
Experiences with the Development of a Reverse
Engineering Tool for UML Sequence Diagrams:

A Case Study in Modern Java Development
Matthias Merdes

EML Research gGmbH
Villa Bosch

Schloss-Wolfsbrunnenweg 33
D-69118 Heidelberg, Germany

<firstname.lastname>@eml-
r.villa-bosch.de

 Dirk Dorsch
EML Research gGmbH

Villa Bosch
Schloss-Wolfsbrunnenweg 33
D-69118 Heidelberg, Germany

<firstname.lastname>@eml-
r.villa-bosch.de

ABSTRACT
The development of a tool for reconstructing UML sequence
diagrams from executing Java programs is a challenging task. We
implemented such a tool designed to analyze any kind of Java
program. Its implementation relies heavily on several advanced
features of the Java platform. Although there are a number of
research projects in this area usually little information on
implementation-related questions or the rationale behind
implementation decisions is provided. In this paper we present a
thorough study of technological options for the relevant concerns
in such a system. The various options are explained and the trade-
offs involved are analyzed. We focus on practical aspects of data
collection, data representation and meta-model, visualization,
editing, and export concerns. Apart from analyzing the available
options, we report our own experience in developing a prototype
of such a tool in this study. It is of special interest to investigate
systematically in what ways the Java platform facilitates (or
hinders) the construction of the described reverse engineering
tool.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques –
object-oriented design methods, D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement – reverse
engineering, documentation.

General Terms
Algorithms, Documentation, Design, Experimentation

Keywords
UML models, sequence diagrams, reverse engineering, Java
technology

1. INTRODUCTION
Due to the increasing size and complexity of software
applications the understanding of their structure and behavior has
become more and more important. Proper specification and
design activities are known to be important in producing
understandable software. If such specification and design artifacts
are unavailable or of poor quality reverse engineering
technologies can significantly improve understanding of the
design of an existing deployed software system and in general
support debugging and maintenance. While modern CASE tools
usually support the reconstruction of static structures, the reverse
engineering of dynamic behavior is still a topic of on-going
research [20], [25].

The development of a tool supporting the reconstruction of the
behavior of a running software system must address the major
areas of data collection from a (running) system, representation of
this data in a suitable meta-model, export of the meta-model’s
information or its graphical representation as well as post-
processing and visualization aspects. These core areas and their
mutual dependencies are shown in Figure 1. Clearly, all
conceptual components depend on the meta-model. In addition, a
visualization mechanism can be based on a suitable export format
as discussed in sections 4 and 5. While this figure illustrates the
main conceptual components of our sequence diagram
reengineering tool a symbolic view of its primary use can be seen
in Figure 2: The main purpose of such a tool is to provide a
mapping from a Java program to a UML sequence diagram. The
various relevant options will be discussed in detail in the
following sections. Recurrent technical topics include meta-model
engineering, aspect-oriented technologies, XML technologies –
especially in the areas of serialization and transformation – and
vector graphics.

Meta-Model

ExportData Collection Visualization

Meta-Model

ExportData Collection Visualization

Figure 1. Conceptual components with dependencies

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2006, August 30 – September 1, 2006, Mannheim, Germany.
Copyright 2006 ACM 3-939352-05-5/06/08…$5.00.

125

UML sequence diagrams are among the most widely used
diagrams of the Unified Model Language (UML) [32]. The UML
is now considered the lingua franca of software modeling
supporting both structural (static) and behavioral (dynamic)
models and their representation as diagrams. Behavioral diagrams
include activity, communication, and sequence diagrams. Such
sequence diagrams are a popular form to illustrate participants of
an interaction and the messages between these participants. They
are widely used in specification documents and testing activities
[24] as well as in the scientific and technical literature on software
engineering.

Sequence diagrams [32] are composed of a few basic and a
number of more advanced elements. The basic ingredients of a
sequence diagram are illustrated in a very simple example in the
right part of Figure 2 along with their respective counterparts in
the Java source code on the left-hand side. In such a diagram
participants are shown along the horizontal dimension of the
diagram as so-called ‘life-lines’. In the example, the two
participants are ‘Editor’ and ‘Diagram’. These life-lines are
connected by arrows symbolizing the messages exchanged
between participants. The messages are ordered chronologically
along the vertical dimension. In the example, two messages from
Editor to Diagram are depicted, namely the constructor message
‘new Diagram()’ and the ‘open()’ message. More advanced
concepts (not shown in the figure) such as modeling alternatives,
loops, and concurrent behavior, can be factored out into so-called
‘fragments’ for modularization and better readability.

