
Abstract
Most research done to date on software maintenance has

been focused mainly on the evolution of legacy systems
based on obsolete technologies. However, the use of more
recent yet evolving technologies, like component-based
techniques, also raise various issues about software
comprehension and evolution. In particular, current
industrial-strength component models like COM are based
on many technical aspects that make them difficult to
understand and use. The evolution of large component-
based software products is thus an emerging issue. This
paper takes as a case study the component model developed
and used by Dassault Systèmes, one of the largest software
companies in Europe, for the development of its product
lines, namely CATIA, DELMIA, and ENOVIA. This paper
shows how the use of a meta model can help in
understanding and reasoning about components, and how
this meta model constitutes a good basis for building a
reverse engineering environment. Currently, two kinds of
tools have been integrated in this environment: OMVT
which is Dassault Systèmes specific, and GSEE which is a
generic tool independent from the meta-model used.

1. Introduction

Large software products have always been difficult to
understand and evolve [10]. In the late 80’s this has leaded
to the emergence of closely related techniques like
reengineering, reverse-engineering and restructuring,
collectively called RE3 technologies [26].

Traditionally, most research work in RE3 focused on the
evolution of legacy software products based on obsolete
technology. Many tools have been proposed to deal with
old-fashioned programming languages such as Cobol,
Fortran or C for instance. There is still a belief that the usage
of RE3 techniques are restricted to legacy systems.

However, reverse engineering is defined as “the process
of analyzing a subject system to: (1) identify the system’s
components and their interrelationships and (2) create
representations of the system in another form or at a higher

level of abstraction” [6]. This definition makes no
mention about the level of maturity of the technology
involved, nor the definitions of restructuring and
reengineering do [1,6].

RE3 techniques have to follow the evolution of industrial
software engineering practice. The wave model [21] is very
valuable in this context, since it provides different historical
views on software engineering evolution. For instance,
Figure 1 shows the stream of interest in software structuring
paradigms. One way to read this figure is to notice that there
have been a series of shifts from ad-hoc programming, to
object-oriented (OO) programming, the latter being the
most popular paradigm used today in industry.

These waves of interest in forward engineering
technology have an strong impact on RE3 evolution. For
instance, in the mid 80’s, the first restructuring tools focused
on the shift from ad-hoc programming to structured
programming by removing goto statements from
unstructured programs [2]. The shift from structured
programming to modular programming also led to
clustering and (re)modularization tools, tools to recover
software architecture, etc. [1,3,15,16,19,27].

The increasing interest in object-oriented technology in
the last decade, results today in the existence of large OO
software products. However, every technology will show its
limits when applied at large [4]. In particular, large software
companies, pioneers in the OO-at-large approach,
understood that the OO paradigm is no silver bullet [7].

Statement Function Framework?

1958 1973 1988 2003?1945

Module Object

time

interest

Figure 1. The stream of interest in
structuring paradigms [21]

now

Reverse Engineering a Large Component-based Software Product

Jean-Marie Favre*, Frédéric Duclos+, Jacky Estublier*, Remy Sanlaville+, Jean-Jacques Auffret+

*Laboratoire LSR-IMAG +Dassault Systèmes
220 , Rue de la chimie 9, quai Marcel Dassault

Domaine Universitaire, BP53X 92150 Suresnes
38041, Grenoble Cedex 9, France France

The existence of large OO software products naturally
give rise to significant research effort focusing on the
intersection of OO and RE3 (e.g. the Spool [36] and Famoos
projects [7]). Note that this last step in the evolution of RE3
discipline marks a discontinuity: RE3 techniques are no
longer restricted to the maintenance of legacy systems, they
can be applied for the evolution of state-of-the-art software
products. Many researchers now believe that RE3
techniques must be smoothly integrated within the forward
engineering process, leading for instance to the concept of
round-trip engineering (a series of short forward and reverse
engineering cycles). As Fowler pointed out [13],
experienced OO programmers know that an object-oriented
framework can not be right the first time - it must evolve as
experience is gained with its use. So, software refactoring
[13] (the term used in the OO world for restructuring),
should therefore be seen as a continuous restructuring effort
integrated in the development and evolution of any OO
software product.

