
Formal Verification of Software Source Code
Through Semi-Automatic Modeling

Cindy Eisner

IBM Haifa Research Laboratory

Abstract. We describe the experience of modeling and formally ver-
ifying a software cache algorithm using the model checker RuleBase.
Contrary to prevailing wisdom, we used a highly detailed model created
directly from the C code itself, rather than a high-level abstract model.

Keywords: software model checking, software verification, program verification,
functional verification

1 Introduction

In recent years, the technique of formal verification known as model checking has
gained wide acceptance as a powerful tool for hardware design, and has become
an integral part of the verification process in IBM and other companies [17, 4, 28,
21, 42, 1, 49]. With the maturation of the method for hardware verification, the
obvious question is whether the experience is transferable to software. A first step
in the application of IBM’s model checking tool RuleBase [7, 6] to software was
described in [19]. In that project, RuleBase was applied to a highly abstracted
model of RuleBase itself, in order to detect problems in the use of the garbage
collection mechanism by the programmer. While the work described in [19] was
successful, detecting eight bugs in a version of RuleBase under development,
the high level of abstraction it used is not applicable to most real-life problems.
This report describes a second, much more ambitious, step: the application of
RuleBase to a concrete model of a piece of “hard to verify” software - a software
cache algorithm.

The software verified is a distributed storage subsystem software application.
In other words, it is the software that runs on hardware that connects one or
more computers with one or more magnetic disks. It is a distributed application
that runs on several nodes, providing full data availability after the failure of
a single node, and at least partial service in the event of simultaneous failures.
Like most storage subsystems, it contains a cache to speed up read and write
operations. The algorithms used to implement the software cache are the subject
of the work described in this report.

A software cache, like a hardware cache, holds a copy of the data stored
elsewhere (on disk in the case of a software cache, in main memory in the case of
a hardware cache). The copy can be either clean, which means that the data is

2

identical to that on disk, or dirty, which means that the cached copy is different
from (and newer than) that on disk. If the cached copy is dirty, then the cache
algorithms must ensure that any read of the dirty address gets the newer (cached)
copy, and that the new data is written back to disk before the address is discarded
from the cache. Because the system is distributed, the cache algorithms must also
provide the coordination between multiple nodes. In the case of multiple cached
copies, all are identical. Because the system must ensure high availability, there
is an additional functionality, which is to ensure that there are always at least
two copies of dirty data; a second copy is used in the case of a failure of the node
holding the first copy.

Since hardware cache protocols are classic candidates for formal verification
[12, 36, 17, 21], formally verifying a software cache algorithm seemed like a nat-
ural next step in the effort to transfer the knowledge and experience of formal
verification from hardware to software. The original goal was modest: to verify
a high-level manually written model of the software cache algorithms, in the
same way that early formal verification work on hardware used manually cre-
ated models of the real thing. In this way, the thinking went, the many problems
of software modeling not solved by the original effort in [19] (for instance, the
modeling of pointers and complex data types) could be avoided, while still pro-
viding real value. The intention was that only after the algorithms were well
understood would an attempt be made to verify the software directly.

However, it soon became apparent that this strategy would not work; it would
not be possible to build manually a good model of the software algorithms to be
verified. The reason for this is rooted in the fundamental difference between soft-
ware and hardware. That difference is not necessarily what first comes to mind
when considering the matter. The complex semantics of programming languages,
including pointers, function calls, recursion, etc., are not a fundamental problem,
despite the fact that hardware semantics are trivial by comparison. Neither is the
fact that software is generally viewed as having infinite state, while the model
checking algorithm used by RuleBase needs a finite state system. Rather, it is
the fact that the control flow of software differs at such a basic level from that of
hardware. In hardware, everything works in parallel, and this is reflected in the
style of simple Hardware Description Languages, including EDL [24], the input
language of RuleBase. In such languages, every statement is implicitly parallel to
every other statement, and when sequential constructs, such as the EDL process
exist, they are atomic. In software, however, control flows sequentially through
a process, and when concurrency exists, it is between non-atomic entities. This
difference in the granularity of concurrency is the difference that makes it hard
to manually translate a software algorithm into the hardware modeling style
required by EDL.

Because of the modeling problems described above, it was decided not to
model the software directly in EDL, but rather to model in C, and to use the
automatic translation to EDL described in [19]. The C model is very similar to
the actual C code, to the extent that there is a one-to-one correspondence be-
tween a line of the model and a line of the original code. The main differences are

3

a simplification of complex data types and a slight change to the mechanism for
asynchronous callback. Both of these issues are explained in detail in Section 5.

The automatic translation solves the modeling problems that would be dif-
ficult to deal with manually. However, the translator of [19] had been used only
once before, for a very particular purpose, and significant enhancements were
required to make it useful on more general C code. The restricted translator of
[19] and the more general translator developed for the purposes of this project
are described in Section 5.

2 Comparison with related work

Many previous works have described the process of verifying high level models of
software [10, 33, 34]. In this paper, we apply model checking to the source code
itself, rather than to a hand coded high level model.

There is extensive previous work on the application of model checking to the
source code of railway interlocking software [29, 37, 8, 9, 18, 20]. While technically
a railway interlocking is a piece of software, the semantics of railway interlocking
languages are extremely simple, to the extent that Sheeran and St̊almarck term
interlockings hardware-like systems [45]. In this paper, we apply model checking
to software written in the general purpose language C.

Godefroid [26, 27] describes VeriSoft, a tool for model checking concurrent
software written in C or C++, and the successful verification of a 2500 line
concurrent C program is noted. The focus of [26, 27] is the search algorithm,
which performs a variety of explicit state space exploration. Stoller [46] takes an
approach similar to that of [26, 27] for Java programs. In this paper, we do not
modify the model checking algorithm. Rather, we use c2edl to translate C code
into the input language of our model checker, and use the existing algorithms to
verify certain useful properties of the program.

Demartini, Iosif and Sisto [15] describe the application of the SPIN model
checker to Java multithreading applications. They describe the process of trans-
lating Java source code into PROMELA, the input language of SPIN. Their
goal, like that of this paper, is to verify source code, using automatic abstrac-
tion techniques to get a simplified model. They demonstrate their technique on
toy examples. Havelund and Pressburger [30] take an approach similar to [15] in
the first generation of their tool Java PathFinder, but support more of the lan-
guage, and note results for Java programs of up to 2000 lines of code. In both [15]
and [30], the translation is complicated by the need to model the concurrency
primitives of Java, while the method used by c2edl is free of those concerns. On
the other hand, the translations of [15, 30] are in some ways simpler than that of
c2edl, because the PROMELA language allows them to retain much more of the
structure of the original program than does EDL. The issue of the ease of the
translation process is not, however, the important difference between translating
into PROMELA and translating into EDL. Rather, the important difference is
that SPIN, the model checker that reads PROMELA, is an explicit state model
checker, while RuleBase, the model checker that reads EDL, is a symbolic, or

4

implicit state, model checker. A comparison of symbolic vs. explicit state model
checking of the software system described in this paper can be found in [22].

Visser, Havelund, Brat and Park present the second generation of Java
PathFinder in [48]. While the first generation translates Java source code into
PROMELA, the second generation is a full-blown custom-made model checker
for Java. In contrast, we have not developed a new model checking algorithm,
but use modeling techniques to allow the application of an existing one.

Holzmann and Smith [32] present a method for extracting verification models
from source code that results in a control-flow skeleton, using an abstraction
process that is semi-automatic. They describe the results of an application of
their method to commercial call processing software written in C, although they
do not mention the size of this software. In [31], Holzmann describes another
application of the method to a checkpoint management system. Again, the size
of the software is not discussed. In contrast, we check a detailed, rather than
abstract, model of the software.

Corbett et al [14] describe Bandera, a tool for automatic extraction of fi-
nite state models from Java source code. They perform user-guided abstractions
based on reducing the cardinality of data sets, and provide a language for spec-
ifying additional abstractions. They translate Java to an intermediate language
which is then translated to one of a number model checking languages. They
demonstrate their method on a toy example, a threaded pipeline consisting of
60 lines of Java code. In contrast, we present results for a non-trivial application.

Esparza, Hansel, Rossmanith and Schwoon [23] describe model checking al-
gorithms for pushdown automata. They take the radical approach of abstracting
away all variable values, and are not limited to a finite stack. They give impres-
sive results for randomly generated flow graphs (skeleton programs) of up to
20,000 lines. In contrast, the work described in this paper uses a highly detailed,
as opposed to an abstract, model.

Finally, Ball and Rajamani [3] describe Bebop, a symbolic model checker
for boolean programs. They have developed a specialized algorithm for model
checking software, which appears to be limited to checking properties which are
directly represented by the user as reachability queries. Like [23], they are not
limited to finite state systems. In contrast, we use our existing model checker,
and check properties expressed in temporal logic. Their approach to the semantic
difficulties of software is to limit all variables to boolean values. They show
results for a simple family of programs with increasingly deep levels of nested
procedure calls, but limited non-determinism. In contrast, we choose to deal with
more complicated real-life programs.