Figure 2. Behavior as Java source code and sequence diagram

The reconstruction of the behavior of a software system has been
studied extensively both in the static case (from source or byte
code) [36], [37], [38] and in the dynamic case (from tracing
running systems) [6], [33], [34]. [42] and [7] focus more on

interaction with and understanding of sequence diagrams,
respectively. An overview of approaches is provided by [25] and
[20]. Despite this considerable amount of work there is often little
information on implementation-centric questions or the rationale
behind implementation decisions. Our study is intended to remedy
this lack of such a systematic investigation and is motivated by
our experiences in implementing our own sequence diagram
reengineering tool. This paper has two main purposes. Firstly, we
describe and analyze the possible technological options for the
required areas. We also report the lessons learned by our
implementation. In this way, the more abstract analysis based on
theoretical considerations and the technical and scientific
literature is verified and complemented by our own practical
experience.

The remainder of this paper is organized as follows. Section 2
explores methods to collect relevant data and section 3 describes
the choices for representation of this data using a suitable meta-
model. We describe options for visualization and model or
graphics export in section 4 and 5, respectively.

2. Data Collection
In this section we will discuss technologies for retrieving
information from Java software systems with the purpose of
generating instances of a meta-model for UML sequence
diagrams. We focus on dynamic (or execution-time) methods but
cover static (or development-time) methods as well for the sake of
completeness. Static methods gather information from a non-
running, (source or byte) code-represented system. Dynamic
methods on the other hand record the interaction by observing a
system in execution. Data collection requires a mechanism for
filtering relevant execution-time events which supports a fine-
grained selection of method invocations.

2.1 Development-time Methods

2.1.1 Source Code Based
Using the source code for collecting information about the
interaction within an application will have at least one
disadvantage: one must have access to the source code.
Nevertheless source code analysis is a common practice in the
reverse engineering of software systems and supported by most of
the available modeling tools. It should be mentioned that the
analysis of source code will provide satisfactory results for static
diagrams (e.g., class diagrams), but the suitability for the dynamic
behavior of an application is limited. If one is interested in a
sequence diagram in the form of a common forward engineered
diagram (i.e., a visualization of all possible branches of the
control flow in the so-called CombinedFragment [32] of the
UML), source code analysis will fulfill this requirement. In [37]
Rountev, Volgin, and Reddoch introduce an algorithm which
maps the control flow to these CombinedFragments. If the
intention of the reverse engineering is to visualize the actual
interaction any approach of static code analysis is doomed to fail,
since it is inherently not possible to completely deduce the state
of a system in execution by examining the source code only
without actually running the system. Obvious problems include
conditional behavior, late binding, and sensor or interactive user
input.

126

2.1.2 Byte Code Based
The static analysis of code can also be performed with compiled
code, i.e., byte code in the case of Java. Such an analysis of byte
code basically shares most of the (dis-) advantages of the source
code based approach, but it can be applied to compiled systems.
One advantage is the fact that processing the byte code must be
performed after compilation, separate from the source code, and
thus leaves the source code unchanged. This prevents mixing of
concerns (application logic and tracing concerns) in the source
code and connected maintenance problems.

2.2 Execution-time Methods
The purpose of the dynamic approaches is to record the effective
flow of control, or more precisely, the sequence of interactions, of
a (deployed) system’s execution. Any dynamic approach results
in a model that represents the actual branches of the application’s
control flow. In this section we will discuss technologies based on
a temporary interception of the program’s execution. Basically,
we differentiate between the instrumentation of the application
itself (i.e., its code) and the instrumentation of its runtime
environment.

An overview of the basic workflow from the Java sources to the
byte code and on to the UML model and its visualization can be
seen in Figure 3. This figure illustrates the more expressive
approach of generating the model from dynamic runtime trace
information, compared to the static approach described in section
2.1, which relies on source code only.

source code dynamic model

byte code

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

execution

source codesource code dynamic modeldynamic model

byte code

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

byte code

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

111000 100101 10

executionexecution

Figure 3. Symbolic steps from source code to sequence
diagram model for a Java program (dynamic analysis)

2.2.1 Program Instrumentation

2.2.1.1 Source Code Based
Assuming access to the source code is provided it can be
instrumented in a number of ways. Two obvious possibilities are:

1. Modify the source code manually; this is both
troublesome and error-prone.

2. Take advantage of aspect-orientation and compile the
code with suitable aspects.

Both will finally result in modified source code either explicitly
or transparently. Support for filtering can be achieved by a
(manual or automatic) manipulation of selected source code
fragments. Another related approach is the common logging
practice which can be seen as source code manipulation as well.
Such an analysis of log-files is discussed in [17].

2.2.1.2 Byte Code Based
Instrumenting the byte code instead of the source code has one
advantage: the source code is not manipulated in any way. Again,
one could take advantage of aspect-orientation and recompile the
byte code with some aspects [5]. In most cases one will have
access to the byte code in the form of Java archives (jar files) or
raw class files; otherwise this approach will fail. Again, as in the
development time case explained in section 2.1.2, byte code
manipulation is superior to source code manipulation because of
maintenance and versioning issues. In the following section
another aspect-oriented approach will be discussed.

