Experiences with the Development of a Reverse
Engineering Tool for UML Sequence Diagrams:

A Case Study in Moder

Matthias Merdes
EML Research gGmbH
Villa Bosch
Schloss-Wolfsbrunnenweg 33
D-69118 Heidelberg, Germany

<firsthame.lastname>@eml-
r.villa-bosch.de

ABSTRACT

The development of a tool for reconstructing UMLgwence
diagrams from executing Java programs is a chafigngsk. We
implemented such a tool designed to analyze ang kinJava
program. Its implementation relies heavily on salexdvanced
features of the Java platform. Although there areueber of
research projects in this area usually little infation on

implementation-related questions or the rationalehirxd

implementation decisions is provided. In this paperpresent a
thorough study of technological options for theevaint concerns
in such a system. The various options are explaamekdthe trade-
offs involved are analyzed. We focus on practicpests of data
collection, data representation and meta-modelyalization,

editing, and export concerns. Apart from analyzing available
options, we report our own experience in develoginototype
of such a tool in this study. It is of special n#&t to investigate
systematically in what ways the Java platform fetis (or

hinders) the construction of the described revemgineering
tool.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques —
object-oriented design methqods.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement reverse
engineering, documentation.

General Terms
Algorithms, Documentation, Design, Experimentation

Keywords
UML models, sequence diagrams, reverse engineedaga
technology

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeiged that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa flist page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.

PPPJ 2006 August 30 — September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM3-939352-05-5/06/08...$5.00.

125

n Java Development

Dirk Dorsch
EML Research gGmbH
Villa Bosch
Schloss-Wolfsbrunnenweg 33
D-69118 Heidelberg, Germany

<firsthame.lastname>@eml-
r.villa-bosch.de

1. INTRODUCTION

Due to the increasing size and complexity of sofeva
applications the understanding of their structureé behavior has
become more and more important. Proper specifitagod
design activities are known to be important in pidg
understandable software. If such specification degign artifacts
are unavailable or of poor quality reverse enginger
technologies can significantly improve understagdiof the
design of an existing deployed software system iandeneral
support debugging and maintenance. While modernEC#8Is
usually support the reconstruction of static stice, the reverse
engineering of dynamic behavior is still a topic @fi-going
research [20], [25].

The development of a tool supporting the reconsitncof the
behavior of a running software system must addtessmajor
areas of data collection from a (running) systepresentation of
this data in a suitable meta-model, export of thetaamodel’s
information or its graphical representation as well post-
processing and visualization aspects. These ce@sand their
mutual dependencies are shown in Figure 1. Cleaaly,
conceptual components depend on the meta-modeatdition, a
visualization mechanism can be based on a suitadgert format
as discussed in sections 4 and 5. While this figllustrates the
main conceptual components of our sequence diagram
reengineering tool a symbolic view of its primargewcan be seen
in Figure 2: The main purpose of such a tool isptovide a
mapping from a Java program to a UML sequence dimgiThe
various relevant options will be discussed in detai the
following sections. Recurrent technical topics g meta-model
engineering, aspect-oriented technologies, XML netbgies —
especially in the areas of serialization and trammsétion — and
vector graphics.

Meta-Model

A

Data Collection Visualization Export

Figure 1. Conceptual components with dependencies

UML sequence diagrams are among the most widelyd use interaction with and understanding of sequence rdrag,

diagrams of the Unified Model Language (UML) [3Zhe UML
is now considered the lingua franca of software efind
supporting both structural (static) and behaviofdinamic)
models and their representation as diagrams. Betad\diagrams
include activity, communication, and sequence diagy. Such
sequence diagrams are a popular form to illuspatticipants of
an interaction and the messages between theseipants. They
are widely used in specification documents andngsictivities
[24] as well as in the scientific and technicaiéture on software
engineering.

Sequence diagrams [32] are composed of a few lmsic a
number of more advanced elements. The basic irgrediof a
sequence diagram are illustrated in a very simpénple in the
right part of Figure 2 along with their respectiseunterparts in
the Java source code on the left-hand side. In sudmgram
participants are shown along the horizontal dinmensof the
diagram as so-called ‘life-lines’. In the examplthe two
participants are ‘Editor’ and ‘Diagram’. These {ifees are
connected by arrows symbolizing the messages egeldan
between participants. The messages are ordereaatbgically
along the vertical dimension. In the example, twesgages from
Editor to Diagram are depicted, namely the construmessage
‘new Diagram()’ and the ‘open()’ message. More ambesl
concepts (not shown in the figure) such as modediteynatives,
loops, and concurrent behavior, can be factorednbaitso-called
‘fragments’ for modularization and better readapili

public class Editor |
public void show() {
Diagram diagram = new Diagrami);

diagram.open() :
K
} \

|

ssfreajes»»
H{ 1: e Didararn() Diaaram
2 opend)

)

Figure 2. Behavior as Java sour ce code and sequence diagram

The reconstruction of the behavior of a softwargtey has been
studied extensively both in the static case (framarse or byte
code) [36], [37], [38] and in the dynamic case iffrdracing
running systems) [6], [33], [34]. [42] and [7] fazumore on

126

respectively. An overview of approaches is provitgd25] and
[20]. Despite this considerable amount of work ¢hisroften little
information on implementation-centric questionstlee rationale
behind implementation decisions. Our study is idezhto remedy
this lack of such a systematic investigation andh@ivated by
our experiences in implementing our own sequen@grdm
reengineering tool. This paper has two main purposSestly, we
describe and analyze the possible technologicabmptfor the
required areas. We also report the lessons leatnedour

implementation. In this way, the more abstract ysialbased on
theoretical considerations and the technical andenstic

literature is verified and complemented by our opmactical
experience.

The remainder of this paper is organized as follo8&ction 2
explores methods to collect relevant data and se&idescribes
the choices for representation of this data usirsgitable meta-
model. We describe options for visualization anddetoor

graphics export in section 4 and 5, respectively.