3 Two Early Decisions

Before describing the work that was done on this project, two early decisions
should be discussed. The first is the decision to use RuleBase, a tool designed
for verification of hardware, rather than building a tool specialized for software

5

from scratch. The second is the decision to use a very detailed model of the cache
algorithms, rather than a highly abstract high-level model.

3.1 The Decision to use RuleBase

Given the huge gap between the world of software and that of hardware de-
scribed above, the decision to use RuleBase for software verification may seem
strange. The explanation for this decision lies in the fact that it is only the mod-
eling language EDL that is unsuitable for modeling software; the underlying
algorithms used by RuleBase are as relevant to software as they are to hard-
ware. To understand this, recall that software is merely an input to a piece of
hardware. With RuleBase, we routinely model hardware and its inputs, so there
is no fundamental reason that RuleBase should not be applicable to software.
Indeed, a first attempt [19] proved the concept on a sizable piece of code, albeit
on a highly abstracted model.

Not only is the application of RuleBase to software possible, there is a big
incentive to make it work. Many person years of effort have gone into the tool
since its birth in 1994, most of it to the core model checking algorithms which
are as applicable to software as they are to hardware. In addition, the deep
understanding of the underlying algorithms used by RuleBase that has been
gained through years of application to hardware would take many additional
years to duplicate on a completely new tool.

For these reasons, it was decided to further explore the use RuleBase for the
verification of software, rather than to undertake the development of a brand
new tool.

3.2 The Decision to Use a Detailed Model

Another early decision was that of using a detailed model, with a one-to-one
correspondence between its lines of code and that of the actual software. There
are several reasons that this approach, which goes against a lot of the conven-
tional wisdom of the model checking community, was taken. First, modeling an
algorithm in detail is easier than modeling the algorithm at an abstract level,
especially when an implementation already exists. Writing the detailed C model
of the cache algorithm entailed solving some highly isolated problems, while
leaving most of the code untouched. The only structural changes made were a
slight change to the mechanism of asynchronous callback, in order to eliminate
the need for an additional thread, and a few simple changes to the way return
codes are handled, in order to save state variables which are extremely expensive
in model checking. Thus, writing the model entailed merely copying the original
C code, using global replace to flatten structures and replace pointers with in-
dices to pre-allocated arrays, and editing manually in a few places to change the
structure. This process required only a basic understanding of the algorithm. In
contrast, writing an abstract model requires detailed knowledge of the algorithm
under verification, and is frequently a difficult process even then.

6

Another advantage of a detailed model is that it eliminates in large part the
problem of knowing whether or not the results on the abstract model are relevant
to the actual code. When a highly abstracted model is used, the problems of false
negatives and false positives are usually acute. A false negative results when the
abstraction process causes a specification to fail, not because the algorithm itself
is buggy, but rather because the abstraction was performed too zealously. A
false negative is discovered by examining the counter-example provided by the
model checker, and requires recoding the abstraction to correct the erroneous
behavior. The problem of false positives is more serious. This occurs when, as
before, the abstraction does not accurately reflect the actual code. However, in
a false positive, the abstraction obeys the specification, while the actual code
does not. There is no way to detect a false positive without an added step in
which it is proved that the abstraction is an accurate reflection of the software.
This can be done, for instance, by proving a simulation relation [13, 38] between
the abstraction and the code, or by developing the code from the abstraction
through a process of refinement [2, 40, 39]. Unfortunately, this step is frequently
as or more difficult than the model checking process itself. When a detailed
model is used, neither problem is completely eliminated. However, because of
the high similarity between the model and the actual code, neither is a serious
obstacle.

Finally, the viability of a highly detailed model was shown in previous work,
in which a complicated hardware cache protocol was verified with success [21].
In the formal design of the coherence unit of a multi-processor system, described
in [21], 37 bugs were found in an early version of the design, and 50 bugs in the
version that was sent to production.

For these reasons, it was decided to use a detailed model of the software
cache, rather than to deal with the problems of a highly abstract one.

4 RuleBase

RuleBase is a formal verification tool that uses the technique of symbolic model
checking in order to decide whether or not a design obeys its specification. A
brief overview follows. A detailed tutorial on symbolic model checking can be
found in [20].

In model checking [11, 43], a (finite) design is viewed as a Kripke structure
(similar to a finite automaton, or a finite state machine), and the verification of
the properties is achieved by traversing the structure. Consider for instance the
Kripke structure shown in Figure 1. For this structure, we might be interested
in verifying the following property:

If a request is made, it will be processed within three steps. (1)

We express this formally in the temporal logic CTL [11] as follows:

AG(request→ AX(process ∨AX(process ∨AXprocess))) (2)

7

Fig. 1. Structure Request-Process

Formula 2 can be read as: ”always globally (AG), if there is a request, then
always on the step after that (AX), either process it, or always on the step after
that (AX), process it, or, always on the step after that (AX), process it”. The
pre-condition of the formula, ”if there is a request”, holds only in states 2 and
4. By traversing the Kripke structure from those states using standard graph
traversal algorithms, we can discover that from state 2, the property holds, and
that from state 4, there are several paths which do not obey the requirement.
One of these, for instance, is the infinite path (4, 3, 0, 0, 0, · · ·). Thus, of the two
relevant states, Property 2 holds only for state 2. Furthermore, by traversing the
graph from the initial state 0, we can discover that the single state 4 which does
not obey our property is not reachable, that is, it is not possible to get to state
4 from the initial state. Therefore, our structure satisfies the desired property.

Model checking an explicit representation of a Kripke structure like that
shown in Figure 1 is fairly straightforward. However, building a Kripke structure
for even a small real-life design is usually impossible. For instance, a piece of
hardware with n latches or memory elements will have a Kripke structure with
2n states. A piece of software with n boolean variables will have even more than
2n states, as the program counter and stack must also be represented. For even
relatively small values of n, this is prohibitive. The solution to this problem is
the technique of symbolic model checking [36].

Symbolic model checking works by manipulating functions representing the
structure rather than by building and traversing the structure itself. Since the ef-
fect of symbolic model checking is as if we had built and traversed the structure,
we say that a symbolic model checker performs implicit state space exploration,
while a non-symbolic model checker performs explicit state space exploration.
An implicit representation of a Kripke structure is simply a description of the
behavior of each bit of the system. For an n-bit system, the implicit represen-
tation is of size n, whereas the explicit representation, if built, would be of size
2n.

8

The implicit model checker RuleBase takes three inputs: the system to be
verified, a description of the environment (the legal behaviors of the inputs to the
system under verification), and a description of the specification against which
the system should be checked. For hardware, the system itself is usually writ-
ten in one of two standard Hardware Description Languages (HDLs), Verilog
or VHDL. The environment is described in EDL, the Environment Description
Language of RuleBase1. The specification is described in Sugar [5, 25], the tem-
poral logic used by RuleBase. These three inputs are compiled down by RuleBase
into a model, comprised of the design itself and its environment, described in
the language SMV [36], and its specification, described in CTL.

5 Modeling Software Using EDL

The first task in model checking software using RuleBase is to be able to support
a standard software language such as C. The basic idea behind translating C into
EDL2 (so that RuleBase need not be modified at all in order to be applied to
software) was presented in [19]. It is described in the next section in order to
make this report readable as a standalone document.

5.1 Modeling Problems Solved Previously

This section describes how to express a program, including functions and recur-
sion, as a set of next-state functions directly suitable for model checking. It is a
recap of the process described in [19], which itself directly follows from [35, 13].
The process is quite simple, and is described by means of short examples.

Consider first the C function getmax() of Figure 2. We start by annotating the
code with the value of the program counter (pc). We then restrict the integers a

getmax (){
int max, a;

0 a = max = 0;
1 do {
2 if (a > max)
3 max = a;
4 a = input();
5 } while(a);
6 return(max);
7 }

Fig. 2. Function getmax() in C

1 The distinction between the language used to describe the design and that used to
describe the environment is an artificial one. EDL is in fact a very simple HDL.

2 Since C is the language used to describe the program under verification, it might
seem more intuitive to translate C into Verilog or VHDL, which are used to describe
hardware designs. However, as noted above, EDL is actually a very simple Hardware
Description Language, so this choice is of minor importance.

9

and max to a finite range, say 0 through 3. If we interpret the call to a = input()
on line 4 as a non-deterministic assignment to the variable a, it is a simple process
to rewrite getmax() in terms of next-state functions of the variables, as shown
in Figure 3. With minor syntactic changes and the addition of state variable

next(a) = if pc=0 then 0
else if pc=4 then {0,1,2,3}
else a

next(max) = if pc=0 then 0
else if pc=3 then a
else max

next(pc) = if pc=0 then 1
else if pc=1 then 2
else if pc=2 then if a>max then 3 else 4
else if pc=3 then 4
else if pc=4 then 5
else if pc=5 then if a then 1 else 6
else if pc=6 then 7
else if pc=7 then 7

Fig. 3. Function getmax() in terms of next-state functions

declarations, Figure 3 is a complete EDL program, and can be model checked
using RuleBase.