Then, what will be the next step? We believe that
component-based (CB) software development may be the
one, at least this is what the experience reported in this
paper suggests. Nowadays, there is a widely accepted belief
that large software products should be built as the assembly
of software components. Tough promising, this idea was not
put into practice at a large scale until the emergence, in the
last few years, of industrial-strength component models like
Microsoft’ COM [5,29], OMG’ Corba and CCM [30,33],
Sun’ JavaBean [9,32] or Sun’ Enterprise Java Bean [34].
The availability of such powerful and innovative CB
techniques may constitute the basis of the next significant
wave of interest in industry.

Dassault Systèmes (DS), the world leader in CAD/CAM,
is a pioneer in this domain. This large software company has
developed a proprietary component model which has been
successfully used for years in the development of CATIA
[28]. However, like other companies such as MicroSoft or
Sun, DS faces difficulties in teaching his component model.
Understanding large CB software is not an easy task. The
existence of these issues should not be surprising since the
CB approach is still in its infancy and is usually not
formalized.

This paper results from the collaboration between an
academic institution, the LSR laboratory, and one of the
largest software company in europe Dassault Systèmes
(DS), in an attempt to deal with problems related to the
evolution of large component-based software products. In
particular, this paper shows how a reverse engineering
approach can substantially improve the understanding of a
CB software product, taking CATIA as a case study.

The rest of this paper is organized as follows. Section 2
briefly presents the main features of the DS component
model in an informal way. Section 3 describes how a meta
model can be used to formalize the concept of component.
Section 4 shows how this meta model can be converted into
useful reverse engineering tools. Sections 5 provides a
discussion and briefly presents related work. Section 6
concludes the paper.

2. The DS Component Model

In the mid 90s, when DS initiated the development of
CATIA V5 [28], it was rapidly discovered that OO
technology has serious limitations and in particular that
C++ did not satisfy all of the requirements. The two most
important aspects were the following:
• Concurrent engineering. C++ entities are too closely
related: even a minor change may produce a dramatic
number of recompilations. For large products and high
concurrent engineering constraints, this is a major issue.
• Extension capabilities. The CATIA major customers and
development partners have a need to be able to extend DS
components with their own code, even without the
availability of the source code [8].

To solve these (and other) issues, DS developed, on top
of C++, a component model borrowing ideas from COM,
Corba and Java. Here follows a very short and informal
description of the "Object Modeler" (OM). Despite its name
the OM is best viewed as a component model. This section
first presents the main OM concepts, and then provides
some information about its realization.

2.1. Conceptual level

OM components are pieces of code that can be
manipulated through the use of interfaces. Interfaces can be
seen as abstract proxies for real objects that receive client
requests and forward them to the component implementing
the interface. The interface concept helps in addressing the
concurrent engineering issue, since it isolates interface
clients from modification of the component
implementation.

To be more precise, a component is made of set of
elementary pieces of code, called implementations (an
implementation is realized by a C++ class). One of these
implementations is called the base (of the component).
Other implementations, called extensions, can be attached
later to the base in order to extend the component. A
fundamental feature is that extensions refer to the base, but
the base ignores that it is being extended. This allows a new
extension to be added at a later time, without any need to
recompile the base nor any of the other extensions.

The OM also provides several other mechanisms not
described in this paper. For instance it supports the concept
of delegation or conditional implementation.

2.2. Realization level

All concepts provided by the OM, are implemented in
terms of C++ entities. For instance, interfaces and
implementations are both represented by C++ classes. In
fact, the realization level is much more complex since the
mapping is not one to one: the realization of a single OM
entity can produce many C++ entities. Moreover, for a
given conceptual entity there are many realization choices:
to improve performance and address other non-functional
requirements, DS has designed and tested a wide range of
realization techniques. All these techniques allow to build
efficient components, but at the same time developing and
maintaining these components is quite a complex task.

To keep the control on the resulting software, OM
concepts are translated into C++ code using patterns and
naming conventions. This approach is very similar to those
taken by other component models (e.g. [32]). In the case of
OM, additional information is also inserted into the source
code through the use of macros. This alleviates the burden
of writing repetitive pieces of code. Some pieces of code are
also automatically generated.

Extra information is also provided in separate text files
called dictionaries, containing tuples "component -
interface - dll". These files permit, at run time, to locate and
load only the necessary DLLs required during an execution
and therefore to increase performances.