2.2.2 Instrumentation of the Runtime Environment
For Java applications the instrumentation of the runtime
environment means the instrumentation of the Java Virtual
Machine (JVM). When discussing JVM instrumentation the
theoretical possibility to develop a customized JVM should be
mentioned. Due to the large effort of implementing a new or even
modifying an existing virtual machine we won’t discuss this
approach any further. We prefer to introduce technologies based
on virtual machine agents that could be applied to existing JVM
implementations. In principle, a custom agent could be developed
against the new Java Virtual Machine Tool Interface (JVMTI),
which is part of J2SE 5.0. Gadget [16] is an example using an
older version of this API for the purpose of extracting the
dynamic structure of Java applications. Using the AspectJ or
Java-Debug-Interface (JDI) agents as described below allows to
focus on a higher level of abstraction compared to the low-level
tool interface programming.

2.2.2.1 Java Debug Interface (JDI)
The JDI is part of the Java Platform Debugger Architecture
(JPDA) [45]. The JPDA defines three interfaces, namely the Java
Virtual Machine Tool Interface (JVMTI, formerly the Java
Virtual Machine Debug Interface, JVMDI) which defines the
services a virtual machine must provide for debugging purpose,
the Java Debug Wire Protocol (JDWP) which defines a protocol
allowing the use of different VM implementations and platforms
as well as remote debugging, and last but not least the JDI, the
Java interface implementation for accessing the JVMTI over
JDWP. The debuggee (in our case the observed program) is
launched with the JDWP agent, this allows the debugger (in our
case the observing application) to receive events from the
debuggee by using JDI. For the purpose of reengineering the
system’s behavior we are mainly interested in events of method
executions. As shown in JAVAVIS [33] the JPDA could be
successfully used for the purpose of dynamic reverse engineering.
One big advantage of the JPDA is the built-in remote accessibility
of the observed application. The event registration facility, which
can be seen as a filtering mechanism, appears to be too coarse
grained, since the class filter is the finest level of granularity.
Nevertheless, the JPDA permits the development of reverse
engineering tools for both, structural (static) models, such as class

127

diagrams, and behavioral (dynamic) models, such as sequence
diagrams.

2.2.2.2 AspectJ Load Time Weaving
Usually aspect-oriented programming is associated with
recompiling the source code or byte code with aspects (a.k.a.
weaving), as mentioned in section 2.2.1. Starting with version 1.1,
the AspectJ technology also offers the possibility of load-time-
weaving (LTW) where the defined aspects are woven into the
byte code at the time they are loaded by the class loader of the
Java virtual machine [12]. Hence AspectJ offers the possibility to
trace a deployed system without modifying either source code or
byte code.

An extensive discussion on how to use AspectJ for the purpose of
dynamic reverse engineering of system behavior can be found in
[5] and is beyond the scope of this paper. In this section we
therefore restrict ourselves to the discussion of the basic concepts
of AspectJ needed for this purpose. For detailed information about
aspect-orientation and especially AspectJ refer to [15], [23], and
[12]. Recent research results and directions can be found in [13].

Generally, aspect-oriented approaches support the modularization
of cross-cutting concerns with aspects and weaving specifications.
In the case of AspectJ, these concepts are realized by aspects
(comparable to classes), advice (comparable to methods) and
joinpoints specified by pointcut descriptors. An advice declares
what to do before (before advice), after (after advice) or instead
of (around advice) an existing behavior addressed by a specific
joinpoint. The joinpoint exactly defines a point within the code
execution. For retrieving the information needed to model a
sequence diagram it is sufficient to take advantage of the
predefined call joinpoints (representing a method call) and
execution joinpoints (representing a method execution).

The definition of a joinpoint also offers the possibility of filtering.
A joinpoint can address packages, classes, selected methods or
work in an even more fine-grained manner. So combining those
joinpoints and the arbitrary granularity of the filter mechanism
allows for a flexible extraction of the information on the
interactions in a running system.

2.3 Comparative Assessment
As presented in the preceding sections, there are numerous ways
to implement an execution-tracing data collection mechanism.
Discriminating dimensions include manual vs. automatic
instrumentation of source or byte code, static vs. dynamic
analysis, remote accessibility and performance issues.

If the target environment allows the combined use of version 5 of
the Java platform and the latest release of the AspectJ distribution
(AspectJ 5) the elegance and non-intrusiveness of the load-time-
weaving mechanism in combination with the low performance
impact and the expressiveness and flexibility of the join-point-
based filter mechanism make the aspect-oriented approach the
best solution. This approach is superior in all relevant dimensions,
especially compared to the manual integration of tracing and
application code due to associated maintenance problems, and
compared to a custom JVM or custom JVM agents due to their
inherent complexity and huge effort. Hence in our tool we use an
AspectJ-based data collection mechanism but we have also
implemented and evaluated a prototypical JDI-based data

collection mechanism. Such a solution, however, requires a
customized filtering extension to achieve an appropriate filtering
granularity and suffers from performance problems, especially in
the presence of graphical user interfaces.