The implementation itself is very simple. After parsing the source code, the
program counter is allocated by traversing the parse tree. Generating the be-
havior of the program counter is then a matter of traversing the numbered
parse tree a second time. Extending the translation to other kinds of branch-
ing and loop statements is straightforward. Handling functions, including re-
cursive calls, is also fairly simple, and follows the standard method of a stack
and stack pointer used by compilers: During the second traversal of the parse
tree, information needed to generate propositions somecall (indicating a func-
tion call), somereturn (indicating the end of a function or a return statement),
and nextpcnocall (indicates the return point to be pushed onto the stack for a
function call) is gathered. Using these propositions, the behavior of the stack is
described as shown in Figure 4. As in real life, the depth of the stack is finite (in

next(stackp) = if somecall then stackp inc
else if somereturn then stackp dec
else stackp

next(stack(stackp)) = if somecall then nextpcnocall
else stack(stackp)

stackp inc = if stackp = max stackp then stackp else stackp+1
stackp dec = if stackp = 0 then stackp else stackp-1

Fig. 4. Standardized behavior of the stack

this case, limited to the value of max stackp). Stack overflow is checked using
a CTL formula. The next state value of the pc is then dependent on the propo-
sitions somereturn and returntowhere, as shown in Figure 5. The behavior of

10

next(pc) = if somereturn then returntowhere
else ...

Fig. 5. Next state value of pc in presence of stack

returntowhere is itself a function of the stack, as shown in Figure 6.

returntowhere = case
stackpminus1=0:stack 0;
stackpminus1=1:stack 1;
stackpminus1=2:stack 2;
stackpminus1=3:stack 3;
stackpminus1=4:stack 4;
stackpminus1=5:stack 5;
...

Fig. 6. Modeling of returntowhere as a function of the stack

We have shown how to model a C program with simple data types, and
function calls, including recursion. This process was completely automated in
the tool c2edl as described in [19]. However, for the work described in this report,
it was necessary to provide a more complete solution. This is the subject of the
next sub-section.

5.2 Modeling Problems Solved by this Work

The software cache algorithm code contains many constructs not covered by
the basic solution presented in the previous sub-section. Among these are: use
of complex data types, such as structures and pointers, overloading of memory
location names through the use of unions, complications of control flow due to
multi-threading, including asynchronous completion of requests, and support for
local variables and parameters. Some of these were solved automatically, through
enhancements to the tool c2edl, and some were solved manually through changes
to the C model. Each is discussed in detail below.

The term pseudo-code used below indicates the model. This is somewhat of
a misnomer, since the model is perfectly legal C code. It is intended to indicate
that the model is not quite the real thing.

Structures Structures were flattened into sets of individual variables. For in-
stance, the structure io shown in Figure 7 is flattened into two variables: io qnode

struct {
snode node;
void * callback;

} io;

Fig. 7. An example structure

11

and io callback. Although this was done semi-manually by a global replace of
references to io.qnode with io qnode, it could have easily been automated.

Pointers Pointers were converted into integer indices into an array of variables
of the types pointed to. For instance, the pointer cache info shown in Figure 8
was modeled as an integer with range of 0 through MAXENTRY, where MAX-

cache entry *cache info ;

Fig. 8. An example pointer

ENTRY is configurable. Since cache info is a pointer to a structure which was
flattened as described above, the reference cache info→ info.flags.pseudo ap-
pears in the pseudo-code as cache info info flags pseudo[cache info], where
info flags pseudo is the flattening of the nested structures info and flags as
described above, cache info info flags pseudo is an array of the values of field
pseudo for each pointer cache info allocated, and cache info is the integer in-
dex into that array. The conversion was done manually, although it could have
easily been automated.

Unions The model does not contain any overloading of memory location names
resulting from the use of unions in the actual C code. In some cases, this required
no change to the C code, because some unions are used in such a way that a
field is always accessed with either one name or the other. For instance, in the
union shown in Figure 9 the field pseudo of structure flags is never accessed as

union u {
struct {

unsigned pseudo:1;
unsigned modified:1;
unsigned local:1;
unsigned reserved : 29;

} flags;
struct {

unsigned char reserved1;
unsigned char state;
unsigned char substate;

} state;
} info;

Fig. 9. An example union

field reserved1 of structure state.
Other unions are used in the C code in such a way that there is importance

to the fact that a field has two or more names. For instance, the union shown in
Figure 10 is used in such a way that field write owner.client out iob is sometimes

12

union {
struct {

buffer io request ;
buffer owner response;
buffer output;

bref io request iob;
bref owner response iob;
bref output iob;

} dir;
struct {

buffer io request ;
buffer reserved ;
buffer client out ;

bref io request iob;
bref reserved iob;
bref client out iob;

} write owner;
}

Fig. 10. Another example union

accessed as dir.output iob in the C code. For these unions, the model differs from
the C code in that only one of the two possible names is used.

This canceling out of name overloading resulting from unions was done man-
ually, and was a painful and error prone process. Automating this step could
have been easily automated, and in retrospect, should have been.

Multi-threading The solution presented above and in [19] assumes a single
process or thread with a single program counter. In the case of multi-threading,
the solution is the same, except that each thread must have its own program
counter. Then, it is a simple matter to add a variable that acts as a guard to each
thread, allowing only one to progress at any one time step. Giving the additional
variable non-deterministic behavior ensures that every possible interleaving of
threads is allowed. However, things are complicated by the fact that the threads
existing in the model do not parallel those of the actual code.

Conceptually, the C code contains a thread per request (e.g. read or write).
However, for performance reasons the C code contains only three threads, which
manage the conceptual threads through a queueing system. In the model, each
conceptual thread appears as an actual thread, and there is no representation
of the queueing system. The main reason that this decision was taken is that
modeling the algorithm in this way is much easier than modeling the queueing
system. Since the model with one thread per request contains more behaviors
than the actual C code (more interleavings of threaded code is possible than
in the queueing system, which changes control from thread to thread at pre-
defined points in the code), modeling the algorithm in this way cannot hide
bugs (except for those in the queueing system itself). Furthermore, a real node
may be comprised of a multi-processor, with one queueing system running on
each. Thus, the additional interleavings of the model over the queueing system
reflect additional real behaviors of the code on a multi-processor system.

13

One additional complication of the queueing system is that a conceptual
thread can call another conceptual thread, by passing a pointer to its work
buffer as a parameter. The translation process presented in Section 5 cannot
deal with such behavior directly. What the model does is to add signals between
threads. When the actual C code calls another thread, the model sends a signal
to the thread instead, telling it to wake up at the point of invocation of the C
code.

The solution described for multi-threading was coded manually.

Mutual Exclusion As a result of the multi-threading described in the previ-
ous sub-section, it was necessary to add support for mutex primitives. This was
accomplished by modeling the behavior of the primitives in simple non-atomic
pseudo-code, then restricting the behavior of the non-deterministic variable con-
trolling the interleaving. Rather than completely non-deterministic behavior, this
variable behaves as follows: if the pc of the currently enabled thread corresponds
to a line of code inside one of the mutex primitives, the variable keeps its value.
Otherwise, the next state of the variable is non-deterministic.

The solution described for mutual exclusion was coded manually.

Asynchronous Completion of Requests In the actual C code, requests for
resources can be completed either synchronously or asynchronously. Synchronous
completion occurs when the resource requested is immediately available, and
simply results in the continued processing of the read or write request. When a
requested resource is not immediately available, the resource allocation function
returns a value of WAIT , and the conceptual thread is queued on a waiting
list. When the requested resource becomes available, the conceptual thread is
awakened. This is known as asynchronous completion. Asynchronous completion
requires special handling in the model, to replace the queueing system of the
actual C code. Asynchronous completion is modeled by sending a signal to the
waiting process, in the same way that one thread calls another thread by sending
it a signal.

The modeling of asynchronous completion was coded manually.

Local variables One of the characteristics of local variables is that a recursive
function call gets its own copy (unless the variables are declared as static).
The solution presented in [19] does not deal with this behavior, since the main
application described in that work abstracted away all data values. Regarding the
work described in this report, the model of the software cache algorithms contains
no local variables which need this behavior to function correctly. Therefore,
in order to save space and modeling effort, this feature of local variables was
ignored.

Parameters Support for parameters is the one major feature that was added to
the tool c2edl in the course of the work described herein. Support for parameters

14

is complicated because of type problems. A compiler can pass parameters on the
stack, using the entire width of the stack to store the value or address being
passed. In model checking, however, saving bits is of primary importance, and
passing parameters this way would be wasteful, because the number of bits
needed to represent the program counter in the model is much greater than the
number of bits needed to represent the variable with the largest range. Even if
automatic reduction/abstraction techniques detected that parameters need less
bits than the program counter, it is difficult to make use of this information in
a model in which the same stack location may be used to store a parameter or a
return value. Therefore, we allocate parameters on a dedicated stack called the
parameter stack, which is not necessarily of the same width as the stack used to
save the pc.

For the parameter stack, we must be able to represent all of the types. In
theory, only n bits are needed, where n is the maximum number of bits needed
to represent any one parameter. However, this would involve a lot of translation
back and forth between encodings. In order to simplify the process, we model
parameters using more bits than strictly needed, by declaring them to be of
an enumerated type whose values are the union of the possible values of each
parameter. For instance, if we have two functions with parameters in the model
to be translated, and one can take the values 0 through 2, while the other can
take the enumerated values IDLE, STATE1, STATE2, and DONE, then the
parameter stack is modeled as a set of enumerated variables whole possible values
are {0, 1, 2, IDLE, STATE1, STATE2, DONE}.

