
Runtime Support for Advanced Component Concepts

Tomas Bures1,2, Petr Hnetynka1,3, Frantisek Plasil1,2,
Jan Klesnil1, Ondrej Kmoch1, Tomas Kohan1, Pavel Kotrc1

1Department of Software Engineering
Faculty of Mathematics and Physics,

Charles University, Malostranske namesti 25,
Prague 1, 118 00, Czech Republic

2Institute of Computer Science,
Academy of Sciences of the Czech Republic

Pod Vodarenskou vezi 2, Prague 8,
182 07, Czech Republic

3School of Computer Science and Informatics,
University College Dublin
Belfield, Dublin 4, Ireland

{bures, hnetynka, plasil, klesnil, kmoch, kohan, kotrc}@dsrg.mff.cuni.cz

Abstract

Component-based development has become a recog-
nized technique for building large scale distributed appli-
cations. Although the maturity of this technique, there ap-
pears to be quite a significant gap between (a) component
systems that are rich in advanced features (e.g., component
nesting, software connectors, versioning, dynamic architec-
tures), but which have typically only poor or even no run-
time support, and (b) component systems with a solid run-
time support, but which typically possess only a limited set
of the advanced features. In our opinion, this is mainly due
to the difficulties that arise when trying to give proper se-
mantics to the features and reify them in development tools
and an runtime platform. In this paper, we describe the im-
plementation of the runtime environment for the SOFA 2.0
component model. In particular, we focus on the runtime
support of the advanced features mentioned above. The
described issues and the solution are not specific only to
SOFA 2.0, but they are general and applicable to any other
component system aiming at addressing such features.

1 Introduction

Component-based development (CBD) [27] has become
a commonly used technique for building large scale enter-
prise systems. It has also found its way to other areas of
software systems (e.g. GUI, embedded systems, product
lines). In contrast to former development techniques, com-
ponents allow for specifying not only the services provided
by them but also services required from other components
and/or environment. Thanks to this feature, components

have brought easier reuse, integration, and rapid develop-
ment of applications.

Even though, there are many views and definitions of
what a component is, a general consensus is that a com-
ponent is a black-box software entity with well defined in-
terfaces and behavior. The set of all component features
and rules for component lifecycle, composition etc. is usu-
ally called component model. From the composition point
of view, component models can be divided into two cate-
gories — flat component models and hierarchical compo-
nent models. In contrary to flat ones, the hierarchical com-
ponent models allow forming composite components, i.e.
the components hierarchically composed of other compo-
nents. Thus, an application can be seen as tree of nested
components.

The flat component models (e.g. EJB [14], CCM [19])
are typically relatively mature and quite heavily used in pro-
duction of specific software applications, although they do
not provide advanced features like multiple communication
styles, composition verification, seamless distribution, etc.
On the other hand, the hierarchical component models typ-
ically support such advanced features and concepts. How-
ever, the hierarchical models are mostly academic systems
oriented only on design — i.e. they provide no or very lim-
ited runtime environment/platform (for instance they pro-
vide just an ADL compiler generating code fragments of
components). In particular a runtime platform should pro-
vide a component repository, component container, basic
services for components (typically in a form of libraries),
and a user interface to control the runtime lifecycle of a
component-based application. In our view, the main rea-
son for such an imbalance is simply that it has not been yet
found a way to properly make all such advanced features



coexist in a component model (and in its run time platform
in particular).

As an attempt to address the imbalance between the rich
set of features and the runtime and execution support, we
have developed SOFA 2.0 component system in our group.
SOFA 2.0 [5] is a component systems in which development
we have drawn on our eight-year experience with designing,
building and working with component systems. SOFA 2.0
offers a hierarchical component model together with ad-
vanced features like support for multiple communication
styles, composition and behavior verification, clearly sep-
arated functional and control parts of components, seam-
less support for versioning and dynamic component updat-
ing, seamless distribution, runtime modification of architec-
tures, support for SOA concepts, and extensible functional-
ity of component containers.

The goal of this paper is to provide an overview of the
issues we faced in the design and implementation of the
SOFA runtime platform with respect to the aim to sup-
port all the advanced features mentioned above. We believe
that these issues and their solutions are not specific only to
SOFA 2.0, but that they are inherent to any component sys-
tem aiming at addressing these advanced features.

This paper is a continuation of our work described in [5].
While the paper [5] has shown all features of the SOFA 2.0
component model and its global design, this paper is about
the implementation and related issues.