3. Meta-Model and Data Representation
A central topic which influences other areas, e.g., visualization,
editing, or export, is the question of how the recorded data are
represented internally. This is best achieved by storing the data in
instances of a suitable meta-model. As a sequence diagram
generation tool collects information on the execution of a program
the meta-model must be capable of representing such run-time
trace data.

Of course, only a certain subset of a typical complete meta-model
will be needed for representing the relevant data. As the execution
of a program in an object-oriented language is realized by method
calls between sender and receiver with arguments, return types,
and possibly exceptions, these are the required meta-model
elements. Therefore a compatible meta-model must be employed
rather than the actual meta-model of the programming language.
Specifically, for an object-oriented programming language like
Java a generalized object-oriented meta-model can be used, such
as the OMG meta-model, the Meta-Object Facility (MOF) [30], to
which other languages than Java can be mapped as well. Meta-
models are at the core of recent research and standardization
activities in the area of the OMG’s Model Driven Architecture
(MDA) [28], [39] and, more generally, Model Driven
Development (MDD) which encompasses approaches beyond the
OMG standards, such as Domain Specific Languages (DSLs) [19]
and other non UML-based efforts.

3.1 Meta-Models from MDD Tools
MDD technologies usually generate executable software from
instances of meta-models [46]. That implies that tools for such
technologies need a representation of the respective meta-model.
An example is the free openArchitectureWare Framework (OAW)
[48] which includes a meta-model implementation in Java. One of
the advantages is that exporting the meta-model to various
formats is supported including a number of XMI dialects. The
decision for the use of such a meta-model is a trade-off between
the advantages of reusing a stable quality implementation and the
overhead involved with a much larger meta-model than needed
and a certain amount of inflexibility due to the external
dependency (e.g., reliance on third-party bug fixing or version
schedules).

3.2 UML2 Meta-Model
Since the UML2 specification [32] defines 13 types of diagrams
and a large number of classes it would be quite expensive to
implement the full UML2 meta-model from scratch. The
EclipseUML2 project [9] provides a complete implementation of
the UML2 meta-model. It is based on the Eclipse Modeling
Framework (EMF) and its meta-model Ecore [10]. While the
EMF was designed as a modeling framework and code generation
utility the objectives of EclipseUML2 are to provide an
implementation of the UML meta-model to support the
development of UML based modeling tools. EclipseUML2 and
the EMF also provide support for the XML Metadata Interchange
language (XMI) [31] export of the model. This built-in XMI

128

serialization is a big advantage for the model exchange as
described in section 5.1.1. Despite those advantages the usage of
the UML2 meta-model for representing only sequence diagrams
could cause some cognitive overhead as most parts of the UML
structure won’t be needed.

3.3 Custom Meta-Model
The overhead produced by using the complete UML2 meta-model
leads to the idea of developing a light-weight custom meta-model.
As mentioned in the introduction one can reduce the model to a
few basic components which will result in a very light-weight
design. However, one has to face the drawbacks of developing an
export mechanism in addition to persistence and visualization
mechanisms.

3.4 Comparative Assessment
As the central abstraction in a sequence diagram reverse
engineering tool is the data about the recorded sequences from
actual program runs, its representation in instances of a meta-
model is a crucial question. There are two basic options to choose
from: reusing an external meta-model or implementing a custom
meta-model. The reuse of an external meta-model offers the well-
known substantial advantages of software reuse [21], such as
implementation cost savings and proven implementation quality.
From a Java perspective both options are equally viable: Third-
party meta-model implementations are very often based on Java
technology and Java is also well suited for a custom
implementation. In the given situation where only a very small
subset of the meta-model is needed and the cost of a custom
implementation is low we opted for the simplicity and flexibility
of a custom implementation.

4. Visualization and Model Post-Processing
One central requirement for a UML2 sequence diagram reverse
engineering tool is the visualization of the recorded data, that is,
some form of transformation or mapping from the meta-model
instances to a visual representation. Indeed, as a human observer
interacts with such models primarily in their visual form the
graphical display as a sequence diagram can be considered the
main purpose of such a tool. In the following sections we will
discuss the possibilities of generating diagrams after recording the
tracing data and analyze a number of possible methods. We also
describe interactive rendering during the data recording.

4.1 Third-Party Batch Visualization
Methods based on third-party tools visualize the collected model
information by exporting to viewable formats or intermediate
stages of such formats. Generally, we can differentiate between
using common graphics formats (such as PNG, JPG etc.) and
displaying the result in third party UML modeling tools.

