
Science of Computer Programming 56 (2005) 99–116

www.elsevier.com/locate/scico

A technique for automatic component extraction
from object-oriented programs by refactoring

Hironori Washizakia,∗, Yoshiaki Fukazawab

aResearch Center for Testbeds and Prototyping, National Instituite of Informatics, 2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo, 101-8430, Japan

bDepartment of Computer Science, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Received 29 October 2003; received in revised form 22 September 2004; accepted 22 September 2004
Available online 21 December 2004

Abstract

Component-based software development (CBD) is based on building software systems from
previously-existing software components. In CBD, reuse of common parts in component form can
reduce the development cost of new systems, and reduce the maintenance cost associated with
the support of these systems. However, existing programs have usually been built using another
paradigm, such as the object-oriented (OO) paradigm. OO programs cannot be reused rapidly or
effectively in the CBD paradigm even if they contain reusable functions. In this paper, we propose
a technique for extracting components from existing OO programs by our new refactoring “Extract
Component”. Our technique of refactoring can identify and extract reusable components composed
of classes from OO programs, and modify the surrounding parts of extracted components in original
programs. We have developed a system that performs our refactoring automatically and extracts
JavaBeans components from Java programs. As a result of evaluation experiments, it is found that our
system is useful for extracting reusable components along with usage examples from Java programs.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Component-based development (CBD); Refactoring;Object-oriented programming; Software reuse;
Software component; JavaBeans

∗ Corresponding author.
E-mail addresses:washizaki@acm.org (H. Washizaki), fukazawa@waseda.jp (Y. Fukazawa).

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.11.007

http://www.elsevier.com/locate/scico

100 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

1. Introduction

Component-based software development (CBD) has become widely accepted as a
cost-effective approach to software development [35]. In CBD, software development is
considered to involve the composition of various software components. CBD is capable of
reducing developmental costs and improving the reliability of an entire system.

In this paper, we use object-oriented (OO) programming language for the
implementation of components. CBD does not always have to be object-oriented; however,
it has been indicated that using OO paradigm/language is a natural way to model and
implement components [13]. In fact, some of the practical component architectures, such
as JavaBeans [12] and EnterpriseJavaBeans (EJB) [5], are based on OO technologies.

In CBD, the reuse of common parts in component form can reduce the development
cost of new systems, and reduce the maintenance cost associated with the support of
these systems. However, not all components corresponding to functional requirements are
already available in all possible contexts. In contrast, there are many program repositories
available on the Internet such as SourceForge.net [34]. At these on-line repositories,
programmers can obtain a large amount of OO program source codes and binary codes.
There is a possibility that programs, which partially fulfill the required functionalities, exist
among these available OO program source codes. If such parts of existing OO programs
could be easily reused as components, programmers could develop software by means of
CBD by utilizing these programs.

However, since OO classes usually have complex mutual dependencies, it is difficult
to reuse parts of existing OO programs composed of classes rapidly and effectively. If a
significant function is realized by a set of classes, programmers who want to reuse the
function must examine the dependencies among related classes and acquire all depending
classes. Since such manual examination activities entail a high cost for programmers, the
merits of reuse might be reduced or lost. Therefore, it is necessary to transform a part of an
existing OO program into a component that has no dependence on elements outside itself.
However, current CBD methodologies mostly lack a systematic decomposition algorithm
[33].

Moreover, even if the components can be extracted from existing programs, it is difficult
to identify the appropriate use of the extracted components only by referring to the source
codes or public interfaces of the components. Therefore, it is preferable to acquire a usage
example along with the extracted components.

In this paper, we propose a technique for identifying structurally reusable candidate
parts of OO programs according to our definition of the reusable component based on
JavaBeans [12], and transforming these parts into reusable components automatically by
our new refactoring, “Extract Component”. Our technique targets Java language as the
OO programming language and JavaBeans as the fundamental component architecture.
Our technique accepts any kind of Java programs as the extraction target whether these
programs use specific coding standards or structural templates. Moreover, we show that our
extraction technique is useful for acquiring usage examples for the extracted components.

In the following, we first define a class relation graph (CRG) that represents the
relations among classes/interfaces in the target Java program. Next, using a CRG, we
propose a technique for extracting components from OO programs, and changing the

H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116 101

parts surrounding the extracted components to allow these surrounding parts to use the
newly extracted components. These surrounding parts become the usage examples of the
extracted components.

2. Class relation graph

To extract reusable components from Java programs, we first define a CRG. The CRG is
obtained by a static analysis of the dependencies among Java classes/interfaces. Next, we
provide a clustering algorithm to detect all possible clusters by determining the reachability
on the given CRG. A cluster is a candidate component, and has no dependence on elements
outside the cluster.

In the following, classes in Java core packages (e.g., java.∗, javax.∗) do not become
nodes in the CRG, because the core packages are distributed by standard Java runtime
systems. We consider only programmer-made classes/interfaces.