2.3. Related issues

The OM has been successfully used to build very large
software products (hundreds of applications made of
thousands of components, developed by hundreds of
software engineers). Several issues have been raised:
• Need for a conceptual view. Software engineers describe
components using low-level mechanisms at the realization
level (naming conventions, macro, etc.). OM conceptual
entities are mixed with huge amount of C++ code.
• Need for a centralized description. Information about a
single OM entity is often spread among many different files,
including source code and dictionaries.
• Need of formalization. The OM component model is
informally defined by means of a huge documentation.
While very valuable, this documentation is often imprecise
and many realization constraints are poorly documented.
Moreover, since the realization techniques tend to evolve
over time to ensure continuous improvement, the most
accurate information is available from experienced software
engineers.

• Need of specialized tools. Software engineers develop
and maintain components using traditional C++ tools.
While sufficient to complete most of the tasks, those tools
are inadequate for instance to understand the behavior of the
software at the conceptual level. DS also developed
different tools to cope with specific problems but they are
limited in scope.

Indeed, the OM model, just like other component models
(COM, CCM, etc.), is difficult to teach and to understand.
Experienced software engineers learn how to build
components, but they often find it difficult to know what
went wrong when the software they have developed does
not show the expected behavior.

What is missing is a clear picture of the overall
component structure at a conceptual level. The realization
level is available, but it contains too many technical details.
Reverse engineering provides thus a logical approach to
these problems, since its goal is to “create representations
of the system in another form or at a higher level of
abstraction” [6]. However, while most reverse engineering
techniques deal with traditional and well-defined concepts,
the problem here is to deal with the reverse engineering of
component-based software systems, which is a rather new
issue in the RE3 domain. Before trying to develop a reverse
engineering tool, the first step is to give a rigorous definition
of what a component is. This is what is done in the next
section.

3. Building a meta model

Defining the meta model for the OM was the first step of
our approach1. The key idea is to describe each concept of
the OM model as an object-oriented item described using
the UML notation [31]. The production of the meta model
has been a long process since the model is quite complex
and is still slightly evolving. Describing the full meta model
is out of the scope of the paper; we rather emphasize the
method and the main properties of this meta model.

One of the main interests of using a meta model is that it
makes it possible to define different views on it. This paper
concentrates on a small but central part of the meta model:
how the components are built from bases and extensions.
Here the OM is described only at the conceptual level,
without giving any detail on the realization level.
Furthermore, a few simplifications have been made to keep
things simple.

1. In this paper the term meta-model is used to be consistent with the
approach used to describe the UML language itself [31], to describe CCM
with UML [33], etc. The term meta model is also used in the Famoos
project [7] in a similar way.

3.1. Describing components as black boxes

While the OM model is quite sophisticated, from an
external point of view, the OM is only based on two main
concepts: components and interfaces. Clients of a
component don't have to know how this component is built.
This idea is described in the UML class diagram presented
in Figure 2 on the top of the next page. Components and
interfaces are linked together by a single association: a
component can implement many interfaces (this is indicated
through the * symbol near to the name of the role
allInterfaces). Conversely, an interface may be
implemented by any number of components.

3.2. Describing component items separately

As it was said before, actually components are made of
elementary pieces of software produced separately by
software engineers. The concrete representation of these
items in terms of C++ entities or other low level
mechanisms like macros is not relevant from a conceptual
point of view. So, instead of giving the many technical
details required to describe those items, Figure 3 introduces
four abstract languages. The first three represent abstraction
of information contained in the source code, while the last
one is the abstraction of “dictionaries”.

Each abstract language summarizes all the information
required by the OM at the conceptual level. Note that,
within the UML diagrams, arrows indicate unidirectional
associations. For instance, an interface refers to its super
interface but not to its sub-interfaces. Similarly, an
extension refers to the bases it extends, but not the other
way around. Cardinality information also brings useful
precision. For instance, from the Figure 3 we can learn that
both interfaces and bases support single inheritance (roles
named super).

Thanks to the Object Constraint Language (OCL) [25]
provided with UML, it is also possible to: (1) define derived
information, (2) describe additional constraints. As we will
see in the Section 4, this is very important in practice.
Consider for instance, the following OCL expression.

Line 1 and 2 defines for each interface the allSuper role
(not depicted in the figure), as being the set of all super
interfaces for a given interface. This recursive definition
provides an example of derived information. Line 3 uses
this derived information to describe an additional
constraint: the inheritance hierarchy between interfaces
contains no cycle.