The main drawback of using static graphics formats is the lack of
adequate diagram interaction possibilities. As bitmap formats
offer the most simple export of a visualized diagram we will
briefly explain a lightweight technology for generating various
kinds of graphics output. The free tool UMLGraph is an example
of such a technology. It allows the specification of a sequence
diagram in a declarative way [40], [41] using pic macros. With
the GNU plotutils program pic2plot [18] these specifications can
be transformed into various graphics formats (such as PNG, SVG,

PostScript, and many more). An approach for integrating this
technology into a tool is the usage of a template engine (e.g.,
Apache Jakarta Velocity [2]) for transforming the instances of the
meta-model to the pic syntax and applying pic2plot to the result.
Main advantages include the implicit use of a high-quality layout
engine and the broad graphics format support. Generally, all
methods described in section 5.2 that lead to graphics export can
be used for such batch visualizations.

4.2 Real-Time Visualization
It is an interesting option to perform model visualization during
the data collection process. Especially for slower running or GUI
input driven programs this can be a useful way of observing the
behavior of the program in real time during the recording process.
In [33] a similar approach is taken and combined with explicit
means to trigger the steps in the program execution resulting in a
special kind of visual debugger.

A number of implementation choices exist, especially the
development of a custom viewer and an SVG-based solution.
Although SVG is better known as a vector format for static
graphics it also supports the visualization of time-dependent data
in the form of animations [50]. For this purpose it is possible to
programmatically add nodes to the SVG tree to reflect the
temporal evolution of the diagram. In principle, the same two
possible SVG-based approaches as those detailed in section 4.3.1
can be used.

4.3 Interactive Visualization and Editing
Viewing a non-modifiable diagram can already be useful. For
diagrams constructed manually with a design tool this may be
sufficient because these diagrams are usually not overly large as
the content is under direct and explicit control of the modeler. If,
however, the diagram is generated automatically by collecting
data from an executing program it can quickly become very large.
This may be caused by too many participants (lifelines) in the
diagram or by recording too many interactions over time or by
showing too much or unwanted detail. As pointed out by Sharp
and Rountev [42] such a large diagram quickly becomes useless
to a human user and thus a possibility to interactively explore the
diagram is needed. Such an interactive viewing can in principle be
extended to support the editing and modification of a diagram for
further export. We describe three possibilities for realizing an
interactive interface in the following sections.

4.3.1 SVG Based Solution
A viewer for the interactive exploration and possibly
manipulation of sequence diagrams can be realized with Scalable
Vector Graphics (SVG) [50]. We describe this W3C standard-
based vector graphics format in more detail in section 5.2.2. The
two principle possibilities are:

1. SVG combined with EcmaScript

2. Extension of an open source SVG viewer

In the first case the model is exported to an SVG image and
combined with an embedded EcmaScript program for interaction.
The scripting language EcmaScript [8] is the standardized version
of JavaScript. While the latter was originally introduced by
Netscape for client-side manipulation of web pages and the
browser, EcmaScript is a general-purpose scripting language. It is

129

the official scripting language for SVG viewers with standardized
language bindings [52]. EcmaScript provides mouse event
handling and enables the manipulation of SVG elements,
attributes, and text values through the SVG Document Object
Model (DOM). Nodes can be added and deleted and values
modified. As SVG elements can be grouped during the export
process and attributes can be inherited it becomes feasible to
manipulate a whole UML sequence diagram element with a single
attribute change in the parent group. It is beneficial that such an
EcmaScript-based interactive explorer can be embedded into (or
referenced from) the SVG file. Thus the image can be explored
interactively in every SVG-compatible viewer including web
browsers equipped with an SVG plug-in. Disadvantages of such a
scripting language compared to a high-level object-oriented
programming language like Java include limitations of the core
language libraries, as well as fewer third-party libraries and
generally comparatively poor (though slowly improving) tool
support for EcmaScript development.

As an alternative an interactive viewer can be based on a Java
implementation of an SVG library, such as the Apache Batik
Toolkit [3] which includes parser, viewer, and an implementation
of the Java language bindings according to the standard [51]. This
toolkit is an open-source product which can be extended to
support custom behavior either by modifying the existing viewer
or by adding event-handlers with DOM-manipulating custom
behavior to the view leaving the core viewer unmodified. While
the first possibility as described in the preceding section is more
powerful it requires changes to the original code which is a
potential source of maintenance problems. The second approach
is comparable to the one described for EcmaScript but with the
greater power of Java compared to EcmaScript. The required
manipulation of the DOM is possible but sometimes troublesome.
The main advantage of using the Java API of Batik is the
possibility to reuse a stable production-quality and free
implementation. This approach to extend the existing Batik SVG
viewer with custom interaction possibilities is described in [29]
for the display of interactive maps within the Geographic
Information Science (GIS) domain.