The structure of the paper is as follows. Section 2 de-
scribes SOFA 2.0 in more depth. Section 3 details the im-
plementation of all parts of SOFA 2.0. In Sect. 4, we present
related work while Sect. 5 concludes the paper.

2 Overview of the SOFA 2.0 component
model

SOFA 2.0 is a component model with a number of ad-
vanced features. The component model is formally speci-
fied using a meta-model which captures the concepts used
in SOFA 2.0 and states relations among them (for the
SOFA 2.0 meta-model, please refer to [5]).

In SOFA 2.0, a component is an encapsulated entity in-
teracting with other components only via designated pro-
vided and required interfaces. A component can play the
role of both a black-box and gray-box entity. The black-box
role is reified in SOFA 2.0 as a component frame, which in
fact represents a set of component interfaces, both provided
and required, and determines the component’s type. At the
same time, it includes a specification of component behav-
ior in terms of the event traces determined by the desired
sequencing/parallel method call acceptance on the provided
interfaces and their reactions on the required interfaces.

As a gray-box, a component is specified as an architec-
ture that implements a particular component frame (or a

number of frames). Being a hierarchical component model,
SOFA 2.0 distinguishes two kinds of architectures (i.e.
components) — primitive and composite. While a primitive
architecture is in fact a direct implementation of the compo-
nent in a particular programming language, a composite ar-
chitecture is modeled as a composition of sub-components
(i.e. other components). A composite architecture does not
introduce any functional (“business”) code; its functionality
is determined by its sub-components and their composition
(interface bindings). A composite architecture thus dele-
gates calls on its own interfaces to some interfaces of its
sub-components. A sub-component can be specified either
by referencing its frame or by referencing another archi-
tecture (as an aside, it also references a frame). In prin-
ciple, this way of frame-based sub-component definition
introduces a variation point at which different implemen-
tations of component internals can be chosen at assembly
time (Sect. 2.1).

As first-class entities, apart from components, SOFA 2.0
introduces also software connectors. This allows modeling
explicitly component distribution and also employing dif-
ferent architectural and communication styles (e.g. pipe-
and-filter, communication via a bus, sharing a memory)
without the necessity of blurring an architecture by aux-
iliary components that actually realize a communication
pattern. A connector specification determines a commu-
nication style and set of properties. The communication
style reflects basic communication paradigm (e.g. RPC,
asynchronous message delivery, streaming, shared mem-
ory) while the properties capture detailed requirements on
the communication (e.g. that a particular security level is
required).

Connectors are used to realize all tights (links) among
component interfaces (i.e. delegations between a parent
component and a sub-component and bindings among sub-
components). A connector is modeled as a hyper-edge,
which allows incorporating several component interfaces in
one communication link (e.g, one server, several clients).
It is possible to connect arbitrary interfaces together (e.g.
required-to-required, provided-to-provided, etc.), which is
especially useful when modeling for example communica-
tion via a bus (Fig. 1).

SOFA 2.0 allows for dynamic evolution of an architec-
ture at runtime. Unlike other component systems, it pursues
the idea of controlled evolution, which means that evolu-
tion has to conform to well-defined evolution patterns. This
increases the manageability and predictability of an appli-
cation’s architectural evolution. In current SOFA 2.0, three
evolution patterns are predefined: factory pattern, removal
pattern, and service access pattern. As its name suggests, in
factory pattern a designated component serves as a compo-
nent factory [10]. The removal pattern serves for destroy-
ing of a component previously dynamically created. The



Figure 1. Different communication styles

employment of utility interfaces described below (allowing
access to external services), comprises the service access
pattern. Apart from design, SOFA 2.0 aims also at support-
ing components at runtime. This goal means that not only
business functionality of components but also control func-
tionality (e.g. managing the life-cycle, bindings, etc.) has to
be addressed. SOFA 2.0 pursues clear separation of the con-
trol logic from the business logic, additionally it addresses
the problem of the inextensibility of the control functional-
ity, which is typically closely tied to a component system
and cannot be easily changed or extended.

The solution addressing the control functionality is based
on a dedicated micro-component model [18, 5], which is a
very simple flat component model without any advanced
features (distribution, separate control logic, connectors,
etc.). It allows building a component’s control part in a
functionally modular manner via a composition of micro-
components. Micro-components are organized to compo-
nent aspects, each of which defines what micro-components
to instantiate and how to incorporate them in the existing
control part. A component aspect may also introduce a new
control interface to provide another entry point to the con-
trol part of the component.