Definition 1 (Class Relation Graph). The multigraph which satisfies all the requirements,
1–7, is a CRG, denoted asΓ = (V,Λ, E), whereV is a set of Java class/interface nodes,
Λ is a set of sequential numbers that are used for the identification of edges, andE is a set
of directed edges that are ordered trios ofa source node, a destination node, and a label
name.

1. V = VC∪ VI

VC is the set of class nodes corresponding to classes.VI is the set of interface
nodes corresponding to interfaces. All nodes are represented as rectangles that have
class/interface names inside when the CRG is illustrated in the form of a figure. In the
following, a node (on the CRG) that corresponds to class or interfacec is described as
Node(c), while a class or interface that corresponds to nodev on the CRG is described as
Node−1(v).

2. E = EE∪ EI ∪ ER

E consists of a set of inheritance edges (EE), a set of instantiation edges (EI), and a set of
reference edges (ER).

3. EE⊆ VC× V ∪ VI × VI

EE is a set of inheritance edges, which indicate that a class inherits another class/interface,
or an interface inherits another interface, and is denoted as−�.
4. EI = EID ∪ EIA

EI consists of a set of default instantiation edges (EID) and a setof argument instantiation
edges (EIA). The instantiation edge is drawn from a class instantiating another class to
the target class for instantiation. Each instantiation edge contains an unique label for
identification.

5. EID ⊆ V × VC× Λ

EID is a set of default instantiation edges, which indicate that a class/interface instantiates
an object of another class by using a default constructor (a constructor without any

102 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

Fig. 1. CRG of prototype pattern’s code.

arguments) of the target class for instantiation, and is denoted as
def· · ·>.

6. EIA⊆ V × VC× Λ

EIA is a set of argument instantiation edges, which indicate that a class/interface
instantiates an objectof another class by using a constructor with one or more arguments,

and is denoted as
arg· · ·>. At this time, the primitive types (e.g., int) and classes in the Java

core packages do not become the target of the above-mentioned “arguments”. For example,
if the classc instantiates an object of another classc′ by using thec′’s constructor whose

type of argument is int, we denote this asNode(c)
def· · ·> Node(c′).

7. ER⊆ V × V × Λ

ER is a set of reference edges, which indicate that a class/interface refers to another
class/interface with a unique label for identification, and is denoted as→. In this paper,
we (and our extraction system described inSection 5.1) recognize that a class/interface
ca refers to another class/interfacecb, when there is a type specification ofcb for the
variable/field/method declarations inca, or there isa type specification ofcb for the type
casts inca, or ca accesses a method/field ofcb. In addition, we also recognize that an outer
class/interface refers to its inner class/interface in the same source code.

As an example of analyzinga small program to which the typical OO design has been
applied,Fig. 1 shows the CRGof the Prototype design pattern [9] sample code written in
Java language [10] with some code modifications.Fig. 2 shows all modified parts of the
original code. This sample consists of seven classes and one interface. In this case, the
CRG is composed of the following elements:

VC= { BombedWall, Door, Maze, MazeFactory, MazePrototypeFactory,

Room, Wall }
VI = { MapSite }
EE= { (BombedWall,Wall), (Door,MapSite), (Room,MapSite),

(Wall,MapSite), (MazePrototypeFactory,MazeFactory) }
EID= { (MazeFactory,Maze,9), (MazeFactory,Wall,10),

(MazeFactory,Room,11)}

H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116 103

public class MazeFactory {
public Maze makeMaze(){ return new Maze();}
public Wall makeWall(){ return new Wall();}
public Door makeDoor(Room r1, Room r2) { return new Door(r1, r2); }
public Room makeRoom(int n) {

Room room = new Room(); room.roomNumber = n; return room; }
}

public class Room implements MapSite, Cloneable {
public int roomNumber;
private MapSite sides[] = new MapSite[4];
public Room(){ }
public Room(int r) { roomNumber = r; }
public MapSite getSide(int aDirection) { return sides[aDirection]; }
public void enter() { ... }
public void initialize(int n) { ... }
public Object clone(){ try{ return super.clone(); }

catch(Exception e){...} }
}

Fig. 2. Modified parts of original code.

EIA= { (MazeFactory,Door,12)}
ER= { (BombedWall,Wall,0), (BombedWall,Room,1), (Door,MapSite,2),. . .}.

The main functionality of this sample is making a maze. Moreover, this sample provides
common constructs of the maze, such asRoom andDoor. If programmers can reuse the
functionality or constructs in component form, a new program that makes another but
similar mazecan be easily developed.

Next, we define several reachabilities on the CRG in order to provide a clustering
algorithm for the identification of structurally reusable candidate parts from among a
collection of classes/interfaces.

Definition 2 (Reachability). In an arbitrary CRG, nodev is inheritance-reachable
(instantiation-reachable) from nodeu when there is a directed path fromu to v and all

edges on the path are inheritance edges (instantiation edges), oru = v, denoted asu
∗−� v

(u
∗· · · > v). Similarly, nodev is dependence-reachable from nodeu when there is a

directed path fromu to v and all edges on the path are inheritance/instantiation/reference
edges, oru = v, denoted asu

∗⇒ v. In addition, wedescribe thatNode−1(v) is reachable
from Node−1(u) whenv is reachable fromu in a corresponding CRG.