The parameter stack is modeled as a set of arrays, one for each stack depth.
The array param stack0, for instance, represents the top of the stack, while the
array param stack1 represents depth 1 of the stack. The array index indicates
the parameter number. Thus, if the function with the largest number of param-
eters has n parameters, these arrays will be of dimension n. Figure 11 is the
next-state representation of the parameter stack at depth i for parameter j.

next(param stack i(j)) = if i=stackp & somecall then params(j)

else param stack i(j)

Fig. 11. The parameter stack

6 The algorithm

Above we have sketched some details of the algorithm used by c2edl. This section
gives an overview of the algorithm as a whole. In the next section, a complete
example that uses the algorithm is presented. The steps are as follows:

1. Parse. During the process, allocate dummy push call statements, one before
each call to a function which has been defined (for ease of use, calls to func-

15

tions which have not been defined are considered as noops, and a warning is
printed. This allows properties of not-yet-complete software to be verified.).

2. Annotate the parse tree with program counter values for each statement.
Only functions transitively called from the top-level function as indicated to
c2edl will be numbered (that is, it is possible to use c2edl to build a model
of other than main()). During this pass, also mark the next statement of
each statement in the basic block. If there is no next statement, leave it as
NULL. For for- and while-loops, the next statement of the last statement in
the body is considered to be the test-part of the loop. This marking is made
use of in the next step below.

3. By traversing the annotated parse tree, output the EDL case statement
that gives behavior to the next state of the program counter, using function
output pc() for each statement. Function output pc() works as follows:
Inputs in addition to a pointer to the current statement are:
– nextfather: statement following father statement
– breaktowhere: statement to which to jump in case of a break statement
– continuetowhere: statement to which to jump in case of a continue state-

ment
Note: The following makes use of the term “next statement” as described in
the previous step.
Note: In order to make the model concise, it is possible to suppress a line for
groups of statements having similar behavior, and instead deal with them
as a group. For instance, c2edl collects all return statements into a group
and gives them behavior with a single guard (see the example in Section 7).
It also suppresses a statement when the next value of the program counter
is its own value plus one, and instead collects these into the default case as
“pc+1”. Also, if the model is of a multi-threaded program, the first line of
the case statement needs to be a guard indicating whether or not this thread
will progress this timestep. If not, the value of the program counter stays
the same.
Function output pc() does the following: First output a guard which is the
pc of the current statement. Then:
– For an if statement:
• Output an if-expression as follows: The condition is identical to the

condition of the if statement (for simplicity here and in similar sit-
uations below we have ignored the case that the condition is an
assigment or a list of statements). The then-part contains the pc
of the then-part of the if statement. The else-part contains: if the
if statement has an else-part, then the pc of the else-part of the if
statement. Otherwise, if the if statement has a next statement, then
the pc of the next statement. Otherwise, the pc of the next statement
of the father statement.
• Call output pc() recursively for the then- and else-parts of the if

statement. Parameter nextfather is the pc of the next statement, if it
exists. Otherwise pass on nextfather as is. Parameters breaktowhere
and continuewhere are passed on as is.

16

– For a case statement (consider each switch statement a separate state-
ment): call output pc() recursively for each of the switch statements. Pa-
rameter nextfather is the pc of the next statement, if it exists. Otherwise
pass on nextfather as is. Parameters breaktowhere and continuewhere are
passed on as is.

– For a switch statement:
• Output the pc of the body of the switch.
• Call output pc() recursively for the body of the switch. Parameter

nextfather is the pc of the next statement, if it exists. Otherwise pass
on nextfather as is. Parameter breaktowhere is the current nextfa-
ther. Parameter continuewhere is passed on as is.

– For a for statement:
• Call output pc() recursively for the initialization-part of the if state-

ment. Parameter nextfather is the pc of the current for statement.
Parameters breaktowhere and continuewhere are 0.
• Output an if-expression as follows: The condition is identical to the

condition of the test-part of the for statement. The then-part con-
tains the pc of the body of the for statement. The else-part contains:
the pc of the next statement, if it exists, otherwise nextfather.
• Call output pc() recursively for the increment-part of the for state-

ment. Parameter nextfather is the pc of the current for statement.
Parameters breaktowhere and continuewhere are 0.
• Call output pc() recursively for the body of the for statement. Pa-

rameter nextfather is the pc of the increment-part of the for state-
ment. Parameter breaktowhere is the pc of the next statement, if it
exists. Otherwise it is the current nextfather. Parameter continue-
where is the pc of the increment-part of the current for statement.

– For a while statement:
• Output an if-expression as follows: The condition is the condition of

the while statement. The then-part is the pc of the body of the while
statement. The else-part is the pc of the next statement of the while
statement if it exists. Otherwise it is the pc of the current nextfather.
• Call output pc() recursively for the body of the while statement. Pa-

rameter nextfather is the pc of the while statement itself. Parameter
breaktowhere is the pc of the next statement if it exists. Otherwise it
is the pc of the current nextfather. Parameter continuewhere is the
pc of the while statement itself.

– For a do statement:
• Call output pc() recursively for the body of the do statement. Pa-

rameter nextfather is the pc of the condition of the do statement.
Parameter breaktowhere is the pc of the next statement if it exists.
Otherwise it is the current nextfather. Parameter continuewhere is
the pc of the condition of the do statement.
• Output an if-expression as follows: The condition is the condition

of the do statement. The then-part is the pc of the body of the do
statement. The else-part is the pc of the next statement if it exists.
Otherwise it is the pc of the current nextfather.

17

– For a function call (not the push call), or an assignment statement, in
increment or decrement statmeent, or an empty statement: if there is
a next statement, then output its pc. Otherwise output the pc of the
current nextfather. However, suppress in both cases if the value to be
output is one more than the value of the current pc (this case is taken
care of separately, see note regarding conciseness of code above).

– For a return statement: do nothing. This case is taken care of separately.
See note regarding conciseness of code above.

– For a continue statement: output the value of continuewhere.
– For a break statement: output the value of breaktowhere.
– For a push call statement (dummy statement added by a previous step -

see above): for simplicity, we assume that the next statement is a simple
function call (as opposed to an assignment the righthand-side of which is
a function call, or an if statement the condition of which uses a function
call). Other cases can be dealt with by pre-processing, or directly. If the
next statement is a simple function call: output the pc of the body of
the function being called.

4. In the same manner, output an EDL case statement that gives the behavior
as it would have been had there been no function calls. This is accomplished
in the same way as above, but by ignoring the branching behavior of calls.
The identifier nextpcnocall given behavior in this manner will be pushed on
the stack.

5. Output the standardized behavior of the stacks and stack pointer as de-
scribed above.

6. Output the value of returntowhere, which is a function of the stack and
stack pointer. This is used to give a value to the program counter in the case
that the current statement is a return statement.

7. Output behavior for somereturn and somecall, which indicate that the pro-
gram counter has the value of some return statement or some push call
statement, respectively.

8. Output behavior of the parameter array. This is an array containing value
of the parameters of the current function, used by the parameter stack as
described above.

9. Output behavior for each variable in the code, which is a case statement, the
body of which is determined by once again traversing the parse tree, search-
ing for assignments to the current variable. For each assignment statement
found, output a guard with the corresponding program counter. The value
assigned is determined by the right-hand-side of the assignment statement.
If it is a function call, output returnval, described below. Otherwise, out-
put an EDL expression corresponding to the C expression found. (The case
where the C expression is not a single function call but rather an expression
containing one or more function calls is dealt with by pre-processing, which
breaks such assignments into multiple statements.)

10. Output the behavior of all values returned anywhere in the code by travers-
ing the parse tree once again. The identifier returnval given behavior in

18

this manner is used by variables which are assigned values in assignment
statements of the form x = f(y).

7 A complete example

The source code of the software verified, consisting of approximately 2,500 lines
of C, is confidential and thus and cannot be presented in full. In this section,
instead, we show the complete translation process of a single function from the
original source code (slightly modified to allow illustration of several points in one
short example) to the manually modified pseudo-code, through the automatically
generated EDL.

Figure 12 shows function ca dir io begin start read(), and Figure 13 shows

static Ca rc ca dir io begin start read () {
Ca rc rc ;
Ca rc shared rc ;
Ca rc buffer rc ;

rc = ca dir io begin hit or miss (pio wb) ;
if (CA RC MISS == rc) {

pio wb->dir async rc = CA RC MISS ;
buffer rc = ca dir io begin get read buffer (pio wb) ;
if (CA RC WAIT == buffer rc) {

rc = CA RC WAIT ;
}

} else {

shared rc = ca dir io begin get shared (pio wb) ;
if (CA RC WAIT == shared rc) {

rc = CA RC WAIT ;
}

}
}

Fig. 12. Original code for function ca dir io begin start read()

the corresponding pseudo-code, which was created manually. There is only one
small difference between the original code and the pseudo-code - the modification
of the pointer reference from pio wb− > dir async rc to dir async rc[pio wb] as
discussed above. This illustrates the minimal amount of manual work that went
into the translation process.