3.3. Linking component items together

Even if software engineers describe component items
separately (that is required for concurrent engineering), one
of the important aspects of the OM is how components are
built from these items. Figure 4 shows a class diagram
gathering the 4 languages described previously (these
associations are drawn in black in the figure) and add
derived information (in grey and prefixed by a "/" symbol).

Putting together component items must be done with an
extreme care, not all combinations will work. Describing
assembly constraint is therefore of fundamental importance.
Indeed, this process leads to a great number of constraints
that each assembly must satisfy to be considered as
consistent. In the context of this paper, only two of these
constraints will be described in Section 3.4 to illustrate the
approach, but we first need to introduce the necessary
derived information upon which the constraint are based.
This is what is done in Figure 5.

The OCL expressions explain how components are made
from implementations and define inheritance on
components. Line 2 indicates that component inheritance
(super) is in fact directly derived from base inheritance
(base.super). Lines 3 indicate that the extensions of a
component (extensions) are all extensions attached to its
base. Line 4 defines the direct implementation of a
component (implementations). Line 5 recursively defines
the set of all implementations (allImplementations) of a
component considering component inheritance. Line 6
defines the direct interfaces of a component. Finally line 7
defines the set of all interfaces (allInterfaces) that can be
reached from the component following either the interface
inheritance relationship or the component inheritance
relationship.

3.4. Discovering potential inconsistencies

Gathering the four abstract languages (Figure 3) into a
single diagram (Figure 4) helps to discover possible
inconsistencies between the information they describe.
Indeed, the global view provided by a meta model is one of
the main benefits of the approach.

For instance, in our context, one should wonder what is
the relationship between the derived role declaredInterfaces
and the explicit role allInterfaces. After asking for more
precision from OM designers, we learned that software
engineers must explicitly declare all interfaces in the
component language (i.e. in the dictionaries). So the next
invariant is expected to hold.

1 context i : Interface
2 inv : i.allSuper = i.super.allSuper->including(i.super)
3 inv : i.allSuper->excludes(i)

1 -- context c : Component
2 -- inv : c.declaredInterfaces = c.allInterfaces

1 context c : Component
2 inv : c.super = c.base.super.component
3 inv : c.extensions = Extension.allInstances ->select(e | e.extendedBases->includes(c.base))
4 inv : c.implementations = c.extensions->including(c.base)
5 inv : c.allImplementations =c.implementations->union(c.super.allImplementation)
6 inv : c.interfaces = c.implementations.interfaces->asSet
7 inv : c.allInterfaces = c.allImplementations.interfaces->asSet->union(c.allImplementations.interfaces.allSuper->asSet)

Figure 5. Derived information about the linking of component items

Base
0..1

*super
0..1

*

Extension
** *

extendedBases

*

Component

0..1

*

/super 0..1

*

1

1

base 1

1

*

*

/extensions
*

*

Implementation
*

*

/al lImplementations *

*

*

*

/implementations *

*

Interface

0..1

*

super

0..1

*
** /allInterfaces **
** /interfaces **

* ** declaredInterfaces *

*

*

*

interfaces *

*

*

/al lSuper
*

*

 class diagram abstract syntax

(1)
interface
language Interface

0..1

*

super
0..1

*

interface <interfacename>
[inherits <interfacename>]

(2)
base

language
InterfaceBase

0..1

*

s uper
0..1

**

interfaces

** *

base <basename>
[inherits <basename>]
[implements <interfacename>*]

(3)
extension
language

Interface

Base

Extension
** interfaces *

**
extendedBases

*

*

*

extension <extensionname>
[extends <basename>*]
[implements <interfacename>*]

(4)
component
language

Component

Interface
**

declaredInterfaces

*

Base1 11 1

*

component <basename>
[implements <interfacename>*]

Figure 3. Describing component items separately by means of four abstract languages

Figure 4. Linking component items together

InterfaceComponent * ** allInterfaces *

Figure 2. Describing components as black boxes (external point of view).