For example, inFig. 1, there are twoelements (MapSite andRoom) that are dependence-
reachable fromRoom.

104 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

3. Software components and their usage examples

In the case of using OO programming languages for the implementation of components,
a component is structurally defined as a reusable/substitutable set of OO classes. However,
this definition does not clarify the requirement for the component’ssubstitutability. The
structural units for programmers are a class and a set of classes. Among various sets of
classes, there is a set that has no hotspots (necessary for OO frameworks) and that can be
manipulated in a uniform way. Such a set of classes can be recognized as a component on
the basis of a particular component architecture that provides a uniform means of using the
set of classes.

In this paper, we target JavaBeans as a component architecture. In the following, we
first refer to the default definition of JavaBeans components. Then, we provide a strict
definition of the reusable component based on JavaBeans. The reusable component, which
satisfies the definition given below, has no dependence on elements outside of itself, and
can be instantiated and used alone.

3.1. Definition of reusable component

Definition 3 (Reusable Component). A reusable component is a set of Java classes/
interfaces that satisfies all the following requirements, (1)–(4), and is packaged into one
JAR file.
(1) The classes can be treated as a JavaBeans component.

To be treated as a JavaBeans component, there are four requirements for the target set of
classes. First, the set must include one Facade class, which plays the role of the facade for
the outside of the classes based on the Facade design pattern [9]. Second, the Facade class
must have one public default constructor (a public constructor without any arguments).
Third, the Facade class must implement thejava.io.Serializable interface because
the Facade class must be serializable to enable saving and restoring of the state of the
component using the Java Serialization APIs. Fourth, the set preferably should be packaged
as one JAR file including a manifest file that explicitly specifies the Facade class.

However, requirement (1) allows components to depend on classes that are not included
in a component’s JAR file. In other words, JavaBeans components can have external
dependencies. Moreover, this requirementdoes not provide any means of using the
components’ functions without an understanding of the content of the components. This
leads to the problem that a JavaBeans component without any additional restrictions is not
reusable in all possible contexts. Therefore, we add the following requirements, (2)–(4), to
ensure that the target component is indeed reusable.
(2) An interface (Facade interface) declaration of the Facade class is separated from its
implementation.

All method invocations from outside a component must be realized via the Facade
interface. This separation ensures that any implementation change for the same interface
does not influence the client sides of the component. Moreover, since the internal structure
is hidden from outside the component, a userneed only understand the Facade interface.
(3) All classes/interfaces necessary for instantiating an object of the Facade class must be
packaged into a component’s JAR file.

H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116 105

The entire component must be instantiated by invoking a default constructor of the
Facade class. To enable this, allclasses/interfaces necessary for instantiating an object of
the Facade class must be distributed to the user. This requirement excludes the possibility
that the component’s participant classesaccess any class outside the component.
(4) All classes in the set, except static classes, must be instantiation-reachable from the
Facade class.

Definition 4 (Static Class). A static class is a class of which all fields and methods are
declared with the modifier “static”. In the following, the expressionStatic(c) is true if
classc is a static class.

Objects of all the component’s participant classes, except static classes, must be directly
or indirectly instantiated by the Facade class.This requirement reduces the necessity of
instantiating and passing objects of the component’s participant classes from the outside of
the component to the component. Therefore, forusers who want to reuse components, the
necessity of understanding the content of components reduces.

For simplicity of description, “component” means the reusable component in the
following. The component based on the above-mentioned definition does not always
represent a semantically reusable component in possible contexts. However, the component
is structurally reusable, because the internal structure is hidden from outside, and the
component can be instantiated/executed independently in other contexts.

3.2. Restriction on target program

As mentioned earlier, it is preferable that the usage example of a component can
be obtained when extracting the component from a program. In this paper, we treat
the program, which instantiates an objectof the component’s Facade class and uses
the component via the Facade interface without instantiating any other objects of the
component’s participant classes, as the usage example. The usage example of the extracted
component helps programmers reuse the component in an appropriate way.

If the target program for extraction satisfies the following two constraints, programmers
can acquire a usage example that appropriately uses the set of Java classes/interfaces
(which satisfies all the above-mentioned requirements) as a component when extracting
the set.

• One or more classes outside of the set have instantiated an object of the Facade class of
the set by using a default constructor of the Facade class. This means that the object of
the Facade class must be instantiated at least once from outside the component.
• Objects of classes in the set, except the Facade class, have not been instantiated by

classes outside of the set. This means that no classes that compose the extracted
component should be treated in any way other than as elements of the component.

4. Component extraction

Using the CRG, the necessary procedures for extracting components and acquiring
usage examples are shown below. The component based on our definition of the reusable
component cannot be extracted by simply grouping dependent OO classes/interfaces.

106 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

The extraction procedures require more complex operations, such as detecting candidates
of Facade classes and creating Facade interfaces.

