
A Survey of Trace Exploration Tools and Techniques

Abdelwahab Hamou-Lhadj
University of Ottawa

SITE, 800 King Edward Avenue
Ottawa, Ontario, Canada K1N 6N5

ahamou@site.uottawa.ca

Timothy C. Lethbridge
University of Ottawa

SITE, 800 King Edward Avenue
Ottawa, Ontario, Canada K1N 6N5

tcl@site.uottawa.ca

Abstract
The analysis of large execution traces is almost
impossible without efficient tool support. Lately,
there has been an increase in the number of tools
for analyzing traces generated from object-orient-
ed systems. This interest has been driven by the
fact that polymorphism and dynamic binding pose
serious limitations to static analysis. However,
most of the techniques supported by existing tools
are found in the context of very specific visualiza-
tion schemes, which makes them hard to reuse. It
is also very common to have two different tools
implement the same techniques using different ter-
minology. This appears to result from the absence
of a common framework for trace analysis ap-
proaches. This paper presents the state of the art
in the area of trace analysis. We do this by analyz-
ing the techniques that are supported by eight
trace exploration tools. We also discuss their ad-
vantages and limitations and how they can be im-
proved.

1 Introduction
Maintaining a poorly documented system is a
difficult task. Reverse engineering tools can help
with several maintenance activities such as source
code exploration, data flow analysis, and design
and architecture recovery. The common objective
is to extract high-level views from low-level
components to facilitate the comprehension of the
system. Most of these tools rely on static analysis

Copyright  2004 Abdelwahab Hamou-Lhadj and Tim-
othy C. Lethbridge. Permission to copy is hereby grant-
ed provided the original copyright notice is reproduced
in copies made.

of the source code, since the documentation is
often deemed to be out of date.

Static analysis has been shown to be
successful for procedural software systems;
however, polymorphism and dynamic binding
make it difficult to fully understand object-
oriented systems by merely performing static
analysis [16]. For such systems, there is a need to
apply dynamic analysis techniques.

Dynamic analysis consists of analyzing the
behavior of a software system to extract its
proprieties. Ball explains that run-time
information has the advantages of being precise
and being sensitive to the input data [1]. Indeed,
dynamic analysis typically involves instrumenting
the program under investigation. Unlike static
analysis, where the analyst needs to go through the
many different relationships of all the system
artifacts, dynamic instrumentation can be tuned to
collect only the information needed to perform the
maintenance activity at hand. Also, system
execution can be driven by specific input data
which provides a powerful mechanism for relating
program inputs, program outputs and program
behavior. This can help software engineers
understand the program by looking at how it
changes according to different inputs and outputs.

The behavioral aspect of object oriented
systems consists mainly of interactions between
objects. However, important interactions are
usually hard to extract because they are often
mixed with low-level implementation details
generating very large traces.

Research in this area has led to many tools to
tackle this problem. In this paper, we present an
analysis of eight tools. The goal is to uncover the
underlying concepts behind these tools in an

1

attempt to build a common core of techniques that
can be useful for understanding the behavior of
object-oriented systems. To achieve this, we
present the advantages and limitations of these
tools. We also discuss how we think they can be
improved, and outline key research questions that
need to be addressed.

Pacione et al. [19] conducted a study in which
they evaluated five tools based on how they
enabled a number of program comprehension and
reverse engineering tasks such as identifying the
system architecture, extracting design patterns etc.
Their conclusion is that none of the tools performs
well for all tasks and some of the tasks are even
beyond all of the tools. A key difference between
Pacione’s work and this paper is that the
maintenance activities targeted are totally
different.

There are several aspects of an execution
trace that can be studied. In our study, we focus on
the following points:

• How do the studied tools model large
execution traces?

• What levels of abstraction can be achieved by
the tools?

• What techniques are used to reduce the size of
the traces?

This paper is organized as follows: first, we
describe traces of object interactions in a more
precise way and discuss the techniques that allow
generating them. Next, we describe the tools cho-
sen for this study. Finally, we present a detailed
analysis of these tools by exhibiting their advan-
tages, limitations and ways of improving them.

2 Traces of Object Interac-
tions

Objects interact by sending messages, which can
be depicted using a UML sequence diagram. Fig-
ure 1 shows an example of interactions among
three objects of the classes C1, C2 and C3 respec-
tively. Traces of object interactions are also re-
ferred to as traces of method invocations or sim-
ply traces of method calls.

To reproduce the execution of an object-ori-
ented system, one needs to collect at least the
events related to object construction and destruc-
tion and method entry and exit [4]. Additional in-
formation can be collected as well. For example,
if the system is multi-threaded then events related
to thread execution will need to be collected. A
more practical way of representing traces of
method calls is using a tree structure [6]. For ex-
ample, the tree in Figure 2 corresponds exactly to
the sequence diagram presented in Figure 1. Time
flows from top to bottom and from left to right.

:C1 :C2

m1

m2

m4

m3

:C3

Figure 1: Object interaction depicted by a se-
quence diagram

:C2.m1

:C3.m2

:C1.m4

:C3.m3

:C1.-

Figure 2: Tree representation of an object interac-
tion trace

It is very common that traces, once generated,
are saved in text files. A trace file usually contains
a sequence of lines in which each line represents
an event. An example of this representation is giv-
en by Richner and Ducasse in [20]. Each line
records: The class of the sender, the identity of the
sender, the class of the receiver, the identity of the
receiver and the method invoked. The order of
calls can be maintained in two ways, either each
entry and exit of the method is recorded, which re-
sults is a very large trace file, or an integer is

2

added to represent the nesting level of the calls. In
this case, we do not need to record the exit event
of a method as shown by the following illustra-
tion.