For the purposes of this example, the input to c2edl is the pseudo-code of
function ca dir io begin start read() shown in Figure 13. The output of c2edl
is two files: the annotated (with pc) source code, and the EDL model. The
annotated source code is shown in Figure 14 below3. The EDL model is not
usually intended to be human readable. Therefore, the automatically gener-
ated EDL model shown in Figures 15 and 16 has been edited by adding
3 The pc starts at 30 because only the annotation of function
ca dir io begin start read() is shown, without the annotations of the functions
called by ca dir io begin start read.

19

static Ca rc ca dir io begin start read () {
Ca rc rc ;
Ca rc shared rc ;
Ca rc buffer rc ;

rc = ca dir io begin hit or miss (pio wb) ;
if (CA RC MISS == rc) {

dir async rc[pio wb] = CA RC MISS ;
buffer rc = ca dir io begin get read buffer (pio wb) ;
if (CA RC WAIT == buffer rc) {

rc = CA RC WAIT ;
}

} else {

shared rc = ca dir io begin get shared (pio wb) ;
if (CA RC WAIT == shared rc) {

rc = CA RC WAIT ;
}

}
}

Fig. 13. Pseudo-code for function ca dir io begin start read()

line breaks and indentation for the purposes of readability. In addition, for
brevity, parts of the EDL model resulting from the body of functions called by
ca dir io begin start read() and not shown above have been edited out. Finally,
again for brevity, repetitious parts of the code have been edited out. Anything
that has been edited out is indicated by “...”.

Line 1 declares the module ca dir io begin start read() which will be instan-
tiated by RuleBase (possibly along with other modules - recall that our program
is multi-threaded). EDL puts input variables in the first set of parentheses and
output variables in the second. Module ca dir io begin start read() (and every
other module created by c2edl) has a single input variable, nogo, and no out-
put variables. The input variable nogo controls whether or not this thread will
progress at the current time step (recall that our program is multi-threaded).

Lines 3 and 4 define pcint and returntowhereint, which are integer versions
of the bit vectors pc and returntowhere. The EDL function bvtoi() converts a
bit vector into an integer.

Lines 6 through 25 declare and give behavior to the bit vector pc. The size of
the bit vector is automatically determined by c2edl as a function of the number
of lines in the code. The initial value, assigned on line 7, is determined by the
first line in the top-level function being translated. In our short example, it is
the value corresponding to the first line in function ca dir io begin start read()
as per the annotated code of Figure 14. Line 8 assigns a value to the next state
of the pc through a case statement. The first item in the case statement, on line
9, ensures that the pc does not change if the variable nogo has the value 1 (recall
that nogo controls the interleaving in our multi-threaded model). Line 10 assigns
the pc the value of returntowhere in the case that somereturn, indicating that
the current command is a return, has the value 1 (returnwhere and somereturn
are give values later, on lines 107 and 117, respectively.) Line 24 is the default,
which is to increment the pc. Lines 11 through 23 give the value of the pc for

20

ca dir io begin start read()
{
/* 30 */ /* 30 push call */;
/* 31 */ rc = ca dir io begin hit or miss(pio wb);
/* 32 */ if (CA RC MISS == rc)
{
/* 34 */ dir async rc[pio wb] = CA RC MISS;
/* 35 */ /* 35 push call */;
/* 36 */ buffer rc = ca dir io begin get read buffer(pio wb);
/* 37 */ if (CA RC WAIT == buffer rc)
/* 39 */ rc = CA RC WAIT;
}
else
{
/* 40 */ /* 40 push call */;
/* 41 */ shared rc = ca dir io begin get shared(pio wb);
/* 42 */ if (CA RC WAIT == shared rc)
/* 44 */ rc = CA RC WAIT;
}
/* 45 */ return ;
}

Fig. 14. The annotated source code

branches and function calls in the body of the code. Only values of the pc within
the range of function ca dir io begin start read() are shown, others have been
edited out for brevity. Thus we will start a detailed examination with line 12.
Line 12 gives the next value of the pc when the pc currently has the value 30. This
corresponds to the line marked 30 in the annotated code of Figure 14. Line 30 in
Figure 14 shows a comment for a push call, which indicates that the next line is a
function call. Thus, the next value of the pc is the value of the pc at the first line
of the function being called, in this case function ca dir io begin hit or miss(),
the first line of which has the value 0 (not shown). Line 13 gives the next value
of the pc when the pc currently has the value 32. This corresponds to the line
marked 32 in the annotated code of Figure 14. Line 32 in Figure 14 shows an if-
statement, thus the next value of the pc in EDL is a corresponding if-expression
(the local variable rc of function ca dir io begin start read() has been renamed
rc ca dir io begin start read by c2edl). The remainder of the code for the pc is
similar.

Lines 27 and 28 define maxpc and pcplusone, used elsewhere.
Lines 30 through 42 give behavior to nextpcnocall, which is not a state

variable, but rather a defined term, since its value is needed only at the current
state (to put into the stack). It is similar in structure to lines 8 through 25, except
that since we need it only to determine the value of the return location for the
stack, it does not need entries corresponding to lines 9 and 10. The behavior
corresponding to line 12, for instance, is covered by the default entry on line 41,
because in the case that there had been no function call, the next value of the pc
when the pc was 30 would have been 31, which is the return location for the call
to function ca dir io begin hit or miss() on line 30 (the push call) of Figure 14
(at which point the assignment to rc will be executed).

Lines 44 through 46 declare the bit vector representing the stack pointer
(stackp), a corresponding integer value, and the value of maxstack, which is an

21

1 module ca dir io begin start read (nogo)() {
2
3 define pcint := bvtoi(pc(0..5));
4 define returntowhereint := bvtoi(returntowhere(0..5));
5
6 var pc(0..5): boolean;
7 assign init(pc(0..5)) := 30;
8 assign next(pc(0..5)) := case
9 nogo: pc(0..5);

10 somereturn: returntowhere(0..5);
11 pc(0..5)=0: ...
12 pc(0..5)=30:0;
13 pc(0..5)=32:if ((CA RC MISS = rc ca dir io begin start read)) then 34 else 40 endif;
14 pc(0..5)=35:22;
15 pc(0..5)=37:if ((CA RC WAIT = buffer rc ca dir io begin start read)) then 39 else 45 endif;
16 pc(0..5)=39:45;
17 pc(0..5)=40:5;
18 pc(0..5)=42:if ((CA RC WAIT = shared rc ca dir io begin start read)) then 44 else 45 endif;
19 pc(0..5)=7: ...
20 pc(0..5)=12: ...
21 pc(0..5)=15: ...
22 pc(0..5)=25: ...
23 pc(0..5)=46: ...
24 else: if pcplusone>maxpc then itobv(maxpc) else itobv(pcplusone) endif;
25 esac;
26
27 define maxpc := 46;
28 define pcplusone := pcint+1;
29
30 define nextpcnocall(0..5) := case
31 pc(0..5)=0: ...
32 pc(0..5)=32:if ((CA RC MISS = rc ca dir io begin start read)) then 34 else 40 endif;
33 pc(0..5)=37:if ((CA RC WAIT = buffer rc ca dir io begin start read)) then 39 else 45 endif;
34 pc(0..5)=39:45;
35 pc(0..5)=42:if ((CA RC WAIT = shared rc ca dir io begin start read)) then 44 else 45 endif;
36 pc(0..5)=7: ...
37 pc(0..5)=12: ...
38 pc(0..5)=15: ...
39 pc(0..5)=25: ...
40 pc(0..5)=46: ...
41 else: if pcplusone>maxpc then itobv(maxpc) else itobv(pcplusone) endif;
42 esac;
43
44 var stackp(0..3): boolean;
45 define stackpint := bvtoi(stackp(0..3));
46 define maxstack := 5;
47
48 %for ii in 0..5 %do
49 var stack %{ii}(0..5): boolean;
50 define stackint %{ii} := bvtoi(stack %{ii}(0..5));
51 var param stack%{ii}(1.. 3): {param types};
52 %end
53
54 assign init(stackp(0..3)) := 0;
55 next(stackp(0..3)) := case
56 nogo: stackp(0..3);
57 somecall: if stackp(0..3)=6 then 6 else itobv(stackpplus1) endif;
58 somereturn: if stackp(0..3)=0 then 0 else itobv(stackpminus1) endif;
59 else: stackp(0..3);
60 esac;
61
62 assign next(param stack0(1)) := case
63 nogo: param stack0(1);
64 somereturn & (stackp(0..3) = 1): {param types};
65 (0 != stackp(0..3)) | !somecall: param stack0(1);
66 else: params(1);
67 esac;
68 ...
69 assign next(param stack1(1)) := case
70 nogo: param stack1(1);
71 somereturn & (stackp(0..3) = 2): {param types};
72 (1 != stackp(0..3)) | !somecall: param stack1(1);
73 else: params(1);
74 esac;
75 ...
76 assign next(param stack5(1)) := case
77 nogo: param stack5(1);
78 somereturn & (stackp(0..3) = 6): {param types};
79 (5 != stackp(0..3)) | !somecall: param stack5(1);
80 else: params(1);
81 esac;
82 ...