In practice ensuring this kind of constraint proved to be
difficult, since the whole graph of entities is developed
concurrently by hundreds of software engineers working in
different sites, without a conceptual or global view. So, the
meta model has to deal with inconsistencies, rather than
ensure strict consistency. Therefore we comment out this
constraint, so this is not an invariant of the meta model. This
approach permits to represent "invalid" data. Next section
will show how to locate these constraint violations in
practice.

While the constraint above can be discovered through
the examination of the structure of the meta-model many
other constraints require a better knowledge of the
component model. For instance, one important requirement
in the OM, is that the behavior associated by a component
to an interface must be unique; this means that, within a
given component, an interface must always be associated to
a single implementation.

This expression translates the fact that two
implementations of a component must not implement the
same interface. The next section will give some examples
showing how to locate and identify entities leading to such
a constraint violation called multi-adhesion.

4. Building reverse engineering tools

Building a meta model not only improves the
understanding of the component model. It also provides a
very good basis to build a reverse engineering platform on
which a large set of tools can be built, ranging from simple
visualization tools, to complex analysis or restructuring
tools. This includes for instance, tools that detect constraint
violation. Developing all these tools from scratch is
certainly not cost effective. Fortunately, a common platform
can be derived from the meta model.

4.1. A reverse engineering platform

Figure 6 shows a simplified view of the overall
architecture of the reverse engineering platform we have
built. This traditional architecture for a reverse engineering
environment [1,6] is made of the following parts.
• Extractors. The first step is to extract information from
concrete software artefacts. In our case, source code and
dictionaries are parsed and analyzed.
• Repository. The repository plays a central role in the
environment. One important feature of our approach is that
the structure of this repository is directly derived from the

meta model.
• Tools. The tools generate different views on the repository.
While some tools generate specific views, generic tools take
as input a specification of the view to be generated. As we
will see, the meta model can be directly used to express the
the information to be displayed.

As an illustration, the next section shows how the meta
model was used to build views displaying components
using different visualization techniques. It then shows how
inconsistencies can be found and located through the use of
specific views. The experiment was done on a version of the
CATIA software consisting in 4038 components made of
8155 implementations and implementing 2504 interfaces.
These figures correspond to a high level of abstraction. The
realization level is far more complex. In this particular case,
there were 49821 C++ classes involved in the concrete
representation of these components.

4.2. Example of visualization tools

Displaying components was the first application of our
reverse engineering platform. This was a very interesting
experiment because components are built in a blind way
(through the use of macros and other low level mechanisms
spread out over many files), software engineers had never
actually "seen" these components.

4.2.1. Visualizing components with a generic tool. Figure
7 on the next page shows the internal view of a component
displayed by GSEE, a Generic Software Exploration
Environment [12]. The component is represented as a tree
on the left part of the window and as a graph on the right.

GSEE is itself a generic environment. Its implementation
does not contain any single line of code related to the OM.
The five lines at the top of the window constitute the whole
specification of the view in textual form. All roles defined
in the meta model can be used. Additional information can
also be derived thanks to a query language close in
functionality to OCL. The main advantage of the GSEE tool
is that it makes it possible to display any piece of
information present in the repository at almost no cost: new
views can be created interactively, just by changing the
specification lines and pressing the OK button.

1 --context c : Component inv :
2 -- c.allImplementations
3 -- ->forall(imp1,imp2:Implementation | imp1<>imp2 implie
4 -- (imp1.allInterfaces->intersection(imp2.allInterfaces))
5 -- ->isEmpty

source
code parser

parser diction
-naries

API

GSEE

Extractors Repository Tools

OMVT

Views Software
artefacts

Figure 6. The reverse engineering platform

4.2.2. Visualizing components with a specific tool. In
parallel with the definition of the meta model, we defined a
graphical component language. This language is supported
by a specific tool: the Object Modeler Visualization Tool
(OMVT). The main benefit of this tool is that it implements
specific layouts suited to the needs of different stakeholders
[23]. For instance the black-box view shown in Figure 8
represents the component depicted in Figure 7 but from the
client point of view. The component can be "opened", as
shown in Figure 9 to discover its internal view. This last
view is typically used by implementers to understand the
effect of inheritance and extension features.

4.3. Examples of constraint-checking tools

As said before, rather than enforcing strict consistency,
the meta model has do deal with inconsistencies. Reverse
engineering tools can be built to check particular
constraints.