2. Data Collection

In this section we will discuss technologies fortriexing
information from Java software systems with theppse of
generating instances of a meta-model for UML segeen
diagrams. We focus on dynamic (or execution-timejhods but
cover static (or development-time) methods as feelthe sake of
completeness. Static methods gather informatiom fio non-
running, (source or byte) code-represented systBgmamic
methods on the other hand record the interactiooldserving a
system in execution. Data collection requires ahmaism for
filtering relevant execution-time events which sopip a fine-
grained selection of method invocations.

2.1 Development-time Methods

2.1.1 Source Code Based

Using the source code for collecting informationoatb the
interaction within an application will have at lea®sne
disadvantage: one must have access to the sourde. co
Nevertheless source code analysis is a commonig@aict the
reverse engineering of software systems and swgapbst most of
the available modeling tools. It should be mentéribkat the
analysis of source code will provide satisfactegults for static
diagrams (e.g., class diagrams), but the suitghbdit the dynamic
behavior of an application is limited. If one istarested in a
sequence diagram in the form of a common forwagineered
diagram (i.e., a visualization of all possible lofaes of the
control flow in the so-called CombinedFragment [3#] the
UML), source code analysis will fulfill this reqeiment. In [37]
Rountev, Volgin, and Reddoch introduce an algorittuimich
maps the control flow to these CombinedFragmentsthé
intention of the reverse engineering is to viswalthe actual
interaction any approach of static code analysit@med to fail,
since it is inherently not possible to completegddce the state
of a system in execution by examining the sourcéeconly
without actually running the system. Obvious praideinclude
conditional behavior, late binding, and sensornberactive user
input.

2.1.2 Byte Code Based

The static analysis of code can also be performigd eompiled
code, i.e., byte code in the case of Java. Sudmnalysis of byte
code basically shares most of the (dis-) advantafiéise source
code based approach, but it can be applied to dedhpystems.
One advantage is the fact that processing the diyde must be
performed after compilation, separate from the e®wode, and
thus leaves the source code unchanged. This peeweiring of
concerns (application logic and tracing concerms}hie source
code and connected maintenance problems.

2.2 Execution-time M ethods

The purpose of the dynamic approaches is to ret@rdffective

flow of control, or more precisely, the sequenc@téractions, of
a (deployed) system’s execution. Any dynamic apghnogesults

in a model that represents the actual branchdseofpplication’s
control flow. In this section we will discuss teciogies based on
a temporary interception of the program’s executiBasically,

we differentiate between the instrumentation of #pplication

itself (i.e., its code) and the instrumentation itf runtime

environment.

An overview of the basic workflow from the Java s to the
byte code and on to the UML model and its visuétiracan be
seen in Figure 3. This figure illustrates the mevgressive
approach of generating the model from dynamic matirace
information, compared to the static approach dbedrin section
2.1, which relies on source code only.

public class Editer |
public veid shaw() |
Dingram disgiam = new Diagrem():

dingram.cpen () ;

source code

111000 100101 10 A
.. ® 3
111000 100101 10 ® > ¥
111000 100101 10 -y’ 3
111000 100101 10 RV

byte code execution

Figure 3. Symboalic steps from sour ce code to sequence
diagram model for a Java program (dynamic analysis)

2.2.1 Program Instrumentation

2.2.1.1 Source Code Based
Assuming access to the source code is providedait ke
instrumented in a number of ways. Two obvious fnlises are:

1. Modify the source code manually; this is both
troublesome and error-prone.

2. Take advantage of aspect-orientation and cortipdle
code with suitable aspects.

127

Both will finally result in modified source codetl@r explicitly
or transparently. Support for filtering can be acld by a
(manual or automatic) manipulation of selected seucode
fragments. Another related approach is the comnugyihg
practice which can be seen as source code man@ukas well.
Such an analysis of log-files is discussed in [17].

2.2.1.2 Byte Code Based

Instrumenting the byte code instead of the soupme chas one
advantage: the source code is not manipulatedyimary. Again,

one could take advantage of aspect-orientationracampile the
byte code with some aspects [5]. In most caseswvdgliehave

access to the byte code in the form of Java arsh(jae files) or
raw class files; otherwise this approach will féigain, as in the
development time case explained in section 2.1y2e lzode
manipulation is superior to source code maniputabiecause of
maintenance and versioning issues. In the followsggtion

another aspect-oriented approach will be discussed.

2.2.2 Instrumentation of the Runtime Environment
For Java applications the instrumentation of thentine

environment means the instrumentation of the Jawdual

Machine (JVM). When discussing JVM instrumentatitime

theoretical possibility to develop a customized J¥Rbuld be
mentioned. Due to the large effort of implementingew or even
modifying an existing virtual machine we won’'t diss this
approach any further. We prefer to introduce tetdgies based
on virtual machine agents that could be appliedxisting JVM

implementations. In principle, a custom agent cdadddeveloped
against the new Java Virtual Machine Tool Interf4@eMTI),

which is part of J2SE 5.0. Gadget [16] is an examping an
older version of this APl for the purpose of extiag the
dynamic structure of Java applications. Using thepektd or
Java-Debug-Interface (JDI) agents as describedaballmws to
focus on a higher level of abstraction compareth&low-level
tool interface programming.

2.2.2.1 Java Debug Interface (JDI)

The JDI is part of the Java Platform Debugger Asttture
(JPDA) [45]. The JPDA defines three interfaces, elgnthe Java
Virtual Machine Tool Interface (JVMTI, formerly thdava
Virtual Machine Debug Interface, JVMDI) which defm the
services a virtual machine must provide for deboggdurpose,
the Java Debug Wire Protocol (JDWP) which defingsaiocol
allowing the use of different VM implementationsdaplatforms
as well as remote debugging, and last but not lgestIDI, the
Java interface implementation for accessing the TWiMver
JDWP. The debuggee (in our case the observed pnygis
launched with the JDWP agent, this allows the dgbugin our
case the observing application) to receive eventsn fthe
debuggee by using JDI. For the purpose of reengimgedhe
system’s behavior we are mainly interested in eveftmethod
executions. As shown in JAVAVIS [33] the JPDA coube
successfully used for the purpose of dynamic reversgjineering.
One big advantage of the JPDA is the built-in resvaatcessibility
of the observed application. The event registratamility, which
can be seen as a filtering mechanism, appears todeoarse
grained, since the class filter is the finest lewélgranularity.
Nevertheless, the JPDA permits the development everse
engineering tools for both, structural (static) misdsuch as class

diagrams, and behavioral (dynamic) models, suclsemgience
diagrams.