4.3.2 Custom Viewer
The most flexible approach is to build a custom viewer from
scratch in Java, or even based on diagramming libraries such as
the Graphical Editing Framework (GEF) [11] or JGraph [22]. The
advantage of this approach is that the structures in a sequence
diagram can be manipulated at the appropriate level of
abstraction. In the SVG implementation manipulation of sequence
diagram elements requires manipulation of the geometric
representation of these elements. In that case the programmatic
interaction is at the wrong level of abstraction, namely at the level
of the graphical presentation and not at the level of the model
itself. With a custom viewer, however, the display can be
modified as response to user input by manipulating instances of
the meta-model and their graphical representation. This can be
achieved by adhering to the well-known Model-View-Controller
(MVC) paradigm [26], a combination of the Observer, Composite,
and Strategy design patterns [14] which promotes better design
and maintainability. In this design changes can be applied to the
model and automatically reflected in the graphical representation.

The drawback to this approach is primarily the fact that the
rendering has to be implemented from scratch using only the
basic abstractions such as points, lines, and text provided by the
programming language, in this case Java or a suitable library. For
a more complex interactive viewer, which may support hiding,
folding, deleting of structures, or zooming and other
manipulations, the greater expressiveness and power of Java
(compared to SVG-viewer embedded EcmaScript) clearly
outweighs this disadvantage. Additionally, if the model storage
and diagram visualization concerns are handled within the same
technology the overhead for and complexity of interfacing
between technology layers (e.g., between Java and
SVG/EcmaScript) can be saved. This is especially important for
advanced interaction features which require semantic information
stored in the model.

4.4 Comparative Assessment
In this section we described various sequence diagram
visualization options and technologies. These include batch, real-
time, and interactive visualization. While the batch mode provides
basic visualization support, the usefulness of a sequence diagram
reengineering and visualization tool is greatly increased if real-
time and interactive visualization are supported. Thus, our tool
also supports these two advanced options. The described SVG-
based approaches have mainly the following advantages:

• Reuse of the base rendering mechanism of commercial
(SVG browser plugins) or open source viewers (e.g.,
Batik)

• Ubiquitous deployability in the case of an EcmaScript-
based viewer embedded within the SVG document due
to readily available web browser plugins

However, these advantages are reduced by the cost and effort of
bridging the technology gap between the recording and model
storage technology (Java) and the viewing/rendering technology
(EcmaScript/SVG). Especially for the advanced interaction
features of our tool the flexibility of a custom viewer is crucial.
We therefore decided to implement a custom viewer based solely
on Java without an SVG-based implementation.

5. Export
In a model reengineering tool the model information is
represented at different levels including an abstract non-visual
level for the core model information and a more concrete level for
the visual representation in a graphical user interface. The
information at both levels has a distinct value for its respective
purpose and therefore a tool should be able to export this
information at both levels. Additionally, a third possibility is to
export an animated version of the model. Such an animation
combines the graphical representation with a temporal dimension
thus capturing some of the actual dynamics encountered during
the recording phase.

5.1 Model Information Export
Models are exported for a number of reasons including:

1. Import into other UML tools

130

2. As source for transformations to other
representations, such as content-only (e.g., graphics) or
textual model descriptions (e.g., DSLs)

3. As a persistence mechanism for the modeling
application if it allows some form of editing or
manipulation the state of which might need to be
persisted

Options for such an export are XMI export, JavaBeans XML
export, or custom (possibly binary) file formats. We describe each
option briefly in the following.

5.1.1 XML Metadata Interchange (XMI)
UML models can be represented and shared between modeling
tools and repositories with the help of the XMI standard defined
by the OMG [31]. This standard is quite comprehensive and has
evolved considerably to the current version. However, the
existence of various dialects of the standards (as evidenced by the
different model import filters of some modeling tools), constitutes
a major problem for interoperability.

5.1.2 XML Data-Binding Based Serialization
An alternative export of model information can be accomplished
by using the default XML serialization mechanism of the Java
language. The initial Java Beans serialization mechanism was a
binary one (see next section), which was and still is useful as a
short-time serialization mechanism, e.g., for RMI remoting. It is
very sensitive to versioning problems and unsuited to processing
by non-Java technologies. Due to these problems and to the
general growing importance of XML technologies, and in order to
support long-term persistence a new XML-based serialization
mechanism for Java Beans was added to the language in version
1.4 [44].

In light of the XMI interoperability problems the robustness,
availability, and simplicity of this serialization mechanism can
outweigh its limitations, namely the missing import capabilities
into third-party modeling tools, especially in connection with a
custom meta-model. The advantages of this serialization
mechanism are limited to certain situations where (light-weight)
models are created for documentation or ad-hoc communication
purposes. This mechanism should not be used for creating
persistent software lifecycle artifacts where model interchange is
crucial.

5.1.3 Custom File Format
A binary custom (with respect to the contents not to the general
structure) file format can be realized easily. To this end, the
mentioned binary Java serialization mechanism is applied to
modeling information represented in memory as an instance of the
meta-model. The usefulness of such an export is quite limited,
however, and can mainly be used as a proprietary persistence
format for the application itself. It is not well suited for further
processing or exchange with other tools, mainly due to its non-
self-describing syntactic nature (i.e., binary Java persistence
format) and missing meta-model (i.e., the static design of the
stored objects).