4.3.1. Specifying constraint-checking tools. OCL can be
used to specify such tools. Instead of describing a constraint
as an invariant, a better approach is to define enough

information to be able to identify in greater detail the
occurrences of constraint violation (CV) as well as the
faulty entities. For instance, as described in Section 3.4 the
information contained in source code and in dictionaries
should be equal. A better approach is to compute the
difference between those associations.

Similarly, the following OCL expression identifies the
implementations responsible for a multi adhesion.

Such OCL expressions can easily be converted into code
and integrated into specific tool like OMVT or transformed
in to a query interpretable by GSEE.

context Component
inv : onlyDicoInterfaces = declaredInterfaces - allInterfaces
inv : onlySourceInterfaces = allInterfaces - declaredInterfaces
inv : bothDicoSourceInterfaces=

allInterfaces->intersection(declaredInterfaces)

context ComponentImplementationRelation
inv : createsMultiAdhesionError =

component.allImplementations->excluding(self)
->exists(imp2 : Implementation |

 self.allInterfaces
->intersection(imp2.allInterfaces)->notEmpty))

This interface is
implemented twice

Specification of
the rendering

Specification
of the view

Graph view
displayed by
Grappa/dot

Tree
view

Figure 7. A component displayed by the Generic Software Exploration Environment (GSEE)

4.3.2. Constraint-violation exploration tools. To help
software engineers in localizing CVs within large software
products and understanding their cause, a set of tools was
built. The following example illustrates a typical session
with the OM “trouble shooter”. At first, a browser is used to
get an overall picture of CV occurrences within the
software. Figure 10 shows, for each component, the number

of CV occurrences it contains. On selecting a component, a
trouble shooter view is opened Figure 11. This view gives
the structure of the component emphasizing CV through the
use of colors, or warning symbols. A simple click on such a
symbol opens a diagnostic view focusing on the faulty
entities. Figure 12 focuses on the occurrence of a multi
adhesion. Global views are also available (e.g. Figure 7).

Inherited
interfaces
(in blue)

A closed view of
the component

Component
inheritance

Interfaces
implemented by

the base

Base

Extensions

An open view of
the component

Super component

Interfaces
implemented by
each extension

Figure 8. External view of the component Figure 9. Internal view of the component

Figure 10. The troobleshooter browser

Figure 11. Zoom on a componentFigure 12. Zoom on a multi adhesion

Interfaces
declared only in
the dictionary

Interface
implemented twice

Components

Types of CV

of CV occurrences

multi adhesion

Inheritance path
leading to the
multi adhesion

Direct
interfaces

5. Discussion and related work

Our approach is based on two major steps: (1) building
a meta model describing the component model, and (2)
building a reverse engineering platform to explore and
analyse software built using this model.

5.1. About the meta model

It is important to stress that this paper concentrates only
on a small but central part of the OM meta model. The
complete meta model is much more complex; it also
describes the realization level (C++ classes, C++
inheritance, DLLs, etc.), larger grained entities like
frameworks, products, etc. Describing precisely the
constraints at these various levels proved to be difficult,
mainly because the model evolved over time with the
underlying technology and realization techniques.

We also found that working only at the meta model level
is insufficient, because it gives no information about actual
instances. The first reverse engineering and exploration
tools we have implemented provided us invaluable insights
on the usage of the component model. For instance, we
learned that some apparently important mechanisms are in
fact almost not used at all. The reverse engineering tools
also provided a great help in validating the meta model,
through discussions with DS software architects and
designers.

5.2. About reverse engineering tools

The platform is implemented in java, C++ parsers are
developed by DS, and the repository is based on Object
Store [35], a commercial Object Oriented Data Base.
Various tools have been built around the platform. The
OMVT tool, also implemented in java, represents a
significant development effort, but it is clearly worth since
it has been designed specifically to fit the needs of DS
software engineers [23].

We also experimented with available RE3 generic tools,
in particular with Rigi [19]. Our goal was to evaluate the
current state of generic exploration tools and their capability
to explore large component-based software products [20].
This experience show us (1) that it is easy to integrate new
tool into our environment, (2) that getting first results with
Rigi can take only few hours. However, this tool also shows
a number of limitations in our context [20]. We thus decided
to develop GSEE, the Generic Software Exploration
Environment [12]. This environment has been used not only
in the context of DS, but also to explore other software
artifacts. Indeed, GSEE can be seen as a generalization of
the approach presented in this paper. Roughly speaking, this
environment is parametrized by the meta model and enables

software engineers to build “any” view on virtually
arbitrary set of data, by just specifying the view in terms of
the meta model [12].