2.2.2.2 AspectJ Load Time Weaving

Usually aspect-oriented programming is associateith w
recompiling the source code or byte code with aspéa.k.a.
weaving), as mentioned in section 2.2.1. Startiith wersion 1.1,
the AspectJ technology also offers the possibitityload-time-
weaving (LTW) where the defined aspects are wovea the
byte code at the time they akemadedby the class loader of the
Java virtual machine [12]. Hence Aspect] offerspgbssibility to
trace a deployed system without modifying eitharrse code or
byte code.

An extensive discussion on how to use AspectJiempurpose of
dynamic reverse engineering of system behaviorbeafound in
[5] and is beyond the scope of this paper. In gestion we
therefore restrict ourselves to the discussiorhefliasic concepts
of AspectJ needed for this purpose. For detailéatrimation about
aspect-orientation and especially AspectJ refdd 5, [23], and
[12]. Recent research results and directions c&ouoe in [13].

Generally, aspect-oriented approaches support tduilarization
of cross-cutting concerns with aspects and weasfiegifications.
In the case of AspectJ, these concepts are realiyedspects
(comparable to classes), advice (comparable to adsjhand
joinpoints specified by pointcut descriptors. Arviae declares
what to do beforebefore advick after @fter advicé or instead

of (around advicg an existing behavior addressed by a specific

joinpoint. The joinpoint exactly defines a pointthinh the code
execution. For retrieving the information needed nodel a
sequence diagram it is sufficient to take advantafethe
predefined call joinpoints (representing a method call) and
execution joinpointgrepresenting a method execution).

The definition of a joinpoint also offers the pdmily of filtering.
A joinpoint can address packages, classes, selecetdods or
work in an even more fine-grained manner. So comgithose
joinpoints and the arbitrary granularity of thetdil mechanism
allows for a flexible extraction of the informatioon the
interactions in a running system.

2.3 Compar ative Assessment

As presented in the preceding sections, there ameerous ways
to implement an execution-tracing data collectioechanism.

Discriminating dimensions include manual vs. auttiena
instrumentation of source or byte code, static ggnamic

analysis, remote accessibility and performanceeissu

If the target environment allows the combined useession 5 of
the Java platform and the latest release of theétdmistribution
(Aspectd 5) the elegance and non-intrusivenesheofaad-time-
weaving mechanism in combination with the low perfance
impact and the expressiveness and flexibility af jbin-point-
based filter mechanism make the aspect-orientedoapp the
best solution. This approach is superior in akvaht dimensions,
especially compared to the manual integration atifg and
application code due to associated maintenancelgmnsh and
compared to a custom JVM or custom JVM agents duiheir
inherent complexity and huge effort. Hence in @mal tve use an
AspectJ-based data collection mechanism but we halse
implemented and evaluated a prototypical JDI-baskda

128

collection mechanism. Such a solution, however,uireg a
customized filtering extension to achieve an appabg filtering
granularity and suffers from performance probleespecially in
the presence of graphical user interfaces.

3. Meta-Model and Data Representation

A central topic which influences other areas, evisualization,

editing, or export, is the question of how the reled data are
represented internally. This is best achieved byirgg the data in
instances of a suitable meta-model. As a sequern@gragn

generation tool collects information on teecutiorof a program
the meta-model must be capable of representing suchime

trace data.

Of course, only a certain subset of a typical catgpmeta-model
will be needed for representing the relevant dasathe execution
of a program in an object-oriented language iszedlby method
calls between sender and receiver with argumeatsrr types,
and possibly exceptions, these are the requireda-metiel
elements. Therefore a compatible meta-model musniygloyed
rather than the actual meta-model of the programrtanguage.
Specifically, for an object-oriented programmingidaage like
Java a generalized object-oriented meta-model eamsbd, such
as the OMG meta-model, the Meta-Object Facility (B {B0], to
which other languages than Java can be mapped lasMeta-
models are at the core of recent research and astdindtion
activities in the area of the OMG’s Model Drivenchitecture
(MDA) [28], [39] and, more generally, Model Driven
Development (MDD) which encompasses approachesniete
OMG standards, such as Domain Specific Languag8&gP[19]
and other non UML-based efforts.

3.1 Meta-Modelsfrom MDD Tools

MDD technologies usually generate executable soéwiaom

instances of meta-models [46]. That implies thasdor such
technologies need a representation of the resgeptata-model.
An example is the free openArchitectureWare Franme©OAW)

[48] which includes a meta-model implementatiodava. One of
the advantages is that exporting the meta-modelanous
formats is supported including a number of XMl d@bk. The
decision for the use of such a meta-model is aetafflbetween
the advantages of reusing a stable quality impleatiem and the
overhead involved with a much larger meta-modeh thaeded
and a certain amount of inflexibility due to the texal

dependency (e.g., reliance on third-party bug §ixor version
schedules).

3.2 UML2Meta-Model

Since the UML2 specification [32] defines 13 typ#sdiagrams
and a large number of classes it would be quitecesipe to
implement the full UML2 meta-model from scratch. €Th
EclipseUML2 project [9] provides a complete implartaion of
the UML2 meta-model. It is based on the Eclipse dliod
Framework (EMF) and its meta-model Ecore [10]. Whihe
EMF was designed as a modeling framework and cedergtion
utility the objectives of EclipseUML2 are to proeidan
implementation of the UML meta-model to support the
development of UML based modeling tools. Eclipsdl2vand
the EMF also provide support for the XML Metadatéetchange
language (XMI) [31] export of the model. This btiit XMI

serialization is a big advantage for the model erge as
described in section 5.1.1. Despite those advastdgeusage of
the UML2 meta-model for representing only sequetiegrams
could cause some cognitive overhead as most patteedJML
structure won't be needed.

