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Abstract. Predicate abstraction is a major method for verification of software. However, the generation of the
abstract Boolean program from the set of predicates and the original program suffers from an exponential number
of theorem prover calls as well as from soundness issues. This paper presents a novel technique that uses an
efficient SAT solver for generating the abstract transition relations of ANSI-C programs. The SAT-based approach
computes a more precise and safe abstraction compared to existing predicate abstraction techniques.
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1. Introduction

It is widely believed that effective model checking [11] of software systems could produce
major enhancements in software reliability and robustness. However, the effectiveness of
model checking of such systems is severely constrained by the state space explosion prob-
lem, and much of the research in this area is targeted at reducing the state-space of the model
used for verification. One principal method in state space reduction of software systems is
abstraction. Abstraction techniques reduce the program state space by mapping the set of
states of the actual system to an abstract, and smaller, set of states in a way that preserves
the relevant behaviors of the system. Abstractions are most often performed in an informal,
manual manner, and require considerable expertise.

Predicate abstraction [13, 20] is one of the most popular and widely applied methods
for systematic abstraction of programs. It abstracts data by only keeping track of certain
predicates on the data. Each predicate is represented by a Boolean variable in the abstract
program, while the original data variables are eliminated. Verification of a software system
with predicate abstraction consists of constructing and evaluating a finite-state system that
is an abstraction of the original system with respect to a set of predicates.
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Figure 1. The counterexample guided abstraction refinement framework.

The abstract program is created using Existential Abstraction [10]. This method defines
the transition relation of the abstract program so that it is guaranteed to be a conservative
over-approximation of the original program, with respect to the set of given predicates. The
use of a conservative abstraction, as opposed to an exact abstraction, produces considerable
reductions in the state space. The drawback of the conservative abstraction is that when
model checking of the abstract program fails it may produce a counterexample that does not
correspond to a concrete counterexample. This is usually called a spurious counterexample.
When a spurious counterexample is encountered, refinement is performed by adjusting the
set of predicates in a way that eliminates this counterexample.

The abstraction refinement process has been automated by the Counterexample Guided
Abstraction Refinement paradigm [2, 9, 17, 27], or CEGAR for short. This framework is
shown in figure 1: one starts with a coarse abstraction, and if it is found that an error-trace
reported by the model checker is not realistic, the error trace is used to refine the abstract pro-
gram, and the process proceeds until no spurious error traces can be found. The actual steps of
the loop follow the abstract-verify-refine paradigm and depend on the abstraction and refine-
ment techniques used. The steps are described below in the context of predicate abstraction.

1. Program abstraction. Given a set of predicates, a finite state model is extracted from the
code of a software system and the abstract transition system is constructed.

2. Verification. A model checking algorithm is run in order to check if the model created
by applying predicate abstraction satisfies the desired behavioral claim ϕ. If the claim
holds, the model checker reports success (ϕ is true) and the CEGAR loop terminates.
Otherwise, the model checker extracts a counterexample and the computation proceeds
to the next step.

3. Counterexample validation. The counterexample is examined to determine whether it
is spurious. This is done by simulating the (concrete) program using the abstract coun-
terexample as a guide, to find out if the counterexample represents an actual program
behavior. If this is the case, the bug is reported (ϕ is false) and the CEGAR loop termi-
nates. Otherwise, the CEGAR loop proceeds to the next step.
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4. Predicate refinement. The set of predicates is changed in order to eliminate the detected
spurious counterexample, and possibly other spurious behaviors introduced by predicate
abstraction. Given the updated set of predicates, the CEGAR loop proceeds to Step 1.

The efficiency of this process is dependent on the efficiency of the program abstraction
and predicate refinement procedures. While program abstraction focuses on constructing
the transition relation of the abstract program, the focus of predicate refinement is to define
efficient techniques for choosing the set of predicates in a way that eliminates spurious
counterexamples. In both areas of research low computational cost is a key factor since this
is what enables the application of model checking to the verification of realistic programs.

In this paper we focus on the application of predicate abstraction to the verification of
C programs. We present a novel technique that enables efficient abstraction (Step 1 of the
CEGAR loop) of a program by using a SAT solver to generate the abstract transition relation.

In previous work, including [3, 5, 23], the generation of the abstract Boolean program
from a C program and a set of predicates suffers from multiple problems:

1. The generation of the Boolean program is done by calling a theorem prover for each
potential assignment to the current and next state predicates. For the most precise transi-
tion relation, this requires an exponential number of calls of the theorem prover. Several
heuristics are used to reduce this number. Some existing tools avoid this large number
of theorem prover calls by using a user-specified maximum. After this specified number
is reached, the tool adds all remaining transitions for which the theorem prover call was
skipped. This is a safe over approximation, but will yield a potentially large number of
unnecessary spurious counterexamples.

2. Existing work relies on general-purpose theorem provers. Program variables are modeled
as unbounded integer values, neglecting possible arithmetic overflow in the ANSI-C
program. This can result in false positive answers of the tool.

3. Existing tools only support a very limited range of operators, namely Boolean opera-
tors, addition/subtraction, equality, and relational operators. Other ANSI-C operators,
such as multiplication and division, bit-wise operators, type conversion operators, and
shift operators are modeled by means of uninterpreted functions. This limits the set of
programs and properties that can be verified.

