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Abstract. This paper addresses the unavoidable problem of dynamic 
reconfiguration in component-based system with a hierarchical component 
model. The presented solution is based on (1) allowing several well defined 
patterns of dynamic reconfiguration and on (2) introducing a utility interface 
concept, which allows using a service provided under the SOA paradigm from a 
component-based system. The paper is based on our experience with non-trivial 
case studies written for component-based systems SOFA and Fractal. 

1 Introduction 

Component-based development (CBD) [19] has become a commonly used technique 

for building software systems. There are many opinions as to what a component is. 

One typically agrees that it is a black-box entity with well defined interfaces and 

behavior, which can be reused in different contexts and without knowledge of its 

internal structure (i.e., without modifying its internals). However, from a design view, 
components – especially hierarchical ones – can be viewed as glass-box entities with 

the internal structure visible as a set of communicating subcomponents. Typically, the 

collection of the related abstractions, their semantics and the rules for component 

composition (creation of component architecture) are referred to as a component 

model and an implementation of it as a component system/platform. In our view, the 
concept of “component” has always to be interpreted in the semantics of a particular 

component model.  

Many component systems currently exist and are used both in industry and 

academia. Typically, the industrial component systems, such as EJB [6] and CCM 

[15], are based on a flat component model. On the contrary, the academic component 

systems and models usually provide advanced features like hierarchical architectures, 
behavior description, coexistence of components from different platforms, 

dynamically updatable components, support for complex communication styles, etc. 

However, it is hard to properly balance the semantics of advanced features – in our 

view, this fact hinders a widespread, industrial usage of hierarchical component 



models. Based on our experience with the SOFA [17] and Fractal [4] component 

models, we claim that this issue is primarily related to dynamic reconfiguration of an 

architecture, i.e., adding and removing components at runtime, passing references to 

components, etc. A simple prohibition of dynamic reconfiguration (even though 

adopted by some systems [2]) would be very limiting, since dynamic changes of 
architecture are inherent to many component-based applications [14]. On the other 

hand, particularly in hierarchical component models, an arbitrary sequence of 

dynamic reconfiguration can lead to “uncontrolled” architectural modification, which 

is inherently error-prone (we call this evolution gap problem, also architecture 

erosion [3]). Moreover, for description of component architectures, most of the 

component models provide an architecture description language (ADL) [2,4,13,14], 
which typically captures just the initial components’ configuration. (The idea of 

software architectures and ADL specification came from hardware design, which is 

static by nature). Thus a challenge is to somehow capture reconfiguration in an ADL. 

Another currently emerging paradigm is the service-oriented architecture (SOA) 

[21]. SOA-based systems (WebServices, etc.) are commonly used in industry. In a 

high-level view, there is no difference between the SOA and CBD paradigms [10] – 
both a service and component have a well defined interface, their internal structure is 

not visible to their environment, and they can be reused in different contexts without 

modification. However, in SOA, services are not nested and their composition is 

typically done with the granularity of each request call, frequently being data driven. 

Thus, because of lack of any continuity in the architecture, there is no problem with 
dynamic reconfiguration similar to component models. 

In this paper, we employ experience with our hierarchical component model SOFA 

[17] which supports many advanced features like dynamic update, behavior 

description via behavior protocols, software connectors, and an open-source prototype 

of which is available [18]. However, based on case studies, we identified deep-going 

SOFA limits, including dynamic reconfiguration restricted to a dynamic update of a 
component and the lack of any cooperation with external services, which lead us to 

the design of the SOFA 2.0. 

The goal of the paper is to show how we propose to address the dynamic 

reconfiguration in SOFA 2.0 with the aim to avoid the evolution gap problem and 

allow for accessing external services provided through the SOA paradigm. To address 

the goal, the paper is structured as follows. Section 2 introduces the key contribution 
– the nested factory pattern and utility interface pattern. Section 3 contains evaluation 

and related work, while the concluding Section 4 summarizes the presented ideas. 

2 Dynamic Reconfiguration and Its Patterns 

By dynamic reconfiguration we mean a run time modification of an application’s 

architecture. As a special case this includes dynamic update of a component supported 

by the original SOFA (and also in SOFA 2.0); here the principle is that a particular 

component is dynamically replaced with another one having compatible interfaces. 