4.1. Extraction algorithm

Our technique detects all clusters that are candidates of components in the CRG, using
the following clustering algorithm.

Definition 5 (Component Cluster). The pair of the Facade nodeNode(c) and the set of
nodesVc is a cluster, denoted ascs = (Node(c), Vc), in which all of the following
requirements are satisfied. The cluster in the CRG is a candidate for a component.

• Classc is a concrete class that has a default constructor or a constructor with only
primitive types or classes in Java core packages as its arguments (called a “basic
constructor”). This requirement is expressed asDefault(c).
• Vc is a set of all nodes that are dependence-reachable fromNode(c).
• Al l nodes inVc, except the nodes corresponding to static classes, are instantiation-

reachable fromNode(c).

Definition 6 (Clustering Algorithm). The following clustering algorithm GC(u,Γ)

specifies the set of all possible clusters (S = {cs1, . . . , csm}) using a given nodeu as
the starting node for exploration. The starting node is an extraction criterion.

GC(u,Γ)

S← Φ;
Vc← {v | (u ∗⇒ v)};
for_each v f ∈ Vc do

if Default(Node−1(v f))

∧ v f
∗⇒ u ∧ (∀v′ | v′ ∈ Vc⇒ (v f

∗· · · > v′ ∨ Static(Node−1(v′))))
then

S← S∪ {(v f , Vc)};
end_if

end_for

return S;
End_of_GC

Definition 7 (Determination of Usage Example Acquisition). The following boolean ex-
pression VC(cs,Γ) for obtained clustercs= (v f , Vc) and theCRGΓ determines whether
the parts surrounding a component corresponding tocsbecome the usage example of the
component in the target program corresponding toΓ . If VC is true, programmers can use
the target program for extraction as the usage example of the newly extracted component.

VC(cs,Γ)≡ (∃v | v ∈ V − Vc⇒ v
def· · · > v f) ∧ ¬(∃u | u ∈ V − Vc⇒ (∃w |

w ∈ Vc − {v f } ⇒ u
def· · · > w ∨ u

arg· · · > w)).

H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116 107

4.2. Extract component refactoring

When extracting components corresponding to detected clusters after using the
clustering algorithm, the parts surrounding the clusters should be modified to use newly
extracted components in order to avoid the situation where two sets of classes that provide
the same function exist in the same organization/library. At thistime, the surrounding parts
become the usage example of the extracted components.

This modification is a kind of refactoring because this modification does not change the
observable behavior of the original target program for extraction. Refactoring is a technique
for changing the internal structure of existing programs to make them easier to understand
and cheaper to modify, without changing their observable behavior [29,7]. We call this
refactoring “Extract Component”, and all necessary steps for this refactoring are shown
below.

(1) Make aCRG,Γ = (V,Λ, E), of the targetJava program.
(2) As the extraction criterion, select a starting nodeu ∈ V corresponding to a class

which provides the functions that you want to reuse.
(3) Obtain all clusters that containu by applying GC(u,Γ) to Γ .
(4) Select one clustercs = (v f , Vf) from the obtained clustersS = GC(u,Γ). In the

following, classNode−1(v f) is described asc f .
(5) Create a new Facade interfacei f whose name is “I” +〈c f ’s name〉. Implementi f to

c f .
(6) Add the declarations of all public methods implemented within the classes (CE),

which are inheritance-reachable fromc f (CE = {Node−1(v) | (v f
∗−� v) in Γ }),

into i f .
(7) Add the declarations of the setter methods and getter methods corresponding to all

public fields of CE into i f . However, only the getter methods must be added if the
corresponding fields are declared with the accessible modifier “final”. The setter
methods must be named “set” +〈field’s name〉. The getter methods must be named
“get” +〈field’s name〉.

(8) Add the implementations of the setter methods and getter methods, which are newly
declared withini f at Step 7, intoc f . This step is akind of Encapsulate Field
refactoring [7]. The setter methods must be simply implemented to change the value
of the corresponding field using an input value. The getter methods must be simply
implemented to return the value of the corresponding field.

(9) If c f has been used for the types of the method arguments, method return values, or
throwable exceptions, change these types fromcf to i f .

(10) Implement thejava.io.Serializable interface tocf .
(11) Set the protection modifier ofcf to “public”.
(12) If cf has a default constructor, set the protection modifier of the default constructor

to “public”. If c f has only a basic constructor, add a new public default constructor,
which invokes the basic constructor using the initial values of argument types for its
arguments, intoc f . The initial value of each type is uniquely fixed in the following
way.

108 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

• If the typeis a primitive type, the value when only a variable of this type is declared
becomes the initial value. For example, the initial values ofint andboolean are
zero andfalse, respectively.
• If the type is a class in Java core packages, the value when only a public default

constructor of this type is invoked for instantiation of its object becomes the initial
value. If the public default constructor is not available, attempt to obtain the initial
value by an invocation of a constructor,whose number of arguments is the least
among all constructors, using initial values corresponding to types of constructor
arguments recursively.
• Otherwise,null is used as the initial value.