5.2 Graphics Export
For many users and usage scenarios the export of modeling
information is not needed; the export of images is sufficient. As
mentioned earlier sequence diagrams play an important role in
software specification and documentation artifacts as well as a
basis for test coverage criteria [4], [24]. For the use within these
documents and activities a visual form is needed and therefore a
possibility to export diagram representations of the model both as
static graphics and as animated diagrams.

5.2.1 Bitmaps
Bitmaps are the most simple of graphics formats and a large
number of formats exist. The most popular formats include
uncompressed bitmaps like Windows bitmaps (BMP) or TIFF
bitmaps and compressed (lossy or lossless) formats like GIF,
PNG, and JPEG. The main advantages of these formats include
their wide-spread use, graphics tool and native browser support.
The most popular formats like GIF and JPEG are also directly
supported in programming languages like Java without third-party
libraries or filters. Due to the discrete nature of the information
encoding the contents of such an image cannot in general be
scaled (or rotated by arbitrary angles) without lowering the image
quality. This is especially true for drawings and text which are the
constituents of sequence diagrams. Thus, bitmaps are primarily
useful for direct processing between applications (e.g., via
screenshots and clipboards), general screen-based use or medium-
quality printed documentation but not necessarily for high-quality
printing, such as books etc.

5.2.2 Vector Graphics
Vector graphics do not suffer from the inherent limitations of
bitmaps with respect to image manipulations such as zooming.
The structures in vector graphics images are not rastered but
represented by a more abstract description on the level of lines for
general drawings and letters for text. This enables reproduction at
arbitrary resolutions and in many cases also leads to a smaller file
size. Vector graphics formats exist in proprietary versions such as
Adobe’s PostScript (PS), Encapsulated PostScript (EPS), and PDF
formats or open-standards based versions, notably the W3C’s
Scalable Vector Graphics (SVG) [50]. They also can be
differentiated by their binary (PDF) or textual representation
(SVG, PS). Of these formats SVG is the only XML-based format.

Although the Adobe family of formats is proprietary it is very
widely used for electronic documents (PDF) [1] with the free
Adobe Acrobat viewer, printers (PS), and within the printing
industry. So sequence diagrams exported to PDF are immediately
useful for sharing, viewing, and printing. Although free [27] as
well as commercial programming libraries [35] for the generation
of these formats exist the known disadvantages (e.g., legal as well
as technical issues) of a proprietary format are most relevant for
the creation process. Also the level of abstraction in these libraries
varies and the API itself is not standardized. In principle, PDF can
be generated directly at a high level of abstraction with the help of
XSL formatting objects (XSL-FO) [49]. These formatting objects
can be applied to a serialized form of an instance of the meta-
model. Interestingly, this part of the XSL specification has
enjoyed far less success than the XSL transformation part and is
not widely supported. However, there is a fairly advanced
implementation called FOP (Formatting Objects Processor) within

131

Apache's XML Graphics Project. A custom implementation of,
e.g., a PostScript export is not advisable as the complexity and
investment can be considerable.

The SVG standard [50] is a fairly recent development by the W3C
consortium. The current production version 1.1 includes rich
support for static vector graphics including text and bitmap
integration as well as support for animation. As an XML-based
format it is widely supported in the areas of generation (data-
binding), parsing and transformation technologies (XSLT, XSL-
FO) and provides very good editor, modeling tool, and persistence
support. While these are generic advantages of XML-based
formats special support for SVG is also growing in the area of
viewers (e.g., Apache Batik) and browser plug-ins (e.g., Adobe,
Corel) and as persistence format in many graphics tools. The
Apache Batik Project [3] also provides a Java API for SVG
parsing, generation, conversion, and a DOM implementation
compliant to the standard.

These properties make SVG a suitable format for the export of
models as diagrams. Additionally, SVG supports a generic
extension mechanism for handling metadata [50]. In principle,
this could be used to embed model information – possibly directly
in XMI format – or processing status and history into the diagram
representation. The SVG file could then be used as both an image
format and a persistence format for the modeling application
itself. An example of embedding domain knowledge at the level
of model information into SVG metadata is described in [29] for
the geographic domain. Additionally, SVG supports vector
graphics based animation, which we describe in the next section.

5.3 Animation
The usefulness of animation as a tool for improving the
understanding of sequence diagrams has been studied by Burd et
al. [7], who find that control flow comprehensibility can be
improved by using animated sequence diagrams compared to
static sequence diagrams. There also seems to be initial support
for such animated diagrams in commercial products [47].

The consideration between animated bitmaps (GIF) and vector
graphics (SVG) is similar to that for the case of static diagrams.
While the support of animated GIFs in browsers and, generally, in
tools is better, SVG animation offers the known advantages of
vector graphics, i.e., smaller file size, better quality, and
scalability for text and drawings. Additionally, SVG animations
are just XML files and could thus be easily post-processed by,
e.g., XSL transformations to generate different representations,
such as textual descriptions of the sequence or series of single
images.