Scalability and performance were considered as
important issues during the design and the implementation
of all the tools we have built. It is interesting to notice that
the use of java do not raises performance issues. Actually,
extraction from source code is the bottleneck of the reverse
engineering process: it takes several hours to parse the
whole software developed at DS (4 millions LOC in C++).
This step is done once a week, and is integrated in the whole
development process of the company.

5.3. Related work

Describing industrial component models in a rigorous
way is gaining an increasing attention in the academic
community. For instance, the COM component model has
been described using the Z notation [24]. We preferred to
use UML [22] and OCL [25] since these languages are
increasingly popular in industry. A similar approach has
been taken recently in the definition of the Corba
Component Model (CCM) [33]. In this case, the meta
model is mostly seen as a documentation vehicle.

Actually, the use of meta models has been widely
recognized in software engineering, but most work aims at
defining new models, or describing existing and stable
models with well known properties (i.e. a programming
language). This contrasts with our problem, since the OM
component model is evolving and a very large amount of
instances are already available. This last property naturally
leads to RE3 techniques. In particular meta models have
been used at the intersection of OO and RE3 (e.g. Famoos
[7] is based on Famix, Spool [36] is based on UML).
However, these projects model OO concepts, not
components. In this paper we have gone one step further: we
consider that OO programming languages correspond to the
realization level, and components to the conceptual level.
Finally, note that the meta model we have built do not
enforce strict consistency, but instead deal with
inconsistencies.

In parallel with component-based approach, a very large
body of work have been done in the academic community
to define Architecture Description Languages (ADLs)
[14][18]. These languages introduce the concepts of
connector and configuration in addition to the concept of
component. Unfortunately the ADL approach have failed so
far to find its way to industry [17] in part because no support
is provided to deal with existing software products. The lack
of large industrial software products based on these
concepts explain why most of research done in architecture
recovery are usually based on traditional concepts like
modules and dependency relationships (e.g. [15,16,19,27]).

6. Conclusion and future work

This paper represents a study of the intersection between
reverse engineering and component-based software
engineering. We believe that this topic will be of increasing
importance as component technology will spread in
industry. DS is pioneering in this domain.

Tough this paper presents the platform as a reverse
engineering platform, one of our goal is indeed to build a
complete architectural environment to support the evolution
of large software products [17,23]. This environment will
also include forward engineering capabilities, and other
RE3 techniques like impact analysis, restructuration, etc.
All existing techniques need to be revisited to be applicable
at the architectural level. We found that the use of the meta
model is a very good basis to develop this kind of tool.

Based on the understanding we have gained in this work,
we are defining a new component model, along with the
associated formalisms and tools. One way to validate this
component model is to use it to develop our own platform
and tools. Our current research seeks to show, on the one
hand, how to apply component-based technology to build
RE3 environment like GSEE [12], and on the other hand,
how RE3 can be applied to component-based technology.

7. Acknowledgment

We thank Jorge Villalobos who participated in the design
and development of the OMVT tool; Rosana Angles,
Michelle Flamand who participated in its development and
Daniel Galton who developed the parsers, Humberto
Cervantes for its readings. We gratefully acknowledge talks
with Jean-Francois Doué, Jacques Bacry, Philippe Zimny,
Christian Ronce, Laurent Lalère from Dassault Système.

8. References

[1] R.S. Arnold; “Software Reengineering”, ISBN 0818632720,
IEEE Computer Society Press, 1993

[2] R.S. Arnold; “Tutorial on Software Restructuring”, ISBN
0818606800, IEEE Computer Society Press, 1993

[3] L. Bass, P. Clements, R. Kazman; “Software Architecture in
Practice”, ISBN 0201199300, Addison-Wesley, 1998.

[4] F.P. Brooks; “No Silver Bullet. Essence and Accidents of
Software Engineering”, in IEEE Computer, April 1987.

[5] D. Box; “Essential COM”, ISBN 0201634465, Addison-
Wesley, Jan. 1998.

[6] E.J. Chikofsky, J.H. Cross; “Reverse Engineering and Design
Recovery : A Taxonomy”, in IEEE Software, January 1990.