(13) By using a Java compiler, compile the source codes of modifiedc f and newly created
i f .

(14) Create a manifest file, which specifiesc f . Package all class files of classes/interfaces
in Vf andi f into one JAR file. Thename ofc f becomes the component’s name.

Next, if the expression VC(cs,Γ) is true, execute the following steps, 15–17.
(15) Change the program codes, which assign new values to fields ofVE via the reference

type forc f (or refer the values of fields ofVE) in V − Vf , to theprogram codes that
invokethe setter methods (or getter methods) ofc f .

(16) If the implicit widening reference conversion fromc f to another class/interfacece in
VE exists in V − Vf , insert the explicit reference conversion program code, which
converts the reference types fromc f to ce, into allparts where the implicit conversion
exists.

(17) Change the reference types, which refer tocf in V − Vf , to those that refer toi f .

By means of the above-described procedure, programmers can extract components that
can be instantiated independently of other classes/interfaces, and that can be reused via the
Facade interface in other contexts. Moreover,if the determination algorithm determines
that the usage example can beacquired, programmers can use the entire modified program
for extraction as a usage example that appropriately uses the newly extracted component.

For example, we obtained two clusters by applying GC(u,Γ) to the CRGΓ shown in
Fig. 1using all nodes as starting nodes (u ∈ V):

cs1= (Room, {Room, MapSite}),
cs2= (MazeFactory, {MazeFactory, Room, MapSite, Door, Maze, Wall}).

By creating Facade interfaces, the component corresponding tocs1 will encapsulate a
common construct of the maze, and the component corresponding tocs2 will encapsulate
the functionality of making a maze. It is thoughtthat these components can be reused in
the context of developing another maze program.

Among these clusters, VC(cs1,Γ) becomes true, and VC(cs2,Γ) does not. Therefore,
a usage example of a component can be acquired when extracting the component
corresponding tocs1. As a result of the Extract Component refactoring,Fig. 3 shows a
UML classdiagram of a newly extracted component (named “Room”) that corresponds to
cs1.

Fig. 3 shows a newly created Facade interface “IRoom”, which is implemented by
the Facade class “Room”. Moreover, all class files of classes/interfaces (Room, IRoom,

H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116 109

Fig. 3. UML diagram of extracted component.

andMapSite) necessary for instantiating an object ofthe Facade class have been packaged
into one JAR file as a component.IRoom has designated the getter method and the setter
method corresponding toRoom’s public field “roomNumber”, and implementations of
these getter/setter methods have been added toRoom. Since the extracted component is
independent of all other classes/interfaces inthe original program, programmers can reuse
this component via the Facade interface in other contexts.

Fig. 4 shows a part of the changed sample code after the component corresponding
to cs1 has been extracted from the sample code shown inFig. 2. In MazeFactory and
MazePrototypeFactory, the reference types that referred toRoom have been changed
to the reference types that refer toIRoom. Moreover, in MazeFactory, the program
code accessing the public fields ofRoom has been changed to a program code that uses
the setter method, which is newly declared inIRoom. With these modifications, the
extracted component is now used viaIRoom by the component’s clients. At this time,
MazeFactory has become a usage example that instantiates an object of the Facade class
of the component and uses the component via the Facade interface.

5. Automation system and experimental evaluation

5.1. Automatic extraction system

Manually transforming existing programs into components incurs considerable costs.
Some of existing refactoring tools, such as RefactorIT [1] and JRefactory [19], can support
a part of thenecessary steps of our refactoring (e.g. (5)–(8)); however, the overall steps
of the refactoring should be supported by just one tool in order to perform the refactoring
more smoothly and correctly.

110 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

public class Room implements IRoom, MapSite,Cloneable, // Changed
java.io.Serializable { // Changed

...
public void setRoomNumber(int x) { roomNumber = x; } // Added
public int getRoomNumber(){ return roomNumber; } // Added

}

public class MazeFactory { ...
public IRoom makeRoom(int n) { // Changed

IRoom room = new Room(); // Changed
room.setRoomNumber(n); // Changed
return room; }

}

public class MazePrototypeFactory extends MazeFactory { ...
private IRoom prototypeRoom; // Changed
public IRoom makeRoom(int n) { // Changed

IRoom room = (IRoom) prototypeRoom.clone(); // Changed
room.initialize(n);
return room; }

}

Fig. 4. Part of program code after component extraction.

Therefore, we have developed an automatic component-extraction system in Java
language, using JavaCC [17] as a parsergenerator. Our system executes automatically
all the necessary steps of the Extract Component refactoring, except the selection steps
of the starting node and obtained cluster. InFig. 5, our system has analyzed the Prototype
pattern sample code and displayed a CRG. Using the graphical user interface of our system,
programmers can visually confirm the CRG, select a class corresponding to the starting
node, initiate execution of the Extract Componentrefactoring, and obtain changed program
codes and the extracted JavaBeans component.