4. Existing tools only provide a limited support for pointer operations. In particular, pointer
arithmetic is not handled.

Contribution. This work proposes to use a SAT solver to generate the abstract program.
The potentially exponential number of theorem prover calls is replaced by an enumeration
on a single SAT instance.

For each basic block in the given program, our approach is to first construct a symbolic
representation of the concrete transition relation by applying symbolic simulation techniques
(similar to Currie et al. [15]). Next, we add the predicates in current and next state form
to the relation between variables, resulting in a Boolean formula. Finally, we enumerate
symbolically on the values of the predicates, using a SAT solver. When the abstract program
needs to be refined, we use the same formula that we have already created, together with
the new set of predicates, to create the new abstraction.
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The advantage of this technique is that the exponential number of theorem prover calls
is eliminated; instead, the possible assignments to the values of the predicates are searched
by the SAT solver. Modern SAT solvers are highly efficient, and allow a large number
of variables. This enables checking many more possible assignments, resulting in a more
precise abstract transition relation, and eliminating redundant spurious counterexamples.

Another advantage of our approach is that most ANSI-C constructs can be encoded
using CNF, which allows a wider range of programs. Integer operators are encoded using
bit vector operators, i.e., they take into account the potential arithmetic overflow. Thus,
there are no false positive answers due to the inaccurate assumption that the range of
values of the variables is infinite. Moreover, pointer manipulation constructs, including
pointer arithmetic, can also be supported. The only limitation is that recursion and dynamic
memory allocation are not allowed. This limitation cannot be avoided, since the Boolean
program is required to be finite. The symbolic simulation technique we use is taken from
Kroening et al. [25].

Related work. Data abstraction techniques are widely used and they have been explored
by a large number of researchers [10, 16, 24, 27, 29]. Abstraction techniques are of-
ten based on the abstract interpretation work of Cousot and Cousot [14] and require the
user to give an abstraction function relating concrete datatypes to abstract datatypes. Ear-
lier applications of the predicate abstraction type of the abstract interpretation approach
[4, 13, 20] require the user to identify the set of predicates that influence the verification
property and utilize general-purpose theorem proving to compute the abstract program. The
user-driven discovery of relevant predicates makes these methods less effective for large
programs.

Recently, various decision procedures have been proposed to compute the set of predicates
for abstraction. The most common approach is to use error traces [1, 9] to guide the predicate
discovery. In Clarke et al. [9], the algorithm is based on BDD representations of the program.
This is a drawback for large programs, where transition relation BDDs are commonly too
large for efficient manipulation. The algorithm presented in the work of Ball et al. [1] uses
an explicit state representation but it is restricted to safety properties.

The abstraction refinement loop was first introduced by Kurshan [27]. The localization
reduction technique defined in [27] produces an initial abstraction of the program by “freeing
away” program variables that do not affect the verification property. The values of “free”
variables are defined nondeterministically, which results in an over-approximation of the
program behaviors. The unrealistic behaviors are eliminated from the program by gradually
refining the “free” variables back to their original values.

Clarke et al. [9] extended the work of Kurshan [27] by defining a procedure for systematic
abstraction refinement. Spurious error traces are used by the refinement decision procedure
in order to ensure that the new abstraction will not allow this counterexample.

Predicate abstraction of ANSI-C programs in combination with counterexample guided
abstraction refinement has become a widely applied technique. It was introduced by Ball
and Rajamani [2] and promoted by the success of the SLAM project [3]. The goal of
this project is to verify that Windows device drivers obey API conventions. SLAM mod-
els program variables using unbounded integer numbers, and does not take overflow or
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bit-wise operators into account. The abstraction of the program is computed using a the-
orem prover such as Simplify [18]. The property checked mainly depends on the control
flow, and thus, this treatment is sufficient. However, there are C programs make extensive
use of bit-wise operators, for example programs that represent a circuit model. For these
programs we expect that the limited range of the variables will be crucial. BOOP [5] is a re-
implementation of SLAM. BLAST is another software model checker for C programs that
uses the counterexample-driven automatic abstraction refinement to construct an abstract
program. The abstraction is constructed on-the-fly and only to the required precision [23].

The NASA Ames model checker, JavaPathFinder [6], developed for verifying Java pro-
grams, was also reported to use heuristics for automated predicate abstraction and re-
finement. In this tool, predicate abstraction procedures are extended with some informal
abstraction arguments that allow predicate abstraction to be used within the class-instance
of object-oriented languages. The CMU concurrent C model checker, MAGIC [7], applies
automatic compositional reasoning on programs with functions.

Recently, there has been some work reported on the application of SAT solvers in the
process of constructing and refining predicate abstractions. Previously, the application of
SAT solvers during computation of predicate abstraction was conducted only in the context
of hardware verification in the work of Clarke et al. [12]. The focus of [12], indeed, is the
refinement of the initial approximate abstraction, and not the construction of the abstraction
itself. The approximate abstract model is constructed by excluding certain implications from
consideration. In contrast, we use a SAT solver to construct the exact abstract transition
relation according to the provided set of predicates, rather than an approximation of it.