Assuming that obj1 is a unique identifier of
the object :C1 and that obj2 represents :C2 and
obj3 represents :C3, the trace file that corresponds
to the trace of Figure 1 should have the following
events:
Sender Sender Receiver Receiver Called Nesting
Class ID Class ID method Level

C1 obj1 C2 obj2 m1 1

C2 obj2 C3 obj3 m2 2

C3 obj3 C3 obj3 m3 3

C1 obj1 C1 obj1 m4 1

There are different techniques for generating
traces of method calls. The first technique is based
on instrumenting the source code, which consists
of inserting probes (e.g. a print statement) at dif-
ferent locations in the source code. In the context
of object-oriented systems, probes are usually in-
serted at each entry and optionally each exit of ev-
ery method. Instrumentation is usually done auto-
matically.

Another technique for collecting run-time in-
formation consists of instrumenting the execution
environment in which the system runs. For exam-
ple, the Java Virtual Machine can be instrumented
to generate events of interest. The advantage of
this technique is that it does not require the modi-
fication of the source code.

Finally, it is also possible to run the system
under the control of a debugger. In this case,
breakpoints are set at locations of interest (e.g. en-
try and exit of a method). This technique has the
advantage of not modifying the source code and
the environment; however, it can slow down con-
siderably the execution of the system.

3 Tools and Techniques
In this section, we present the tools that are chosen
for this study. We selected this tools based on the
numerous concepts they implement. This does not
represent all the tools that exist in the literature. It
is also important to mention that some of these
tools are not openly available and their analysis is
based on the scientific publications that describe

them. We exclude from our analysis tools that
deal with distributed systems for simplicity rea-
sons.

3.1 Shimba
Systä presents a reverse engineering environment,
called Shimba, which combines static and dynam-
ic analysis to understand the behavior of Java soft-
ware systems [21, 22, 23, 24]. Static analysis is
used to select a set of components that need to be
examined later during dynamic analysis. Systä’s
approach is based on the fact that a software engi-
neer does not need to trace the whole system if
only a specific part needs to be analyzed.

For this purpose, the system artifacts and their
inter-dependencies are extracted from the Java
class files and viewed using a reverse engineering
tool called Rigi [17]. In Rigi, all the artifacts are
shown as nodes and the dependencies are shown
as directed edges between the nodes. Shimba con-
siders the following system artifacts: classes, in-
terfaces, methods, constructors, variables, and
static initialization blocks. The dependencies
among these artifacts include inheritance relation-
ships, containment relationships (e.g. a class con-
tains a method), call relationships and so on. Us-
ing Rigi, a software engineer can run a few scripts
to exclude the nodes that are not of interest and
keep only those she or he wants to investigate.
Breakpoints are then set at events of interest (e.g.
the entry of a method or a constructor) of the se-
lected classes. The target system is executed under
a customized debugger and the trace is collected.

The next step is to analyze the trace. For this
purpose, a software engineering tool called SCED
is used [15]. SCED permits representing execution
traces in the form of scenario diagrams -scenario
diagrams are similar to UML sequence diagrams.
SCED has the ability to extract state machines
given several scenario diagrams.

Although the execution trace represents only
the classes that were selected using static analysis,
Systä recognizes the fact that these traces may still
be large. To overcome this problem, she applies
the Boyer-Moore string matching algorithm to
SCED scenario diagrams in order to detect
repeated sequences of identical events that she
refers to as behavioral patterns. She distinguishes
between two kinds of behavioral patterns. The

3

first one is related to contiguous repetitions of
sequences of events due to loops. These patterns
are shown using a repetition construct that exists
in SCED. The second type consists of behavioral
patterns that occur in a non-contiguous way in the
trace. They are represented using subscenarios
constructs, which consists of boxes that are added
to SCED scenario diagrams. A subscenario box
encapsulates the events of an instance of the
behavioral pattern. A user can double click on a
subscenario box to display the detailed pattern
information.

3.2 ISVis
ISVis is a visualization tool that supports analysis
of execution traces of object-oriented systems [11,
12]. ISVis is based on the idea that large execution
traces are made of recurring patterns, referred to
as interaction patterns, and that visualizing these
patterns is useful for reverse engineering. Interac-
tion patterns are in fact the behavioral patterns as
described in Shimba.

The execution trace is visualized using two
kinds of diagrams: the information mural and a
temporal message-flow diagram (a variant of
UML sequence diagrams). The two diagrams are
connected and presented on one view called the
scenario view as shown in Figure 3. The informa-
tion mural uses visualization techniques to create
a miniature representation of the entire trace that
can easily show repeated sequences of events. The
temporal message-flow diagram is used to display
the detailed content of the trace. The software en-
gineer can spot a pattern on the information mural
view, select it and investigate its content using the
temporal message-flow diagram.

To deal with the size explosion problem,
ISVis uses an algorithm that detects patterns of
identical sequences of calls. Given a pattern, the
user can search in the trace for an exact match, an
interleaved match, a contained exact match (com-
ponents in the trace that contain components in the
pattern) and a contained interleaved match. Addi-
tionally, the user can use wildcards to formulate
more general search queries.