Although SOFA 2.0 is a component based system, it in-
corporates also a basic support for services and eventually
allows for service-oriented architectures (SOA). SOFA 2.0
addresses two main tasks connected with services, namely
(1) binding to and using a local or external service at run-
time and (2) exposing a component interface as a service1.
Basically, it allows a required interface to be bound to a
service and a provided interface to be exposed as a service
(e.g. WebService). Since there are inherently different rules
for handling such interfaces, SOFA 2.0 allows for marking
them as utility interfaces and it relaxes on some rules that
hold for handling these interfaces — a required utility inter-
face may be freely bound and unbound at runtime (this is
typically based on a request to a service registry without the

1Please note that the concept of a local service is already heavily used in
enterprise systems (e.g. obtaining a connection to a database, using JNDI
registry, etc.).

necessity to formally capture such dynamic behavior at de-
sign time), while a provided utility interface may exposed as
a service and registered in a service registry, which makes
it accessible to other component applications and even non-
component-based clients.

2.1 Component lifecycle

Lifecycle of a SOFA 2.0 application involves several
stages, namely (a) component development, (b) application
assembly, and (c) application deployment and execution.

Development of a SOFA 2.0 application is quite straight-
forward, chiefly by composing already developed compo-
nents available in the SOFA repository (Sect. 3.2.1). The
development process starts with defining the architecture of
an application. Using development tools, a developer can
browse the repository content and compose existing com-
ponents or build new ones. Then, the developer has to pro-
vide code of newly created primitive components. Finally,
all new components are committed into the repository.

As an architecture is described mainly by frames, the
next stage is an application assembly, when the frames (i.e.
component types) are “refined” by particular architectures
(i.e. component implementations). The process starts with
the top-level component and recursively continues till prim-
itive architectures. The result is specified by an assembly
descriptor.

Finally, an assembled application is deployed, i.e. it is
specified, where particular component of the application
have to be executed and connectors are generated. The re-
sulting information is captured in a deployment plan, which
instructs the SOFA runtime how to execute the application.

3 Runtime environment

SOFA 2.0 is implemented in Java [9]. We have chosen
Java because of its features such as platform independence,
dynamic loading, type safety, and others. Another reason is
that Java becomes more and more ubiquitous as devices like
mobile phones, set-top-boxes embed the Java environment
and applications for these devices are commonly written in
Java. On the other hand, SOFA concepts are completely in-
dependent on used language and SOFA can be implemented
in any procedural language.

A SOFA 2.0 runtime environment consists of several en-
tities, which allow execution of SOFA applications. More-
over, a few of them also take part in development of compo-
nents. The whole SOFA 2.0 environment is called SOFAn-
ode and it consists of a number of deployment docks and a
single repository. All these entities are described in detail
in the following sections.



3.1 Components

From the implementation view, a SOFA 2.0 component
is a set of Java classes and interfaces. The classes imple-
ment both the functional and control part of a component.
Control part of it is formed of micro-components and in de-
tail described in Sect. 3.3. As composite components are
composed of other components, they have no direct func-
tional part and therefore developers do not create any code
for them. For a primitive component, there is no limitation
about the number of classes, which implement it (obviously
there has to be at least one implementing class).

SOFA 2.0 does not impose any particular requirement on
classes implementing primitive components, i.e. there are
no SOFA-specific interfaces/classes, which have to be im-
plemented/extended. Instead, SOFA 2.0 uses an annotation-
based approach (similar to the one described in [24]) where
components’ provisions, requirements, initializing meth-
ods, etc. are marked using annotations. An advantage of
such an approach is that in code of components, there are
no dependencies on the underlying platform and therefore,
once developed, a component can be easily used in differ-
ent component platforms. Another advantage of no extra
dependencies is that implementation classes can be eas-
ily tested by tools like JUnit without starting the whole
SOFA 2.0 environment.

Annotations are used directly by the SOFA 2.0 runtime
environment and respective actions like setting require-
ments, obtaining provisions, and initializing components
are performed using introspection. In a platform, where in-
trospection cannot be used (e.g. SOFA 2.0 implementation
for Java Micro Edition), we envision a tool which processes
the annotations and prepares SOFA-specific code for the ac-
tions.

There are no limitation or constraints about components’
own threads. For creating these threads, the component
uses the regular Java API, i.e. the Runnable interface
and Thread class. Internally (and completely transpar-
ent to component developers), each thread has assigned so
called thread call context, which serves mainly for globally
unique identification (across distributed deployment docks)
of the thread and for holding call-related information like
sessions, transaction IDs, etc.