5.2. Experimental evaluation

We have applied our system to nine Java programs actually used. The evaluated
programs are JUnit [20] (total number of classes/interfaces including inner classes:
181), JBeans [18] (241), Regexp [30] (16), JXPath [21] (121), TableExample [16] (18),
Metalworks [16] (32), SampleTree [16] (18), Font2DTest [16] (20), and FileChooser [16]
(8). No classes in these programs have been packaged as JavaBeans components. We have
attempted to extract all possible components from these four programs, using all classes in
the programs as classes corresponding to starting nodes.

Table 1shows the number of extracted components (denoted as N.All), and the average
value of the number of participant classes/interfaces except the newly created Facade

H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116 111

Fig. 5. Screen shot of extraction system.

interface in each component (#Vc) for each program.Table 1also shows the number of
extracted components that have usage examples, as determined by VC (N.Ex).

Moreover,Table 1shows the number of components for which the measurement value
of the reusability metric DIT [3] or SCCr [37] lies within its confidence interval (N.DIT,
N.SCCr), and the number of components for which at least one measurement value of these
reusability metrics lies within the corresponding confidence interval (N.D∪S).

Definitions of these reusability metrics are shown below.

• Depth of Inheritance Tree (DIT [3]) for the Facade class: the confidence interval is
[lower confidence limit: 2, upper confidence limit: 4]. DIT for the Facade class is the
maximum number of steps from the Facade class to the root of the inheritance tree.
• Self-Completeness of Component’s Return Value (SCCr [37]): the confidence interval is

[0.61, 1.0]. SCCr is the percentage of methods without any return value in all methods,
except the getter and setter methods, implemented within the component.

We previously confirmed that a component’sreusability is high if at least one of the
measurement values of these two metrics lies within the corresponding confidence interval
[37]. By an interval estimation based on the nonparametric test statistic [25], we calculated
the confidence intervals with a confidence coefficient of 95% for these reusability metrics
using all JavaBeans components that were judged to be highly reusable by JARS.COM
[15].

As shown inTable 1, our system has extracted many components, which consist of one
or more classes/interfaces, from four programs regardless of the kind of program.

Fig. 6 shows the histograms of the number of participant classes/interfaces, except the
Facade interface, in each component for all programs. We found that 52.9% of all extracted
components consist of the Facade class and the Facade interface (#Vc = 1), and 47.1%
consist of three or more classes including the Facade interface (#Vc ≥ 2). This result
means that half of all extracted components have been acquired by gathering more than one

112 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

Table 1
Number of extracted components for each program

Program N.All N.Exa N.DIT N.SCCr N.D∪S #Vc

JUnit 11 6 3 7 8 1.5
JBeans 16 9 5 10 12 1.4
Regexp 9 2 1 2 2 4.8
JXPath 22 13 5 7 9 2.6
Metalworks 16 14 6 14 14 5.3
TableExample 5 1 2 2 4 2.0
SampleTree 3 1 1 2 2 7.0
Font2DTest 2 1 0 2 2 19.0
FileChooser 3 2 2 2 3 3.3

Total (Average) 87 49 25 48 56 (3.47)

Fig. 6. Histograms of the number of participant classes/interfaces in each component.

depending classes/interfaces in the original programs. Moreover, even if each of all classes
in the original program can be reused independently, our system is still useful because
our system automatically detects such independence in the classes and correctly extracts a
minimum size component.

Therefore, we note that our approach of detecting and packaging all depending
classes/interfaces into one component automatically has been effective. According to the
definition of the reusable component, it isguaranteed that each extracted component has
no dependence on elements outside of itself, and can be instantiated and used alone.

From the measurement values of reusability metrics, it is found that almost 2/3
(100 × N.D∪S / N.All = 64.4%) of all extracted components are highly reusable.
This result suggests that our system is useful for extracting reusable components
from existing Java programs. For example, from JUnit, we extracted eight components
for which at least one measurement value of the reusability metrics lies within
the confidence interval. The Facade classes of these components areStatusLine,
awtui.ProgressBar, AssertionFailedError, Assert, Sorter, NoTestCaseClass,
swingui.ProgressBar, and TestCaseClassLoader. Many of these components
provide the reusable functions, such as the sorting values, displaying progress bar, and

H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116 113

enabling assertions. This result originates in the fact that the content of JUnit has been
carefully designed to avoid high coupling between classes that do not relate.

In Table 1, more than half (100× N.Exa/ N.All = 56.3%) of all extracted components
have usage examples. In other words, the target programs for extraction in these
experiments can become the usage examples for the majority of extracted components.
This result suggests that our system is useful for acquiring the usage example along with
components when extracting the components.

6. Related work

Our refactoring technique is the first one to reuse existing OO programs by
automatically extracting reusable components along with usage examples. Nonetheless,
our approach bears resemblance to several existing techniques: component extraction,
software clustering, and program/interface slicing.

6.1. Component extraction

There are several techniques for extracting components from object-oriented program
codes or models.

Song has proposed an analysis technique for extracting EJB components from Java
servlet programs [33]. However, the target of this technique has been limited to the Java
servlet. In contrast, the target of our technique is any kind of Java program.