Another important feature of ISVis is that
trace events can be abstracted out using the con-
tainment relationship. For example, a user can de-
cide to hide the classes that belong to the same

subsystem and only show the interactions between
this subsystem and the other components of the
trace.

Figure 3: ISVis scenario view which consists of
the information mural view (on the right) and the

temporal message-flow diagram (center).

In [12], Jerding et al. describe a data structure
for the internal representation of traces. This is
based on the idea that a trace of method calls,
which is a tree structure, can be transformed into
its compact form, which results in a directed
acyclic graph where the same subtrees are repre-
sented only once. This representation allows ISVis
to scale up to very large traces.

3.3 Ovation
De Pauw et al. introduce a tool called Ovation [6].
Unlike Shimba and ISVis, Ovation is based on
visualizing traces using the execution pattern view
[6], which is not a form of UML sequence
diagrams. According to the authors, the execution
pattern view, which is a tree-like structure view as
shown in Figure 4, is less cumbersome than UML
sequence diagrams. This view lets the user browse
the program execution at various levels of detail.
For example the user can collapse and expand
subtrees, show only messages sent to a particular
object, remove contiguous repetitions of
sequences of calls, zoom in and out the trace panel
and many other useful visualization features.

To overcome the size explosion problem,
similar sequences of events are shown as instances
of the same pattern. The patterns are then color

4

coded to allow software engineers to notice them
easily.

Figure 4: The Execution Pattern view of Ovation
However, the authors notice that exact match

results in several patterns that do not reduce much
of the size problem. For this purpose, they present
a set of matching criteria that can be used to de-
cide when two sequences of events can be consid-
ered equivalent [6]. We summarize the main crite-
ria in what follow:

• Identity: Two sequences of calls are consid-
ered instances of the same pattern if they have
the same topology: same order, objects, meth-
ods, and so on.

• Class Identity: If two sequences of calls in-
volve the same classes but different objects
then they can be considered similar according
to this criterion.

• Depth-limiting: This criterion consists of com-
paring two sequences up to a certain depth on-
ly.

• Repetition: It is very common to have two dif-
ferent sequences of calls that differ only by the
number of repetitions due to loops and recur-
sion. If this number is ignored then these two
sequences can be considered equivalent.

• Polymorphism: This criterion suggests consid-
ering two subclasses of the same base class as
the same. However, this applies only if they in-
voke the same polymorphic operations.

Although these criteria seem to be interesting,
the authors do not discuss whether they can be
combined or not and if yes, how? The paper also
lacks statistical data to support the use of these
criteria. For example, it would be interesting to

know the gain in terms of the number of patterns
that results after applying a given matching criteri-
on.

3.4 Jinsight
Jinsight is a Java visualization tool that shows the
execution behavior of Java programs [3, 4].
Jinsight provides several views that can be very
helpful for detecting performance problems.
These views can be summarized in what follows:

• The Histogram View helps the analyst detect
performance bottlenecks. It also shows object
references, instantiation and garbage
collection.

• The Execution View: This view displays the
program execution sequence (Figure 5). It
helps the analyst understand concurrent
behavior, thread interactions and detect
deadlocks.

• The Reference Pattern View: It is used to show
the interconnections among objects. For this
purpose, Jinsight implements pattern
recognition algorithms to reduce the
information overhead. In fact, this view is
equivalent to the pattern execution view of
Ovation introduced by the same authors and
that was described in the previous subsection.

• The Call Tree View: shows the sequence of
method calls, including the number of calls
and their contribution to the total execution
time as shown in Figure 6.

Figure 5: Jinsight Execution View

Jinsight is heavily tuned towards performance
analysis rather than program comprehension.
However, according to the authors, the reference

5

pattern and the call tree views can be used for
general understanding of the system execution.

Jinsight uses a model introduced by De Pauw
et al. in [5] for representing the information about
the execution of an object-oriented program.
Interesting events are object
construction/destruction and method invocation
and return. They organized these artifacts in a
four-dimensional event space having axes for
classes, instances, methods and time as shown in
Figure 7. Each point corresponds to an event
during program execution. Information is
extracted by traversing or projecting one or more
dimensions of the space in different combinations
to produce subspaces.

Figure 6: Jinsight Call Tree View
However, the event space of even a small

system might be very large. To overcome this
problem, the authors introduce the concept of call
frames. A call frame is a combination of events
that depicts a communication pattern between a
set of objects. For example, consider a method m1
of class c1 that calls a method m2 of class c2. This
sequence typically involves an object o1 of c1 and
an object o2 of c2 (this does not apply if static
methods are used). The whole sequence is saved
as one call frame instead of saving every single
event of this sequence.

 Statistical information can also be computed
at the same time the system executes. For
example, we can associate to the previous call
frame the number of times the method m1 calls
m2 or the number of times the class c1 calls c2.
For this purpose, the authors use several data
structures to represent the call frames.

Figure 7: Four-dimensional event space used by
Jinsight to represent trace events

Although this technique might result in a sig-
nificant reduction of the number of events, it is
more tuned to performance analysis than program
comprehension. Indeed. Most of the visualization
views presented in the authors of Jinsight, which
are built on the top of this model, exhibit statisti-
cal information only and are similar in principle to
the way profilers work.

