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Abstract ponent (hints: call to memory deallocation routines like

. . free
Bauhaus is a research collaboration between the )

department for programming languages and compilers at ° modlfler operation: changes the state of an existing
the University of Stuttgart and the Fraunhofer institute for  (instance of the) component (hints: the data of the com-
experimental software engineering in Kaiserslautern. At ~ Ponent are changed)

last year's Bad Honnef workshop [2], we have outlined ¢ accessor operation returns information about an
future research topics of Stuttgart’'s Bauhaus group. This  existing (instance of the) component without changing
year, we summarize the achievements of the last 12 months it (hints: the data of the component are not changed)
and elaborate our research directions in more detail. This A subprogram can play different roles with respect to

paper specifically addresses continued research in compo-gifferent types, and the classification could be used to
nent recovery based on previous work [7] that additionally assign the Subprogram to the type for which it p|ays a
Ieverages our new infrastructure for control and data flow closer related role according to the fo||owing priority: con-
analyses. The paper introduces also relatively new stryctor/destructor > modifier > accessor.
research to recover protocols for the identified compo- Program S|icing techniques and points-to ana|yses for
nents. function pointer for more acurate call graphs may be an
avenue to come to finer-grained analyses with more reli-
1. Improved Component Recovery via Static ability. Moreover, component recovery can be combined
Control and Data Flow Analyses with other architectural research in Bauhaus, such as fea-

ture location and connector recovery [9] in order to iden-
A componentis a computational unit of a system. tify subsystems.

Components consist of an interface, which offers the
resources (types, variables, subprograms) of the compo2 Protocol Validation
nent, and the implementation of these resources. The
resources of the component coherently contribute to the During design, a system architect decomposes a larger
purpose of the component. Anterface has a syntactic  software system into smaller and more manageable com-
part that declares the resources provided by the componenponents. For each component, he or she defines an inter-
and a semantic part that describes how the component is tdace of exported declarations. Likewise, by semi-
be used correctly. Any possible use of a resource providedautomatic component recovery, we may be able to identify
by the interface is said to be aperation of the compo-  the components and, given these, the externally used
nent. Operations, hence, range from subprogram callsresources of the components can be identified as the pro-
variable accesses, instance creations to accessing individvided interface. However, semi-automatic component
ual record components of types provided by the compo-recovery can only identify the syntactic interface. Simi-
nent. larly, in forward engineering, often the semantic part is

Component recovery has been studied extensivelyonly described with some informal comments. Consider
within Bauhaus [7]. The overall result is that current tech- Figure 1 as an example of a syntactic interface of a com-
nigues that use coarse information about the relationshipsponentStack
among types, variables, and subprograms fall short of
needed precision. Leveraging our new infrastructure for
control and data flow analyses we want develop better
techniques based on more fine-grained information. An _ _
avenue, for instance, is to refine the so-called accessor Vo'd Push (Stack*S, ltemi);
classification approach by Wirthner and Girard [8], in /_/ pushes i onto S as top element
which subprograms are classified into one or more of the ~ Void Pop (Stack *S);
following classes (while Wirthner and Girard have just /I removes top element from S
looked at the subprogram signature to decide these cases, '€ Top (Stack S);

. /I return top element of S

we are planning to analyze the subprogram body as
described as hints in the following): int Empty (Stack S); // true if S is empty
void Release (Stack *S); // destructor

typedef struct {ltem contents[100];
int top; } Stack;

Stack Init (); // constructor

« constructor: the subprograms creates a new (instance

of the) component (hints: call to memory allocation Figure 1. Interface of Component Stack.
routines likemallog setting record components with With only the syntactic interface, it is not clear how the
literals) component is to be used correctly. Generally, the exported