Lorenz has proposed an architectural technique for transforming Java classes into
JavaBeans components [27]. This technique aims to map one class to one component
and map one method to multiple of events. This results in an excessive number of
components for existing classes. In contrast,our technique aims to map multiple classes to
one component.

Lee proposes a component identification technique that can be applied to UML
descriptions based on the class relation graph [24]. However, the necessarysteps for
identification are not automated.

6.2. Software clustering

Software clustering attempts to decompose software systems into meaningful
subsystems to facilitate understanding of those systems or to reuse subsystems.
Conventional clustering techniques can be classified as follows according to the kind of
information they use [22]: domain-model-, dataflow-, connection-, metric-, and concept-
based approaches. However, none of these conventional techniques guarantees that result
set of subsystems have no dependence on elements outside of each subsystem and can be
instantiated/executed as standalone components.

• Domain-model-based approaches use an object model that describes the object
candidates and their relationships [8]. The model is used to recover an architectural
view of the target procedural codes.
• Dataflow-based approaches use dataflow information to identify object candidates and

transform proceduralprograms into object-oriented programs [36].

114 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

• Connection-based approaches cluster entities (variables, types, objects, classes, or
subprograms) based on a specific set of directed relationships between entities to be
grouped [4,11]. For example, Girard has performed the dominance analysis of the
relation on the call graph to group functions/variables into modules and subsystems
as component candidates [11].

• Metric-based approaches cluster entities based on a specific metric. Hutchens’s
approach groups related subprograms using a similarity metric based on data bindings,
which correspond potential data exchange among global variables in programs [14].
Doval’s approach uses a genetic algorithm to determine “good” partitions of the target
system [6]. The algorithm partitions the system into highly cohesive subsystems such
that these subsystems are loosely coupled together.

• Concept-based approaches use the concept analysis to obtain a lattice of concepts, which
are maximal sets of objects sharing common attributes [26,32]. The obtained lattice can
be composed of separate sublattices as component candidates.

Visualization tools for interactive reverse engineering, such as Rigi [28] and Understand
for Java [31], can be used to present an architecture of the target program and to help the
acquisition of dependent classes as subsystems. However, users of these tools must still
perform additional tasks to package dependent classes into one executable component.
Moreover, when two or more related classes are obtained, users must judge which class
plays the role of controlling other obtained classes.

6.3. Slicing

A technique for program slicing can extractexecutable slices from existing OO
programs [23]. Using this technique, programmers can obtain a fine-grained slice
composed of related program statements. However, since it is necessary to specify a certain
variablein the program for slicing, this techniqueassumes that the user knows the detail
of the target program. Therefore, this technique cannot be appropriately applied to OO
programs provided by third parties. In contrast, our technique does not require users to
know the detail (e.g. role/intention of eachvariable) of the third-party programs.

Beck has proposed a module-level slicing technique, called interface slicing, to slice
a subset of the behavior of a single module [2]. However, since this technique does not
concern the relation among modules, slices cannot be composed of operations that belong
to different modules.

7. Conclusion and future work

We have proposed a component extraction technique described as Extract Component
refactoring. Our refactoring identifies the structurally reusable candidate parts of Java
programs, transforms these parts into reusable JavaBeans components automatically, and
modifies the parts surrounding the obtained components in the original programs in order
to acquire the usage example. Moreover, we have developed a system that statically
analyzes Java program source codes and executes all steps necessary for our refactoring
automatically.

H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116 115

As a result of experimental evaluations, we have confirmed that our system can extract
many highly reusable components from Java programs actually used. We have also
confirmed that the target programs for extraction can become the usage examples for
the majority of extracted components. This result suggests that our system is useful for
extracting reusable components along with usage examples from existing Java programs.

Our system is currently developed to accept Java program source codes and extract
JavaBeans components only. However, the clustering method of our technique can be
similarly applied to other component architectures that use statically typed OO languages
for components’ implementation. When applying our technique to other architectures, it
is necessary to change a part of the procedure of our extraction refactoring (especially
(5)–(14)) according to the component’s definition of the selected architectures. We will
extend our system to accept source codes in other programming languages, and extract
components based on other component architectures, such as C++ and ActiveX.

References

[1] Agris Software AS, RefactorIT: Java Refactoring Tool,http://www.refactorit.com/.
[2] J. Beck, D. Eichmann, Program and interface slicing for reverse engineering, in: Proc. 15th International

Conference on Software Engineering, 1993, pp. 509–518.
[3] S.R. Chidamber, C.F. Kemerer, A metrics suite for object orienteddesign, IEEE Transactions on Software

Engineering 20 (6) (1994) 476–493.
[4] A. Cimitile, G. Visaggio, Software salvaging and the call dominance tree, Journal of Systems Software 28

(1995) 117–127.
[5] L.G. DeMichiel, Enterprise JavaBeans 2.1 Specification, Sun Microsystems, 2003.
[6] D. Doval, S. Mancoridis, B.S. Mitchell, Automatic clustering of software systems using a genetic algorithm,

in: Proc. International Conference on Software Tools and Engineering Practice, 1999, pp. 73–81.
[7] M. Fowler, Refactoring: Improving theDesign of Existing Code, Addison-Wesley, 1999.
[8] H. Gall, R. Kosch, J.Weidl, Resolving uncertainties in object-oriented re-architecting of procedural code,

in: Proc. 7th International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, 1998, pp. 726–732.