This kind of dynamic reconfiguration is easy to handle, because all the changes are 
located in the updated component and are transparent to the rest of the application. 



Since the new component can have a completely different internal structure, such a 

component update in principle means replacing a whole subtree in the component 

hierarchy, being thus a “real” architecture reconfiguration. Also, as an aside, dynamic 

update is not usually initiated by the application itself but by an external entity (the 

user, provider, etc.); on the contrary though, a general dynamic reconfiguration is an 
arbitrary modification of an application architecture typically initiated by the 

application itself. We have identified the following five elementary operations such a 

dynamic reconfiguration is based upon: (1) removing a component, (2) adding a 

component, (3) removing a connection, (4) adding a connection, (5) adding/removing 

a component’s interface. 

 As mentioned in Sect. 1, in hierarchical component models an arbitrary sequence 
of these operations can lead to “uncontrolled” architectural modification (the 

evolution gap problem). To avoid it in SOFA 2.0, we limit dynamic reconfigurations 

to those compliant with specific reconfiguration patterns. At present, we allow the 

following three reconfiguration patterns: (i) nested factory, (ii) component removal, 

and (iii) utility interface. In principle the operations (1) – (4) are to be employed in 

these patterns only, and the operation (5) is limited to the use of collection interfaces 
(an unlimited array of interfaces of a specific type in principle [8]). The choice of 

these patterns is based on our experience gained out of non-trivial case studies. Due to 

space constrains, we below discuss and analyze only (i) and (iii) which we consider 

the key ones. 

2.1 Nested Factory Pattern 

The nested factory pattern covers adding a new component and a new connection to 

an architecture. The new component is created by a factory component as result of a 

method invocation on this factory. The key related issues are (i) where in the 

hierarchy the new component should be placed, and (ii) how the connections of/to the 

new component should be lead. 

Consider the situation on Fig. 1a) capturing a fragment of an application featuring 
the DAccess component, which logs all method calls to a set of loggers connected via 

a required collection interface. The DAccess is a data access component, which is 

bound to LFactory (the logger factory) featuring a collection required interface for 

accessing the loggers. As a result of a call to its provided interface, the logger factory 

creates a new logger component and returns a reference pointing to it. Such a call is 

issued by the DAccess component, which in response receives a reference to a new 
logger and binds to it via the collection interface (dashed line on Fig. 1a).  

Provided the DAccess and LFactory components are siblings in the flat 

architecture, such a dynamic reconfiguration is easy. However, a problem arises when 

this assumption does not hold as on Fig. 1b). The issue is, where the newly created 

component (Logger) should be placed in the architecture and how the connection to it 

should be established.  
A straightforward answer to the question where to put the dynamically created 

Logger components might be into the FactoryManager. However a decision how to 

manage their connections to DAccess is not that intuitively obvious. If we allow a 

direct connection between the DAccess and Logger, then the connection will go 



through the FactoryManager component boundaries and violate the requirement of 

encapsulation. The second option, to add a copy of the Logger provided interface to 

the FactoryManager component and lead the connection through it is also not ideal, 

because it would mean that FactoryManager had to mediate traffic of all connections. 

In general, if a component A asking creation of another component B (and also 
assuming A is to be connected to B) is located in a different part of the hierarchical 

architecture than B is, the problem of mediating connections becomes pressing. 

In SOFA 2.0, we have adopted the following rule: The newly created component B 

becomes a sibling of the component A that initiated the creation (and A’s call to the 

factory also determines the A’s collection interface the connection is to be established 

to). In the example above, the Logger component becomes a sibling of the DAccess 
component – see Fig. 1c). 
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Fig. 1. Dynamic application example 

The main reason, why the newly created component B does not become a sibling 

of the factory component (as this can seem to be also an obvious simple solution) is 

that the component A which initiated the creation typically needs to intensively 
collaborate with B which is obviously easier to manage when B is a sibling of A. The 

next positive outcome of the rule is better performance, because it is not necessary to 

create complicated connections going up and again down through the hierarchy. 