« destructor: releases an existing (instance of the) com- declarations of an interface entails constraints that cannot



be specified by conventional programming languages. Forlike aliasing and infeasible paths, are generally undecid-
instance, the subprograms offered in the interface may beable at compile time. In the view of static traces as a gram-
subject to certain restrictions of allowed call sequences. If mar, one may, hence, state that static traces may often be
an actual call sequence violates the given restrictions, aconsidered a grammar that defines a superset of the actu-
failure at run-time may occur. Such failures are often hard ally possible dynamic traces. A static trace that was
to find, because they may become visible only long after extracted via infeasible paths or an overestimation of alias-
the actual fault happened. ing and that cannot really occur at runtime will be called
For this reason, the allowable way of using a compo- aninfeasible static trace in the following. One must also
nent needs to be explicitly specified. This specification is note, that due to the problem of reaching full coverage of
called theprotocol of the component. Without protocol all possible inputs is neither feasible in practice, dynamic
specification, the programmer does not know how to useanalysis neither gives the set of all possible dynamic
the component. Likewise will a technical auditor without traces. Both static and dynamic analysis are, thus, approxi-
specification not be able to validate the component. If such mations where static analysis yields the upper bound of all
an specification does not exist or if it is obsolete, it needs possible traces and dynamic analysis the lower bound.
to be derived. Hints on the correct usage of the component o
may be derived from its implementation directly. We call 2.2. Protocol Validation
this glass-box understandinigecause the implementation
of the component is investigated. Complementary, or even
alternatively if the implementation is too difficult to under-
stand or not available, one can also look at the actual
usages of the component in — preferably correct — pro-
grams. The strategy to derive hints on a component by
looking on how it is used without looking at the imple-
mentation will be calletlack-box understanding

The purpose oprotocol validation is to validate that
each traces conforms to the specified protocol. Protocols
are typically checked at run-time. However, to be on the
safe side, one has to validate protocols statically. Static
protocol validations has to check that every static trace is
either infeasible or is covered by the protocol specifica-
tion. It goes without saying that protocol validation can
only be done semi-automatically since many questions
related to protocol validation are generally undecidable.
However, it would still be very useful for large systems to

The actual use of a component may be derived by at least identify the potential mismatches between static
dynamic or static analysis. For a dynamic derivation, one traces and the specified protocol and then let the user
would prepare use cases that require a certain componentlecide whether the static traces actually do not conform to
instrument the source or object code, execute the programthe protocol. Again, both static traces and protocols
and then use a profiler to extract the executed operationgdescribe a language. Thus, for such a validation, one basi-
of a component adynamic tracesfor each program run.  cally has to show that the language described by the static
The advantage of dynamic analysis is that it yields pre- traces is a subset of the language described by the proto-
cisely what has been executed. The problem of aliasing,col. Unfortunately, verifying this property is only possible
where one does not exactly know at compile time what for regular languages in general. Consequently, different
gets indirectly accessed via an alias, does not occur forauthors have proposed to use finite state automata to spec-
dynamic analysis. Moreover, infeasible paths, i.e., pro- ify protocols [1, 8]. These protocols express the sequenc-
gram paths for which a static analysis cannot decide thating constraints on a component’s operations only.
they can never be taken, are excluded by dynamic analysisConstraints on the data passed to the components, for
too. On the other hand, dynamic analysis lacks from the instance, are not part of sequencing constraints. For exam-
fact that it yields results only for one given input or usage ple, it cannot be expressed with finite state automata that
scenario. In order to find all possible dynamic traces of the the element that is currently being retrieved from a con-
component, the use cases have to cover every possible praainer component must have been added before.
gram behavior. However, full coverage is generally impos-  In order to validate a static trace against a protocol, one
sible because there may be principally endless repetitionscan simply carry out the following procedure:
of operations. 1. represent the static trace and protocol by two deter-

Static analysis may derive all possible traces - so-called  mjnjstic finite state automata,andP, respectively,

2.1. On Static and Dynamic Traces

static traces- regardless of the actual input. Static traces
represent the statically derived potential execution
sequences of a component’s operations. As operation, we
consider any usage of a resource exported by the compo-
nent, including subprogram calls, access to a global vari-
able of the component’s interface, and access to a record
component of any type provided by the component. The
connection between static and dynamic traces is that each
dynamic trace is an instance of a static trace. To put it dif-
ferently, static traces can be viewed as a grammar and a
dynamic trace is a word derived from this grammar.
However, in many cases, static analysis can only safely
extract static traces by making conservative assumptions
on the program because many questions relevant to traces,
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2. combine these two automata by adding one new start-
ing node,S, plus two epsilon transitions froi@ato the
starting nodes of andP; where the accepting states
of the new combined automata is the union of the
accepting states dfandP,

minimize the combined automata using Moore’s algo-
rithm [5],

and check whether every stateof T has at least one
equivalent statep, of P in the minimized combined
automata and, if is an accepting statg is also an
accepting state.