Strichman et al. [8] use a SAT engine for identifying (or approximating) the minimal set
of predicates needed to eliminate a set of spurious counterexamples during refinement of
abstract C programs. The predicate minimizing algorithm is implemented in the MAGIC
tool, which uses a theorem prover to compute predicate abstraction.

To our knowledge, the technique reported in this paper is the first effort to apply a
SAT engine for the actual construction of a predicate abstraction of software. The reported
technique is defined in the context of ANSI-C programs. However, the method is general
and can be applied to programs written in other imperative programming languages.

The article is structured as follows: Section 2 discusses the details of constructing a
Boolean formula for the concrete transition relation. Section 3 describes how a SAT solver
is used to compute the abstraction. Section 4 gives some details about the implementation
of our ideas, and presents some experimental results. Finally, Section 6 summarizes the
contributions of the article.

2. A Boolean formula for the concrete transition relation

This section discusses the details of constructing a Boolean formula for the concrete tran-
sition relation. The program is first partitioned into basic blocks, which are sequentially
composed assignments, and control flow statements, i.e., if, while, goto and so on.

We use bit-vector equations to capture the semantics of assignments. This implies a dif-
ferent approach for control-flow statements and basic blocks. Since control-flow statements
do not change variable values (we remove side-effects from conditions in a pre-processing
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step), they do not require equations. The abstraction of control statements is therefore not
described here, but is deferred to Section 3.2. For the rest of this section we are only
concerned with basic blocks.

Section 2.1 describes syntactic program transformations that are required to prepare the
basic block for the translation into a bit-vector equation. Section 2.2 gives details on how
assignments are translated into bit-vector equations using symbolic simulation techniques.
Section 2.3 presents details how this is done in the presence of pointers. The translation
described here is an adaptation of the method presented in [25, 26]. Section 2.4 shows the
translation of the generated bit-vector equation system into a Boolean formula, which is
suitable for a SAT solver.

2.1. Preparation

For the rest of this section we assume B is a basic block containing n statements s1, . . . , sn .
This code has already been manipulated to remove function calls and empty (skip) state-
ments, so we can assume that each si is an assignment. We use the notation lhs(si ) and
rhs(si ) for the left-hand side and right-hand side of the assignment, respectively.

Given an expression e, we use Vars(e) to denote the set of variables referenced by this
expression. We use this notation also for assignments, so that Vars(si ) = Vars(lhs(si )) ∪
Vars(rhs(si )).

We first transform B into single assignment form, in which each variable is assigned to
only once. In order to do so, we add auxiliary variables that record intermediate values. Let
v be a variable and si an assignment such that v ∈ Vars(si ). Let α(v, si ) denote the number
of assignments made to variable v within the basic block prior to the statement si . Formally,

α(v, s1) = 0

∀ i ≥ 2 : α(v, si ) =
{
α(v, si−1) + 1 : si−1 assigns to v

α(v, si−1) : otherwise

Definition 1 (ρ). Let si be an assignment that assigns to the variable v. Then the leftmost
occurrence of v in lhs(si ) is renamed to vα(v,si )+1. All other occurrences of v are renamed
vα(v,si ). Any other variable u ∈ Vars(si ) such that u �= v is renamed uα(u,si ).

Let e denote any expression (whether a part of an assignment, a whole assignment, a
condition, etc). Then ρ(e) denotes the expression after this renaming.

Figure 2 gives an example of a simple block and its translation.
In the following, we use v for a program variable (such as x in the example above) and

v j for one of its renamed versions (x0, x1, x2 in that example).

Figure 2. Translation of a basic block into its single assignment form.
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2.2. Translating assignments into bit-vector equations

We next define an equation σ (si ) for each assignment in the block, describing the effect this
assignment has on the (renamed) variables. In this sub-section we assume that the program
does not have any pointer variables; Section 2.3 will extend the method to programs that
manipulate pointers.

As an intermediate format, we use bit-vector equations. Besides the usual bit-wise and
arithmetic operators, we also consider the array index operator [ ], the structure member
operator, and the choice operator to be part of the logic. The choice operator “?” is defined as:

c?a : b
�=

{
a : c �= 0

b : otherwise

Furthermore, we define the with operator [21] for arrays and structures. It is also consid-
ered part of the bit-vector logic.

Definition 2 (with operator for arrays). Let g be an expression of array type, i be an integer
expression, and e be an expression with the type of the elements in g. The operator with
takes g, i , and e and produces an array that is identical to g, except for the content of g[i]
being replaced by e. Formally, let g′ be “g with [i] := e,” then

g′[ j]
�=

{
e : j = i

g[ j] : otherwise

Definition 3 (with operator for structures). Let s be a variable of structure type, f be a
field name of this structure, and e be an expression matching the type of the field f . The
operator with takes s, f , and e and produces a structure that is identical to s, except for the
content of a. f being replaced by e. Formally, let s ′ be “s with . f := e” and j be a field
name of s, then

s ′. j
�=

{
e : j = f

s. j : otherwise

The translation of an assignment into a constraint is done using an auxiliary function
�(l, r ). It maps the expressions l for the left hand side and r for the right hand side into a
constraint. It is defined recursively on the structure of the expression l:

– If l is a symbol v, then �(l, r ) is the equality of the left hand side l and the right hand
side r .