3.2 SOFAnode

The SOFAnode is distributed SOFA 2.0 runtime envi-
ronment, which consits mainly of the repository and set of
deployment docks. These reside on (physical) deployment
nodes (Fig. 2).

Figure 2. SOFAnode example

3.2.1 Repository

The repository is the heart of a SOFAnode. It stores both
the meta-data about components as well as component im-
plementations. The core of the repository is defined and
generated using the EMF framework [13]. Over the core,
there is developed an accessing layer, which allows remote
access to the repository and provides helper methods sim-
plifying its usage.

The repository is used as a storage of meta-data and code
of components not only at run time but also at develop-
ment time. All entities stored in the repository are ver-
sioned. In order to allow convenient development and usage
of different versions of components, the repository supports
cloning. When a developer starts a work on new compo-
nents then he or she creates a new clone of the repository,
which mirrors the whole content of the repository. Then, in
the clone, the developer works on the new component (ei-
ther creating completely new components or new versions
of the existing ones) and finally, he or she merges the clone
with the original repository. Using the cloning technique,
the repository is kept in a consistent state; in the develop-
ment clone, there can occur temporary inconsistencies (e.g.
references to not yet existing components) but the original
repository is still consistent and also the merging process
ensures that only consistent clone can be committed. The
repository cloning approach is inspired by the source con-
figuration systems like GNU Arch [8] and similar.

The repository also allows export and import of already
developed components (e.g. developed by third parties).
SOFAnodes can be loosely connected together to form SO-
FAnet [26, 23], which provides functionality for automated
component trading, licensing, etc.



3.2.2 Deployment docks and deployment

A deployment dock can be viewed as a container for launch-
ing components and it provides necessary infrastructure for
starting, stopping, and updating components.

During deployment of an application, each component
forming the applications has to be assigned to a particular
dock in the SOFAnode. This assignment is stored in the
deployment plan, which serves as a “recipe” for launching
components. The deployment plan is used by the launch-
ing tool, which contacts involved deployment docks and in-
structs them to launch given components. Necessary code
of the components is automatically obtained by the docks
from the repository.

3.2.3 Version management at runtime

As described in Sect. 3.2.1, SOFA components are ver-
sioned. The versioning model used in SOFA 2.0 is the same
as in the original SOFA and it is described in [11]. Due
to versioning, the SOFA runtime has to cope with poten-
tial class name clashes, which can occur at runtime. By
a class name clash, we mean a situation, when two differ-
ent classes but with the same name have to be loaded into
the virtual machine. In Java, this is difficult to do as two
different classes or interfaces cannot coexist in the virtual
machine unless they are loaded by different classloaders.
All potential sources of class name clashes are in detail de-
scribed in [12].

To solve these class name clashes, SOFA 2.0 uses byte-
code manipulation. We successfully used this approach
also in the original SOFA implementation, moreover it can
be applied in any Java system (for an example see [17]).
The approach consist in applying additional postprocessing
of Java classes bytecode. During the uploading of classes
forming a component into the repository, the bytecode of
the classes is modified and the classes are renamed to have
unique names. These names are constructed from the orig-
inal names augmented by the version identifier of the com-
ponent and thus the uniqueness is reached and all classes
can be loaded into the virtual machine by a single class-
loader.

The approach used is very lightweight and does not in-
troduce any performance and/or usability problems. More-
over, across the other possible and used approaches (also
discussed in [12]), our approach is the only one, which can
be applied in the scope of the CLDC configuration of Java
Micro Edition.

3.3 Controllers

The control logic in SOFA 2.0 is concentrated to dedi-
cated micro-components, which are organized into compo-
nent aspects. When an application is being launched, the

business code of each of its components is weaved with
component aspects to equip it with the control logic. The
choice and order of the aspects to be applied is defined by
an application-specific controller configuration given at de-
ployment time by the deployment plan. To ensure a com-
mon minimal functionality, we have specified and imple-
mented a core aspect (and related micro-components) that
defines the basic query, binding and life-cycle services.

The definition of micro-components as well as of com-
ponent aspects are stored in the repository. The weaving
of aspects with the business code is performed when a par-
ticular component is being instantiated. We do not merge
code on the byte-code level, rather we represent each micro-
component as a separate Java-object, which makes devel-
oping and debugging of micro-components easier. In case
of a micro-component that is used to intercept business in-
terfaces, the actual signature of the business interface is not
known at the time the micro-component is being developed;
thus, the micro-component has to be generated. In our im-
plementation, we use ASM [4] for generating classes for
such micro-components at runtime.