3.5 Program Explorer
Program Explorer is a C++ exploration tool that
focuses on analyzing interactions between objects
and classes [16].The authors start by introducing a
common model and notation for OO program exe-
cution. Interactions between objects are modeled
using a directed graph called the iteraction graph
(Figure 8). The nodes of the graph represent ob-
jects and the arcs represent method invocations.
Arcs are labeled with the name of the method, the
time at which the invocation of the method takes
place and the time at which the execution returns
to the caller.

Figure 8: The interaction graph is used by Pro-
gram Explorer to represent object interactions

6

To overcome the size explosion problem,
Program Explorer uses several filtering tech-
niques, which are:

Merging: Using Program Explorer, the analyst
can merge arcs that represent identical methods
between pairs of objects. The resulting graph is
called the Object Graph and emphasizes how ob-
ject interacts but hides the order and the multiplic-
ity of invocations. Furthermore, the analyst can
merge objects of the same classes into one node to
reduce the number of nodes. The resulting graph
is called the Class Graph and focuses on class in-
teraction rather than object interaction. An exam-
ple of the class graph is shown in Figure 9. This is
similar in principle to the pattern matching criteria
that are supported by Ovation and Jinsight.

Figure 9: An example of the class graph. A class
graph focuses on class interactions rather than ob-

ject interactions

Pruning: Pruning is the process of removing in-
formation from the interaction graph in order to
reduce its size. Program Explorer implements
three kinds of pruning: object pruning, method
pruning and class pruning. Pruning an object con-
sists of removing its corresponding node from the
interaction graph. The incoming and outgoing arcs
of this node are also removed. Method pruning

consists of performing the same task on specific
methods. The subsequent invocations that derive
from them are also removed. Pruning can also ap-
ply to inheritance hierarchies and is called class
pruning. Class pruning consists of the fact that
pruning a superclass method will result in pruning
this method at the subclasses level. The several
pruning techniques are exactly similar to the many
different browsing capabilities that exist in ISVis,
Ovation and Jinsight.

Slicing: Object slicing is similar to dynamic slic-
ing and aims at keeping all the activation paths in
which the object participates. That is, all the other
paths are removed from the graph. Method slicing
accomplishes the same task as object slicing ex-
cept that it focuses on keeping specific methods of
an object.

3.6 AVID
Walker et al. describe a tool, called AVID (Archi-
tecture Visualization of Dynamics in Java Sys-
tems), for visualizing dynamic behavior at the ar-
chitectural level [26]. AVID uses run-time infor-
mation and a user-defined architecture of the sys-
tem to create a dynamic view of the system com-
ponents and the way they interact.

First, the analyst creates a trace about the
calls between methods and about the instantiation
and destruction of objects. Next, she or he needs
to cluster classes into components called entities.
In AVID, clusters are represented as boxes and the
dynamic relationships extracted from the trace as
directed arcs as shown in Figure 10. An arc
between two entities A and B is labeled with the
number of calls the methods of the classes in A
make to the methods of the classes in B.
Instantiation and destruction of objects are shown
as bar-chart style of histograms associated with
each box.

In AVID, the analyst can control the sequence
of events she or he wants to visualize. This is done
by breaking the execution trace into a sequence of
views called cels. Animation techniques allow the
analyst to show the whole execution cel by cel,
which is also called the play mode, stop the ani-
mation, as well as go forward and backward.
These techniques aim at reducing the information
overhead when dealing with large execution

7

traces. Furthermore, AVID contains a summary
view in which all the interactions are shown.

Figure 10: Interactions among the system clusters
as represented by AVID. Here, the analyst has re-

played the execution and stopped at Cel#14

Although animation techniques can help re-
duce the information overhead, traces are very
large and there is a need to investigate more tech-
niques to reduce their size. In [2], AVID was im-
proved to consider compression techniques based
on sampling. The authors describe a set of sam-
pling parameters that can be used by the analyst to
consider only a sample of the execution trace. For
example, the analyst can choose the events that
appear after a certain timestamp only or a snap-
shot of the call stack every xth event and so on.

However, there is a lack of scientific evidence
regarding which parameters are best to use. If they
work for a given scenario they may not work for
another one as shown by the results of the experi-
ments conducted by the authors of AVID in which
some parameters worked for one case study but
did not work for the other case study.

3.7 Scene
Koskimies and Mössenböck present a tool called
Scene (Scenario Environment) that is used to pro-
duce scenario diagrams from a dynamic event
trace [13, 14]. The authors notice that horizontal
scrolling makes the diagrams cumbersome and
there is a need for techniques that center the infor-
mation conveyed by scenario diagrams on the
screen. They name this problem the focusing
problem and suggest several visualization-orient-

ed techniques to solve it. Among these techniques,
we have:

Call Compression: This technique consists of
collapsing the internal calls that derive from a giv-
en call. A click on this call will result in making
its internal calls visible. Figure 11 shows an exam-
ple of three calls that have been collapsed. The
user can click on these calls to view the internal
calls they generate.

Partitioning: It is very common that the internal
calls of a given call may not fit on the screen,
therefore, Scene divides these calls into parts. A
click on a part will show only the calls that it en-
capsulates.

Projection and removal: This operation allows
the user to select an object and show only the in-
teractions that involve its methods. The other in-
teractions are then hidden.

