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Abstract
The  analysis of  large  execution traces  is  almost
impossible without efficient tool support.  Lately,
there has been an increase in the number of tools
for analyzing traces generated from object-orient-
ed systems. This interest has been driven by the
fact that polymorphism and dynamic binding pose
serious  limitations  to  static  analysis.  However,
most of the techniques supported by existing tools
are found in the context of very specific visualiza-
tion schemes, which makes them hard to reuse. It
is also very common to have two different tools
implement the same techniques using different ter-
minology. This appears to result from the absence
of  a  common  framework  for  trace  analysis  ap-
proaches. This paper presents the state of the art
in the area of trace analysis. We do this by analyz-
ing  the  techniques  that  are  supported  by  eight
trace exploration tools.  We also discuss their ad-
vantages and limitations and how they can be im-
proved. 

1 Introduction
Maintaining  a  poorly  documented  system  is  a
difficult task. Reverse engineering tools can help
with several maintenance activities such as source
code exploration, data flow analysis,  and design
and architecture recovery. The common objective
is  to  extract  high-level  views  from  low-level
components to facilitate the comprehension of the
system. Most of these tools rely on static analysis
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of  the  source  code,  since  the  documentation  is
often deemed to be out of date.

Static  analysis  has  been  shown  to  be
successful  for  procedural  software  systems;
however,  polymorphism  and  dynamic  binding
make  it  difficult  to  fully  understand  object-
oriented  systems  by  merely  performing  static
analysis [16]. For such systems, there is a need to
apply dynamic analysis techniques.

Dynamic  analysis  consists  of  analyzing  the
behavior of  a  software  system  to  extract  its
proprieties.  Ball  explains  that  run-time
information has  the  advantages  of  being precise
and being sensitive to the input data [1]. Indeed,
dynamic analysis typically involves instrumenting
the  program  under  investigation.  Unlike  static
analysis, where the analyst needs to go through the
many  different  relationships  of  all  the  system
artifacts, dynamic instrumentation can be tuned to
collect only the information needed to perform the
maintenance  activity  at  hand.  Also,  system
execution  can  be  driven  by  specific  input  data
which provides a powerful mechanism for relating
program  inputs,  program  outputs  and  program
behavior.  This  can  help  software  engineers
understand  the  program  by  looking  at  how  it
changes according to different inputs and outputs. 

The  behavioral  aspect  of  object  oriented
systems  consists  mainly  of  interactions  between
objects.  However,  important  interactions  are
usually  hard  to  extract  because  they  are  often
mixed  with  low-level  implementation  details
generating very large traces. 

Research in this area has led to many tools to
tackle this problem. In this paper, we present an
analysis of eight tools. The goal is to uncover the
underlying  concepts  behind  these  tools  in  an
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attempt to build a common core of techniques that
can be useful  for  understanding the behavior  of
object-oriented  systems.  To  achieve  this,  we
present  the  advantages  and  limitations  of  these
tools. We also discuss how we think they can be
improved, and outline key research questions that
need to be addressed. 

Pacione et al. [19] conducted a study in which
they  evaluated  five  tools  based  on  how  they
enabled a number of program comprehension and
reverse engineering tasks such as identifying the
system architecture, extracting design patterns etc.
Their conclusion is that none of the tools performs
well for all tasks and some of the tasks are even
beyond all of the tools. A key difference between
Pacione’s  work  and  this  paper  is  that  the
maintenance  activities  targeted  are  totally
different.

There  are  several  aspects  of  an  execution
trace that can be studied. In our study, we focus on
the following points:

• How  do  the  studied  tools  model  large
execution traces?

• What levels of abstraction can be achieved by
the tools?

• What techniques are used to reduce the size of
the traces? 

This paper is organized as follows: first,  we
describe  traces  of  object  interactions  in  a  more
precise way and discuss the techniques that allow
generating them. Next, we describe the tools cho-
sen for this study. Finally, we present a detailed
analysis of these tools by exhibiting their advan-
tages, limitations and ways of improving them.

2 Traces of Object Interac-
tions

Objects interact by sending messages, which can
be depicted using a UML sequence diagram. Fig-
ure  1  shows an  example  of  interactions  among
three objects of the classes C1, C2 and C3 respec-
tively.  Traces of object interactions are also re-
ferred to as traces of method invocations or sim-
ply traces of method calls.

To reproduce the execution of an object-ori-
ented  system,  one  needs  to  collect  at  least  the
events related to object construction and destruc-
tion and method entry and exit [4]. Additional in-
formation can be collected as well. For example,
if the system is multi-threaded then events related
to thread execution will  need to be collected.  A
more  practical  way  of  representing  traces  of
method calls is using a tree structure [6]. For ex-
ample, the tree in Figure 2 corresponds exactly to
the sequence diagram presented in Figure 1. Time
flows from top to bottom and from left to right. 