An alternative approach was proposed by Olender and

3.
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Osterweil, who use a data flow framework in which state neither compact nor feasible for cycles in the call graph.
transitions are propagated through the control flow graph  The individual intraprocedural static trace of a local
[8]. The advantage of their approach is that it does not variable or a parameter can be ascertained by a traversal of
only check universally quantified but also existentially the control flow graph that collects all operations in which

guantified constraints. the instance is passed as an argument and all operations
) ) that return a value assigned to the instance. For global
2.3. Static Trace Extraction variables as instances, an analogous traversal of the call

In order to validate static traces against a protocol bothgraph ' neec.je'd combined with an mtr'aprocedur'al tra-
; . . NN versal of the visited subprograms (excluding operations of

static traces and protocollmust exist. While static traces,[he component, of course, as they are considered atomic).

can be extracted automatically, the protocol needs to beInstances can also be introduced as record components of

specified Zy dthe tprograrrllmer. I—!ovxiﬁver, |ftthe Iorlltglnal dprct)- composite variables but they can be handled analogously
grammer did not properly specify the protocol, it needs to to regular local or global variables or formal parameters,

be derlvedthI_igmeor:_e wr:jo m'ggt nc;;[ be fam|l|atr W':h Ehﬁ depending upon the scope of the enclosing variable.
component. This section describes how we extract stalic o problem exists for instances that occur in an array.

traces. _Sectlon 2.4 dgpmts .hOW protocols can be SeMieqy arrays, we can not decide which elements are really
autom_atlcally gscerta_med using these extracted traces angccessed in run-time determined subscripts. For validation
other information derived from source code. purposes, we have to treat the array as an atomic instance

(ij th%componentsl mgerfgc;e ctc;]nsstts;_oftgIobalivana_ble\? and to collect all operations that involve the array itself or
and subprograms only, deriving Iné staic traces 1S a simp eany of its elements. Generally, this leads to imprecise

traversal of the interprocedural and intraprocedural control results and the maintainer or auditor needs to be notified
flow grgph that collects the accesses to the global variableq:or protocol recovery based on extracted static traces, one
belonging tpdtr:jebcomponent and tth_e iﬁ”s tc()j thg Suaprg'could also ignore arrays. An even more difficult problem
grams provided by the component in the order In WhIC qyists for instances created on the heap. Similarly to

the|¥ tcr)]ccur in the cct)ntrol ﬂtOV\t" arrays, we can combine all instances created at a certain
¢ € ct?{nponen (;xporfs )l/pes, ?tp;]rogra;mmerbmzy clre- heap allocation. The particular heap allocation then serves
ate an aroitrary humber of values ot these ypes by declar-,q 5 atomic instance. Additionally, we have to track the

Ing instances as global or local vangbles or formal pointers referring to the instance created on the heap in
parameters or via dynamically creatgd Instances on theorder to identify operations that involve the instance.
heap. In case of m_stances, .the_ §tat|c traces need to b ence, a points-to analysis is needed. Points-to analysis is
extracted for each instance individually. Actually, these also required to precisely keep track of references to a
instances are only carriers for values of these types and WE& 4 lue via aliases.