Single-step mode: The single-step mode allows
the user to display the internal calls of a given call
one step at a time by clicking on the last visual-
ized call.

Scene provides also a call summary view
which consists of a call matrix that shows how the
classes interact between each other.

Figure 11: The calls Install and Do have been col-
lapsed. The user can click on these calls to see the

methods they invoke

3.8 The Collaboration Browser
Richner and Ducasse describe a tool called Col-
laboration Browser that is used to recover object
collaborations from execution traces [20].

The authors define a collaboration instance as a
sequence of method invocations that starts from a
given method and terminates at its return point.
This includes a single method call that does not
generate other calls. Similar collaboration in-
stances define a collaboration pattern (which is
similar to Shimba behavioral patterns and ISVis

8

interaction patterns). Similarity is measured ac-
cording to three kinds of matching criteria:
Criteria based on information about the event:
An event in the trace contains information about
the sender, receiver and the invoked method. The
analyst can choose to include or omit any of these
attributes in the matching process. For example,
the analyst may decide to ignore the invoked
method and match two sequences of calls using
the sender and receiver classes (or objects) only.
These represent an extension to the criteria that
are supported by Ovation.

Excluding events: This category allows the
analyst to exclude specific events in the matching
scheme. For example, the analyst may decide to
ignore events in which an object sends a message
to itself or events that appear after a certain depth
in the trace and so on.

Structure of the collaboration instance: A
collaboration instance is a tree of events. The
authors notice that similar collaboration instances
may differ in their structure and still represent the
same behavior. Therefore, one can consider two
collaboration instances as instances of the same
collaboration pattern if they contain the same set
of events no matter in which order they occur or
their nesting relationships.

Once the classes that constitute a given collab-
oration are determined, the user can query the
trace or the collaboration pattern to extract the
role of each of its classes, which corresponds to
their public methods. In addition to that, the tool
enables the developer to filter out dynamic infor-
mation by removing classes or methods that are
not of interest. The tool can also display an in-
stance of a collaboration pattern as a UML se-
quence diagram.

The authors conducted an experiment with a
framework for the creation of graphical editors
called HotDraw. They were interested in under-
standing the implementation of one aspect of this
framework, which is concerned with the tools that
are responsible for creating and manipulating fig-
ures. First, they instrumented all the methods of
the system. Next, they run a short scenario that in-
volves the feature under analysis. The resulting
trace contains 53735 method invocations.

To extract collaboration patterns, the authors,
arbitrarily, picked several matching criteria. For
example, they decided to ignore self-invocations,
limit the depth of invocation to 20 and not
consider the tree structure of collaboration
instances during the matching process. 183
patterns were generated.

The next step is to query the patterns to ex-
tract only the collaboration patterns that describe
the implementation of the feature under analysis.
This process is iterative and assumes that the ana-
lyst has knowledge of the system so to know what
to look for.

4 Discussion
The following discussion summarizes the main
concepts that are implemented by these tools. We
also discuss the advantages and limitations of
these concepts and suggest possible improve-
ments. This discussion is based on three main cri-
teria, which aim at answering the three questions
mentioned in the introduction section. We list
these criteria in what follows and elaborate on
them in more details in the next subsections:

• Criteria with respect to modeling the execution
traces

• Criteria with respect to the level of abstraction
achieved by these techniques

• Criteria with respect to reducing the size of the
traces

4.1 Modeling Execution Traces
In order to visualize and analyze large program
executions, an efficient representation of the event
space is needed. Unfortunately, most of the tools
mentioned above do not even discuss this aspect,
which makes us have doubts regarding their scala-
bility. It is also important to note that most of the
experiments that are conducted by the authors of
these tools are based on very small execution
traces.

Among the tools that do discuss modeling is-
sues, ISVis seems to implement the most interest-
ing approach. ISVis uses a graph-theory concept
that consists of transforming a rooted, labeled tree
into a directed acyclic graph by representing iden-

9

tical subtrees only once. This concept is also
known as the common subexpression problem and
was first introduced by Downey et al. in [7].

In our recent work [9], we experimented with
the idea of transforming the tree into an acyclic
graph and found that this technique can reach a
very high compression ratio. Although, we need to
experiment with several other traces, we believe
that this technique can help built very scalable
tools.

Another interesting approach for modeling
large execution traces is implemented in Jinsight.
As we showed earlier, Jinsight uses the call frame
principle to represent cumulative information
about the traces such as the number of calls a
method A makes to B and so on. However, the ap-
proach supported by Jinsight is more useful for
performance analysis than program comprehen-
sion.

Finally, Trace Explorer uses a graph to repre-
sent the execution traces, where the nodes repre-
sent the objects and the arcs represents the method
calls. However, this technique requires extra data
structures to keep track of the order of calls,
which makes traversing the graph time consum-
ing.

In addition to this, the lack of a common
modeling technique hinders interoperability be-
tween these tools. There is a need to work towards
a common format for exchanging traces of object
interactions. A common exchange format can also
help researchers to use different tools on the same
input in order to compare the techniques.

In our recent study, we presented the Com-
pact Trace Format (CTF), which is a schema for
exchanging traces of object interactions [10]. CTF
is built with the idea of scalability in mind. Al-
though, this work is still in progress, we believe
that it is a step forward towards building a com-
mon exchange format for object-oriented dynamic
information.