�(v, r ) := v = r

– If l is an array index expression g[i] with array expression g and index expression i , then
�(l, r ) is applied recursively to g and a new right hand side which is g with element i
changed to r .

�(g[i], r ) := �(g, g with [i] := r )
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– If l is a structure member expression s. f with structure expression s and field name f ,
we define �(l, r ) in analogy to the previous case:

�(s. f, r ) := �(s, s with . f := r )

Using this auxiliary function, the function σ (si ) is easily defined as

σ (si ) := �(lhs(si ), rhs(si ))

Our final bit-vector equation is the conjunction of the constraints generated:

∧
i=1,...,n

σ (si )

As a shorthand, let v denote the version of the variable v with index 0, and v′ denote the
version of the variable v with the largest index, or formally

v := v0

v′ := vα(v,sn+1)

Note that for any variable v that is not assigned to within the basic block, v′ is just another
shorthand for v0. This gives us a bit-vector equation system that defines a relation T (v̄, v̄′),
where v̄ is the vector of all variables v, and v̄′ is the vector of all variables v′. The relation is
a symbolic representation of the concrete transition relation of the block B, i.e., the vector
v̄ represents the state before the execution of the basic block, and v̄′ represents the state
after the execution of the basic block. Every solution to this equation system represents a
possible computation of the basic block.

2.3. Programs that use pointers

While other tools rely solely on static analysis techniques to determine the set of variables
a pointer may point to, we also look at the predicates. As will be evident in the following,
the size of the generated equation for a statement involving a pointer p is linear in the
number of objects p may point to. Thus, it is desirable to keep this number small. In a
typical application there may be a large number of variables having the correct type as ∗p,
while only a few that p can actually point to. In order to minimize the size of the equation
generated we use all the information we can extract from the program about the possible
targets of p. Using the (dynamic) information obtained from the predicates, we can save a
lot more than by merely using static points-to algorithms.

Before giving the formal definition, we motivate our construction as follows: When
a pointer p is dereferenced and the abstract state does not hold enough information to
guarantee that p is a valid, active object, the abstract program must generate an exception.
This is necessary to make the abstraction safe, i.e., the abstract program can refrain from
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generating an exception only if it is guaranteed that the concrete program does not generate
an exception. For example, assume that p may point to one of {x, y, z}, while the set of
predicates that involve p is {(p = &x), (p = &y)}. The abstract program cannot distinguish
between p pointing to z, or p being NULL, or even p pointing to some other illegal address.
Whenever p is dereferenced while both predicates are false, the abstract program will
generate an exception. This means that when creating the abstract transition relation we can
ignore the possibility of p pointing to z, and treat it in the same way as if p were NULL.

The concrete transition relation we generate therefore actually depends on the predicates,
and is already an abstraction of the concrete behavior.

Let �(p) denote the set of variables which p can legally point to (i.e., the variables with
a compatible type). The variables in �(p) are variable names before renaming. We analyze
the set of predicates P and extract a set of variables θ (p,P) ⊆ �(p), such that v ∈ θ (p,P)
holds if it is possible to derive from the predicates that p points to v. This information
usually comes from predicates of the form p = &x , p = &x + i , p = q, and so on.

Definition 4 (θ (p,P)). Let P = {π1, . . . , πk} be the set of predicates. Then θ (p,P) is the
set of variables v ∈ �(p) for which there exists a truth assignment to the predicates such
that the resulting conjunction implies that p holds the address of v.

θ (p,P)
�=

{
v ∈ �(p) | ∃b1, . . . , bk .

∧
i=1,...,k

(bi ↔ πi ) ⇒ (p = &v)

}

A pointer dereference *p in an expression is replaced by a case split on all the variables
from θ (p,P). Let θ (p,P) = {v1, . . . , vk}. We replace every occurrence of *p with

(p==&v1) ? v1 : (p==&v2) ? v2 : . . . (p==&vk) ? vk : ⊥

where ⊥ is a default value, which is never used. It is important to notice that & vi (the
address of v) is a constant value and does not get renamed, while vi is a variable name
and will be given an index during the renaming process ρ. The end result is that when a
pointer is dereferenced in the right-hand side of an assignment, or in the index of an array
on the left-hand side, the correct value will be used. Note that it is not necessary to include
all variables in �(p), since we generate an exception if p does not point to an object in
θ (p,P).

The case where a pointer dereference appears on the left hand side of an assignment
is again handled by a transformation of the program, before renaming is applied. The
assignment*p = exp is capable of affecting any variable with the correct type. We therefore
replace this assignment with a series of assignments. For each variable u ∈ θ (p,P), we
add an assignment of the following form:

u = (p == &u) ? exp : u;

Again, we may refrain from adding an assignment for any variable not in θ (p,P) since if
p points to such a variable there will be an exception.
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Figure 3. Example: Generation of the concrete transition relation. As an optimization, we restrict the case splits
done for pointers using information from the predicates. For this example, assume the predicates p = &x and
p = &y.

The transformed program does not have pointer dereferences, and can be translated into
an equation system using the σ function presented in the previous section. Notice that for
the assignment p = &x the rule for σ (v j = exp) applies without change. The address of a
variable is treated as a value and is assigned into a variable with an appropriate type.