3.3 Custom Meta-M odel

The overhead produced by using the complete UML&medel
leads to the idea of developing a light-weight oostmeta-model.
As mentioned in the introduction one can reducentioelel to a
few basic components which will result in a verghl-weight
design. However, one has to face the drawbackew#ldping an
export mechanism in addition to persistence andalization
mechanisms.

3.4 Compar ative Assessment

As the central abstraction in a sequence diagranerse
engineering tool is the data about the recordediesszps from
actual program runs, its representation in instarmfea meta-
model is a crucial question. There are two bastoop to choose
from: reusing an external meta-model or implementincustom
meta-model. The reuse of an external meta-modetothe well-
known substantial advantages of software reuse, [21¢h as
implementation cost savings and proven implementaguality.
From a Java perspective both options are equadlplei Third-
party meta-model implementations are very ofterebasn Java
technology and Java is also well suited for a custo
implementation. In the given situation where onlyeaxy small
subset of the meta-model is needed and the cost @istom
implementation is low we opted for the simplicitydaflexibility
of a custom implementation.

4. Visualization and M odel Post-Processing

One central requirement for a UML2 sequence diagraverse
engineering tool is the visualization of the reeatdiata, that is,
some form of transformation or mapping from the an@bdel

instances to a visual representation. Indeed, lasv@an observer
interacts with such models primarily in their visifarm the

graphical display as a sequence diagram can be considered the

main purpose of such a tool. In the following semsi we will
discuss the possibilities of generating diagraner aécording the
tracing data and analyze a number of possible rdsth&e also
describe interactive rendering during the datanging.

4.1 Third-Party Batch Visualization

Methods based on third-party tools visualize thikected model
information by exporting to viewable formats or dmhediate
stages of such formats. Generally, we can diffeatntetween
using common graphics formats (such as PNG, JPG abd
displaying the result in third party UML modelingpts.

The main drawback of using static graphics fornmtke lack of
adequate diagram interaction possibilities. As hjinformats
offer the most simple export of a visualized diagrave will

briefly explain a lightweight technology for gentng various
kinds of graphics output. The free tool UMLGraphais example
of such a technology. It allows the specificatidnaosequence
diagram in a declarative way [40], [41] using pi@dros. With
the GNU plotutils program pic2plot [18] these sffieations can
be transformed into various graphics formats (EPNG, SVG,

129

PostScript, and many more). An approach for intiggathis
technology into a tool is the usage of a templatgiree (e.g.,
Apache Jakarta Velocity [2]) for transforming timstances of the
meta-model to the pic syntax and applying pic2piothe result.
Main advantages include the implicit use of a higiality layout
engine and the broad graphics format support. Géperall
methods described in section 5.2 that lead to dgeapxport can
be used for such batch visualizations.

4.2 Real-Time Visualization

It is an interesting option to perform model viseafion during
the data collection process. Especially for slomeming or GUI

input driven programs this can be a useful way lifeoving the
behavior of the program in real time during theording process.
In [33] a similar approach is taken and combinethvexplicit

means to trigger the steps in the program execuésalting in a
special kind of visual debugger.

A number of implementation choices exist, espegidhe
development of a custom viewer and an SVG-basedticol
Although SVG is better known as a vector format fatic
graphics it also supports the visualization of tidependent data
in the form of animations [50]. For this purposésitpossible to
programmatically add nodes to the SVG tree to céflte
temporal evolution of the diagram. In principleetBame two
possible SVG-based approaches as those detaileztiion 4.3.1
can be used.

4.3 Interactive Visualization and Editing
Viewing a non-modifiable diagram can already befulse~or
diagrams constructed manually with a design tod thay be
sufficient because these diagrams are usually vetyolarge as
the content is under direct and explicit controtied modeler. If,
however, the diagram is generated automaticallycolecting
data from an executing program it can quickly beem@ry large.
This may be caused by too many participants (fiéed) in the
diagram or by recording too many interactions owere or by
showing too much or unwanted detail. As pointed lmutSharp
and Rountev [42] such a large diagram quickly bezomseless
to a human user and thus a possibility to intevattiexplore the
diagram is needed. Such an interactive viewingircgminciple be
extended to support the editing and modificatiom aiagram for
further export. We describe three possibilities fealizing an
interactive interface in the following sections.

4.3.1 SVG Based Solution

A viewer for the interactive exploration and possib
manipulation of sequence diagrams can be realizfd Sealable

Vector Graphics (SVG) [50]. We describe this W3@nstard-

based vector graphics format in more detail inieacs.2.2. The

two principle possibilities are:

1. SVG combined with EcmaScript
2. Extension of an open source SVG viewer

In the first case the model is exported to an SWtage and
combined with an embedded EcmaScript program teraction.
The scripting language EcmaScript [8] is the statidad version
of JavaScript. While the latter was originally oduced by
Netscape for client-side manipulation of web pagesl the
browser, EcmasScript is a general-purpose scrigiinguage. It is

the official scripting language for SVG viewers kvigtandardized
language bindings [52]. EcmaScript provides mousene
handling and enables the manipulation of SVG elésien
attributes, and text values through the SVG Docun@ipject
Model (DOM). Nodes can be added and deleted andesal
modified. As SVG elements can be grouped during ekgort
process and attributes can be inherited it becofeasible to
manipulate a whole UML sequence diagram elemerit aviingle
attribute change in the parent group. It is beredfihat such an
EcmasScript-based interactive explorer can be endzkbduo (or
referenced from) the SVG file. Thus the image carekplored
interactively in every SVG-compatible viewer incing web
browsers equipped with an SVG plug-in. Disadvargagfesuch a
scripting language compared to a high-level objeEnted
programming language like Java include limitatiafisthe core
language libraries, as well as fewer third-partgrdries and
generally comparatively poor (though slowly impmy) tool
support for EcmaScript development.