4.2 Levels of Abstraction
A key aspect of reverse engineering is to extract
different levels of abstraction of a software sys-
tem. There seems to be an agreement about the
levels of abstraction that are needed for under-
standing the system functionality based on analyz-
ing its execution traces. Using these tools, one

can view the content of an execution trace at some
of the following levels of abstraction:

Statement level: this level includes the execution
of every single statement of the code. Most of the
tools do not offer this view except debuggers. This
level of abstraction suits best specific maintenance
activities such as fixing bugs.

Object level: this level is concerned with visualiz-
ing method interactions among objects. This level
can be useful for detecting memory leaks and oth-
er performance bottlenecks. Most of the tools
support this level.

Class level: in this level, objects of the same class
are substituted with the name of their classes. This
level, that is supported by most of the tools, suits
best activities that require high-level understand-
ing of the system behavior such as recovering the
documentation, understanding which classes im-
plement a particular feature etc.

Architectural level: this level consists of group-
ing classes into clusters and showing how the sys-
tem components interact with each other. AVID
seems to be the tool that focuses most on analyz-
ing this kind of interactions. For example, with
AVID, one can display how many calls a given
subsystem make to another subsystem etc.

Inter-thread communication level: although this
paper does not focus on multi-threaded systems, it
is important to notice that none of these tools ex-
cept Jinsight implement the capability of viewing
the interactions between the system threads. On
the other hand, the tools that do usually do not al-
low viewing the system at the other levels of de-
tail.

4.3 The Size Explosion Problem
A key element for a successful dynamic analysis
tool consists of implementing efficient techniques
for reducing the amount of information that exist
in the traces. We classify the techniques used by
these tools into two categories. The first category
is concerned with the ability to browse the content
of the trace easily, search for specific elements
and so on. We call this category: Trace Explo-
ration. The second category is concerned with the
ability to reduce the size of the trace by removing

10

(or hiding) some of its components. We call this
category of techniques: Trace Compression.

Trace exploration techniques are tightly cou-
pled with the visualization tools that implement
them. Generally speaking, using these techniques
an analyst can browse, animate, slice or search the
traces. It seems that there is an agreement about
the importance of such techniques in reducing the
information overhead and most of the tools seem
to support these features. Trace Exploration is also
concerned with techniques that allow searching
the trace content for specific components. ISVis,
for example, allows the user to perform the search
using wildcards to formulate more general
queries.

Trace compression techniques operate on the
execution traces independently from any visual-
ization scheme. The goal is to hide some elements
from the trace in order to compress it – by com-
pression; we mean reducing its size. For this pur-
pose, we found that the tools implement different
techniques that we present in what follows. We
also discuss their advantages and limitations.

Data Collection Techniques: The collection of
trace data can be done either at the system level or
at the level of selected components. These two
approaches have their advantages and
disadvantages. The advantage of the system-level
data collection approach is that the analyst does
not need to know which components implement
the feature under study. However, the resulting
execution traces are usually very large and need to
be preprocessed. The component-level data
collection technique has the obvious advantage of
resulting in smaller execution traces but requires
from the analyst to know which components need
to be instrumented. Shimba, for example,
involves the analyst for detecting the components
that implement the desired feature. We do not
think that this is very practical in many situations.
For complex features, this may take a long time.
There is a need for feature localization techniques
such as the ones described by Wilde et al. [27] and
Eisenbarth et al. [8].

Pattern Matching: Most of the tools use pattern
detection abilities to group similar sequences of
events in the form of execution patterns. Execu-
tion patterns have been named differently includ-
ing behavioral patterns in Shimba, interaction pat-

terns in ISVis, collaboration patterns in The Col-
laboration Browser. Patterns are efficient at re-
ducing the size of traces if they are generalized
[6]. For this purpose, different matching criteria
are used such as the ones implemented in Ovation
and The Collaboration Browser. Some matching
criteria require the setting of some parameters. For
example, the depth-limiting criterion presented in
Section 3.3. involves setting the depth at which
two sequences of events need to be compared. The
challenge is to find the appropriate settings for un-
derstanding the feature under study. Furthermore,
the different combinations of the matching criteria
will result in different compressions of the trace.
There is a need to analyze which combinations
best suit the comprehension process. Another seri-
ous limitation of most of the studies presented
above is that they do not give any statistics regard-
ing the compression gain attained. They also did
not experiment with many software systems.

Sampling: Sampling is an interesting way of re-
ducing the size of the trace and was used in
AVID. It is concerned with choosing only a sam-
ple of the trace for analysis instead of the whole
trace. However, finding the right sampling param-
eters is not an easy task and even if some parame-
ters work for understanding one feature, it is not
evident that they work for another feature.

Hiding Components: Another way for reducing
the trace size is to hide some of its components.
For example, the analyst may decide to hide all
the invocations of a specific method. Most of the
tools implement capabilities for removing
information from the trace. The Collaboration
Explorer and Program Explorer, for example,
allow the analyst to remove methods, specific
objects or even classes from the trace. Pruning and
slicing are two concepts used in Program Explorer
that achieve this. However, it is totally up to the
maintainer to decide which components to hide.

