing system was studied re-
cently by Demsky et al. [33]. This system identifies and
corrects corrupt data structures (a common cause of abnor-
mal program termination) while a program is running. This
enables a program to continue execution in the face of oth-
erwise fatal data structure corruption. The Demsky et al. ap-
proach generates candidate data-structure consistency rules,
which are reviewed by an engineer.

The need for high-integrity safety-critical software is one
force that drives the need for continued research on self-
healing code: for example, there is a need for the applica-
tion of static analysis techniques to failure identification and
to the final assessment of the healing mechanisms. Source
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code analysis should also see a growing role in the design of
self-healing applications, such as the automation of certain
self-healing activities.

Real-Time Analysis. The final research problem con-
sidered has two distinct facets: compile time and run time.
Self-healing code and instrumented code are run-time ex-
amples. Here analysis is being done real time while the
program is executing. The archetypical example of this idea
is just-in-time compilation.

With increased processing power, real-time analysis will
also work its way into compile time. IDE’s that perform
syntax coloring and simple syntactic error checking per-
form a limited form of this kind of real-time analysis.

Looking forward, more such processing can be done in
real time. For instance, code coverage and memory-leak
analysis might be performed, at least partially, at compile
time instead of at run time. This has the advantage of pro-
viding information about a piece of code that is the current
focus of the programmer. Such analysis is already being
integrated into IDEs, a trend that should continue.

5 Future Challenges

This section speculates on the future of source-code
analysis. It first considers the state of the art ten, al-
most twenty, and then fifty years hence. While increased
processing power (primarily CPU cycles and memory)
make certain things possible, the computational complexity
of many interesting source-code analysis problems (high-
degree polynomial or exponential) greatly reduce these ben-
efits. Thus research on improving source-code analysis al-
gorithms continues to be a need.

5.1 Ten Years Hence

In ten years the global code base will approach 500 bil-
lion lines of code (40-60% of which will be Cobol). When
analyzing this code, space will continue to be more of a
problem than time. Furthermore, analysis aimed at reducing
memory footprint, power consumption, and execution time
especially for nano and small communicating devices will
continue to grow in importance. This section considers the
impact of these technology advances and of the increased
reliance on software, on source-code analysis ten years into
the future.

While at present there exists a rather polar debate on the
value of formal methods, as engineering discipline grows
within software engineering, this discussion will shift from
a “yes” or “no” discussion to a measure of degrees. For
example, most motorists think of the bridge they are driv-
ing over as safe, but the engineer who designed it thinks of
it as “safe enough.” It could have been safer, but certain

engineering tradeoffs were made, most involving time-to-
completion, materials available, and cost.

The proliferation of software, in particular in embedded
and safety-critical systems, will drive the need for greater
engineering discipline, although other domains, such as in-
formation security, will also play a role. This will require
software metrics and thus a software construction processes
that allows for the measurement and prediction of software
quality. It will also require greater engineering discipline to
balance this increased need for software reliability against
the cost effectiveness of software construction and, in par-
ticular, a continued demand to be first to market. In the end,
this will drive the need for increased precision in source-
code analyses.

One emerging trend that will help support this effort
is the proliferation of source-code analysis throughout the
coding process. This includes source-code analysis per-
formed at edit time, compile time, link time, and run time.
An example of this is moving (some) testing “up front” to be
done in parallel with development. For example, Staff and
Ernst suggest that “spare CPU resources to continuously run
tests in the background, providing rapid feedback about test
failures as source code is edited” [103]. At the same time,
the demand to be first to market may result in “live testing:”
testing pushed out to the consumer, with software contain-
ing intelligent agents that detect problems and produce cor-
rections and workarounds on-the-fly. Partial tool support
for this process already exists. For example, the Gamma
tool performs the analysis and measurement of deployed
software and allows for gathering program-execution data
from the field [64].

A second example is the performing of source-code anal-
ysis at link or run time which is being driven by language
features such as reflection and dynamic class loading. An-
other run-time example is real-time verification. Similar to
existing hybrids of static and dynamic analysis, these anal-
ysis techniques will be hybrid techniques that eventually
combine results from the different times. Thus, source-code
analysis tools will need to use information from edit, com-
pile, link, and run time and continue to include a combina-
tion of multiple views of a software system such as struc-
ture, behavior, and run-time snapshots.

Other techniques may emerge, such as those that com-
bine source-code analysis with natural language analysis.
At present this has started with source-code analyses that
incorporate natural language through information retrieval
techniques.

Future tools will also need improved support for user
interaction. One way of doing this is to include the pro-
grammer “in the loop”. However, rather than being asked to
make a collection of similar low-level choices, tools will ask
about higher-level patterns that can be used to avoid future
questioning. One place where this would have a big payoff
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is in reducing false positives: for example, automated tools
such as JTest, WebInspect, Empirix, FindBugs, and Clover,
are a great help to programmers, but sifting through false
positives and reproducing errors is, at present, unproduc-
tive.

The need for better tools may finally drive next gener-
ation languages to incorporate more thought on the entire
programming process and not just flexibility for the initial
programmer. For example, such a language might support
efficient flow-sensitive analysis. Another potential growth
area is in code-analysis tools that move from a semantic
orientation to a service orientation (e.g., predicting perfor-
mance, etc.). Given enough computational power and some
language design work, another way this might come to pass
is through general purpose model-based programming lan-
guages. While initially the runtime code may be bloated
and inefficient, increased computational power should com-
pensate for this bloat, while the payoff will come from in-
creased programmer productivity (reduced time, improved
quality, etc). As this happens it will redefine the source-
code analysis problem to be a model-analysis problem.