As an alternative an interactive viewer can be thase a Java
implementation of an SVG library, such as the Apad&atik

Toolkit [3] which includes parser, viewer, and amplementation
of the Java language bindings according to thedstah[51]. This
toolkit is an open-source product which can be redée to
support custom behavior either by modifying thesemg viewer
or by adding event-handlers with DOM-manipulatingstom

behavior to the view leaving the core viewer unrfiedi While

the first possibility as described in the precediegtion is more
powerful it requires changes to the original codeici is a
potential source of maintenance problems. The skapproach
is comparable to the one described for EcmaScrptwith the

greater power of Java compared to EcmaScript. Eugired
manipulation of the DOM is possible but sometinresittlesome.
The main advantage of using the Java AP| of Basikthe

possibility to reuse a stable production-quality d arfiree

implementation. This approach to extend the exgsBatik SVG

viewer with custom interaction possibilities is delsed in [29]

for the display of interactive maps within the Geghic

Information Science (GIS) domain.

4.3.2 Custom Viewer

The most flexible approach is to build a customwee from
scratch in Java, or even based on diagrammingrigsrauch as
the Graphical Editing Framework (GEF) [11] or JG1dp2]. The
advantage of this approach is that the structurea sequence
diagram can be manipulated at the appropriate levkl
abstraction. In the SVG implementation manipulatbsequence
diagram elements requires manipulation of the gédene
representation of these elements. In that caseribgrammatic
interaction is at the wrong level of abstractioamely at the level
of the graphical presentation and not at the l@fethe model
itself. With a custom viewer, however, the displagn be
modified as response to user input by manipulaistances of
the meta-model and their graphical representafidnis can be
achieved by adhering to the well-known Model-Viewr@oller
(MVC) paradigm [26], a combination of the Obser@omposite,
and Strategy design patterns [14] which promotdtebelesign
and maintainability. In this design changes carajpglied to the
model and automatically reflected in the graphiegresentation.

130

The drawback to this approach is primarily the féwat the
rendering has to be implemented from scratch usinly the
basic abstractions such as points, lines, andpiextided by the
programming language, in this case Java or a seitdvary. For

a more complex interactive viewer, which may supuoding,
folding, deleting of structures, or zooming and esth
manipulations, the greater expressiveness and p@ivelava
(compared to SVG-viewer embedded EcmaScript) ¢learl
outweighs this disadvantage. Additionally, if thedel storage
and diagram visualization concerns are handledinvitie same
technology the overhead for and complexity of ifateing
between technology layers (e.g., between Java
SVG/EcmasScript) can be saved. This is especiallyomant for
advanced interaction features which require semamfiormation
stored in the model.

and

4.4 Compar ative Assessment

In this section we described various sequence alagr
visualization options and technologies. These ohelbatch, real-
time, and interactive visualization. While the bataode provides
basic visualization support, the usefulness ofcueece diagram
reengineering and visualization tool is greatlyré@ased if real-
time and interactive visualization are supportetdus] our tool
also supports these two advanced options. The idedc6VG-
based approaches have mainly the following advastag

Reuse of the base rendering mechanism of commercial
(SVG browser plugins) or open source viewers (e.g.,
Batik)

Ubiquitous deployability in the case of an Ecmageri
based viewer embedded within the SVG document due
to readily available web browser plugins

However, these advantages are reduced by the edstféort of
bridging the technology gap between the recordind anodel
storage technology (Java) and the viewing/rendetéatinology
(EcmaScript/SVG). Especially for the advanced gntéon
features of our tool the flexibility of a customewer is crucial.
We therefore decided to implement a custom vievesed solely
on Java without an SVG-based implementation.

5. Export

In a model reengineering tool the model informatids
represented at different levels including an abstreon-visual
level for the core model information and a morearete level for
the visual representation in a graphical user fater The
information at both levels has a distinct value itsrrespective
purpose and therefore a tool should be able to rexyis
information at both levels. Additionally, a thirdgsibility is to
export an animated version of the model. Such amation
combines the graphical representation with a teaigtimension
thus capturing some of the actual dynamics encoeahtduring
the recording phase.

5.1 Model Information Export

Models are exported for a number of reasons incfudi

1. Import into other UML tools

2. As source for transformations to other
representations, such as content-only (e.g., graplor
textual model descriptions (e.g., DSLSs)

3. As a persistence mechanism for the modeling

application if it allows some form of editing or

manipulation the state of which might need to be

persisted

Options for such an export are XMl export, JavaBeXiML
export, or custom (possibly binary) file formatse\Wescribe each
option briefly in the following.

5.1.1 XML Metadata Interchange (XMI)

UML models can be represented and shared betweelelimgp

tools and repositories with the help of the XMInstard defined
by the OMG [31]. This standard is quite comprehensind has
evolved considerably to the current version. Howevile

existence of various dialects of the standardevyatenced by the
different model import filters of some modeling) constitutes
a major problem for interoperability.

5.1.2 XML Data-Binding Based Serialization

An alternative export of model information can lea@mplished
by using the default XML serialization mechanismtbé Java
language. The initial Java Beans serialization raeidm was a
binary one (see next section), which was and istiliseful as a
short-time serialization mechanism, e.g., for REinoting. It is
very sensitive to versioning problems and unsuitegrocessing
by non-Java technologies. Due to these problems tanthe

general growing importance of XML technologies, amdrder to
support long-term persistence a new XML-based lsmatin

mechanism for Java Beans was added to the langonaggsion
1.4 [44).

In light of the XMI interoperability problems theobustness,
availability, and simplicity of this serializatiomechanism can
outweigh its limitations, namely the missing impogpabilities
into third-party modeling tools, especially in cewction with a
custom meta-model. The advantages of this serimiza
mechanism are limited to certain situations whéighttweight)

models are created for documentation or ad-hoc aomuation

purposes. This mechanism should not be used foatioge
persistent software lifecycle artifacts where maddetrchange is
crucial.

5.1.3 Custom File Format

A binary custom (with respect to the contents wothe general
structure) file format can be realized easily. Tistend, the
mentioned binary Java serialization mechanism is applied to
modeling information represented in memory as ataimce of the
meta-model. The usefulness of such an export it dumited,
however, and can mainly be used as a proprietargigbence
format for the application itself. It is not welliged for further
processing or exchange with other tools, mainly tués non-
self-describing syntactic nature (i.e., binary Jgwersistence
format) and missing meta-model (i.e., the statisigie of the
stored objects).