:C1 :C2

m1

m2

m4

m3

:C3

Figure 1: Object interaction depicted by a se-
quence diagram

:C2.m1

:C3.m2

:C1.m4

:C3.m3

:C1.-

Figure 2: Tree representation of an object interac-
tion trace

It is very common that traces, once generated,
are saved in text files. A trace file usually contains
a sequence of lines in which each line represents
an event. An example of this representation is giv-
en  by  Richner  and  Ducasse  in  [20].  Each  line
records: The class of the sender, the identity of the
sender, the class of the receiver, the identity of the
receiver  and the method invoked.  The order  of
calls can be maintained in two ways, either each
entry and exit of the method is recorded, which re-
sults  is  a  very  large  trace  file,  or  an  integer  is
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added to represent the nesting level of the calls. In
this case, we do not need to record the exit event
of a  method as shown by the following illustra-
tion.

Assuming that obj1 is a unique identifier of
the object  :C1 and that  obj2 represents  :C2 and
obj3 represents :C3, the trace file that corresponds
to the trace of Figure 1 should have the following
events:
Sender Sender Receiver Receiver Called Nesting
Class ID Class ID method Level

C1 obj1 C2 obj2 m1 1

C2 obj2 C3 obj3 m2 2

C3 obj3 C3 obj3 m3 3

C1 obj1 C1 obj1 m4 1

There are different techniques for generating
traces of method calls. The first technique is based
on instrumenting the source code, which consists
of inserting probes (e.g. a print statement) at dif-
ferent locations in the source code. In the context
of object-oriented systems, probes are usually in-
serted at each entry and optionally each exit of ev-
ery method. Instrumentation is usually done auto-
matically. 

Another technique for collecting run-time in-
formation consists of instrumenting the execution
environment in which the system runs. For exam-
ple, the Java Virtual Machine can be instrumented
to generate events  of interest.  The advantage of
this technique is that it does not require the modi-
fication of the source code. 

Finally, it  is also possible to run the system
under  the  control  of  a  debugger.  In  this  case,
breakpoints are set at locations of interest (e.g. en-
try and exit of a method). This technique has the
advantage of not modifying the source code and
the environment; however, it can slow down con-
siderably the execution of the system.

3 Tools and Techniques
In this section, we present the tools that are chosen
for this study. We selected this tools based on the
numerous concepts they implement. This does not
represent all the tools that exist in the literature. It
is  also important  to mention that  some of  these
tools are not openly available and their analysis is
based on the scientific publications that describe

them.  We  exclude  from  our  analysis  tools  that
deal  with distributed systems  for  simplicity  rea-
sons.

3.1 Shimba
Systä presents a reverse engineering environment,
called Shimba, which combines static and dynam-
ic analysis to understand the behavior of Java soft-
ware systems [21,  22,  23,  24].  Static analysis is
used to select a set of components that need to be
examined later  during dynamic  analysis.  Systä’s
approach is based on the fact that a software engi-
neer does not  need to trace the whole system if
only a specific part needs to be analyzed. 

For this purpose, the system artifacts and their
inter-dependencies  are  extracted  from  the  Java
class files and viewed using a reverse engineering
tool called Rigi [17]. In Rigi, all the artifacts are
shown as nodes and the dependencies are shown
as directed edges between the nodes. Shimba con-
siders the following system artifacts: classes,  in-
terfaces,  methods,  constructors,  variables,  and
static  initialization  blocks.  The  dependencies
among these artifacts include inheritance relation-
ships, containment relationships (e.g. a class con-
tains a method), call relationships and so on. Us-
ing Rigi, a software engineer can run a few scripts
to exclude the nodes that are not of interest and
keep  only those  she  or  he  wants  to  investigate.
Breakpoints are then set at events of interest (e.g.
the entry of a method or a constructor) of the se-
lected classes. The target system is executed under
a customized debugger and the trace is collected. 

The next step is to analyze the trace. For this
purpose, a software engineering tool called SCED
is used [15]. SCED permits representing execution
traces in the form of scenario diagrams -scenario
diagrams are similar to UML sequence diagrams.
SCED  has  the  ability  to  extract  state  machines
given several scenario diagrams. 

Although the execution trace represents only
the classes that were selected using static analysis,
Systä recognizes the fact that these traces may still
be large. To overcome this problem, she applies
the  Boyer-Moore  string  matching  algorithm  to
SCED  scenario  diagrams  in  order  to  detect
repeated  sequences  of  identical  events  that  she
refers to as behavioral patterns. She distinguishes
between  two  kinds  of  behavioral  patterns.  The
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first  one  is  related  to  contiguous  repetitions  of
sequences of events due to loops. These patterns
are shown using a repetition construct that exists
in SCED. The second type consists of behavioral
patterns that occur in a non-contiguous way in the
trace.  They  are  represented  using  subscenarios
constructs, which consists of boxes that are added
to  SCED scenario  diagrams.  A subscenario  box
encapsulates  the  events  of  an  instance  of  the
behavioral pattern. A user can double click on a
subscenario  box  to  display  the  detailed  pattern
information.