5.2 In the Year 2025

Looking almost twice as far into the future, in the year
2025 the global code base should top 1 trillion lines of code
(less than half of which will be Cobol). Space rather than
time should continue to be a larger issue in the analysis of
source code. However, as the wheel of time turns, memory
footprint and power consumption will again become less of
an issue. This section considers the impact of further tech-
nology advances and of the increased reliance of software
on future source-code analysis.

Present architectural trends do not suggest faster pro-
cessors, but rather more processors. Assuming something
like Moore’s law continues to hold (which may be unlikely)
technology will double the number of processors every 18
months. From the present two in commodity chips such
as the core-duo, in 18 years there will be 8K processors in
commodity-level desktop computers (to the extent that they
still exist). Thus, for moderately sized programs, each func-
tion could be assigned its own processor. This supports the
increased use of precise and sound algorithms. Finally, it
gives an advantage to analyses that can themselves be par-
allelized.

Two examples of the impact this processing power will
have include tools that appear to exhibit “intelligent” be-
havior and improved data mining. For example, increased
power would enable stochastic methods of source-code
analysis that use Bayesian analysis against a database of
known “good” and “bad” code to identify regions of source
with a higher probability of resembling something known
to be problematic. Along similar lines, “source-code” anal-

ysis tools could assess the design and architecture early in
a software development project, thus heading off problems
related to bad design decisions and overly complex archi-
tectures.

As a second example, increased processing power should
allow data mining techniques to produce good quality mod-
els based on huge amounts of data. It also allows data
mining researchers to tackle problems of on-the-fly real-
time mining in software development environments (e.g.,
in IDEs such as Eclipse) based on the engineering data ac-
cumulated from the development history of a team of pro-
grammers. This can lead to tools that appear to “under-
stand” algorithms and can automatically suggest superior
solutions to specific problems.

The above examples assume that the programming pro-
cess remains largely unchanged. However, programing may
see a significant paradigm shift. For example, if tools such
as Workflow become more prevalent, a lot less coding will
be done as “programmers” simply glue services and com-
ponents together into work flows. Thus, in a ratio similar to
the number of bridge builders to bridge engineers, a large
number of people will stitch together existing services to
make “custom” applications for businesses, while a rela-
tively small number of software engineers will develop the
reusable services. This raises the need for source-code anal-
ysis tools that help program builders correctly assemble the
pieces. One such testing tool might run the code millions of
times with simulated inputs while it is being assembled.

A second paradigm shift would come if model-based
approaches become everyone’s daily approach to program-
ming. This might happen gradually if, initially, online ver-
ification can be used to continuously check the consistency
between source code and higher level models. Eventually,
assuming language designers can solve questions such as
how to make model-based languages expressive enough that
they can be widely applied, model based languages will
emerge. The source-code analysis questions that this raises
include techniques for dissuading programmers from writ-
ing huge, ugly, and complex models which themselves will
become legacy and need to be analyzed. Moreover, if these
languages fail to completely replace the programming lan-
guages of today, there will be a mixture of models and pro-
grams that need to be analyzed together.

5.3 Fifty Years Hence

Essentially doubling the age of software engineering, in
fifty years the global code base will include trillions of lines
of code equivalents (the dominance of “higher-level” pro-
gramming languages (e.g., model-based languages) making
the comparison difficult). In rather broad strokes, this sec-
tion tries to envision the makeup of source-code analysis in
fifty years time.
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Today, source-code analysis tools can be quite costly
(partially due to license agreements). For example, the list
price for Coverity’s Prevent [29] is 50,000 US dollars. This
reflects the uncertainty of tool development and the need for
continuous updating to reflect the latest language standard
and the popularity of the target language. For the devel-
opment of large sophisticated tools, this makes the open-
source model considerably more viable.

The history of source-code analysis finds many examples
of analyses that did not scale to the largest programs. As
processes and technique improved, the size of the program
also grew. This raises the question, “without any significant
paradigm shift, how much larger can programs become?”
(Assuming that loosely coupled, communicating distributed
programs can be analyzed independently.) Factor in hard-
ware improvements and flow- and context-sensitive, precise
source-code analysis may become practical for the range of
program sizes that programmers are reasonably capable of
producing. However, if program size keeps growing, analy-
sis will require finding a way to track and summarize pieces
of systems and algorithms that can combine summary infor-
mation in specific contexts to obtain a full analysis.

Given the time frame, a large paradigm shift in com-
puting (not just programming) is possible. For example,
new technologies such as quantum computing, DNA com-
puting, or some other non-von-Neumann computing model
might emerge. Today in the laboratory for certain prob-
lems, quantum computation provides exponential speed-up.
If exponential processing speeds become widely available,
then precise context-, flow-, and thread-sensitive safe so-
lutions to the data-flow problems that underly source-code
analysis tools can be applied to large programs. Unfortu-
nately, no amount of hardware improvement will solve cer-
tain problems. For example, identifying context-sensitive
synchronization-sensitive paths is undecidable [96]. How-
ever, such improvements will change the nature of source-
code analysis tools through both the application of existing
tools and by allowing new algorithms to be considered.

6 Summary
Until alternate formalisms come into common usage,

source code will continue to be definitive in describing pro-
gram behavior. Based on the past 40 years, programming
languages can be expected to continue to incorporate new
features that complicate program semantics. Given its cen-
tral role in software engineering, source code and source-
code analysis will remain “hot topics” and thus the focus
of intense research activity into the foreseeable future. To
ensure future progress including necessary, but unforeseen
breakthroughs, it is important for future source-code anal-
ysis research to continue to investigate a wide diversity of
ideas. This paper has set forth a number of current and fu-
ture directions for such research.
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