When using micro-components to take care of the con-
trol logic, it is often necessary to access component’s con-
tent (i.e. the code provided by a component developer) from
micro-components. A typical case is for example to notify
the content about a life-cycle change by calling specially
annotated methods of the content. In our solution, we pass
a reference to the component content to a micro-component
during its instantiation.

3.4 Connectors

Software connectors are present in SOFA 2.0 at both
design- and runtime. At design time a connector is mod-
eled on a high-level of abstraction using a communication
style and properties. At runtime, a connector is present in
the form of runtime entities (i.e. Java classes) that realize
the prescribed properties. The transition between the high-
level semantic description at design time and the implemen-
tation classes at runtime is performed by an automatic con-
nector generator [6]. The generation of connectors is done
during deployment as one of the steps of creating a deploy-
ment plan. The main idea behind postponing the generation
to such a late stage of development lifecycle is that at this
stage the capabilities of target deployment environment are
known (e.g. operating system, installed libraries, network,
etc.). By utilizing all this information it is possible to gen-
erate highly optimized connector code.

The generated connector code is stored in the repository.
The generator also returns descriptors that are needed for
connector instantiation. These descriptors are incorporated
into a deployment plan to be available at runtime.

Connectors are inherently distributed entities. A single



connector may span different deployment docks. To cap-
ture this feature, a connector is divided to a number of con-
nector units; a connector unit is a part of the connector that
is attached to a component interface and is not distributed
any more. The permitted cardinalities and responsibilities
of connector units depend on the communication style used.
For example in the case of the method invocation commu-
nication style, there is one server connector unit and zero or
more client connector units.

The communication between a component interface and
a connector unit is realized by local method calls. The com-
munication between connector units is typically remote and
realized by middleware. The choice of middleware is done
by the connector generator and reflects the communication
requirements and capabilities of deployment docks. At the
local level, connector units are further composed of connec-
tor elements (Fig. 3), which are typically Java classes that
are responsible for implementing particular connector fea-
tures (e.g. performance monitoring).

Figure 3. Example of a connector structure

3.4.1 Creating and managing connectors

Connectors are instantiated and managed by connector
managers. There is one global connector manager per SO-
FAnode which keeps track on the relation among connec-
tor units, meaning which particular units in the SOFAnode
belong to the same connector instance. The global connec-
tor manager plays an important role in connecting connec-
tor units to form a connector instance. It collects remote
references from all connector units belonging to a particu-
lar connector and distributes them back so that client con-
nector units may establish connections to server connector
units. Apart from a single global connector manager, there
are also dock connector managers — one per deployment
dock. A dock connector manager is responsible for instan-
tiating a connector unit and registering it with the global
connector manager.

To instantiate a connector unit it is necessary to know
what implementation to use for it. This information (origi-
nally produced by the connector generator) is derived from

the deployment plan and fed during application startup to
respective dock connector managers in the form of connec-
tor unit instantiation templates. Each of these templates as-
sociates a triple <deployment node, component or compo-
nent instance, interface name> with a location of the class
implementing a particular connector unit. Thus, to instanti-
ate a connector unit at runtime one needs only to know the
target component and its interface. This technique makes no
difference between connectors instantiated on startup and
connectors that may emerge during runtime changes in an
architecture (see Sect. 3.5).

3.4.2 Utility interfaces

Connectors are used in SOFA 2.0 not only for mediating
communication between components but also to turn a com-
ponent into a service (e.g. a WebService) and to allow a
component to access a service. This is realized by special
connector units attached to components’ utility interfaces.
In the case of a provided utility interface, the connector unit
makes it accessible locally and, if desired, it exposes it also
externally as a service by registering it in a service registry.
In the case of a required utility interface, the attached con-
nector unit allows for local connections or for accessing re-
mote services (e.g. via SOAP). Actually, the only difference
compared to connector units attached to “ordinary” compo-
nent interfaces is in the implementation (i.e. the choice of
middleware, capability of registering a service, etc.); how-
ever, the way of instantiation (i.e. connector unit instantia-
tion templates) and management of connector units remains
the same.

3.5 Runtime changes to an architecture

The controlled evolution of a component application is
driven by well-defined evolution patterns. These patterns
are supported by the runtime environment which handles
reconfigurations according to them. In SOFA 2.0, currently
factory pattern and removal pattern are defined.