3.2 ISVis
ISVis is a visualization tool that supports analysis
of execution traces of object-oriented systems [11,
12]. ISVis is based on the idea that large execution
traces are made of recurring patterns, referred to
as  interaction patterns, and that visualizing these
patterns is useful for reverse engineering. Interac-
tion patterns are in fact the behavioral patterns as
described in Shimba.

The execution trace  is  visualized using two
kinds of  diagrams:  the  information  mural  and a
temporal  message-flow  diagram  (a  variant  of
UML sequence diagrams). The two diagrams are
connected and presented on one view called the
scenario view as shown in Figure 3. The informa-
tion mural uses visualization techniques to create
a miniature representation of the entire trace that
can easily show repeated sequences of events. The
temporal message-flow diagram is used to display
the detailed content of the trace. The software en-
gineer can spot a pattern on the information mural
view, select it and investigate its content using the
temporal message-flow diagram.

To  deal  with  the  size  explosion  problem,
ISVis  uses  an algorithm that  detects  patterns  of
identical sequences of calls. Given a pattern, the
user can search in the trace for an exact match, an
interleaved match, a contained exact match (com-
ponents in the trace that contain components in the
pattern) and a contained interleaved match. Addi-
tionally, the user can use wildcards to formulate
more general search queries. 

Another  important  feature  of  ISVis  is  that
trace events can be abstracted out using the con-
tainment relationship. For example, a user can de-
cide to hide the classes that  belong to  the same

subsystem and only show the interactions between
this  subsystem and the  other  components  of  the
trace. 

Figure 3: ISVis scenario view which consists of
the information mural view (on the right) and the

temporal message-flow diagram (center).

In [12], Jerding et al. describe a data structure
for  the  internal  representation  of  traces.  This  is
based  on  the  idea  that  a  trace  of  method  calls,
which is a tree structure, can be transformed into
its  compact  form,  which  results  in  a  directed
acyclic graph where the same subtrees are repre-
sented only once. This representation allows ISVis
to scale up to very large traces.

3.3 Ovation
De Pauw et al. introduce a tool called Ovation [6].
Unlike  Shimba  and  ISVis,  Ovation  is  based  on
visualizing traces using the execution pattern view
[6],  which  is  not  a  form  of  UML  sequence
diagrams. According to the authors, the execution
pattern view, which is a tree-like structure view as
shown in Figure 4, is less cumbersome than UML
sequence diagrams. This view lets the user browse
the program execution at various levels of detail.
For  example  the  user  can  collapse  and  expand
subtrees, show only messages sent to a particular
object,  remove  contiguous  repetitions  of
sequences of calls, zoom in and out the trace panel
and many other useful visualization features.

To  overcome  the  size  explosion  problem,
similar sequences of events are shown as instances
of the same pattern. The patterns are then color
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coded to allow software engineers to notice them
easily.

Figure 4: The Execution Pattern view of Ovation
However, the authors notice that exact match

results in several patterns that do not reduce much
of the size problem. For this purpose, they present
a set of matching criteria that can be used to de-
cide when two sequences of events can be consid-
ered equivalent [6]. We summarize the main crite-
ria in what follow: 

• Identity:  Two sequences  of  calls  are  consid-
ered instances of the same pattern if they have
the same topology: same order, objects, meth-
ods, and so on.

• Class  Identity:  If  two sequences  of  calls  in-
volve  the  same  classes  but  different  objects
then they can be considered similar according
to this criterion. 

• Depth-limiting: This criterion consists of com-
paring two sequences up to a certain depth on-
ly. 

• Repetition: It is very common to have two dif-
ferent sequences of calls that differ only by the
number of repetitions due to loops and recur-
sion. If this number is ignored then these two
sequences can be considered equivalent. 

• Polymorphism: This criterion suggests consid-
ering two subclasses of the same base class as
the same. However, this applies only if they in-
voke the same polymorphic operations. 

Although these criteria seem to be interesting,
the  authors  do  not  discuss  whether  they can be
combined or not and if yes, how? The paper also
lacks statistical  data  to  support  the use of  these
criteria.  For  example,  it  would be  interesting to

know the gain in terms of the number of patterns
that results after applying a given matching criteri-
on.

3.4 Jinsight
Jinsight is a Java visualization tool that shows the
execution  behavior  of  Java  programs  [3,  4].
Jinsight  provides  several  views that can be very
helpful  for  detecting  performance  problems.
These views can be summarized  in what follows:

• The Histogram View helps the analyst detect
performance bottlenecks. It also shows object
references,  instantiation  and  garbage
collection.