An example of the process described above is given in figure 3. The example gives a
basic block, the renamed version, and the resulting equation system.

2.4. Translating bit-vector equations into Boolean formulas

The translation of the bit-vector logic used to build the equation for the concrete transition
relation is straightforward: we build a circuit representation, which is then translated into
CNF. Several optimizations can be done at this level, in particular for arrays. The result
of this process is a CNF formula T (v̄, v̄′) that is a symbolic representation of the concrete
transition relation.

3. Using SAT to compute the abstraction

3.1. The abstract transition relation for a basic block

Let P be the set of predicates, where each predicate is an expression over the (concrete)
program variables. Each predicate πi ∈ P is associated with a Boolean variable bi that
represents its truth value. Let π̄ denote the vector of predicates πi , and b̄ denote the vector
of the Boolean variables bi . These Boolean variables are the variables of the Boolean
program we are constructing. The predicates map a concrete state v̄ into an abstract state b̄,
and thus, π̄ (v̄) is also called the abstraction function. Given T (v̄, v̄′) and P , we create an
abstract transition relation B(b̄, b̄′) that is an existential abstraction of a basic block of the
C program.

Our goal is to replace a basic block with an expression that describes what happens to
the variables b̄ when this basic block is executed. We present a translation that is accurate,
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i.e., it gives the transition relation as defined by existential abstraction, and not an over-
approximation of this transition relation, as other tools use.

Let T (v̄, v̄′) denote the CNF formula representing the concrete transition relation, as
defined in the previous section. The abstract transition relation B(b̄, b̄′) relates a current
state b̄ (before the execution of the basic block) to a next state b̄′ (after the execution of the
basic block). It is defined using π̄ as follows:

	(b̄, b̄′, v̄, v̄′) �= (π̄ (v̄) = b̄) ∧ T (v̄, v̄′) ∧ (π̄ (v̄′) = b̄′) (1)

B(b̄, b̄′) ⇔ ∃v̄, v̄′ : 	(b̄, b̄′, v̄, v̄′) (2)

The concrete transition relation T maps a concrete state v̄ into a concrete next state v̄′, and
the abstract transition relation B maps a corresponding abstract state b̄ into a corresponding
abstract next state b̄′. The abstraction function π̄ maps the concrete states into abstract
states. Put together, we get the classical abstraction connection:

Every satisfying assignment to (1) represents a concrete transition and its corresponding
abstract transition. We aim at obtaining all possible satisfying assignments to the abstract
variables b̄ and b̄′, i.e., the set

{(b̄, b̄′) |B(b̄, b̄′)} (3)

This set is obtained by modifying the SAT solver Chaff as follows: every time a satisfying
assignment is found, the tool records the values of the literals corresponding to the abstract
variables b̄ and b̄′, and then adds a blocking clause in terms of these literals that eliminates
all satisfying assignments where these variables have the newly found values. The literals in
the blocking clauses all have a decision level, since the assignment is complete. The solver
then backtracks to the highest of these decision levels and continues its search for further,
different satisfying assignments. Thus, the SAT solver is used to enumerate the set (3). This
technique is commonly used in other areas, for example in [22, 30]. Section 4 contains more
details on how to efficiently obtain the set of satisfying assignments.

As an example, consider the following basic block:

d=e;
e++;

where d and e are integer variables. Suppose the predicates π1 = d&1 and π2 = e&1
are given. The binary operator & is the bit-wise conjunction operator, i.e., π1 holds if and
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only if d is odd, and π2 holds if and only if e is odd. The basic block is translated into the
following equation system, which represents the transition relation:

d1 = e0 ∧ e1 = e0 + 1 (4)

By adding the required constraints according to Eq. (2) we get:

b1 = d0&1 ∧ b2 = e0&1 ∧
d1 = e0 ∧ e1 = e0 + 1 ∧ (5)

b′
1 = d1&1 ∧ b′

2 = e1&1

The satisfying assignments for this equation over the variables b1, b′
1, b2, and b′

2 are:

b1 b2 b′
1 b′

2

0 0 0 1

0 1 1 0

1 0 0 1

1 1 1 0

In particular, the abstract Boolean program will never make a transition into a state that
is contradictory in the sense that both d and e (which is equal to d + 1) are odd. This is
unavoidable if a next state function is computed separately for each Boolean variable bi , as
done by many existing tools.

Consider the basic block above with the predicates π1 = e ≥ 0 and π2 = e ≤ 100, and
suppose that x has 32 bits. The equation for the abstract transition relation B is:

b1 = e0 ≥ 0 ∧ b2 = e0 ≤ 100 ∧
d1 = e0 ∧ e1 = e0 + 1 ∧ (6)

b′
1 = e1 ≥ 0 ∧ b′

2 = e1 ≤ 100

The satisfying assignments for this equation over the variables b1, b′
1, b2, and b′

2 are:

b1 b2 b′
1 b′

2

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 0

1 1 1 0

1 1 1 1
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Note that incrementing a positive number is not guaranteed to yield another positive
number because of the finite range (there is a transition from a state with b1 = 1 to a state
with b′

1 = 0).