Technically, factory pattern means creation of a new
component and passing a reference to its interface to a caller
component that invoked a factory method. This is done in
several steps. Once the new component is created, connec-
tor units for all its interfaces are created as well. They are
instantiated in a standard way by a dock connector man-
ager. (The information about what implementation to use
for each connector unit is present in the deployment plan
and it was fed to the dock connector manager at startup.)
Additionally, it is necessary to create a client connector unit
for the interface that is to be returned. The client connec-
tor unit (which may be seamlessly used in distributed en-
vironment) is used in the rest of the application instead of
the original reference to the interface. The client connector



unit is then transmitted through a connector from the factory
component to the caller component (if the two component
reside in different address spaces, a new client connector
unit is created on the caller side), and bound to the required
collection interface (i.e. an array of required interfaces),
which causes a new client connector unit instance (specific
for the caller component) to be created and connected to the
same server connector unit as the existing client connector
unit has already been connected to. The binding to the col-
lection interface causes new intercepting micro-components
associated with the required interface to appear in the con-
trol part of the caller component. Such a modification of
the control part is performed from a micro-component in-
tercepting the factory method on the caller’s side. Finally, a
reference to the interface of the newly created component is
returned to the calling code; however, to ensure consistency,
it is necessary to return a reference to a particular intercept-
ing micro-component associated with the required interface
(as opposed to returning a reference directly to the client
connector unit).

The removal pattern means destroying a component that
was previously created by the factory pattern and remov-
ing a reference to it from the caller component’s collection
required interface.

In addition to the patterns described above, the use of
utility interfaces (see Sect. 3.4.2) represents also a kind of
architecture evolution, when components’ code is responsi-
ble for discovering other services and for establishing new
bindings to them at runtime.

4 Related work

In this section, we present other contemporary compo-
nent systems, compare these systems with SOFA 2.0 and
discuss their pros and cons. We focus on the component
systems, which, like SOFA 2.0, offer support not only for
designing components (e.g. just ADL languages) but also
provide full component runtime.

Fractal [3] is a component model with very similar ca-
pabilities as SOFA 2.0. It offers primitive and compos-
ite components, provided and required interfaces, business
and control interfaces, etc. The main differences are that
1) Fractal is not defined using a meta-model but rather via
a textual specification and a set of interfaces, and that 2)
Fractal does not support distribution and multiple commu-
nication styles as first-class entities. If one needs connec-
tors and/or different communication styles, then it is neces-
sary to simulate them by components. However, this results
in applications where the normal components and these
“connector-like” components are mixed and consequently
the application’s architecture is messy and unclear.

Fractal has a number of implementations. Most com-
plete and relevant with the respect to our work are Julia [3]

and AOKell [25]. Julia is a Java-based reference implemen-
tation of Fractal, which allows component programming in
Java. Components can be created either directly via Julia
API or they can be specified using Fractal ADL (an XML-
based ADL language); the component implementation then
has to follow this specification. Similar to SOFA 2.0, a
component is a set of Java classes and interfaces. For im-
plementation of control parts of components, Julia uses so
called mixins. These are Java classes, which are “mixed”
with the original components’ classes using bytecode ma-
nipulation. Control interfaces and used mixins are specified
in Julia configuration file provided at launch time of the ap-
plication. In the comparison with our microcomponent ap-
proach, the Julia’s approach is poorly manageable, hard to
extend and debug.

Like SOFA 2.0, Julia also supports versioning [16] of
components. To avoid potential classname clashes at run-
time, Julia incorporates a solution based on a hierarchy of
classloaders. The solution works well but in contrary to our
technique, it cannot be applied in a platform not featuring
Java reflection API, e.g. in the CLDC configuration of Java
Micro Edition.

AOKell is also written in Java. Unlike Julia, it has an
elaborate mechanism for building control parts of compo-
nents based on aspect-oriented programming. It separates
the implementation of controllers, the content of a compo-
nent (i.e. business code) and the glue, which ties the con-
trollers to the content. The glue may be realized either with
AspectJ [15] or with Spoon [22], which is a compile-time
Java processor. The controllers may be componentized, in
which case the Fractal ADL is used to describe the structure
of a controller. This approach is quite similar to our mod-
eling the control part using microcomponents. Compared
to SOFA 2.0, AOKell does not scale well when combining
different controllers — for every combination of controllers
a new composite component comprising all the controllers
has to be defined in Fractal ADL. In SOFA 2.0, it is only
necessary to enumerate what controllers shall be used. This
advantage is mainly because of the concept of control as-
pects.