• The Execution View: This view displays the
program  execution  sequence  (Figure  5).  It
helps  the  analyst  understand  concurrent
behavior,  thread  interactions  and  detect
deadlocks.

• The Reference Pattern View: It is used to show
the  interconnections  among objects.  For  this
purpose,  Jinsight  implements  pattern
recognition  algorithms  to  reduce  the
information  overhead.  In  fact,  this  view  is
equivalent  to  the  pattern  execution  view  of
Ovation introduced  by the  same authors  and
that was described in the previous subsection.

• The Call  Tree  View:  shows the sequence of
method  calls,  including  the  number  of  calls
and  their  contribution  to  the  total  execution
time as shown in Figure 6.

Figure 5: Jinsight Execution View

Jinsight is heavily tuned towards performance
analysis  rather  than  program  comprehension.
However, according to the authors, the reference
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pattern  and  the  call  tree  views can  be  used  for
general understanding of the system execution. 

Jinsight uses a model introduced by De Pauw
et al. in [5] for representing the information about
the  execution  of  an  object-oriented  program.
Interesting  events  are  object
construction/destruction  and  method  invocation
and  return.  They  organized  these  artifacts  in  a
four-dimensional  event  space  having  axes  for
classes, instances, methods and time as shown in
Figure  7.  Each  point  corresponds  to  an  event
during  program  execution.  Information  is
extracted by traversing or projecting one or more
dimensions of the space in different combinations
to produce subspaces. 

Figure 6: Jinsight Call Tree View
However,  the  event  space  of  even  a  small

system  might  be  very  large.  To  overcome  this
problem, the authors introduce the concept of call
frames.  A call  frame is a combination of events
that  depicts  a  communication pattern  between a
set of objects. For example, consider a method m1
of class c1 that calls a method m2 of class c2. This
sequence typically involves an object o1 of c1 and
an object  o2 of c2 (this does not apply if  static
methods are used). The whole sequence is saved
as one call  frame instead of saving every single
event of this sequence.

 Statistical information can also be computed
at  the  same  time  the  system  executes.  For
example,  we  can  associate  to  the  previous  call
frame the number of times the method m1 calls
m2 or the number of times the class c1 calls c2.
For  this  purpose,  the  authors  use  several  data
structures to represent the call frames. 

Figure 7: Four-dimensional event space used by
Jinsight to represent trace events

Although this technique might result in a sig-
nificant  reduction of  the number  of  events,  it  is
more tuned to performance analysis than program
comprehension. Indeed. Most of the visualization
views presented in the authors of Jinsight, which
are built on the top of this model, exhibit statisti-
cal information only and are similar in principle to
the way profilers work.

3.5 Program Explorer
Program Explorer is a C++ exploration tool that
focuses on analyzing interactions between objects
and classes [16].The authors start by introducing a
common model and notation for OO program exe-
cution. Interactions between objects are modeled
using a directed graph called the iteraction graph
(Figure 8). The nodes of the graph represent ob-
jects  and the arcs represent  method invocations.
Arcs are labeled with the name of the method, the
time at which the invocation of the method takes
place and the time at which the execution returns
to the caller. 

Figure 8: The interaction graph is used by Pro-
gram Explorer to represent object interactions 
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To  overcome  the  size  explosion  problem,
Program  Explorer  uses  several  filtering  tech-
niques, which are: 

Merging: Using  Program Explorer,  the  analyst
can  merge  arcs  that  represent  identical  methods
between pairs  of  objects.  The  resulting graph is
called the Object Graph and emphasizes how ob-
ject interacts but hides the order and the multiplic-
ity  of  invocations.  Furthermore,  the  analyst  can
merge objects of the same classes into one node to
reduce the number of nodes. The resulting graph
is called the Class Graph and focuses on class in-
teraction rather than object interaction. An exam-
ple of the class graph is shown in Figure 9. This is
similar in principle to the pattern matching criteria
that are supported by Ovation and Jinsight. 

Figure 9: An example of the class graph. A class
graph focuses on class interactions rather than ob-

ject interactions

Pruning: Pruning is the process of removing in-
formation from the interaction graph in order  to
reduce  its  size.  Program  Explorer  implements
three  kinds  of  pruning:  object  pruning,  method
pruning and class pruning. Pruning an object con-
sists of removing its corresponding node from the
interaction graph. The incoming and outgoing arcs
of  this  node are  also  removed.  Method  pruning

consists of performing the same task on specific
methods.  The subsequent invocations that  derive
from them are also removed. Pruning can also ap-
ply to inheritance hierarchies  and is  called class
pruning.  Class  pruning  consists  of  the  fact  that
pruning a superclass method will result in pruning
this  method at  the  subclasses  level.  The several
pruning techniques are exactly similar to the many
different browsing capabilities that exist in ISVis,
Ovation and Jinsight.