are rather interested in the operations executed on the val- The combination of static traces of all instances and
ues. For example, a stack instance may b? deC'aTed* th_e'ﬂjrther operations provided by the component make up the
!n|t|al|zed, some elements may pushed on it, and finally it static traces for the component as a whole. If there are no
is passed as an actual parameter to anot.her Sut.)progr"’mbependencies between individual traces of instances and
The formal pargmeter, .|r_1_tu.rn, that receives this stack other operations of the component, one can simply unite
value now carries an initialized noq-empty stack and, the static traces. If one cannot exclude dependencies, the
hen_ce, may apply at least omap tp it. Consequently, static trace for the component as a whole is the sequence
assignments anq parameter passing need_to “be treategf all operations disregarding which instance is passed,
propgrly. h.c there is a full assignment afto b, I.|ke b:= which is basically an interleaving of all individual static
&, binherits _the state dd and, hence, the static traf:eaaf traces and further operations. For instance, if the stack
that led to this state. The former valueais overwritten constructor crashes if a certain limit of instances has been

{ahndt ';S I|fet|m|e ebnds. A new Ilge;mehbegl?s.for dthbe Vtilue exceeded and, therefore, requires that a certain operation,
at has newly been assigneddpcharacterized by the may_create is called that checks that the number of

mhtetrltecti s(,jta}[trl]c ttrace ?)j l\l ote t.h dat padrtlal asygr:m ents;re." instance is still below that limit, then any valid static trace
not treated that way but considered an operation and will ;¢ expected to haveay_createbefore it constructor call,

be part of the static trace. Qne may argue that= b.chr even thoughmay_createhas not an argument of type
all components;, of aandb is equivalent to a total assign- Stack

rrllent.a ::r?.' I:owever, we do not re?lli/ ?xpec.t many e>l<amt-) Our current prototypical static trace extraction is a con-
PIes In which a programmer Completely assigns a vaiu€ by yq|_fiow oriented traversal that is ignoring aliasing [3].

enllJDmeraUr;g assignm ents_tc;:‘ atl)l p:ﬁrts. | d ref Only recently, we have finished a points-to analysis based
arameter passing wi oth “value and Telerence ,, \yjson's dissertation [10], which we now started to

semantics are just special cases of assignments. In order tﬁwtegrate with the static trace extraction. The new precise
explicitly represent passing values between carriers as

. . _static trace extraction will be along our static single
subprogram parameters, we simply link the current static

i fih tual ter to the f linout ¢ assignment form and be analogous to interprocedural slic-
race ot the actual parameter to the formalinput parame ering [6], where only def-use data dependencies of instances
and — in case of output parameters — back from the end of

. and control dependencies are relevant. An interestin
the static trace of the formal parameter to the actual P 9

X . . . result will be to compare the static traces extracted by the
parameter. This representation allows maximal sharing for

different approaches.
formal parameters of subprograms called more than once. PP

Copying the static traces to and from formal parameters is

3



2.4. Protocol Recovery data flow analysis. Note the absence of data dependency is
not always sufficient to decide whether reordering does
Although research has answered the question on hownot effect the semantics of the program, as exemplified by
protocols (limited to sequencing constraints that can bethe following example of two operations, in which
described by finite state automata) can be validated [8],is_initialized must be called beforis_emptyeven though

there is no research on how to get these protocols if thethere is no data dependency between these functions:
original programmer did not specify them — at least to our

best knowledge. int is_initialized int is_empty (Stack *s) {
Principally, there are three different sources of informa- (Stack*s) { return s->size > 0;
tion in order to find hints on the actual protocol for an M s!=NULL} }
undocumented component: Another non-semantics-preserving transformation is,

¢ for instance, marking an operation that does not change
the state of a component as optional if no other operation
. L is control-dependent on it, which may trigger further
’ _extra_-component information, i.e., how the component transformations. Additional examples can be found in [4].
is being used, The user can add information on semantic equivalence
« and domain knowledge, i.e., how components of a par- of certain operations, opening new opportunities for fur-
ticular domain are typlcaIIy Organized. ther graph transformations.
Intra-component information may be used to identify
dependencies between operations of a component and majReferences
help to d_ecide v_vhether individual traces of instances may 11 Butkevich Ren M. Baumaartner nd Youna. M
be cong,ldered_ independent a_nd, hence, need not be col[-] ‘ggn?pi;r’a‘?na .ﬁo(;dghpp’ortaf%r %aeLuZéﬁé %Sje;uP?c,)to-,
lapsed into an interleaved static trace for the componentas  cols', Proceedings of the eighth international symposium on
a whole. We intend to use our side-effect analysis for gath- ~ Foundations of software engineering for twenty-first