131

5.2 Graphics Export

For many users and usage scenarios the export dling
information is not needed; the export of imagesufficient. As
mentioned earlier sequence diagrams play an importdle in
software specification and documentation artifaagswell as a
basis for test coverage criteria [4], [24]. For thee within these
documents and activities a visual form is neededi therefore a
possibility to export diagram representations &f thodel both as
static graphics and as animated diagrams.

5.2.1 Bitmaps

Bitmaps are the most simple of graphics formats ankirge
number of formats exist. The most popular formatslude
uncompressed bitmaps like Windows bitmaps (BMP)THfF

bitmaps and compressed (lossy or lossless) foriiteasGIF,

PNG, and JPEG. The main advantages of these foimdtsle

their wide-spread use, graphics tool and nativavbeo support.
The most popular formats like GIF and JPEG are disectly

supported in programming languages like Java withacd-party
libraries or filters. Due to the discrete naturettoé information
encoding the contents of such an image cannot iergé be
scaled (or rotated by arbitrary angles) withoutéawg the image
quality. This is especially true for drawings aedttwhich are the
constituents of sequence diagrams. Thus, bitmapgpamarily

useful for direct processing between applicatioesg.(via
screenshots and clipboards), general screen-baseor inedium-
quality printed documentation but not necessanlyhigh-quality
printing, such as books etc.

5.2.2 Vector Graphics

Vector graphics do not suffer from the inherentit@tions of

bitmaps with respect to image manipulations suclzasming.

The structures in vector graphics images are nstemrad but
represented by a more abstract description oretred 0f lines for
general drawings and letters for text. This enal#esoduction at
arbitrary resolutions and in many cases also leadssmaller file
size. Vector graphics formats exist in proprietagysions such as
Adobe’s PostScript (PS), Encapsulated PostScripSjEand PDF
formats or open-standards based versions, notdidyW3C's

Scalable Vector Graphics (SVG) [50]. They also che

differentiated by their binary (PDF) or textual repentation
(SVG, PS). Of these formats SVG is the only XML-dxhgormat.

Although the Adobe family of formats is proprietaityis very

widely used for electronic documents (PDF) [1] witite free
Adobe Acrobat viewer, printers (PS), and within thenting

industry. So sequence diagrams exported to PDkranediately
useful for sharing, viewing, and printing. Althouftee [27] as
well as commercial programming libraries [35] fhetgeneration
of these formats exist the known disadvantages, (eggpl as well
as technical issues) of a proprietary format arstmelevant for
the creation process. Also the level of abstradticthese libraries
varies and the API itself is not standardized.ringple, PDF can
be generated directly at a high level of abstractith the help of
XSL formatting objects (XSL-FO) [49]. These forniadt objects
can be applied to a serialized form of an instavicéhe meta-
model. Interestingly, this part of the XSL speafion has
enjoyed far less success than the XSL transformadéot and is
not widely supported. However, there is a fairlyvaated
implementation called FOP (Formatting Objects Pssog) within

Apache's XML Graphics Project. A custom implementatof,
e.g., a PostScript export is not advisable as traptexity and
investment can be considerable.

The SVG standard [50] is a fairly recent developnignthe W3C
consortium. The current production version 1.1 udels rich
support for static vector graphics including textdabitmap
integration as well as support for animation. AsXviL-based

format it is widely supported in the areas of getien (data-
binding), parsing and transformation technologXéSL(T, XSL-

FO) and provides very good editor, modeling tonl persistence
support. While these are generic advantages of Xisliéed
formats special support for SVG is also growingthie area of
viewers (e.g., Apache Batik) and browser plug-eg. Adobe,
Corel) and as persistence format in many graphicést The
Apache Batik Project [3] also provides a Java A&M §VG

parsing, generation, conversion, and a DOM impldatam

compliant to the standard.

These properties make SVG a suitable format foretkgort of
models as diagrams. Additionally, SVG supports aege
extension mechanism for handling metadata [50]ptimciple,
this could be used to embed model information sibsdirectly
in XMI format — or processing status and historpithe diagram
representation. The SVG file could then be usedodis an image
format and a persistence format for the modelinglieation
itself. An example of embedding domain knowledgéhat level
of model information into SVG metadata is describre¢9] for
the geographic domain. Additionally, SVG supportscter
graphics based animation, which we describe iméhxa section.

5.3 Animation

The usefulness of animation as a tool for improvitige
understanding of sequence diagrams has been stoyliBdrd et
al. [7], who find that control flow comprehensibjlican be
improved by using animated sequence diagrams cadpar
static sequence diagrams. There also seems toitlz¢ support
for such animated diagrams in commercial produtt$. [

The consideration between animated bitmaps (GlE) \eattor
graphics (SVG) is similar to that for the case tatis diagrams.
While the support of animated GIFs in browsers geaderally, in
tools is better, SVG animation offers the known adages of
vector graphics, i.e., smaller file size, betteralgy, and
scalability for text and drawings. Additionally, &Vanimations
are just XML files and could thus be easily posigassed by,
e.g., XSL transformations to generate differentrespntations,
such as textual descriptions of the sequence dgssef single
images.

5.4 Compar ative Assessment

For a sequence diagram reengineering tool expaesilpitities are
very important. This includes export of both thenaetic (model)
information as well as a visual description (imatg¢a). Despite
the well-known practical XMI interoperability prabhs support
for this model exchange format is mandatory foradeting tool.
The built-in XML and binary serialization formatd the Java
language provide useful mechanisms for intermedgsteage
(e.g., for model transformations) and for propmgtpersistence
formats, respectively.

132

Graphics export support includes more widely-uséddps, such
as GIF with associated scaling and printing prolsleamd the less
common but more scalable vector graphics formath as SVG.
With this mix of advantages and drawbacks theradssingle
solution but support of both kinds of formats igfus Animation
export possibilities are a useful enhancement whadn
contribute to the improvement of model and, herme®gram
logic comprehension.