Koala [20] is a component model targeted mainly on em-
bedded devices. It is based on the Darwin component model
and offers hierarchical components. Similar to SOFA 2.0,
definitions of components and interfaces are stored in a
repository but contrary to SOFA 2.0, Koala does not support
versioning; once an interface is stored in the repository, it
cannot be modified. On the other hand, components theme-
selves can be modified, but just in a very limited way (new
provisions can be added to an existing component, but the
existing provisions cannot be removed from it; new require-
ments can be added, but they must be marked as optional;
and similarly, none of the existing requirements can be re-
moved, only they can be marked as optional). In our view,



the SOFA 2.0 solution with complex versioning scheme is
more appropriate; a justification can be found in [12]. To
support implementation, a Koala compiler is available. It
generates C header files from component descriptions. The
header files contain definition of types and bindings among
components.

ArchJava [1] is another system offering applications
built from software components but compared to SOFA 2.0
and Julia it works in a different way. ArchJava is an exten-
sion of the Java programing language; it introduces compo-
nents directly into the language and provides its own com-
piler, which compiles this enhanced Java into the standard
bytecode. The authors claim that their approach of introduc-
ing components directly into the language allows tight cou-
pling of an architecture and implementation of component-
based applications and prevents inappropriate modification
of the architecture at runtime. However, since the compo-
nent architecture in SOFA 2.0 is managed by the runtime
environment according to the model stored in the repository
(as opposed to implementing and controlling the architec-
ture by code provided by a developer), no arbitrary changes
of the architecture at runtime are possible in SOFA 2.0 ei-
ther. In addition, the implementation of SOFA 2.0 compo-
nents is in pure Java and therefore the whole platform can
be much more easily integrated with other legacy systems.

ArchJava provides a hierarchical component model like
SOFA 2.0 or Fractal. Also, it allows dynamic modifications
of architecture at runtime. For creating new component in-
stances, it uses the new operator and for new connections, it
uses connection patterns, which define through which inter-
faces and to which types of components the new component
can be connected. ArchJava does not provide any support
for versioning.

Java/A [2] is a component system, which follows the
same philosophy as ArchJava — i.e. enhancing the Java
language by component constructions. In addition to Arch-
Java, Java/A provides a behavior specification of compo-
nents and uses connectors (mainly as adaptors). Compared
to SOFA 2.0, Java/A contains the same limitations and is-
sues as ArchJava.

OSGi (Open Services Gateway Initiative) [21] is a plat-
form for deploying and using services in Java, primarily tar-
geted for embedded devices. The basic unit of deployment
is a bundle, which provides services and which can depend
on and use other services. We mention OSGi here because
from a higher level of abstraction, a bundle can be seen as
a primitive component and its services as interfaces of the
component. For versioning of bundles, OSGi employs mul-
tiple classloaders and therefore, it cannot be used in devices
supporting just CLDC configuration of Java Micro Edition.

Gravity [7] is a component system focusing on dynamic
reconfiguration and adaptation of an application. It employs
a flat component model, i.e. it provides just primitive com-

ponents. Gravity is developed upon the OSGi platform and
therefore it has the same limitations as OSGi.

5 Conclusion

In this paper, we have presented issues connected with
supporting advanced component concepts at runtime and
demonstrated our approach on the Java implementation of
SOFA 2.0 component system. Specifically, we have focused
on the implementation of advanced features like support
for transparent distribution using connectors, coexistence of
multiple versions of the same component at runtime, run-
time evolution of an application architecture, and control
part of components.

At present, the described parts of the SOFAnode are ei-
ther finished and fully functional or they are close to their
completion. Also, we are working on a graphical develop-
ment environment.

Acknowledgments

This work was partially supported by the Czech
Academy of Sciences project 1ET400300504 and partially
supported by the ITEA/EUREKA project OSIRIS Σ!2023.