* intra-component information, i.e., the source code o
the component itself,

ering information on additional dependencies. century applications, 2000, pp. 50 - 59.
Extra-component information is based on the static [2] Czeranski, J., Eisenbarth, T., Kienle, H., Koschke, R., and
traces that we extract for uses of the component. Simon, D., ‘Wiedergewinnung von Architekturinforma-

Domain knowledge is needed to relate the operations to Eggﬁg; riﬁﬁg“?ﬁ% rﬁéﬁ\ﬁlorl'jsnri‘\f’eﬂsﬁggt"g;eﬁgel_”friggﬁ”“g/v
the application domain and to understand their semantics. 45, pp. 21-23 ' '
Since our protocol recovery is semi-automatic, domain '

. [3] Hanssen, S., ‘Extraktion statischer Traces zur Wiedergewin-
knowledge is integrated by way of the user who recovers nung von Protokollen’, Studienarbeit Nr. 1768, Institut fur

the protocol. _ _ o Informatik, Universitat Stuttgart.
Our method to recover protocols is an iterative interac- [4] Heiber, T., ‘Semi-automatische Herleitung von Komponen-

tive process using the extracted static traces as a starting * tenprotokollen aus statischen Verwendungsmustern’, Diplo-
point and unifies them into protocols [4]. The user triggers marbeit Nr. 1822, Institut fur Informatik, Universitat
automatic analyses that identify (potential) opportunities  Stuttgart.

where static traces can be unified and validates them.[5] Hopcraft, J.E., and Ullman, J.D., ‘Introduction to Automata
Since both static traces and protocols are finite state Theory, Languages, and Computation’, Addison-Wesley,
automata according to our point of view and, hence, basi- 1979.

cally graphs, the unification is a set of graph transforma- [6] Horwitz, S., Reps, T., Binkley, D., ‘Interprocedural slicing
tion rules, where the semantics of these transformations ~ USing dependence graph&#CM Transactions on Program-
can be specified in terms of the underlying language the- ™9 Languages and Systemesl. 12, no. 1, pp. 26-60, Janu-

- . : ary 1990.
ory for finite state automata. We can identify two alterna- ‘ . .
tive transformations: Koschke, R., ‘Atomic Architectural Component Recovery for

Program Understanding and Evolution’, Dissertation, Institut
« semantically preserving transformations, i.e., transfor- fiir Informatik, Universitat Stuttgart, 2000,

[7

—_—

state automata, [8] Olender, K.M., and Osterweil, L.J., ‘Interprocedural Static
. . Analysis of Sequencing Constraints’, ACM Transactions on

gn_d transformations that do change the language of the g oo Engineering and Methodology, Vol. 1, No.1, pp.

finite state automata but that could still be allowable. 21-52, January 1992.

In the class of semantics-preserving transformations[9] Simon, D., and Eisenbarth, T., ‘Feature Location and Con-
fall conversion of non-deterministic automata into deter- nector Recovery: New Approaches for Software Understand-

ministic ones and minimization of the finite state automata  ing’, submitted to 3. Workshop Software Reengineering, Bad

by way of Moore’s algorithm. If two static traces are not ~ Honnef, 2001.

completely equivalent or subsume each other, Moore’s [10]Wilson, R.Efficient, Context-Sensitive Pointer Analysis for

algorithm at least identifies common suffixes. A reversed ~ C Programs’, Dissertation, Stanford University, USA, 1997.

version of Moore’s algorithm is also able to identify com- [11]Girard, J.-F., Wirthner, M., ‘Evaluating the Accessor Classi-

mon prefixes fication Approach to Detect Abstract Data Type’, 8th Interna-

P ’ . L tional Workshop on IWPC Program Comprehension, pp 87-

In the category of transformations that do not maintain g5 june 2000

the semantics but that could still be allowable, we can

offer, for instance, reordering of operations if they do not

have any data dependency according to intra-component
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