Slicing: Object slicing is similar to dynamic slic-
ing and aims at keeping all the activation paths in
which the object participates. That is, all the other
paths are removed from the graph. Method slicing
accomplishes the same task as object slicing ex-
cept that it focuses on keeping specific methods of
an object.

3.6 AVID
Walker et al. describe a tool, called AVID (Archi-
tecture  Visualization  of  Dynamics  in  Java  Sys-
tems), for visualizing dynamic behavior at the ar-
chitectural level [26]. AVID uses run-time infor-
mation and a user-defined architecture of the sys-
tem to create a dynamic view of the system com-
ponents and the way they interact. 

First,  the  analyst  creates  a  trace  about  the
calls between methods and about the instantiation
and destruction of objects. Next, she or he needs
to cluster classes into components called entities.
In AVID, clusters are represented as boxes and the
dynamic relationships extracted from the trace as
directed  arcs  as  shown  in  Figure  10.  An  arc
between two entities A and B is labeled with the
number of calls the methods of the classes in A
make  to  the  methods  of  the  classes  in  B.
Instantiation and destruction of objects are shown
as  bar-chart  style  of  histograms associated  with
each box. 

In AVID, the analyst can control the sequence
of events she or he wants to visualize. This is done
by breaking the execution trace into a sequence of
views called cels. Animation techniques allow the
analyst  to show the whole execution cel  by cel,
which is also called the play mode, stop the ani-
mation,  as  well  as  go  forward  and  backward.
These techniques aim at reducing the information
overhead  when  dealing  with  large  execution
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traces.  Furthermore,  AVID  contains  a  summary
view in which all the interactions are shown.

Figure 10: Interactions among the system clusters
as represented by AVID. Here, the analyst has re-

played the execution and stopped at Cel#14

Although animation techniques  can  help re-
duce  the  information  overhead,  traces  are  very
large and there is a need to investigate more tech-
niques to reduce their size. In [2], AVID was im-
proved to consider compression techniques based
on sampling. The authors describe a set of sam-
pling parameters that can be used by the analyst to
consider only a sample of the execution trace. For
example,  the analyst  can choose  the  events  that
appear after a certain timestamp only or a snap-
shot of the call stack every xth event and so on. 

However, there is a lack of scientific evidence
regarding which parameters are best to use. If they
work for a given scenario they may not work for
another one as shown by the results of the experi-
ments conducted by the authors of AVID in which
some parameters  worked for  one case study but
did not work for the other case study.

3.7 Scene
Koskimies and Mössenböck present a tool called
Scene (Scenario Environment) that is used to pro-
duce  scenario  diagrams  from  a  dynamic  event
trace [13, 14]. The authors notice that horizontal
scrolling  makes  the  diagrams  cumbersome  and
there is a need for techniques that center the infor-
mation  conveyed  by  scenario  diagrams  on  the
screen.  They  name  this  problem  the  focusing
problem and suggest several visualization-orient-

ed techniques to solve it. Among these techniques,
we have:

Call  Compression: This  technique  consists  of
collapsing the internal calls that derive from a giv-
en call. A click on this call will result in making
its internal calls visible. Figure 11 shows an exam-
ple  of  three calls  that  have been collapsed.  The
user can click on these calls to view the internal
calls they generate. 

Partitioning:  It is very common that the internal
calls  of  a  given call  may not  fit  on the  screen,
therefore, Scene divides these calls into parts.  A
click on a part will show only the calls that it en-
capsulates. 

Projection and removal: This  operation allows
the user to select an object and show only the in-
teractions that involve its methods. The other in-
teractions are then hidden. 

Single-step mode: The  single-step mode  allows
the user to display the internal calls of a given call
one step at a time by clicking on the last visual-
ized call. 

Scene  provides  also  a  call  summary  view
which consists of a call matrix that shows how the
classes interact between each other. 

Figure 11: The calls Install and Do have been col-
lapsed. The user can click on these calls to see the

methods they invoke

3.8 The Collaboration Browser
Richner and Ducasse describe a tool called Col-
laboration Browser that is used to recover object
collaborations from execution traces [20].

The authors define a collaboration instance as a
sequence of method invocations that starts from a
given method and  terminates  at  its  return point.
This includes a single method call that does not
generate  other  calls.  Similar  collaboration  in-
stances  define a  collaboration  pattern (which is
similar  to Shimba behavioral  patterns and ISVis
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interaction  patterns).  Similarity  is  measured  ac-
cording to three kinds of matching criteria:
Criteria based on information about the event:
An event in the trace contains information about
the sender, receiver and the invoked method. The
analyst can choose to include or omit any of these
attributes in the matching process.  For example,
the  analyst  may  decide  to  ignore  the  invoked
method and match two sequences of  calls  using
the sender and receiver classes (or objects) only.
These  represent an extension to  the criteria  that
are supported by Ovation. 