3.2. The abstract transition relation for control-flow statements

Besides basic blocks, the concrete program also contains control flow statements such as if
and while. These statements take a condition as an argument and affect only the control-
flow (the program counter). We pre-process the program to remove all side-effects from
conditions. Since control-flow statements do not change the values of variables, we do not
require an equation system to represent them.

Assume we are abstracting a specific program counter location l that evaluates a condition
c and moves the program counter to location lT if c holds and lF otherwise. Our goal is to
generate two sets of abstract transitions, a set of transitions that assign lT to the program
counter, and a set that assigns lF . All of the transitions will leave the abstract variables b̄
unchanged.

To abstract c we first traverse its syntactic structure to see whether there are any sub-
expressions that are also predicates in P . We replace any occurrence of a predicate πi in
c with the corresponding Boolean variable bi . Let c1 be the condition that results from
applying this transformation. If c1 references only Boolean variables then we are done—
this condition can be used in the abstract program. We then generate an abstract statement
that assigns the program counter with lT if c1(b̄) holds, and lF otherwise.

If, however, c1 still refers to some concrete variables v̄, we use the SAT enumeration
engine in order to produce the set of abstract transitions that correspond to the evaluation
of c.

The condition c(v̄) holds in an abstract state b̄ if and only if there is a concrete state v̄ such
that the condition holds in v̄ and v̄ is mapped to b̄. To create the abstract transition relation
at this control location we need to produce the set posc of abstract states from which there
is a transition that assigns the program counter with lT :

posc = {b̄ | ∃v̄ : c(v̄) ∧ π̄ (v̄) = b̄} (7)

The dual set negc of abstract states from which there is a transition that assigns the
program counter with lF is not the negation of posc. This is because a single abstract state
can correspond to both concrete states that satisfy c and concrete states that do not. We are
therefore required to generate the set negc according to its definition:

negc = {b̄ | ∃v̄ : ¬c(v̄) ∧ π̄ (v̄) = b̄} (8)

Both of these sets are computed using the SAT enumeration engine.
In practice, we are rarely required to use the SAT enumeration engine for control-flow

statements. The conditions of if statements and while loops are often chosen as Boolean
predicates. Furthermore, most refinement algorithms will add these conditions whenever
they encounter a spurious counterexample that passes through this statement.
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4. The implementation

4.1. Minimizing the number of quantified variables

The size of the set (3) described in the previous section can be exponential in the number
of predicates. However, in practice, a basic block usually mentions a very small subset of
all program variables. Thus, most Boolean program variables are usually unchanged in the
abstract version of the basic block. In particular, if a predicate uses only variables that are
not assigned to, the truth value of the predicate is guaranteed not to change. We call the
remaining predicates (the predicates that use variables that get assigned into) the output
predicates. Formally, these are the predicates πi such that πi (v) �= πi (v′).

Furthermore, we try to detect which predicates can actually influence the next abstract
values of the output predicates. This is done by obtaining the set of variables that are used in
the assignments to variables that are mentioned in output predicates. We call these predicates
the input predicates.

Example. As an example, consider the predicates π1 = i > 10 and π2 = j > 10. Let
the basic block consist only of the statement

i=j;

In this case, π1 is the only output predicate (as j is not modified) and π2 is the only input
predicate (as i is not mentioned in the right hand side).

As an optimization, we only obtain the projection of the set (3) on the input and output
predicates, where b̄ is restricted to contain only input predicates and b̄′ is restricted to only
contain output predicates.

4.2. Obtaining the set of satisfying assignments

The problem of obtaining the set of satisfying assignments to a formula restricted to a given
subset of the variables corresponds to a quantification problem. Let S denote the subset
of variables. We obtain the set by enumeration on the variables in S using a SAT solver.
This method was suggested earlier for solving quantified formulae in [32, 33]. In [28], our
implementation algorithm was applied to predicate abstraction for hardware and software
systems. It outperformed BDDs on all software examples. These results were obtained using
arithmetic on integers however, not on bit-vectors.

The basic algorithm works as follows: when the SAT solver finds a satisfying assignment,
it generates a blocking clause in terms of the variables in S. This blocking clause is added to
the clause data base and prohibits any further satisfying assignment with the same values for
the variables in S. After adding the clause to the CNF, the algorithm performs backtracking
to the highest decision level of any of the variables in the blocking clause and continues
the search for more satisfying assignments. Eventually, the additional constraints will make
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the problem unsatisfiable, and the algorithm terminates. The blocking clauses added by the
algorithm are a DNF representation of the desired set.

Each DNF clause represents a hyper-cube, and is contained in the set of solutions. The
basic algorithm can be improved by heuristics that try to enlarge the cube represented by
each clause. In [30], McMillan uses conflict graph analysis in order to enlarge the cube. In
[22], BDDs are used for the enlargement. However, these techniques are beyond the scope
of this article.

4.3. Using SMV to check the abstract program

We use the CMU version of SMV [34] to verify the abstract program. The advantage of
using SMV is that the hyper-cubes representing the abstract transition relation can be passed
to SMV directly by means of the TRANS statement. However, any other unbounded model
checker is applicable as well, including SAT-based model checkers.

The control flow of the abstract program (which matches the control flow of the concrete
program) is realized by adding a program counter variable. Each control flow location
corresponds to a set of hyper-cubes.

