Comparing RMI,
DCOM, & CORBA

Distributed Object Computing

to integrate heterogeneous appli-
cations. If you read “Flexibility Using
Distributed Object Computing” (Peer
to Peer, spring 1999), you’ll recall that
DOC extends an object-oriented
system by providing a means to

|| .
I n our last issue, we looked at

distribute objects across a network,
allowing each component to inter-
operate as a unified whole. Objects
look “local” to applications, even
though they are distributed to different
computers throughout a network.

In “Flexibility,” we focused on the
Common Object Request Broker
Atchitecture model, but other
approaches are available as well,
including the Distributed Component
Object Model and Java Remote
Method Invocation. Here we’ll
compare all three models, and explain
how each model invokes a remote
method, also known as remoting.

First, a note on remoting. To invoke
a remote method, the client makes a
call to the client-side proxy. The
client-side proxy packs the call
parameters into a request message and
invokes a wire protocol to ship the
message to the server. At the server
side, the wire protocol delivers the
message to the server-side stub. The

ITC is providing to other federal agencies.

server-side stub then unpacks the
message and calls the actual method
on the object. In both CORBA and
Java RMI, the server stub is called the
skeleton and client stub is called the
stub or proxy. In DCOM, the client
stub is called the proxy and the server
stub is called the stub.

CORBA

CORBA depends on an Object
Request Broker¥sa central bus over
which CORBA objects interact
transparently. CORBA uses Internet
Inter-ORB Protocol for remoting
objects. To request a service, a
CORBA client acquires an object
reference to a CORBA server object.
The client then makes method calls on
the object reference as if the CORBA
server object resided in the client’s
address space. The ORB finds a
CORBA object’s implementation,
prepares it to receive requests,
communicates the requests, and
carries the replies back to the client.
CORBA can be used on a range of
operating system platforms, from
hand-held devices to mainframes.

DCOM
Think of DCOM as an extension of
the Component Object Model, a

Paul Augustin is NOLA’ vice president of operations. He is currently assigned as
the contractor assistant general manager for systems architecture and engineering at
the SPAWAR Information Technolgy Center in New Orleans. In this role, he is
responsible for the direction of requirements analysis, architecture, design, and
testing for Navy personnel systems as well as technical support that the SPAWAR

Microsoft framework that supports
program component objects. DCOM
supports remoting objects through a
protocol named Object Remote
Procedure Call. ORPC is a layer that
interacts with COM’s run-time
services. A DCOM setrver is a body of
code capable of serving up particular
objects at run-time. Each DCOM
server object supports multiple
interfaces, each of which represent a
different behavior of the object. A
DCOM client calls into the exposed
methods of a DCOM server by
acquiring a pointer-to-server-object
interface. The client object calls into
the server object’s exposed methods
through the interface pointer, as if the
server object resided in the client’s
address space.

Java RMI

RMI is the Java version of what is
generally known as a remote
procedure call, with the added ability
to pass objects along with the request.
The objects can include information
that change the service performed in
the remote computer. This property of
RMI is often called “moving
behavior.” Java RMI relies on the Java
Remote Method Protocol and on Java
Object Serialization, which allows

objects to be transmitted as a stream.
Since Java Object Serialization is
specific to Java, both the Java RMI
server object and the client object have
to be written in Java.

Java RMI allows client/server
applications to invoke methods across a
distributed network of servers running
the Java Virtual Machine. Although RMI
is considered by many to be weaker than
CORBA and DCOM, it offets such
unique features as distributed automatic
object management and has the ability to
pass objects between machines.

The naming mechanism, RMIRegistry,
runs on the server machine and holds
information about available server
objects. A Java RMI client acquires a
reference to a Java RMI server object by
looking up a server object reference and
invoking methods on the server object,
as if the Java RMI server object resided
on the client. These server objects are
named using Universal Resource
Locators. A client acquires a reference by
specifying the server object’s URL, just
as you would specify the URL to an
HTML page.

While CORBA, DCOM, and Java RMI
all provide similar mechanisms for

transparently accessing remote
distributed objects, DCOM is a
proprietary solution that works best in
Microsoft environments. For an
organization that has adopted a
Microsoft-centered strategy, DCOM is an
excellent choice. However, if any other
operating systems are required in the
application architecture, DCOM is
probably not the correct solution. This
may change as Microsoft attempts to
make DCOM cross-platform compatible.

Because of its easy-to-use native-JAVA
model, RMI is the simplest and fastest
way to implement distributed object
architecture. It’s a good choice for RAD
prototypes and small applications
implemented completely in Java. Since
RMT’s native-transport protocol, JRMP,
can only communicate with other Java
RMI objects, it’s not a good choice for
heterogeneous applications.

CORBA and DCOM are similar in
capability, but DCOM doesn’t yet
support operating system interoperability,
which may discount it as a single
solution. At the moment, CORBA is the
logical choice for building enterprise-
wide, open-architecture, distributed-
object applications.