References

[1] Aldrich, J., Chambers, C., Notkin, D.: ArchJava:
Connecting Software Architecture to Implementation,
Proceedings of ICSE 2002, Orlando, USA, May 2002

[2] Baumeister, H., Hacklinger, F., Hennicker, R., Knapp,
A., Wirsing, M.: A Component Model for Architec-
tural Programming, In Electronic Notes in Theoretical
Computer Science, Vol. 160, Aug 2006

[3] Bruneton, E., Coupaye, T., Leclercq, M., Quema, V.,
Stefani, J.-B.: The Fractal Component Model and Its
Support in Java, Software Practice and Experience,
special issue on Experiences with Auto-adaptive and
Reconfigurable Systems, 36(11-12), 2006

[4] Bruneton, E., Lenglet, R., Coupaye, T.: ASM: A code
manipulation tool to implement adaptable systems,
http://asm.objectweb.org/

[5] Bures, T., Hnetynka, P., Plasil, F.: SOFA 2.0: Balanc-
ing Advanced Features in a Hierarchical Component
Model, Proceedings of SERA 2006, Seattle, USA,
IEEE CS, Aug 2006

[6] Bures, T.: Generating Connectors for Homogeneous
and Heterogeneous Deployment, Ph.D. Thesis, De-
partment of Software Engineering, Mathematical and
Physical Faculty, Charles University, Prague, Sep
2006



[7] Cervantes, H., Hall, R. S.: A Framework for Con-
structing Adaptive Component-based Applications:
Concepts and Experiences, Proceedings of CBSE
2004, Edinburgh, Scotland, May 2004

[8] GNU Arch,
http://www.gnu.org/software/
gnu-arch/

[9] Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java
Language Specification, Third Edition,
http://java.sun.com/docs/books/jls

[10] Hnetynka, P., Plasil, F.: Dynamic Reconfiguration and
Access to Services in Hierarchical Component Mod-
els, Proceedings of CBSE 2006, Vasteras, Sweden,
LNCS 4063, Jun 2006

[11] Hnetynka, P., Plasil, F.: Distributed Versioning Model
for MOF, Proceedings of WISICT 2004, Cancun,
Mexico, Jan 2004

[12] Hnetynka, P., Tuma, P.: Fighting Class Name Clashes
in Java Component Systems, Proceedings of JMLC
2003, Klagenfurt, Austria, Aug 2003

[13] Eclipse Modeling Framwork,
http://www.eclipse.org/emf/

[14] Enterprise Java Beans specification, version 2.1, Sun
Microsystems, Nov 2003

[15] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M.,
Palm, J., Griswold, W.G.: An Overview of AspectJ,
In Proceedings of ECOOP 2001, June 18-22, 2001,
Budapest, Hungary, LNCS 2072, Springer, 2001

[16] Kornas, J., et al: Support pour la reconfiguration
d’implantation dans les applications a composants
Java, DECOR04, Grenoble, France, Oct 2004

[17] Luer, C., van der Hoek, A.: JPloy: User-Centric De-
ployment Support in a Component Platform, Proceed-
ings of CD 2004, Edinburgh, UK, May 2004

[18] Mencl, V., Bures, T.: Microcomponent-Based Com-
ponent Controllers: A Foundation for Component As-
pects, Proceedings of APSEC 2005, Taipei, Taiwan,
Dec 2005

[19] OMG: CORBA Components, v 3.0, OMG document
formal/02-06-65, Jun 2002

[20] van Ommering, R., van der Linden, F., Kramer, J.,
Magee, J., The Koala Component Model for Con-
sumer Electronics Software, In IEEE Computer, Vol.
33, No. 3, pp. 78-85, Mar 2000

[21] Open Services Gateway Initiative,
http://www.osgi.org/

[22] Pawlak, R: Spoon: Compile-time Annotation Process-
ing for Middleware, IEEE Distributed Systems On-
line, vol. 7, no. 11, 2006, art. no. 0611-oy001

[23] Plasil, F., Balek, D., Janecek, R.: SOFA/DCUP: Ar-
chitecture for Component Trading and Dynamic Up-
dating, Proceedings of ICCDS’98, Annapolis, Mary-
land, USA, IEEE CS Press, May 1998

[24] Rouvoy, R., Merle, P.: Leveraging Component-
Oriented Programming with Attribute-Oriented Pro-
gramming, In Proccedings of WCOP 2006, Nantes,
France, July 2006

[25] Seinturier, L., Pessemier, N., Duchien, L., Coupaye,
T.: A Component Model Engineered with Compo-
nents and Aspects, CBSE’06, LNCS 4063, Jun 2006

[26] Sobr, L., Tuma, P.: SOFAnet: Middleware for
Software Distribution over Internet, Proceedings of
SAINT 2005, Trento, Italy, Feb 2005

[27] Szyperski, C.: Component Software: Beyond Object-
Oriented Programming, 2nd edition, Addison-Wesley,
Jan 2002