Technically, to identify a factory component, factory annotation can be 

syntactically attached to the factory methods of an interface. 

The newly created component B is not limited to having just a provided interface 
(as it is shown in Fig.1) but it can have also required interfaces. However, these are 

restricted just to the types featured by the component A initiating the creation. At the 

moment the provided interface of B is bound, the required interfaces are also bound to 

the same provisions as the required interfaces of A are. As an aside, this pattern works 

also in the case when B is a composite component. 

2.2 Utility Interface Pattern 

While working on case studies, we frequently faced the situation when a component 

provides a functionality, which is to be used by multiple components in the 

application at different levels of nesting (i.e. the need of use is orthogonal to the 

components’ hierarchy). The functionality is typically some kind of a broadly-needed 

service such as printing. A solution can be to place such a component on the top level 

of the architecture hierarchy and arrange “tunnel” for connections through all the 
higher-level composite components to those nested ones where the functionality is 



actually needed. But this solution leads to an escalation of connections and makes the 

whole component architecture blurred (by making the utility features visible to the 

components where they are not actually needed) and consequently error-prone. 

Another typical situation we faced is that a reference to such a service is to be passed 

among components (e.g., returning reference to a service from a call of a 
registry/naming/trading component). 

For these reasons, we have introduced utility interfaces (the complete meta-model 

is in [8]). The reference to a utility interface can be freely passed among components 

and the connection made using this reference is established orthogonally to the 

architecture hierarchy (Fig. 2). 
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Fig. 2. Utility interface example 

From a high-level view, the introduction of utility interfaces brings into 
component-based models a feature of service-oriented architectures (since Pservice 

can be seen as an external service). Such feature fusing allows to take advantages of 

both these paradigms (e.g., encapsulation and hierarchical components of component 

models and simple dynamic reconfiguration of SOA). 

As a side effect, the introduction of utility interfaces this way consequently means 
that – in a limiting case – the whole application can be built only of components with 

utility interfaces and therefore the component-based application becomes an ordinary 

service-oriented application (inherently dynamically reconfigurable). Thus, service 

oriented architecture becomes a specific case of a component model. 

3 Evaluation and Related Work 

Evaluation: The approach to dynamic reconfiguration in a hierarchical component 

model presented in this paper is based on our experience with not-trivial case studies 

crafted for the SOFA and Fractal component models.  

In principle, our approach to handling dynamic reconfiguration is based on 
combining the features of hierarchical component models and service-oriented 

architecture. From the component models point of the view, we allow just several 

types of dynamic reconfiguration compliant with well-defined patterns. Such a 

prohibition of an arbitrary reconfiguration and allowance of several well-defined 

modifications only is used in the most of component models (as discussed below), 

however none of them tackles the issue of how the component factory concept should 
be integrated into a hierarchical component model. Nevertheless, in addition to 



addressing this factory issue, the novel contribution of this paper is the introduction of 

utility interfaces which brings into a component-based system a feature of SOA and 

allows simplified dynamic reconfiguration without losing some advantages of 

component models such as focus on reusability and support for integration. Overall, 

in our view, the utility interface concept sophisticatedly integrates paradigms of the 
hierarchical component model and service-oriented architecture. 

The authors of [12] define a taxonomy of component-based models using the 

criterion of component composition at different stages of component lifecycle (design 

and deployment). Using this taxonomy, they classify the existing component systems, 

including SOFA (the original version), which with Koala and KobrA fits into the 

most advanced category characterized by (i) composing components at design time, 
(ii) storing composed components in a repository and (iii) reusing already stored 

components (including composite ones) in further composition. The only missing 

feature of these three systems is no composition at deployment time and runtime. 