To support model information persistence for thepliaption
itself, we opted to use the JavaBeans built-in XMtmat. This
also offers the possibility to easily extend thepax to XML-
based standards, like XMl and SVG, by applying XSL
Transformations [53] to the serialized model. Wdl wie this
approach to support at least one important XMledihs part of
our future work.

As with the other concerns, the mixture of featusest into the
Java language and the availability of third-partyrdries and
interfaces provide a strong foundation for the tool
implementation.

6. Conclusion and Future Work

In this paper we presented a detailed study of ni@logical
choices for various implementation aspects of aadyin UML
sequence diagram reengineering tool from a Javeicen
perspective. The implementation of such a tool gmes a
considerable challenge and many important strategmc
technological decisions have to be made. Our stodyplements
the existing body of literature on the subject @fsence diagram
reengineering, or more generally, trace visualmgtiby adding
thorough technical advice for those interested tienapting the
implementation of such a system, especially inJénea language.
In many cases there is no one single correct tdofival solution
to a given implementation problem. By comparing ddeantages
and drawbacks of each alternative and reportingrampces from
our own implementation this study provides assisarior
informed technological decisions within the domeirdava-based
sequence diagram reengineering, especially in tbasaof data
collection, data representation with meta-model taimses,
interactive model visualization and various expgtions.

We showed that Java is a very suitable language tHer
development of such a tool in two respects: While virtual
machine-based execution mechanism provides extalgport
for tracing mechanisms for data collection, the ynadvanced
features of Java discussed above as well as theetcof existing
libraries for many aspects facilitate the developntd the tool as
a whole. Thus Java is both: a technology that ldatsgdf to a
number of elegant reengineering techiques as \gedl powerful
means to implement a reengineering tool. The forprevide
access to the necessary tracing information while latter
processes this information.

The tool described in this paper is currently bairtggrated with
the MORABIT component runtime infrastructure, a di@vare
for resource-aware runtime testing [43]. In theufatwe plan to
enhance our own prototype implementation to incladeanced
features such as animation export, multithreadingpert and
plug-in-based IDE and API-based custom integrations

7. ACKNOWLEDGMENTS

This work has been funded by the Klaus Tschira Hation
(KTS) and the Landesstiftung Baden-Wurttemberg iwitthe
MORABIT research project. We thank our colleagudadE
Messing and Daniel Brenner for reviewing the maripsand the
anonymous reviewers for providing helpful suggestiofor
improvement.

8. REFERENCES

[1] Adobe System®DF Reference Fifth Edition, Adobe
Portable Document Format Version 14&dobe System Inc.,
partners.adobe.com, 2004.

[2] ApacheVelocity The Apache Jakarta Project,
jakarta.apache.org/velocity/.

[3] Apache.Batik SVG ToolkitThe Apache XML Project,
xml.apache.org/batik/.

[4] Binder, R.Testing Object Oriented Systems. Models,
Patterns and ToolsAddison Wesley, 1999.

[5] Briand, L.C., Labiche, Y., and Leduc,Tbwards the
Reverse Engineering of UML Sequence Diagrams for
Distributed Real-Time Java Softwaikechnical Report
SCE-04-04, Carleton University, 2004.

[6] Briand, L. C., Labiche, Y., and Miao, Y. Towardeth
Reverse Engineering of UML Sequence Diagrams. In
Proceedings of the 10th Working Conference on Rever
Engineering(November 13 - 17, 2003). WCRE. IEEE
Computer Society, Washington, DC, 2003, 57.

[7]1 Burd, E., Overy, D., and Wheetman, A. Evaluatingngs
Animation to Improve Understanding of Sequence Eiats.
In Proceedings of the 10th international Workshop on
Program Comprehensiofdune 27 - 29, 2002). IWPC. IEEE
Computer Society, Washington, DC, 2002, 107.

[8] ECMA InternationalStandard ECMA-262 ECMAScript
Language SpecificatioiECMA International, www.ecma-
international.org, 1999.

[9] Eclipse ProjectThe EclipseUML2 projecEclipse Project
Universal Tool Platform, www.eclipse.org/umi2/.

[10] Eclipse projectEclipse Modeling Framework (EMF)
Eclipse Project Universal Tool Platform,
www.eclipse.org/emf/.

[11] Eclipse ProjectGraphical Editing Framework (GEF)
Eclipse Project Universal Tool Platform,
www.eclipse.org/gef/.

[12] Eclipse ProjectAspectJ projecteclipse.org,
www.eclipse.org/aspectj/.

[13] Filman, R. E., Elrad, T., Clarke, S. and Aksit, Mspect-
Oriented Software DevelopmeRearson Education, 2005.

[14] Gamma, E., Helm, R., Johnson, R. and VlissideBgegign
Patterns: Elements of Reusable Object-Oriented\&oé
Addison-Wesley Longman Publishing Co., Inc., 1995.

[15] Gradecki, J. and Lesiecki, Mastering AspectJ - Aspect
Oriented Programming in Jav&Viley Publishing Inc, 2003.

[16] Gargiulo, J. and Mancoridis, S. Gadget: A Tool for
Extracting the Dynamic Structure of Java Progrdms.
Proceedings of the International Conference onvgof

133

Engineering and Knowledge Engineering SEKE&ne 2001).
2001.

[17] Gannod, G. and Murthy, S. Using Log Files to Retroigs
State-Based Software ArchitecturesPimceedings of the
Working Conference on Software Architecture
Reconstruction WorkshofEEE, 2002, 5-7.

[18] GNU: The plotutils Packagd-ree Software Foundation Inc.,
www.gnu.org/software/plotutils/.

[19] Greenfield, J., Short, K., Cook, S. and KentS8ftware
Factories: Assembling Applications with Patterngyddls,
Frameworks, and Toal®Viley Publishing Inc, 2004.

[20] Hamou-Lhadj, A. and Lethbridge, T. C. A survey rafce
exploration tools and techniques.Rmoceedings of the 2004
Conference of the Centre For Advanced Studies on
Collaborative ResearctMarkham, Ontario, Canada,
October 04 - 07, 2004). H. Lutfiyya, J. Singer, &hdA.
Stewart, Eds. IBM Centre for Advanced Studies Carfee.
IBM Press, 2004, 42-55.