Fig. 15. The EDL model - part 1

22

83
84 assign next(stack 0(0..5)) := case
85 nogo: stack 0(0..5);
86 somereturn & (stackp(0..3) = 1): nondets(6);
87 (0 != stackp(0..3)) | !somecall: stack 0(0..5);
88 else: nextpcnocall(0..5);
89 esac;
90 assign next(stack 1(0..5)) := case
91 nogo: stack 1(0..5);
92 somereturn & (stackp(0..3) = 2): nondets(6);
93 (1 != stackp(0..3)) | !somecall: stack 1(0..5);
94 else: nextpcnocall(0..5);
95 esac;
96 ...
97 assign next(stack 5(0..5)) := case
98 nogo: stack 5(0..5);
99 somereturn & (stackp(0..3) = 6): nondets(6);

100 (5 != stackp(0..3)) | !somecall: stack 5(0..5);
101 else: nextpcnocall(0..5);
102 esac;
103
104 define stackpminus1 := if stackp(0..3) = 0 then 0 else bvtoi(stackp(0..3)) - 1 endif;
105 define stackpplus1 := if stackp(0..3) = 6 then 6 else bvtoi(stackp(0..3)) + 1 endif;
106
107 define returntowhere(0..5) := case
108 stackpminus1=0:stack 0(0..5);
109 stackpminus1=1:stack 1(0..5);
110 stackpminus1=2:stack 2(0..5);
111 stackpminus1=3:stack 3(0..5);
112 stackpminus1=4:stack 4(0..5);
113 stackpminus1=5:stack 5(0..5);
114 else: 46;
115 esac;
116
117 define somereturn := (0|pc(0..5)=2|pc(0..5)=3|pc(0..5)=4|pc(0..5)=20|pc(0..5)=21|
118 pc(0..5)=27|pc(0..5)=28|pc(0..5)=29|pc(0..5)=45);
119
120 define somecall := (0|pc(0..5)=30|pc(0..5)=35|pc(0..5)=40);
121
122 var params(1..3): {param types};
123 assign next(params(1)) := case
124 nogo: params(1);
125 somereturn & (stackpminus1 = 0): param stack0(1);
126 somereturn & (stackpminus1 = 1): param stack1(1);
127 somereturn & (stackpminus1 = 2): param stack2(1);
128 somereturn & (stackpminus1 = 3): param stack3(1);
129 somereturn & (stackpminus1 = 4): param stack4(1);
130 somereturn & (stackpminus1 = 5): param stack5(1);
131 pc(0..5)=30:pio wb;
132 pc(0..5)=35:pio wb;
133 pc(0..5)=40:pio wb;
134 else: params(1);
135 esac;
136 ...
137
138 assign next(buffer rc ca dir io begin start read) :=case
139 nogo: buffer rc ca dir io begin start read;
140 pc(0..5)=36: returnval;
141 pc(0..5)=45: {buffer rc ca dir io begin start read types};
142 else: buffer rc ca dir io begin start read;
143 esac;
144 ...
145
146 assign next(returnval) := case
147 nogo: returnval;
148 pc(0..5)=2: CA RC HIT;
149 pc(0..5)=3: CA RC MISS;
150 pc(0..5)=20: rc ca dir io begin get shared;
151 pc(0..5)=27: CA RC WAIT;
152 pc(0..5)=28: CA RC SUCCESS IMMEDIATE;
153 else: {returnval types};
154 esac;
155
156 }

Fig. 16. The EDL model - part 2

23

input to c2edl. For this example, the value of maxstack has been set to 5 (for the
software examined in this paper, the value was set to 24, wihch was separately
proved as sufficient to prevent a stack overflow).

Lines 48 through 52 declare:

1. The stack as a set of bit vectors (because EDL does not support two-
dimensional arrays). The depth of the stack (seen on line 48) is a function of
maxstack, hard-coded by c2edl into the resulting output file. The width of
the stack is calculated by c2edl as a function of the maximum value of the
program counter, and in this example happens to result in a stack as wide
as it is deep.

2. Corresponding integer values of each stack entry
3. The parameter stack. The depth of the parameter stack is the same as that

of the stack. The width of the vector is determined by the maximum number
of parameters to any function in the code being translated. In our case the
width 3 results from a call to a fuction not shown (it is called by one of the
functions called by ca dir io begin start read(). The vector param stack is
of an enumerated type, the values of which include all values which may be
taken on by any parameter in the code. (Declaration of this enumerated type
is manual, as are declarations of all other types used by the EDL model.)

Lines 54 through 60 give behavior to the stack pointer as described in Sec-
tion 5.

Lines 62 through 67 give behavior to the first member (member 1) of the
first parameter stack variable (param stack0). This corresponds to the first pa-
rameter passed by a function, at stack depth 0. The code that was deleted for
brevity at line 68 gives behavior to members 2 and 3. Similarly, lines 69 through
82 show behavior for the first member of the parameter stack variable at depths
1 and 5. Other parts of the parameter stack have been deleted for brevity.

Lines 84 through 89 give behavior to the stack at depth 0. Similarly, Lines
90 through 102 give behavior to depths 1 and 5, with the remaining parts of the
stack deleted for brevity.

Lines 104 and 105 define stackpminus1 and stackpplus1, used elsewhere.
Lines 107 through 115 define returntowhere, used to select the depth of the

stack at which the return location can be found.
Lines 117 through 118 define somereturn, used to control the behavior of

the program counter and the stacks. For instance, the single return statement of
function ca dir io begin start read(), located at location 45, appears here. The
other locations referred to appear in code called by ca dir io begin start read()
and not shown.

Line 120 defines somecall, used to control the stacks. In our case only the
three push calls of function ca dir io begin start read() are shown. Calls from
functions called by function ca dir io begin start read() do not appear because
the body of the “grandchild” functions was not supplied to c2edl for the purpose
of this example. In this case, c2edl considers the functions as noops and does
not generate push calls for them.

24

Line 122 declares the state variables representing parameters, and lines 123
through 135 give behavior to the state variable representing the first parameter
of the current function. If nogo has the value one, there is no change, as shown
on line 124. If we are at a return statement, then the next value is taken from
the parameter stack, where it was saved at the call. This is shown on lines 125
through 130. If we are at a function call, then the value is determined by the
parameters passed in that call, as shown on lines 131 through 133. For instance,
at line 30 in Figure 14, the first (and only) parameter passed in the call about
to be made is pio wb. This is shown on line 131. Finally, line 134 ensures that
there is no change for any other type of statement. The code that was deleted
for brevity at line 136 shows the behavior for other parameters.

Lines 138 through 143 give behavior to the local variable buffer rc (renamed
buffer rc ca dir io begin start read by c2edl). On line 139, the value is held if
nogo has the value one. Line 140 gives the value of returnval if the pc has the
value 36, because on line 36 of Figure 14, buffer rc gets the value returned by
the currently returning function (returnval itself is given a value later, on line
146). Line 141 gives a non-deterministic value to buffer rc in the case that the
pc has the value 45, because at location 45 in Figure 14, the return statement
renders the value of local variable buffer rc undefined. Finally, line 142 ensures
that buffer rc changes its value nowhere else. The code that was deleted for
brevity at line 144 gives behavior to other variables (local as well as global).

Finally, lines 146 through 154 give behavior to returnval, used by the code
that gives behavior to the variables. If nogo has the value one, then returnval
doesn’t change (this is needed in case control switches to the other thread in be-
tween the time that returnval is assigned a value and the time it is used). Other-
wise, the value of returnval is determined by the current return statement. If the
current statement is not a return statement, returnval gets a non-deterministic
value, as shown on line 153.

8 Special Reduction Problems of Software

One of the strengths of RuleBase is its ability to perform pre-model checking
reductions on the design under verification. For instance, consider the function
getminmax() shown in Figure 17 below. Suppose that the formula to be model
checked is the following (where i is an auxiliary variable with the same range as
variable a, and with the next state function next i = i):

AG((a > max ∧ a = i)→ AF (max = i)) (3)

By examining Formula 3, and the next state functions of the variables appear-
ing in it, RuleBase can determine that the variable min has no influence on
the validity of the formula. Therefore, RuleBase can build the transition rela-
tion without using the next state function of variable min. This is known as a
cone-of-influence reduction [7]. The cone-of-influence reduction is a simple re-
duction that is very powerful for hardware. However, in the world of software, it
breaks down very quickly, as shown by the function lotsofbaggage() in Figure 18.

25

getminmax (){
int min, max, a;

0 a = max = 0; min = MAXINT;
1 do {
2 if (a > max)
3 max = a;
4 if (a < min)
5 min = a;
6 input(&a);
7 } while(a);
8 printf(”min=%d,max=%d\n”,min,max);
9 }

Fig. 17. minmax()

lotsofbaggage (){
int min, max, a, b, x, y, z;

0 b = x ? y : z;
1 if (a > b)
2 x = y;
3 else
4 x = z;
5 a = max = 0; min = MAXINT;
6 do {
7 if (a > max)
8 max = a;
9 if (a < min)
10 min = a;
11 input(&a);
12 } while(a);
13 printf(”min=%d,max=%d\n”,min,max);
14}

Fig. 18. lotsofbaggage()

26

Function lotsofbaggage() is identical to function getminmax(), except that before
calculating the minimum and maximum, it does some assignments to variables
b, x, and y, which are never used afterwards. Obviously, the values of variables
b, x, and y do not affect the validity of Formula 3 for function lotsofbaggage(),
and their next-state functions can be ignored. However, the cone-of-influence
reduction used for hardware will not see this. The reason is that the values of a
and of max, which are needed by the model checker, are a function of the pc,
which is a function of b (because of line 1), which itself is a function of x and y
(because of line 0).