In a recent study conducted by Zayour and
Lethbridge [28] involving a large real world pro-
cedural telecommunication system, the authors
showed that not all of the procedures have the
same degree of importance. Some procedures can
be simple utilities (e.g. sorting an array) and re-
moving them would not affect much the compre-
hension process. We think that this could be ap-
plied to object-oriented systems as well. In object
oriented systems, utility methods (by analogy with

11

procedures) are very frequent due to encapsula-
tion. For example accessing methods are a very
good example of such methods. In addition to this,
methods can be removed not only because they
are utilities. For example, an abstract method usu-
ally corresponds to an abstract operation that is
implemented in different ways. Since we seek ab-
straction, it may improve comprehensibility to
hide the calls made by the various polymorphic
implementations of an abstract operation. Future
research should focus on finding heuristics that
can be used to hide automatically elements from a
trace without affecting its content.

Architectural-level filtering: Another ap-
proach for reducing the size of the traces is to
show the dynamic behavior between the architec-
tural components of the system rather than be-
tween single objects. For this purpose, the analyst
first determines the system architecture (if it is not
available) and then the execution trace is abstract-
ed out to show the interaction between these com-
ponents. However, this approach can help soft-
ware engineers understand the system at the archi-
tectural level only. In addition to this, it requires
the system architecture to be present. AVID, for
example, assumes that the analyst is familiar
enough with the system to cluster classes into
components. However, this is not always true in
practice. There is a need for automatic clustering
techniques such as the ones described by Müller et
al. in [18] and Tzerpos et al. in [25].

Conclusions and Future Di-
rections

In this paper, we studied the concepts imple-
mented in eight reverse engineering tools for ana-
lyzing traces of object interactions. The goal is to
work towards building a common core of tech-
niques for the efficient analysis of the behavior of
OO systems. We found that these tools use a very
rich set of techniques that are worth integrating
into one common framework. Using these tech-
niques, a maintainer is provided with features that
enable them to:

1. Explore the trace and search for specific com-
ponents

2. View the trace content at different levels of ab-
straction (e.g. object interactions, class interac-
tion, etc…)

3. Filter the trace content by using several tech-
niques (e.g. pattern matching, sampling etc.)

In all but the first of these, any implementing
tool would need to allow the maintainer consider-
able control over how the technique is applied.
This is because the needs for trace abstraction and
compression will vary from task to task and per-
son to person. For example, for feature 3, there
will be individual parameters to adjust, e.g. so the
maintainer can control what she or he wants to
hide.

One direction for future work would be to in-
vestigate how the system could automatically or
semi-automatically suggest appropriate settings
for the parameters of features 2 and 3. Settings
could be determined based on the nature of the
trace, and the current goals and experience of the
maintainer. Machine learning could be employed
to help tune the settings by learning over time
from the adjustments maintainers make.

There is also a need for fundamental research
in several areas: For example, we need to investi-
gate what can be removed from the trace without
affecting its content. We also need to experiment
with a much larger variety of software systems to
understand how to combine the compression tech-
niques in order to extract the most important inter-
actions. For this purpose, we might find it useful
to start by assessing the gain in terms of the
amount information that remains after removing
unnecessary data.

There is also a need for a common metamodel
for representing the execution traces of object-ori-
ented systems in order to permit interoperability
among tools. The reader might find the Compact
Trace Format (CTF) [10] useful for this purpose.
We are actually in the process of testing this for-
mat with large execution traces.

Finally, the suite of techniques described in this
paper needs to be integrated with appropriate visu-
alization techniques.

12

About the Authors
Abdelwahab Hamou-Lhadj, also known as Wa-
hab, is a Ph.D. candidate at the School of Informa-
tion Technology and Engineering at the University
of Ottawa. His PhD thesis focuses on techniques
for the understanding of large object-oriented sys-
tems.

Timothy C. Lethbridge is an Associate Professor
of software engineering at the University of Ot-
tawa. He studies techniques to help people better
understand complex information. He is also author
of the textbook Object-Oriented Software Engi-
neering: Practical Software Development Using
UML and Java.

References
[1] T. Ball. The Concept of Dynamic Analysis. In

Proc. of the 7th European Software Engi-
neering Conference held jointly with the 7th
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages
216-234, Toulouse, France, 1999

[2] A. Chan, R. Holmes, G. C. Murphy, A. T.
Ying. Scaling an Object-Oriented System Ex-
ecution Visualizer through Sampling. In
Proc. of the 11th International Workshop on
Program Comprehension, pages 237-244,
Portland, Oregon, USA, 2003

[3] W. De Pauw, E. Jensen, N. Mitchell, G. Sevit-
sky, J. Vlissides, J. Yang,. Visualizing the
Execution of Java Programs. In Proc. Inter-
national Seminar on Software Visualization,
pages 151-162, Dagstuhl Castle, Wadern,
2002

[4] W. De Pauw, R. Helm, D. Kimelman, J. Vlis-
sides. Visualizing the Behaviour of Object-
Oriented Systems. In Proc. of the 8th Confer-
ence on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOP-
SLA), pages 326-337, Washington, DC, 1993

[5] W. De Pauw, D. Kimelman, J. Vlissides. Mod-
elling Object-Oriented Program Execution. In
Proc. of the 8th European Conference on Ob-
ject-Oriented Programming (ECOOP), pages

163-182, Bologna, Lecture Notes in Comput-
er Science 821, Berlin, 1994

[6] W. De Pauw, D. Lorenz, J. Vlissides, M.
Wegman. Execution Patterns in Object-Ori-
ented Visualization. In Proc. of the 4th
USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), pages
219-234, Santa Fe, NM, 1998