Excluding  events: This  category  allows  the
analyst to exclude specific events in the matching
scheme. For example,  the analyst may decide to
ignore events in which an object sends a message
to itself or events that appear after a certain depth
in the trace and so on.

Structure  of  the  collaboration  instance: A
collaboration  instance  is  a  tree  of  events.  The
authors notice that similar collaboration instances
may differ in their structure and still represent the
same behavior.  Therefore,  one can consider two
collaboration  instances  as  instances  of  the  same
collaboration pattern if they contain the same set
of events no matter in which order they occur or
their nesting relationships.

Once the classes that constitute a given collab-
oration  are  determined,  the  user  can  query  the
trace  or  the  collaboration  pattern  to  extract  the
role of each of its classes, which corresponds to
their public methods. In addition to that, the tool
enables the developer to filter out dynamic infor-
mation by removing classes or  methods that are
not of interest.  The tool  can also display an in-
stance  of  a  collaboration  pattern  as  a  UML se-
quence diagram. 

The  authors  conducted  an  experiment with a
framework  for  the  creation  of  graphical  editors
called HotDraw. They were interested  in under-
standing the implementation of one aspect of this
framework, which is concerned with the tools that
are responsible for creating and manipulating fig-
ures.  First, they instrumented all the methods of
the system. Next, they run a short scenario that in-
volves  the  feature  under  analysis.  The  resulting
trace contains 53735 method invocations.

To extract collaboration patterns, the authors,
arbitrarily,  picked  several  matching  criteria.  For
example, they decided to ignore self-invocations,
limit  the  depth  of  invocation  to  20  and  not
consider  the  tree  structure  of  collaboration
instances  during  the  matching  process.  183
patterns were generated.

The next step is to query the patterns to ex-
tract only the collaboration patterns that describe
the implementation of the feature under analysis.
This process is iterative and assumes that the ana-
lyst has knowledge of the system so to know what
to look for.  

4 Discussion
The  following  discussion  summarizes  the  main
concepts that are implemented by these tools. We
also  discuss  the  advantages  and  limitations  of
these  concepts  and  suggest  possible  improve-
ments. This discussion is based on three main cri-
teria, which aim at answering the three questions
mentioned  in  the  introduction  section.  We  list
these  criteria  in  what  follows  and  elaborate  on
them in more details in the next subsections:

• Criteria with respect to modeling the execution
traces

• Criteria with respect to the level of abstraction
achieved by these techniques

• Criteria with respect to reducing the size of the
traces

4.1 Modeling Execution Traces
In  order  to  visualize  and analyze  large  program
executions, an efficient representation of the event
space is needed. Unfortunately, most of the tools
mentioned above do not even discuss this aspect,
which makes us have doubts regarding their scala-
bility.  It is also important to note that most of the
experiments that are conducted by the authors of
these  tools  are  based  on  very  small  execution
traces. 

Among the tools that do discuss modeling is-
sues, ISVis seems to implement the most interest-
ing approach. ISVis uses a graph-theory concept
that consists of transforming a rooted, labeled tree
into a directed acyclic graph by representing iden-
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tical  subtrees  only  once.  This  concept  is  also
known as the common subexpression problem and
was first introduced by Downey et al. in [7].

In our recent work [9], we experimented with
the idea of transforming the tree into an acyclic
graph and found that  this technique can reach a
very high compression ratio. Although, we need to
experiment with several  other traces,  we believe
that  this  technique  can  help  built  very  scalable
tools.

Another  interesting  approach  for  modeling
large execution traces is implemented in Jinsight.
As we showed earlier, Jinsight uses the call frame
principle  to  represent  cumulative  information
about  the  traces  such  as  the  number  of  calls  a
method A makes to B and so on. However, the ap-
proach  supported  by Jinsight  is  more  useful  for
performance  analysis  than  program  comprehen-
sion.  

Finally, Trace Explorer uses a graph to repre-
sent the execution traces, where the nodes repre-
sent the objects and the arcs represents the method
calls. However, this technique requires extra data
structures  to  keep  track  of  the  order  of  calls,
which makes traversing the graph time consum-
ing. 

In  addition  to  this,  the  lack  of  a  common
modeling  technique  hinders  interoperability  be-
tween these tools. There is a need to work towards
a common format for exchanging traces of object
interactions. A common exchange format can also
help researchers to use different tools on the same
input in order to compare the techniques. 

In our recent study, we presented the Com-
pact Trace Format (CTF), which is a schema for
exchanging traces of object interactions [10]. CTF
is built with the idea of scalability in mind. Al-
though, this work is still in progress, we believe
that it is a step forward towards building a com-
mon exchange format for object-oriented dynamic
information.