In the work described in this report, problems such as that illustrated by
function lotsofbaggage() above were solved manually, by editing the code to
eliminate the extraneous lines. This was a painful process, and probably many
unnecessary variables were left in the model. Developing reductions specially
suited to software, then, is an important direction for future work. An obvious
place to start is with the extensive literature on program slicing [47, 16] and
static analysis [41].

9 Results

The original goal of this work was to verify the correct behavior of the cache
algorithms, including safety properties (data is cached correctly) as well as live-
ness properties (no deadlocks or livelocks resulting from resource management).
That rather ambitious goal was set when it was still envisioned that an abstract
model would be built manually. The list of properties changed during the course
of the work, for the reason that precise modeling of resources (e.g. availability
of a free buffer) turned out to be too expensive for the current state of software
model checking. Therefore, resources were modeled as non-deterministicly being
available or unavailable, and properties involving resources (e.g. no deadlock as
a result of buffer allocation) were not checked.

Finally, due to size problems resulting from the decision to automatically
create the model rather than hand-code it, even verifying correct functionality
proved more difficult than originally expected. What was coded in the end was
one node containing two work buffers (that is, allowing processing of two requests
simultaneously). Other nodes were modeled non-deterministically. In retrospect,
it might have been more fruitful to check two nodes with only one work buffer
per node. The decision to code two work buffers on one node was made because
experience with hardware designs has shown that there are usually more bugs
resulting from the interaction of two requests on the same node than there are
bugs resulting from the interaction of two requests on separate nodes.

The verification of the model resulted in a total of 12 traces showing possible
cache algorithm problems. Traces contain a step-by-step path from the initial
state of the system to a state which violates one of the formulas in the specifi-
cation. To give a sense of the level of detail of these traces, a partial trace and a
partial README file describing it appear in Figures 19 and 20 below. A trace is
automatically created by RuleBase. Figure 19 is a screen capture of the window

27

of tool Scope, which is used to display a trace. Scope shows the values of the vari-
ables as a function of time, which is indicated by the ruler at the top of the screen.
Figure 19 shows a portion of the trace 013. The variables node0/wb0/pcint and
node0/wb1/pcint indicate the program counter (as generated by the automatic
translation, and available to the user in a file containing the annotated source
code) of work buffers 0 and 1, respectively. Variables node0/wb0/stackpint and
node0/wb1/stackpint indicate the depth of the call stack. Other variables, such
as node0/wb0/hio wb hdr code and node0/wb1/hio wb hdr code, are those of
the original program. Any variable can be displayed by clicking on it in the list
of variables on the left hand side of the screen. The README file, a part of
which is shown in Figure 20, is an interpretation of the trace intended as an aid
to debugging, and is written manually.

Fig. 19. Part of trace 013

at time 34, pc=1228, in start read()
at time 39, pc=542, in read dir lookup()
at time 43, pc=1518, in dir io handler()
at time 45, pc=845, in dir io begin track access()
at time 113, pc=861, still in dir io begin track access(), just set cache info pointer to 0
at time 130, pc=874, still in dir io begin track access(),

about to add wb0 to active io queue of cache entry 0
at time 138, pc=1092, in dir io begin process cmd()
at time 140, pc=627, in dir io begin start read()
at time 145, pc=630, back from dir io begin hit or miss(), got a miss
at time 158, pc=634, returning CA RC WAIT from dir io begin start read()
at time 166, pc=893, returning CA RC WAIT from dir io begin track access()
at time 169, pc=553, back from dir io handler(), waiting
at time 191, pc=1709, just reserved iob, about to call dir resource buffer reserved()
at time 192, pc=375, in dir resource buffer reserved()
at time 198, pc=361, in dir io buffer allocated()
at time 200, pc=372, about to call dir restart enqueue()
at time 224, pc=1720, at top of restart queue, about to call read dir lookup done()

dir async rc has the value CA RC MISS

Fig. 20. Partial README file of trace 013

28

Of the 12 traces generated as counter-examples by RuleBase, 9 were modeling
errors, one (trace 005) was deemed a possible bug on a client node, one (trace
011) was a software bug showing a problem when the maximum number of
sharers is reached, and one (trace 012) was a real problem in an n-way system.

With the exception of the three problematical traces (005, 011, 012), all rules
passed for the configuration described above. Run time (on an IBM RS/6000
workstation model 270), memory usage, and model size is summarized in Ta-
ble 21. There are two surprises in Table 21. First of all, the fact that the mem-

CPU time to translate the model from C to EDL negligible

memory to translate the model from C to EDL negligible

CPU time to compile the EDL model 3.5 minutes

memory use to compile the EDL model 625M

CPU time to perform the model checking 28 hours

memory to perform the model checking 249M

lines of pseudo-code in C model 2478

number of state variables in EDL model 362

number of reachable states 10150

Fig. 21. Run time, memory usage, and model size

ory requirements of the compilation phase of RuleBase were 625M, while the
memory requirements of the model checking itself were only 249M, is contrary
to what is expected. Model checking is usually much more expensive in terms
of memory requirements than any pre-processing phase. A reduction algorithm
dedicated to software could probably do a better job at reduction while reducing
the memory requirements considerably. The second surprise is that despite the
long run time (28 CPU hours), the memory requirements of the model checking
itself were quite small - there was no state space explosion. This was not true of
early runs of the model, which exploded quickly. Additions of hand-coded hints
[44] achieved this impressive result. The hints controlled the interleaving of the
concurrent runs of the two work buffers, so that a fixed-point was first reached
with control belonging only to the first work buffer, then only to the second, and
so on. Only after a number of iterations were the hints released so that more
complicated interleavings could be examined.

10 Future Work

It would have been nice if the current work had uncovered some more profound
bugs in the cache algorithms. However, despite not achieving that goal, the
verification work described in this report was useful, in that it showed that the
ideas presented in [19] are practical for more than just the simple control flow
problems examined in that work.

29

Now that this project has proved the viability of software model checking
using RuleBase, it is clear that it is worthwhile to invest time in enhancements
to RuleBase in order to better support software model checking. Alternatively, a
dedicated software model checker could be built, which would use the same core
model checking engines as RuleBase. Features to better support software model
checking include:

1. Dedicated reduction algorithms for software as per Section 8.
2. Automated solution to the coding of complex data types such as structures,

pointers, and unions.
3. Full support for local variables, in order to allow model checking of programs

which require them to behave correctly for recursive calls.
4. A trace generation facility which more directly supports software. The graph-

ical display of traces produced by RuleBase are oriented to hardware wave-
forms; reading off the value of the program counter from such a trace is a
little unwieldy. For software, it would make more sense to present to the user
a window similar to that of a graphical debugger such as xcdb, which would
use the information generated by RuleBase to allow single-stepping forwards
and backwards, as well as jumping over function calls, etc. A great portion
of the README file could be generated automatically as well, providing
automated aid to the interpretation of the trace.

11 Conclusion

This project has demonstrated the viability of software model checking for more
than just simple control flow problems. While the level of manual intervention
is the work described was relatively high, most of the manual steps could have
been and will be in the future completely automated. What this project has
demonstrated is that investing the effort in doing so is worthwhile. The level of
detail displayed in the 12 traces provided to the software developers was greater
than could have been expected judging by prevailing wisdom. It is usual to
measure a formal verification project by the number of bugs it reveals, since
proving correctness is usually impossible because of size problems. While the
formal verification of the software cache algorithms uncovered only three minor
problems, it was able to complete for the configurations run without state space
explosion. This is an important result in itself. Finally, by developing specialized
reduction algorithms dedicated to software, it seems clear that we will be able
to significantly increase the size of designs that can be verified in this way.

The development of RuleBase was begun in 1994, when state-of-the-art model
checking was a few tens of state variables. In the seven years since, the capacity
of RuleBase has increased to the point where it is routinely used for hardware de-
velopment and verification. Given the results of this project, it seems reasonable
to expect that software model checking will be a mainstream tool for software
development seven years hence.

30

Acknowledgements

Thank you to Jody Glider, for his willingness to invest the time of his team on
support of this project, and to Larry Chiu and Paul Muench for providing that
support. Larry’s patience in introducing me to the software cache algorithms,
and Paul’s in examining numerous program traces in the months following, is
greatly appreciated. Thank you to Sharon Barner and Ilan Beer for many fruitful
discussions on the problems of modeling software. I also thank the anonymous
reviewers whose suggestions greatly improved the quality of this paper.

References

1. Y. Abarbanel-Vinov, N. Aizenbud-Reshef, I. Beer, C. Eisner, D. Geist, T. Heyman,
I. Reuveni, E. Rippel, I. Shitsevalov, Y. Wolfsthal, and T. Yatzkar-Haham. On the
effective deployment of functional formal verification. Formal Methods in System
Design, 19(1):35–44, 2001.