With incorporating the proposed dynamic reconfiguration patterns, SOFA 2.0 meets 

all the criteria imposed in [12] (assuming the authors under “deployment” understand 

also runtime). 
As mentioned in Sect. 2, our choice of reconfiguration patterns is based on our 

experience with non-trivial case studies of component-based applications. In most of 

them, we faced a situation where dynamic reconfiguration was necessary. Since the 

original SOFA has dynamic reconfiguration limited to updates only, we usually had to 

overcome this lack by restricting the desired dynamic architecture modification via 
employing “dynamic parts” of a predefined static architecture (e.g., in the example 

application from Sect. 2.1, a maximum number of concurrent loggers was predefined 

and the corresponding number of the Logger components was instantiated at launch 

time). But this approach led to non-generic applications with rather big performance 

penalties (creating all necessary instances during launching). Also, several of our case 

studies have been based on the Fractal component model. Fractal provides support for 
dynamic reconfiguration but as we discuss below it suffers the evolution gap problem. 

Related work:  Component systems with a flat component model (CCM [15], C2 

[20]) do not consider dynamic reconfiguration as an issue, since there is no problem 

where to place a newly created component and a service can be seen as another 

component in the flat component space. However, the evolution gap problem is 

inherently present. 
In the area of hierarchical component models, there are several approaches as to 

how to deal with dynamic reconfiguration. 

(1) Forbidding. A very simple and straightforward approach used in several 

component systems (e.g., [2]) is not to allow dynamic reconfiguration at all. But this 

is very limiting, revealing in essence all the flaws of the static nature of an ADL. 

(2) Flattening. Another solution is to use hierarchical architecture and composite 
components only at the design time and/or deployment time. However, at run time the 

application architecture is flattened and the composite components disappear – this 

way the evolution gap problem becomes even more pressing, since the missing 

composite components make it very hard to trace the dynamic changes with respect to 

the initial configuration. This approach is used, e.g., in the OMG Deployment & 
Configuration specification [16], which defines deployment models and processes for 

component-based systems (including CCM). The component model introduced in this 



OMG specification is hierarchical, but finally, in the deployment plan, the application 

structure is flattened and the composite components are removed. 

(3) Restricted reconfiguration. Several systems forbid an arbitrary reconfiguration 

but allow special and well-defined types of dynamic reconfiguration:  

(a) Patterns. Being an extension of Java, ArchJava [1] is a component system 
employing a hierarchical component model. Components in ArchJava can be dynami-

cally added (using the new operator), but an addition of new connections is restricted 

by connection patterns. These patterns define through which interfaces and to which 

types of components the new component can be connected. Moreover, only the direct 

parent component can establish these connections (among direct subcomponents). 

(b) Shared components. Fractal introduces shared components (at the ADL level); 
a shared component is a subcomponent of more than one other components. This way, 

component hierarchy becomes a DAG in general (not a tree). Appling this idea to the 

Fig. 1 would mean that the Logger component would be used by LFactory and 

DAccess. This solution works nicely, however, an architecture with shared 

components can be confusing, since it is not easy to determine who is responsible for 

lifecycle of a shared component, reasoning about architecture (e.g., checking behavior 
compliance) is very complicated, and several advanced features of component models 

(e.g., dynamic update of a component subtree) cannot be applied. 

(c) Formal rules. Several systems (e.g., CHAM [9], “graph rewriting” [23]) define 

a formal system for describing the permitted dynamic reconfigurations. These systems 

allow complex definition of all architecture states during an application’s lifecycle. 
But they are very complicated, even for simple architectures. 

(4) Unlimited. Darwin [13] uses direct dynamic instantiation, which allows 

defining architecture configurations that can dynamically evolve in an arbitrary way 

(but the new connections among components are not captured). Julia [11], an 

implementation to Fractal, allows a general component reference passing (so that any 

time a reference is passed, it mimics establishing a new connection – this works 
orthogonally to specifying a shared component in ADL). Obviously, the evolution gap 

problem is ubiquitous in these cases. 

However, let’s emphasize that SOA is typically based on dynamic reconfiguration, 

since the composition of services is done with the granularity of individual calls 

captured in coordination languages like Linda [22] or by routing of messages [5]. 