[7] S. Ducasse, S. Demeyer, editors; "The FAMOOS Object-
Oriented Reegineering Handbook", Univ. of Bern, Oct. 1999.

[8] F. Duclos, J. Estublier, R. Sanlaville; “Open architectures for
Software Adaptation”, (in french) 13th International
Conference on Software and Systems Engineering and their
Applications (ICSSEA’2000), Dec. 2000.

[9] R. Englander; “Developing Java Beans”, O'Reilly &
Associates. Jun. 1997.

[10] J.M. Favre; "Understanding-In-The-Large", 5th International
Workshop on Program Comprehension (IWPC'97), 1997.

[11] J.M. Favre; “A rigorous approach to the maintenance of large
portable software”, European Conference on Software
Maintenance and Reengineering (CSMR’97), March 1997

[12] J.M. Favre, “GSEE: a Generic Software Exploration
Environment”, submitted to the International Workshop on
Program Comprehension (IWPC’2001), May 2001.
http://www-adele.imag.fr/~jmfavre/GSEE

[13] M. Fowler, “Refactoring. Improving the Design of Existing
Code”, ISBN 0201485672, Addison-Wesley, Nov. 1999

[14] D. Garlan; “Software Architecture: a Roadmap”, in A.
Finkelstein, editor, The Future of Software Engineering, 22nd
Int. Conference on Software Engineering, Jun. 2000.

[15] R. Holt et al, PBS: Portable Bookshelf Tools, http://
www.turing.toronto.edu

[16] R. Kazman, S.J. Carrière; "Playing Detective: Reconstructing
Software Architecture From Available Evidence", Tech. Rep.
CMU-SEI-TR-010, Software Engineering Institute, 1997.

[17] Y. Ledru, R. Sanlaville, J. Estublier; “Defining an
Architecture Description Language for Dassault Systèmes”,.
4th Int. Software Architecture Workshop, Jun.2000.

[18] N. Medvidovic, R.N. Taylor; “A Framework for Classifying
and Comparing Architecture Description Languages”. 6th
European Software Engineering Conference (ESEC’97),.
LNCS 1013, Springer-Verlag, Sep. 1997.

[19] H.A. Muller et al, RIGI, http://www.rigi.csc.uvic.ca/
[20] S.T. Nguyen, J.M. Favre, Y. Ledru, J. Estublier; "Exploring

Large Software Products", (in french), 13th International
Conference on Software and Systems Engineering and their
Applications (ICSSEA’2000), Dec. 2000.

[21] L.B.S. Raccoon, “Fifty Years of Progress in Software
Engineering”, Software Engineering Notes, Vol. 22, No 1,
ACM SigSoft, Jan. 1997.

[22] J. Rumbaugh, I. Jacobson, G. Booch; “The Unified Modeling
Language Reference Manual”, ISBN 020130998X, 1999.

[23] R. Sanlaville, J.M. Favre, Y. Ledru, "Helping Various
Stakeholders to Understand a Very Large Software Product"
submitted to IWPC’2001.

[24] K.J. Sullivan, J. Socha, M. Marchukov; "Using Formal
Methods to Reason about Architectural Standards",
International Conference on Software Engineering
(ICSE’97), 1997

[25] J.Warmer, A. Kleppe; “The Object Constraint Language”,
ISBN 0201379406, Addison-Wesley, 1999.

[26] E. Yourdon; “Re-3 : Re-engineering, Restructuring, Reverse
Engineering” in American Programmer, Vol.2, No. 4, 1989.

[27] CIA/++,CIAO http:// http://www.research.att.com/~ciao/
[28] Dassault Systèmes CATIA Software.http://www.catia.com/
[29] COM Specification. Available at http://www.microsoft.com/

com/resources/comdocs.asp
[30] Corba. Object Management Group. http://www.omg.org
[31] Unified Modeling Language Specification V1.3., Jun. 1999
[32] JavaBeans Specification. http://java.sun.com/products/

javabeans/docs/spec.html
[33] “CCM: Corba Component Model”, OMG, August 1999
[34] Entreprise Java Bean, Sun, http://java.sun.com/products/ejb
[35] http://www.objectdesign.com/products/objectstore.html
[36] Spool Project, http://www.iro.umontreal.ca/labs/gelo/spool/