2. R. Back. On correct refinement of programs. Journal of Computer and Systems
Sciences, 23(1):49–68, August 1981.

3. T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In Proc. 7th International SPIN Workshop, LNCS 1885. Springer-Verlag,
2000.

4. J. Baumgartner, T. Heyman, V. Singhal, and A. Aziz. Model checking the IBM
Gigahertz Processor: An abstraction algorithm for high-performance netlists. In
Proc. 11th International Conference on Computer Aided Verification (CAV), LNCS
1633, pages 72–83. Springer-Verlag, 1999.

5. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The
temporal logic Sugar. In G. Berry, H. Comon, and A. Finkel, editors, Proc. 13th In-
ternational Conference on Computer Aided Verification (CAV), LNCS 2102, pages
363–367. Springer-Verlag, 2001.

6. I. Beer, S. Ben-David, C. Eisner, D. Geist, L. Gluhovsky, T. Heyman, A. Landver,
P. Paanah, Y. Rodeh, G. Ronin, and Y. Wolfsthal. RuleBase: Model checking
at IBM. In Proc. 9th International Conference on Computer Aided Verification
(CAV), LNCS 1254, pages 480–483. Springer-Verlag, 1997.

7. I. Beer, S. Ben-David, C. Eisner, and A. Landver. RuleBase: an industry-oriented
formal verification tool. In Proc. 33rd Design Automation Conference (DAC),
pages 655–660. Association for Computing Machinery, Inc., June 1996.

8. C. Bernardeschi, A. Fantechi, S. Gnesi, S. LaRosa, G. Mongardi, and D. Romano.
A formal verification environment for railway signaling system design. Formal
Methods in System Design, 12(2), March 1998.

9. A. Borälv and G. St̊almarck. Formal verification in railways. In M. Hinchey and
J. Bowen, editors, Industrial-Strength Formal Methods in Practice, pages 329–350.
Springer-Verlag, 1999.

10. W. Chan, R. J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J. D.
Reese. Model checking large software specifications. IEEE Transactions on Soft-
ware Engineering, 24(7):498–520, July 1998.

11. E. Clarke and E. Emerson. Characterizing correctness properties of parallel pro-
grams as fixpoints. In Seventh International Colloquium on Automata, Languages,
and Programming, LNCS 85. Springer-Verlag, 1981.

31

12. E. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. Long, K. McMillan, , and L. Ness.
Verfication of the Futurebus+ cache coherence protocol. In L. Claesen, editor,
Proc. of the Eleventh International Symposium on Computer Hardware Description
Languages and their Applications, April 1993.

13. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
14. J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S. Pasareanu, Robby, and

H. Zheng. Bandera: Extracting finite-state models from Java source code. In Proc.
of the 22st International Conference on Software Engineering, June 2000.

15. C. Demartini, R. Iosif, and R. Sisto. Modeling and validation of Java multithread-
ing applications using SPIN. In Proc. 4th International SPIN Workshop, 1998.

16. M. Dwyer and J. Hatcliff. Slicing software for model construction. In Proc. 1999
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation, 1999.

17. Á. Eiŕıksson. The formal design of 1M-gate ASICs. In Second International Con-
ference on Formal Methods in Computer-Aided Design (FMCAD), LNCS 1522,
pages 49–63. Springer-Verlag, 1998.

18. C. Eisner. Using symbolic model checking to verify the railway stations of Hoorn-
Kersenboogerd and Heerhugowaard. In Proceedings 10th IFIP WG 10.5 Advanced
Research Working Conference on Correct Hardware Design and Verification Meth-
ods (CHARME), LNCS 1703, pages 97–109, Bad Herrenalb, Germany, September
1999. Springer-Verlag.

19. C. Eisner. Model checking the garbage collection mechanism of SMV. In S. D.
Stoller and W. Visser, editors, Electronic Notes in Theoretical Computer Science,
volume 55. Elsevier Science Publishers, 2001.

20. C. Eisner. Using symbolic CTL model checking to verify the railway stations
of Hoorn-Kersenboogerd and Heerhugowaard. International Journal on Software
Tools for Technology Transfer (STTT), 4(1):107–124, October 2002.

21. C. Eisner, R. Hoover, W. Nation, K. Nelson, I. Shitsevalov, and K. Valk. A method-
ology for formal design of hardware control with application to cache coherence
protocols. In Proc. 37th Design Automation Conference (DAC), pages 724–729.
Association for Computing Machinery, Inc., June 2000.

22. C. Eisner and D. Peled. Comparing symbolic and explicit model checking of a soft-
ware system. In Proceedings, 9th International SPIN Workshop on Model Checking
of Software, LNCS 2318. Springer-Verlag, 2002.

23. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Proc. 12th International Conference on
Computer Aided Verification (CAV), LNCS 1855, pages 232–247. Springer-Verlag,
2000.

24. RuleBase User’s Manual. Formal Methods Group, IBM Haifa Research Laboratory.
25. Guide to Sugar Formal Specification Language Version 1.3.1, November 2000. For-

mal Methods Group, IBM Haifa Research Laboratory.
26. P. Godefroid. Model checking for programming languages using VeriSoft. In Proc.

24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. Association for Computing Machinery, Inc., January 1997.

27. P. Godefroid. VeriSoft: A tool for the automatic analysis of concurrent reactive
software. In Proc. 9th International Conference on Computer Aided Verification
(CAV), LNCS 1254. Springer-Verlag, 1997.

28. A. Goel and W. Lee. Formal verification of an IBM Coreconnect Processor Local
Bus arbiter core. In Proc. 37th Design Automation Conference (DAC), pages 196–
200. Association for Computing Machinery, Inc., June 2000.

32

29. J. Groote, J. Koorn, and S. van Vlijmen. The safety guaranteeing system at station
Hoorn-Kersenboogerd. Logic Group Preprint Series 121, Utrecht University, 1994.

30. K. Havelund and T. Pressburger. Model checking Java programs using Java
PathFinder. International Journal on Software Tools for Technology Transfer
(STTT), 2(4), 2000.

31. G. J. Holzmann. Logic verification of ANSI-C code with SPIN. In Proc. 7th

International SPIN Workshop, LNCS 1885, page 224 ff. Springer-Verlag, 2000.
32. G. J. Holzmann and M. H. Smith. Software model checking: Extracting verification

models from source code. In Proc. PSTV/FORTE99, pages 481–497. Kluwer, 1999.
33. Y. Kesten, A. Klein, A. Pnueli, and G. Raanan. Bridging the e-business gap

through formal verification. In M. Hinchey and J. Bowen, editors, Industrial-
Strength Formal Methods in Practice, pages 117–137. Springer-Verlag, 1999.

34. G. Leduc, O. Bonaventure, L. Léonard, E. Koerner, and C. Pecheur. Model-based
verification of a security protocol for conditional access to services. Formal Methods
in System Design, 14(2), March 1999.

35. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

36. K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
37. J. Mertens. Verifying the Safety Guaranteeing System at Railway Station Heer-

hugowaard. PhD thesis, Utrecht University, 1996.
38. R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd

International Joint Conference on Artificial Intelligence, pages 481–489, 1971.
39. C. Morgan. Programming from Specifications. Prentice-Hall, 1990.
40. J. Morris. A theoretical basis for stepwise refinement and the programming calcu-

lus. Science of Computer Programming, 9(3):287–306, December 1987.
41. S. Muchnick and N. Jones. Program Flow Analysis. Prentice-Hall, 1981.
42. A. Parash. Formal verification of an MPEG decoder chip: A case study in the

industrial use of formal methods. In Proceedings of the Workshop on Advances in
Verification (WAVe), (a post CAV-2000 workshop), Chicago, July 2000.

43. J. Queille and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proc. International symposium in Programming, LNCS 137, pages
337–351. Springer-Verlag, 1982.

44. K. Ravi and F. Somenzi. Hints to accelerate symbolic traversal. In Proceedings 10th
IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware De-
sign and Verification Methods (CHARME), LNCS 1703, Bad Herrenalb, Germany,
September 1999. Springer-Verlag.

45. M. Sheeran and G. St̊almarck. A tutorial on St̊almarck’s proof procedure for propo-
sitional logic. In Second International Conference on Formal Methods in Computer-
Aided Design (FMCAD), LNCS 1522, pages 82–99. Springer-Verlag, 1998.

46. S. D. Stoller. Model-checking multi-threaded distributed Java programs. In Proc.
7th International SPIN Workshop, LNCS 1885, page 224 ff. Springer-Verlag, 2000.

47. F. Tip. A survey of program slicing techniques. Journal of Programming Languages,
3(3):121–189, 1995.

48. W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In
Proc. of the 15th International Conference on Automated Software Engineering,
Grenoble, France, September 2000.

49. K. Yorav, S. Katz, and R. Kiper. Reproducing synchronization bugs with model
checking. In T. Margaria and T. Melham, editors, Proceedings 11th IFIP WG
10.5 Advanced Research Working Conference on Correct Hardware Design and
Verification Methods (CHARME), LNCS 2144. Springer-Verlag, 2001.