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, DesignPatterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1994.

[10] E. Gamma, R. Helm, R. Johnson, J. Vlissides, DesignPatterns: Elements of Reusable Object-Oriented
Software (S. Honiden, K. Yoshida Trans.), Softbank Publishing, 1999 (in Japanese).

[11] J.F. Girard, R. Koschke, Finding components in ahierarchy of modules: a step towards architectural
understanding, in: Proc. 13th International Conference on Software Maintenance, 1997, pp. 66–75.

[12] G. Hamilton, JavaBeans 1.01 Specification, Sun Microsystems, 1997.
[13] J. Hopkins, Component primer, Communications of the ACM 43 (10) (2000) 27–30.
[14] D.H. Hutchens, V.R. Basili, System structure analysis: clustering with data bindings, IEEE Transactions on

Software Engineering 11 (8) (1985) 749–757.
[15] JARS.COM,http://www.jars.com/.
[16] Java2SDK1.4.1 demo,http://java.sun.com/.
[17] Java Compiler Complier,http://javacc.dev.java.net/.
[18] JBeans,http://jbeans.sourceforge.net/.
[19] JRefactory,http://jrefactory.sourceforge.net/.
[20] JUnit, http://junit.sourceforge.net/.
[21] JXPath,http://jakarta.apache.org/commons/jxpath/.
[22] R. Koschke, An incremental semi-automatic method for component recovery, in: Proc. 6th Working

Conference on Reverse Engineering, 1999, pp. 256–267.
[23] L. Larsen, M.J. Harrold, Slicing object-oriented software, in: Proc. 18th International Conference on

Software Engineering, 1996, pp. 495–505.

http://www.refactorit.com/
http://www.jars.com/
http://java.sun.com/
http://javacc.dev.java.net/
http://jbeans.sourceforge.net/
http://jrefactory.sourceforge.net/
http://junit.sourceforge.net/
http://jakarta.apache.org/commons/jxpath/

116 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

[24] J.K. Lee, S.J. Jung, S.D. Kim, W.H. Jang, D.H. Ham, Component identification method with coupling and
cohesion, in: Proc. 8th Asia–Pacific Software Engineering Conference, 2001, pp. 79–86.

[25] E.L. Lehmann, Nonparametrics: Statistical Methods Based on Ranks, Holden-Day, 1975.
[26] C. Lindig, G. Snelting, Assessing modular structure of legacy code based on mathematical concept analysis,

in: Proc. 19th International Conferenceon Software Engineering, 1997, pp. 349–359.
[27] D.H. Lorenz, J. Vlissides,Designing components versus objects: a transformational approach, in: Proc. 23rd

International Conference on Software Engineering, 2001, pp. 253–262.
[28] H.A. Muller, M.A. Orgun, S.R. Tilley, J.S. Uhl, A reverse engineering approach to subsystem structure

identification, Journal of Software Maintenance: Research and Practice 5 (4) (1993) 181–204.
[29] W.F. Opdyke, Refactoring object-oriented frameworks, Ph.D. Thesis, University of Illinois at Urbana-

Champaign, 1992.
[30] Regexp,http://jakarta.apache.org/regexp/.
[31] Scientific Toolworks, Inc.: Understand for Java,http://www.scitools.com/uj.html.
[32] G. Snelting, F. Tip, Understanding class hierarchies using concept analysis, ACM Transactions on

Programming Languages and Systems 22 (3) (2000) 540–582.
[33] M.S. Song, H.T. Jung, Y.J. Yang, The analysis technique for extraction of EJB component from legacy

system, in: Proc. 6th IASTED International Conference on Software Engineering and Applications, 2002,
pp. 241–244.

[34] SourceForge.net,http://sourceforge.net/.
[35] C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison-Wesley, 1999.
[36] R.R. Valasareddi, D.L. Carver, A graph-basedobject identification process for procedural programs,

in: Proc. 5th Working Conference on Reverse Engineering, 1998, pp. 50–58.
[37] H. Washizaki, H. Yamamoto, Y. Fukazawa, A metrics suite for measuring reusability of software

components, in: Proc. 9th IEEE International Symposium on Software Metrics, 2003, pp. 211–223.

http://jakarta.apache.org/regexp/
http://www.scitools.com/uj.html
http://sourceforge.net/

	A technique for automatic component extraction from object-oriented programs by refactoring
	Introduction
	Class relation graph
	Software components and their usage examples
	Definition of reusable component
	Restriction on target program

	Component extraction
	Extraction algorithm
	Extract component refactoring

	Automation system and experimental evaluation
	Automatic extraction system
	Experimental evaluation

	Related work
	Component extraction
	Software clustering
	Slicing

	Conclusion and future work
	References