4.2 Levels of Abstraction
A key aspect of reverse engineering is to extract
different levels of abstraction of a software sys-
tem.  There seems to  be an agreement about the
levels  of  abstraction  that  are  needed  for  under-
standing the system functionality based on analyz-
ing its  execution traces.   Using these tools,  one

can view the content of an execution trace at some
of  the following levels of abstraction:

Statement level: this level includes the execution
of every single statement of the code. Most of the
tools do not offer this view except debuggers. This
level of abstraction suits best specific maintenance
activities such as fixing bugs.

Object level: this level is concerned with visualiz-
ing method interactions among objects. This level
can be useful for detecting memory leaks and oth-
er  performance  bottlenecks.   Most  of  the  tools
support this level.

Class level: in this level, objects of the same class
are substituted with the name of their classes. This
level, that is supported by most of the tools, suits
best activities that require high-level understand-
ing of the system behavior such as recovering the
documentation,  understanding  which  classes  im-
plement a particular feature etc.

Architectural level: this level consists of group-
ing classes into clusters and showing how the sys-
tem components interact  with each other.  AVID
seems to be the tool that focuses most on analyz-
ing  this  kind  of  interactions.  For  example,  with
AVID,  one can display how many calls  a  given
subsystem make to another subsystem etc.

Inter-thread communication level: although this
paper does not focus on multi-threaded systems, it
is important to notice that none of these tools ex-
cept Jinsight implement the capability of viewing
the  interactions  between the  system threads.  On
the other hand, the tools that do usually do not al-
low viewing the system at the other levels of de-
tail.

4.3 The Size Explosion Problem
A key element for a successful dynamic analysis
tool consists of implementing efficient techniques
for reducing the amount of information that exist
in the traces.  We classify the techniques used by
these tools into two categories. The first category
is concerned with the ability to browse the content
of  the  trace  easily,  search  for  specific  elements
and  so  on.  We call  this  category:  Trace  Explo-
ration. The second category is concerned with the
ability to reduce the size of the trace by removing
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(or hiding) some of its components. We call this
category of techniques: Trace Compression. 

Trace exploration techniques are tightly cou-
pled  with  the  visualization tools  that  implement
them. Generally speaking, using these techniques
an analyst can browse, animate, slice or search the
traces. It  seems that there is an agreement about
the importance of such techniques in reducing the
information overhead and most of the tools seem
to support these features. Trace Exploration is also
concerned  with  techniques  that  allow  searching
the trace content for specific components. ISVis,
for example, allows the user to perform the search
using  wildcards  to  formulate  more  general
queries. 

Trace compression techniques operate on the
execution  traces  independently  from any visual-
ization scheme. The goal is to hide some elements
from the trace in order to compress it – by com-
pression; we mean reducing its size. For this pur-
pose, we found that the tools implement different
techniques  that  we present  in  what follows.  We
also discuss their advantages and limitations.

Data Collection Techniques:  The collection  of
trace data can be done either at the system level or
at  the  level  of  selected  components.  These  two
approaches  have  their  advantages  and
disadvantages. The advantage of the system-level
data collection approach is  that  the analyst does
not need to  know which components implement
the feature under study.  However,  the resulting
execution traces are usually very large and need to
be  preprocessed.  The  component-level  data
collection technique has the obvious advantage of
resulting in smaller execution traces but requires
from the analyst to know which components need
to  be  instrumented.   Shimba,  for  example,
involves the analyst for detecting the components
that  implement  the  desired  feature.  We  do  not
think that this is very practical in many situations.
For complex features, this may take a long time.
There is a need for feature localization techniques
such as the ones described by Wilde et al. [27] and
Eisenbarth et al. [8]. 

Pattern Matching:  Most of the tools use pattern
detection abilities  to group similar  sequences  of
events in the form of execution patterns.  Execu-
tion patterns have been named differently includ-
ing behavioral patterns in Shimba, interaction pat-

terns in ISVis, collaboration patterns in The Col-
laboration Browser.   Patterns are efficient at re-
ducing the size of traces if  they are  generalized
[6].  For  this purpose,  different  matching criteria
are used such as the ones implemented in Ovation
and The Collaboration Browser.  Some matching
criteria require the setting of some parameters. For
example, the depth-limiting criterion presented in
Section 3.3.  involves  setting  the  depth at  which
two sequences of events need to be compared. The
challenge is to find the appropriate settings for un-
derstanding the feature under study. Furthermore,
the different combinations of the matching criteria
will result in different compressions of the trace.
There  is  a  need  to  analyze  which  combinations
best suit the comprehension process. Another seri-
ous  limitation  of  most  of  the  studies  presented
above is that they do not give any statistics regard-
ing the compression gain attained. They also did
not experiment with many software systems.