[7] J. P. Downey, R. Sethi, R. E. Tarjan. Varia-
tions on the Common Subexpression Prob-
lem. Journal of the ACM. 27(4), pages 758-
771, 1980

[8] T. Eisenbarth, R. Koschke, D. Simon. Fea-
ture-Driven Program Understanding Using
Concept Analysis of Execution Traces. In
Proc. of the 9th International Workshop on
Program Comprehension, pages 300-309,
Toronto, Ontario, Canada, 2001

[9] A. Hamou-Lhadj, T. Lethbridge. Compres-
sion Techniques to Simplify the Analysis of
Large Execution Traces. In Proc. of the 10th
International Workshop on Program Com-
prehension (IWPC), pages 159-168, Paris,
France, 2002

[10] A. Hamou-Lhadj, and T. Lethbridge. A
Metamodel for Dynamic Information Gener-
ated from Object-Oriented Systems. 1st In-
ternational Workshop on Meta-models and
Schemas for Reverse Engineering (ATEM),
ENTCS, pages 59-69, Victoria, Canada,
2003

[11] D. Jerding., S. Rugaber. Using Visualisation
for Architecture Localization and Extraction.
In Proc. Of the 4th Working Conference on
Reverse Engineering, pages 56-65, Amster-
dam, Netherlands, 1997

[12] D. Jerding, J. Stasko, T. Ball. Visualising In-
teractions in Program Executions. In Proc.
of 19th the International Conference on Soft-
ware Engineering, pages 360-370, Boston,
USA, 1997

[13] K. Koskimies, H. Mössenböck. Scenario-
based browsing of object-oriented systems
with Scene. Report 4, Department of System
Software, University of Linz, August 1995.

13

[14] K. Koskimies, H. Mössenböck. Scene: Using
Scenario Diagrams and Active Text for Illus-
trating Object-Oriented Programs. In Proc.
of the 18th International Conference on Soft-
ware Engineering (ICSE), pages 366-375,
Berlin, Germany, 1996

[15] K. Koskimies, T. Männistö, T. Systä, J. Tuo-
mi. SCED: A Tool for Dynamic Modeling of
Object Systems. University of Tampere,
Dept. of Computer Science, Report A-1996-
4, 199

[16] D. B. Lange, Y. Nakamura. Object-Oriented
Program Tracing and Visualization. IEEE
Computer, 30(5), pages 63-70, 1997

[17] H. A. Müller, K. Klashinsky. Rigi – A Sys-
tem for Programming In-the-Large. In Proc.
of the 10th International Conference on Soft-
ware Engineering (ICSE), pages 80-86, Sin-
gapore, 1988

[18] H. A. Müller, M. A. Orgun, S. R. Tilley, J. S.
Uhl. A Reverse Engineering Approach to
Subsystem Structure Identification. Journal
of Software Maintenance: Research and
Practice, 5(4): pages 181-204, 1993

[19] M. J. Pacione, M. Roper, M. Wood. A Com-
parative Evaluation of Dynamic Visulation
Tools. In Proc. Of the 10th Working Confer-
ence on Reverse Engineering (WCRE), pages
80-89, Victoria, BC, Canada,, 2003

[20] T. Richner, S. Ducasse. Using Dynamic In-
formation for the Iterative Recovery of Col-
laborations and Roles. In Proc. of the 18th
International Conference on Software Main-
tenance (ICSM), pages 34-43, Montréal, QC,
2002

[21] T. Systä. Understanding the Behaviour of
Java Programs. In Proc. of the 7th Working
Conference on Reverse Engineering
(WCRE), pages 214-223, Brisbane, QL, 2000

[22] T. Systä. Incremental Construction of Dy-
namic Models for Object-Oriented Software
Systems. Journal of Object-Oriented Pro-
gramming, 13 (5), pages 18-27, 2000

[23] T. Systä, K. Koskimies, H. A. Müller. Shim-
ba – An Environment for Reverse Engineer-
ing Java Software Systems. Software–Prac-

tice and Experience, 31(4), pages 371-394,
2001

[24] T. Systä. Dynamic Reverse Engineering of
Java Software. In Proc. of 13th European
Conference on Object-Oriented Program-
ming (ECOOP), 3rd Workshop on Experi-
ences in Object-Oriented Reengineering,
Lisbon, 1999

[25] V. Tzerpos, R. C. Holt. ACDC: An Algo-
rithm for Comprehension-Driven Clustering.
In Proc. Of 7th the Working Conference on
Reverse Engineering, pages 258-267, Bris-
bane, Australia, 2000

[26] R. J. Walker, G. C. Murphy, B. Freeman-
Benson, D. Swanson, J. Isaak. Visualizing
Dynamic Software System Information
through High-level Models. In Proc. ACM
Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications,
pages 271-283, British Columbia, Canada,
1998

[27] N. Wilde, M. Scully. Software Reconnais-
sance: Mapping Program Features to Code.
Journal of Software Maintenance: Research
and Practice, Vol. 7, No. 1, 1995

[28] I. Zayour, T. C. Lethbridge. A Cognitive and
User Centric Based Approach For Reverse
Engineering Tool Design. CASCON, pages
16-30, Toronto, Canada, 2000

14