[21] Jacobsen, I., Griss, M. and JonnsorSéftware Reuse:
Architecture, Process and Organization for Business
SuccessAddison-Wesley Professional, 1997

[22] JGraph ItdJGraph www.jgraph.com/.

[23] Kiselev, I.Aspect-Oriented Programming with AspectJ
Sams Publishing, 2003.

[24] Fraikin, F. and Leonhardt, T. SeDiTeC " Testingd&hen
Sequence Diagrams. Rroceedings of the 17th IEEE
international Conference on Automated Software
Engineering(September 23 - 27, 2002). Automated Software
Engineering. IEEE Computer Society, Washington, DC,
2002, 261.

[25] Kollman, R., Selonen, P., Stroulia, E., Systdahd
Zundorf, A. A Study on the Current State of the iarTool-
Supported UML-Based Static Reverse Engineering. In
Proceedings of the Ninth Working Conference on Reve
Engineering (Wcre'02)0October 29 - November 01, 2002).
WCRE. IEEE Computer Society, Washington, DC, 2Q22,

[26] Krasner, G. E. and Pope, S.A'Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80 SIGS Publications, 1988, pages 26-49.

[27] Lowagie, B.iText www.lowagie.com/iText/.

[28] Mukeriji, J. and Miller, IMDA Guide Version 1.0.0bject
Management Group, www.omg.org, 2003.

[29] Merdes, M., HauRler, J. and Zipf, A. GML2GML: Geicer
and Interoperable Round-Trip Geodata Editing - @pts
and Example8th AGILE Conference on GIScien@805.

[30] OMG: Meta Object Facility (MOF) Specification Version
1.4. Object Management Group, www.omg.org, 2002.

[31] OMG: XML Metadata Interchange (XMI) Specification

version 2.0 Object Management Group, www.omg.org,
2003.

[32] OMG: UML 2.0 Superstructure SpecificatioDbject
Management Group, www.omg.org, 2004.

[33] Oechsle, R. and Schmitt, T. JAVAVIS: Automatic Piaog
Visualization with Object and Sequence Diagrams\g/sie

Java Debug Interface (JDI). Revised Lectures on Software
Visualization, international SeminéMay 20 - 25, 2001). S.
Diehl, Ed. Lecture Notes In Computer Science, 2869.
Springer-Verlag, London, 2002, 176-190.

[34] Pauw, W. D., Jensen, E., Mitchell, N., Sevitsky, G.
Vlissides, J. M., and Yang, J. Visualizing the Ext@mn of
Java Programs. IRevised Lectures on Software
Visualization, international SeminéMay 20 - 25, 2001). S.
Diehl, Ed. Lecture Notes In Computer Science, 2869.
Springer-Verlag, London, 2002, 151-162.

[35] Qoppa. jPDFWriter. Qoppa Software,
www.goppa.com/jpindex.html.

[36] PRESTORED Project Presto Research Group Ohio State
University, nomad.cse.ohio-state.edu/red/.

[37] Rountev, A., Volgin, O., and Reddoch, M. Statictcoh
flow analysis for reverse engineering of UML sequesn
diagrams. Irthe 6th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering
(Lisbon, Portugal, September 05 - 06, 2005). MsEamd T.
Jensen, Eds. PASTE '05. ACM Press, New York, NY520
96-102.

[38] Systa, T., Koskimies, K., and Miller, H. 2001. Shan-an
environment for reverse engineering Java softwgstems.
Softw. Pract. Expe31, 4 (Apr. 2001), 371-394.

[39] Soley, R. and Group, O. Blodel Driven Architecture
Object Management Group, www.omg.org, 2000.

[40] Spinellis, D.UMLGraph www.spinellis.gr/sw/umlgraph/.

[41] Spinnelis, D.: On the Declarative SpecificatiorMiidels.
IEEE Software Volume 20 IssueZD03, pages 94-96.

[42] Sharp, R. and Rountev, A. Interactive ExploratibubiL
Sequence Diagrams. Rroceedings of the IEEE Workshop

134

on Visualizing Software for Understanding and Asay
(VISSOFT'05)2005, 8-13.

[43] Suliman, D., Paech, B., Borner, L., Atkinson, Creiiher,
D., Merdes, M., Malaka, R. The MORABIT Approach to
Runtime Component Testing. Rroceedings of the Second
International Workshop on Testing and Quality Aasiee
for Component-Based Systems. (TQACBIIE)6

[44] Sun MicrosystemsAPI Enhancements to the JavaBeans
Component APl in v1.48un Microsystems Inc,
java.sun.com/j2se/1.4.2/docs/guide/beans/chandesil4.
2002.

[45] Sun Microsystemslava Platform Debugger Architecture
(JPDA). Sun Microsystems Inc.,
http://java.sun.com/products/jpda/index.jsp.

[46] Stahl, T. and Volter, MModel-Driven Software
DevelopmentWiley, 2006.

[47] Sysoft.Animation of UML Sequence Diagrams" - Amarcos
Sysoft, http://www.sysoft-fr.com/en/Amarcos/ams-Lasp.

[48] Thoms, C. and Holzer, B. Codegenerierung mit dem
openArchitectureWare Generator 3.0 - The Next Giwer.
javamagazin 07/20Q0%005.

[49] W3C. Extensible Stylesheet Language (XSL) Version 1.0
W3C Recommendation, www.w3.org, 2001.

[50] W3C. Scalable Vector Graphics (SVG) Version 1.1
Specification W3C Recommendation, www.w3.0rg, 2003

[51] W3C.Java Language Binding for the SVG Document Object
Model W3C Recommendation, www.w3.0rg. 2003.

[52] W3C.ECMAScript Language Binding for SVG, W3C
Recommendatigrwww.w3.0rg, 2003.

[53] W3C. XSL Transformations (XSLT) Version 1.0
Specification W3C Recommendation, www.w3.0org, 1999