4 Conclusion 

We have shown a way of addressing dynamic reconfiguration in a hierarchical 

component model. With the aim to avoid uncontrolled architecture modification, the 

presented solution is based on the proposition of three reconfiguration patterns, which 
include the introduction of the utility interface concept that allows to use a service 

provided under the SOA paradigm from a component-based system. The paper is 

based on our experience with non-trivial case studies written for component-based 

systems SOFA and Fractal. Currently, we have specified the whole meta-model of 

SOFA 2.0, all necessary interfaces for the development time, deployment and 
runtime. A working prototype is expected within several months. 



Acknowledgements 

The authors would like to thank Tomáš Bureš, Vladimír Mencl and Lucia Kapová for 

valuable comments, Jan Klesnil, Ondřej Kmoch, Tomáš Kohan and Pavel Kotrč for 

contributing to meta-model design, and Pavel Ježek and Jan Kofroň for sharing 
experience with a Fractal case study. This work was partially supported by the Grant 

Agency of the Czech Republic project 201/06/0770. 

References 

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting Software Architecture to 
Implementation, Proceedings of ICSE 2002, Orlando, USA, May 2002 

2. Allen, R.: A Formal Approach to Software Architecture, PhD thesis, CMU, 1997 
3. Baumeister, H., Hacklinger, F., Hennicker, R., Knapp, A., Wirsing, M.: A Component 

Model for Architectural Programming, Proceedings of FACS'05, Macao, Oct 2005 
4. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J. B.: An Open Component 

Model and Its Support in Java, Proceedings of CBSE 2004, Edinburgh, UK, May 2004 
5. Chappell, D. A., Enterprise Service Bus, O'Reilly Media, Jun 2004 
6. Enterprise Java Beans specification, version 2.1, Sun Microsystems, Nov 2003 
7. Hnětynka, P., Píše, M.: Hand-written vs. MOF-based Metadata Repositories: The SOFA 

Experience, Proceedings of ECBS 2004, Brno, Czech Republic, IEEE CS, May 2004 
8. Hnětynka, P., Plášil, F., Bureš, T., Mencl, V., Kapová, L.: SOFA 2.0 metamodel, Tech. 

Rep. 11/2005, Dept. of SW Engineering, Charles University, Prague, Dec 2005 
9. Inverardi, P., Wolf, A. L.: Formal Specification and Analysis of Software Architectures 

Using the Chemical Abstract Machine Model, IEEE Trans. on Soft. Eng., v. 21, n. 4, 1995 
10. Iribarne, L.: Web Components: A Comparison between Web Services and Software 

Components, Colombian Journal of Computation, Vol. 5, No. 1, Jun 2004 
11. Julia, http://forge.objectweb.org/projects/fractal/ 
12. Lau, K.-K., Wang, Z.: A Taxonomy of Software Component Models, Proceedings of 

EUROMICRO-SEAA’05, Porto, Portugal, Sep 2005 
13. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures, Proceedings of 

FSE’4, San Francisco, USA, Oct 1996 
14. Medvidovic, N.: ADLs and dynamic architecture changes, Joint Proceedings 

SIGSOFT’1996 Workshops, ACM Press, New York, USA, Oct 1996 
15. OMG: CORBA Components, v 3.0, OMG document formal/02-06-65, Jun 2002 
16. OMG: Deployment and Configuration of Component-based Distributed Applications 

Specification, OMG document ptc/05-01-07, Jan 2005 
17. Plášil, F., Bálek, D., Janeček, R.: SOFA/DCUP: Architecture for Component Trading and 

Dynamic Updating, Proceedings of ICCDS’98, Annapolis, USA, IEEE CS, May 1998 
18. SOFA prototype, http://sofa.objectweb.org/ 
19. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edition, 

Addison-Wesley, Jan 2002 
20. Taylor, R. N., et al: A Component- and Message-Based Architectural Style for GUI 

Software, IEEE Transactions on Software Engineering, Vol. 22, No. 6, Jun 1996 
21. WebServices, http://www.w3.org/2002/ws/ 
22. Wells, G.: Coordination Languages: Back to the Future with Linda, Proceedings of 

WCAT’05, Glasgow, UK, Jul 2005 
23. Wermelingera, M., Fiadeiro, J. L.: A graph transformation approach to software 

architecture reconfiguration, Science of Computer Programming, Vol. 44, Iss. 2, Aug 2002 