Sampling:  Sampling is an interesting way of re-
ducing  the  size  of  the  trace  and  was  used  in
AVID. It is concerned with choosing only a sam-
ple of the trace for analysis instead of the whole
trace. However, finding the right sampling param-
eters is not an easy task and even if some parame-
ters work for understanding one feature, it is not
evident that they work for another feature. 

Hiding Components:  Another way for reducing
the trace size is to hide some of its components.
For example,  the analyst may decide to hide all
the invocations of a specific method. Most of the
tools  implement  capabilities  for  removing
information  from  the  trace.  The  Collaboration
Explorer  and  Program  Explorer,  for  example,
allow  the  analyst  to  remove  methods,  specific
objects or even classes from the trace. Pruning and
slicing are two concepts used in Program Explorer
that achieve this. However, it is totally up to the
maintainer to decide which components to hide. 

In  a  recent  study conducted by Zayour and
Lethbridge [28] involving a large real world pro-
cedural  telecommunication  system,  the  authors
showed  that  not  all  of  the  procedures  have  the
same degree of importance. Some procedures can
be simple utilities (e.g. sorting an array) and re-
moving them would not affect much the compre-
hension process.  We think that this could be ap-
plied to object-oriented systems as well. In object
oriented systems, utility methods (by analogy with

11



procedures)  are  very  frequent  due  to  encapsula-
tion.  For  example accessing methods are  a  very
good example of such methods. In addition to this,
methods  can be  removed not  only because  they
are utilities. For example, an abstract method usu-
ally  corresponds  to  an abstract  operation that  is
implemented in different ways. Since we seek ab-
straction,  it  may  improve  comprehensibility  to
hide the calls  made by the various polymorphic
implementations of an abstract  operation. Future
research  should  focus  on  finding  heuristics  that
can be used to hide automatically elements from a
trace without affecting its content.

Architectural-level  filtering:  Another  ap-
proach  for  reducing  the  size  of  the  traces  is  to
show the dynamic behavior between the architec-
tural  components  of  the  system  rather  than  be-
tween single objects. For this purpose, the analyst
first determines the system architecture (if it is not
available) and then the execution trace is abstract-
ed out to show the interaction between these com-
ponents.  However,  this  approach  can  help  soft-
ware engineers understand the system at the archi-
tectural level only. In addition to this, it requires
the system architecture to be present. AVID, for
example,  assumes  that  the  analyst  is  familiar
enough  with  the  system  to  cluster  classes  into
components. However, this is not always true in
practice. There is a need for automatic clustering
techniques such as the ones described by Müller et
al. in [18] and Tzerpos et al. in [25].

Conclusions and Future Di-
rections

In this paper,  we studied the concepts imple-
mented in eight reverse engineering tools for ana-
lyzing traces of object interactions. The goal is to
work  towards building  a  common core  of  tech-
niques for the efficient analysis of the behavior of
OO systems. We found that these tools use a very
rich set  of  techniques  that  are  worth integrating
into one common framework.  Using these  tech-
niques, a maintainer is provided with features that
enable them to:

1. Explore the trace and search for specific com-
ponents

2. View the trace content at different levels of ab-
straction (e.g. object interactions, class interac-
tion, etc…)

3. Filter the trace content by using several tech-
niques (e.g. pattern matching, sampling etc.)

In all but the first of these, any implementing
tool would need to allow the maintainer consider-
able  control  over  how the  technique  is  applied.
This is because the needs for trace abstraction and
compression will vary from task to task and per-
son to  person.  For example,  for  feature  3,  there
will be individual parameters to adjust, e.g. so the
maintainer  can  control  what  she  or  he  wants  to
hide.

One direction for future work would be to in-
vestigate how the system could automatically  or
semi-automatically  suggest  appropriate  settings
for  the  parameters  of  features  2 and 3.  Settings
could be determined based on the nature of  the
trace, and the current goals and experience of the
maintainer. Machine learning could be employed
to  help  tune  the  settings  by  learning  over  time
from the adjustments maintainers make. 

There is also a need for fundamental research
in several areas: For example, we need to investi-
gate what can be removed from the trace without
affecting its content. We also need to experiment
with a much larger variety of software systems to
understand how to combine the compression tech-
niques in order to extract the most important inter-
actions. For this purpose, we might find it useful
to  start  by  assessing  the  gain  in  terms  of  the
amount information that  remains  after  removing
unnecessary data. 

There is also a need for a common metamodel
for representing the execution traces of object-ori-
ented systems in order  to permit  interoperability
among tools. The reader might find the Compact
Trace Format (CTF) [10] useful for this purpose.
We are actually in the process of testing this for-
mat with large execution traces. 

Finally, the suite of techniques described in this
paper needs to be integrated with appropriate visu-
alization techniques. 
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