For the second example in Section 3, we obtain four cubes representing the six satisfying
assignments:

¬b1 ∧ b2 ∧ ¬b′
1 ∧ b′

2

∨ b1 ∧ ¬b2 ∧ ¬b′
1 ∧ b′

2

∨ b1 ∧ b′
1 ∧ ¬b′

2

∨ b2 ∧ b′
1 ∧ b′

2

Assuming the PC of this statement isx, this corresponds to the followingTRANS statement:

TRANS PC=x -> (!b1 & b2 & !next(b1) & next(b2))
| ( b1 & !b2 & !next(b1) & next(b2))
| ( b1 & next(b1) & !next(b2))
| ( b2 & next(b1) & next(b2))

4.4. Simulating the abstract counterexample

If the Model-Checker detects that the property does not hold on the abstract program, it
generates a counterexample trace. This trace is then simulated on the concrete program in
order to determine whether the counterexample is spurious or not. Most existing tools use
a theorem prover such as Simplify [18] for this task.

The disadvantage of using a general purpose theorem prover for the simulation of the
counterexample are similar to the disadvantages that arise during the computation of the
abstract transition relation: The set of operators is limited, and the theorem prover may
misjudge a counterexample to be real due to the lack of overflow detection.
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The methodology that is used to obtain the concrete transition relation is also applicable to
simulate the counterexample: Following the control flow in the abstract trace, we concatenate
the corresponding basic blocks of the concrete program and apply the symbolic simulation
technique described earlier.

We then incrementally add the constraints that the control flow in the abstract trace
impose, i.e., the concretized versions of the control flow conditions. After adding a new
control flow condition as a constraint, we check the satisfiability of the equation using SAT.
If the equation is satisfiable, the abstract trace can be simulated so far. If it is unsatisfiable,
the abstract trace cannot be simulated and is therefore spurious.

If all control flow conditions found in the abstract trace are added and the equation is still
satisfiable, the abstract trace can be simulated on the concrete program, and thus, a bug has
been found. The tool then prints out the concrete trace. The values of the concrete variables
can be obtained directly from the satisfying assignment.

In comparison to the concrete program, the control flow conditions are small. Thus
only a few clauses and variables are added to the CNF in each step. We therefore use an
incremental SAT solver [31] in order to preserve the information learned by the solver
between the satisfiability checks.

4.5. Verifying properties of the program

The setup described so far can be used to check reachability of code locations, as done by
other tools such as SLAM, BLAST or BOOP. In addition to that, we check several safety
properties such as array bounds and user defined assertions.

The ANSI-C standard stipulates that at any point in the program one can insert an assert
statement that specifies a Boolean condition. For example, the program

x = y;

y = y + 1;

assert(y > x);

asserts that after the two assignments y will be greater than x. This assertion fails if incre-
menting y results in an overflow. Assertions are placed in the program as a specification
of correctness. In order to verify the program we must determine that the condition in the
assertion is true in all possible executions.

When creating the abstract program we translate every assert(C) statement, where C
is a Boolean condition, by abstracting the condition C. This is done using the same method
that we use for the conditions of “if” and “while” statements, as described in Section 3.2.

In addition to user specified assertions we verify several basic correctness properties of
the program.

– Whenever a basic block contains a dereference ∗p of a pointer variable p, we check that
the pointer cannot be pointing to an illegal address. Let θ (p,P) be the set of variables
for which the predicates can imply that p is pointing to (Definition 4). We then check
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that ∨
v∈θ (p,P)

(p = &v)

is valid by abstracting the expression as as described in Section 3.2.
– Whenever a basic block contains a reference to an element of an array we make sure that

the array boundaries are not violated. If the expression a[i] appears in the basic block
(where i may be any integer expression), and the array a is of length n, we check

(i < n) ∧ (i ≥ 0)

for validity.
– Whenever the basic block contains an expression that performs division, i.e., an expres-

sion of the form x/y (where y can be any numeric expression) we make sure that the
divisor is not zero.

5. Experimental results

We applied the SAT-based abstraction approach to the verification of several C programs.

5.1. SHA

We used a program taken from the Digital Signature Standard (DSS). Under the DSS, com-
munication among remote parties is enabled using digital signatures. The digital signature is
computed using two inputs: (1) a delivery message of the communication instance; and (2)
a private key of a public/private key pair. We verified the C implementation of the DSS
Secure Hash Algorithm (SHA) [19].

The SHA computes a part of the DSS digital signature called the message digest. The
hashing algorithm computes the message digest by generating a 160-bit representation of the
delivery message. The hashing procedure is designed to assure that the digest is statistically
unique. The implementation makes extensive use of bit-wise operators and also division.

The code contains calls to abort() in places where an unexpected condition happens,
e.g., an arithmetic error. These calls can be considered an implicit property. We replace
these calls by assert(0), i.e., we prove that these program locations are not reachable.
The reachability of one of these locations depends on the result of a division: the code
divides a 32-bit variable t by 20, and then checks that the result is between 0 and 3 using a
switch statement. If the result is any other value (default case), abort() is called (figure 4).
The property holds as the range of t is limited appropriately.

Given one predicate for each of the four possible switch cases, our tool generates an
abstract transition relation that is consistent (at most one of the four, mutually exclusive
predicates holds) and strong enough to show the property (at least one of the four predicates
holds). The overall run-time (including preparation, one refinement iteration, and the SMV
run-time) is 24 seconds on a 2 GHZ machine, most of which is spent within the SAT solver.
The predicate abstraction tools described in the related work generate an abstraction that
lacks at least the last property, i.e., that the result of the division is one of 0 to 3.
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Figure 4. Excerpt from a SHA implementation. The assertion depends on the result of a division.

5.2. ASN1 data structures in OpenSSL

OpenSSL comes with an implementation of ASN1 data structures for managing certificates.
Using an if-then-else construct, individual bits of a variable j are tested. The variable has
type signed int. Previously, the integer is assigned the value of an unsigned char array
member. The array member is known to be non-zero. The code assumes that therefore one
of the first eight bits must be set (figure 5).

Figure 5. Excerpt from an implementation of ASN1 data structures from OpenSSL. Proving the assertion requires
a bit-vector decision procedure. The assertion is not part of the original code.
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Within one refinement iteration, the following predicates are obtained: one predicate that
holds if the array member is non-zero and one predicate for each of the branching guards.
Using these predicates, our tool generates an abstract transition relation which enforces that
exactly one of these predicates is true, which allows the model checker to show that the
assertion is not reachable.

5.3. MD2 message-digest algorithm

Similar to the SHA algorithm, the MD2 message-digest algorithms computes a hash of
a given message. RFC 1319 gives a reference implementation in ANSI-C. A part of it is

Figure 6. Excerpt from an the reference implementation of the MD2 algorithm.



124 CLARKE ET AL.

Figure 7. Excerpt from an JPEG decoder.

shown in figure 6. The algorithm makes extensive use of a permutation that is given as an
array. In the first part, the result of the previous iteration is used as an array index for the
next iteration. The second part uses the bit-wise xor of the result of the previous iteration
and a part of the message as an array index.

We verify that these lookups do not violate the bounds of the PI SUBST array. As the
variable t is of an unsigned integer type, only the upper array bound can be violated, i.e.,
the predicate t < 256 must hold in the first part, and the predicate (block[i]^t)<256
must hold in the second part of the algorithm. For each of the four code locations t is
modified in, the SAT solver easily discovers that these predicates indeed are true in the next
state.

5.4. Pointer arithmetic in JPEG decoder

For efficiency reasons, many programs use pointer arithmetic instead of array index ex-
pressions within loops. As an example, consider the code in figure 7. It performs a discrete
cosine transformation using a loop that iterates through an array of 64 elements. Each loop
iteration processes one row, which corresponds to DCTSIZE=8 array elements. Thus, iter-
ation number ctr accesses the elements data[8*(7-ctr)] to data[8*(7-ctr)+7]. In
order to avoid this computation for each array access, the code uses a pointer that points to
data[8*(7-ctr)]. This pointer is then used to access the individual elements.

In order to prove that the pointer access happens within the array bounds, we use the
predicates dataptr==&data[8*(7-ctr)], ctr>=0, and ctr<DCTSIZE.

6. Conclusion

This paper presented a new method to compute the predicate abstraction of an ANSI–C pro-
gram. This new method replaces the use of theorem provers with the use of a SAT solver. We
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suggest that SAT-based predicate abstraction outperforms the approaches that use theorem
provers since enumeration on a single SAT instance can substitute for a potentially expo-
nential number of theorem prover calls. The advantages are particularly pronounced when
the number of abstract transitions is significantly smaller than the number of possibilities
that need to be checked. Furthermore, since modern SAT solvers allow for the evaluation
of a large number of possible assignments to the abstract program variables, the applica-
tion of a SAT engine results in a more precise transition relation of the abstract program
compared to the abstraction produced by using theorem provers. This results in eliminating
some unrealistic behaviors of the abstract program that otherwise would be introduced dur-
ing the over-approximations of the abstract transition relation computed using a theorem
prover.

Model checking a more precise abstract program, therefore, exhibits a smaller number
of redundant spurious counterexamples. As a result, a smaller number of the CEGAR loop
iterations is required until the verification property is confirmed or refuted. The latter fact is
of high value to practical software verification since the validation of counterexamples and
predicate refinement (Steps 3 and 4 of the CEGAR loop) are computationally expensive.
Our approach, therefore, simplifies (if not enables) the application of model checking to the
verification of large-scale programs by eliminating analysis and refinement of redundant
counterexamples.

Another contribution of the SAT-based abstraction technique is that most ANSI-C con-
structs can be handled during the program abstraction. This differs from other model check-
ing approaches that operate only on a small subset of the C language. Our approach enables
model checking of realistic programs by supporting the more complex features of C, such as
multiplication/division, pointers, bit-wise operations, type conversion and shift operators.

A notable advantage of the SAT-based abstraction technique is that it can be reused within
the CEGAR loop without any changes to the error trace simulation and predicate refinement
used in the loop.

In the future, we plan to use the ideas presented here in other parts of the CEGAR loop.
That is, we would be interested to use the SAT enumeration engine to conduct predicate
discovery for the refinement of the abstracted program. We also plan to implement the
abstraction of floating point arithmetic, as well as to extend the technique to the verification
of concurrent programs.
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