5.4 Comparative Assessment
For a sequence diagram reengineering tool export possibilities are
very important. This includes export of both the semantic (model)
information as well as a visual description (image data). Despite
the well-known practical XMI interoperability problems support
for this model exchange format is mandatory for a modeling tool.
The built-in XML and binary serialization formats of the Java
language provide useful mechanisms for intermediate storage
(e.g., for model transformations) and for proprietary persistence
formats, respectively.

Graphics export support includes more widely-used bitmaps, such
as GIF with associated scaling and printing problems, and the less
common but more scalable vector graphics formats, such as SVG.
With this mix of advantages and drawbacks there is no single
solution but support of both kinds of formats is useful. Animation
export possibilities are a useful enhancement which can
contribute to the improvement of model and, hence, program
logic comprehension.

To support model information persistence for the application
itself, we opted to use the JavaBeans built-in XML format. This
also offers the possibility to easily extend the export to XML-
based standards, like XMI and SVG, by applying XSL
Transformations [53] to the serialized model. We will use this
approach to support at least one important XMI dialect as part of
our future work.

As with the other concerns, the mixture of features built into the
Java language and the availability of third-party libraries and
interfaces provide a strong foundation for the tool
implementation.

6. Conclusion and Future Work
In this paper we presented a detailed study of technological
choices for various implementation aspects of a dynamic UML
sequence diagram reengineering tool from a Java-centric
perspective. The implementation of such a tool presents a
considerable challenge and many important strategic and
technological decisions have to be made. Our study complements
the existing body of literature on the subject of sequence diagram
reengineering, or more generally, trace visualization, by adding
thorough technical advice for those interested in attempting the
implementation of such a system, especially in the Java language.
In many cases there is no one single correct technological solution
to a given implementation problem. By comparing the advantages
and drawbacks of each alternative and reporting experiences from
our own implementation this study provides assistance for
informed technological decisions within the domain of Java-based
sequence diagram reengineering, especially in the areas of data
collection, data representation with meta-model instances,
interactive model visualization and various export options.

We showed that Java is a very suitable language for the
development of such a tool in two respects: While the virtual
machine-based execution mechanism provides excellent support
for tracing mechanisms for data collection, the many advanced
features of Java discussed above as well as the rich set of existing
libraries for many aspects facilitate the development of the tool as
a whole. Thus Java is both: a technology that lends itself to a
number of elegant reengineering techiques as well as a powerful
means to implement a reengineering tool. The former provide
access to the necessary tracing information while the latter
processes this information.

The tool described in this paper is currently being integrated with
the MORABIT component runtime infrastructure, a middleware
for resource-aware runtime testing [43]. In the future we plan to
enhance our own prototype implementation to include advanced
features such as animation export, multithreading support and
plug-in-based IDE and API-based custom integrations.

132

7. ACKNOWLEDGMENTS
This work has been funded by the Klaus Tschira Foundation
(KTS) and the Landesstiftung Baden-Württemberg within the
MORABIT research project. We thank our colleagues Elad
Messing and Daniel Brenner for reviewing the manuscript and the
anonymous reviewers for providing helpful suggestions for
improvement.

8. REFERENCES
[1] Adobe Systems. PDF Reference Fifth Edition, Adobe

Portable Document Format Version 1.6. Adobe System Inc.,
partners.adobe.com, 2004.

[2] Apache. Velocity. The Apache Jakarta Project,
jakarta.apache.org/velocity/.

[3] Apache. Batik SVG Toolkit. The Apache XML Project,
xml.apache.org/batik/.

[4] Binder, R. Testing Object Oriented Systems. Models,
Patterns and Tools. Addison Wesley, 1999.

[5] Briand, L.C., Labiche, Y., and Leduc, J. Towards the
Reverse Engineering of UML Sequence Diagrams for
Distributed Real-Time Java Software. Technical Report
SCE-04-04, Carleton University, 2004.

[6] Briand, L. C., Labiche, Y., and Miao, Y. Towards the
Reverse Engineering of UML Sequence Diagrams. In
Proceedings of the 10th Working Conference on Reverse
Engineering (November 13 - 17, 2003). WCRE. IEEE
Computer Society, Washington, DC, 2003, 57.

[7] Burd, E., Overy, D., and Wheetman, A. Evaluating Using
Animation to Improve Understanding of Sequence Diagrams.
In Proceedings of the 10th international Workshop on
Program Comprehension (June 27 - 29, 2002). IWPC. IEEE
Computer Society, Washington, DC, 2002, 107.

[8] ECMA International: Standard ECMA-262 ECMAScript
Language Specification. ECMA International, www.ecma-
international.org, 1999.

[9] Eclipse Project: The EclipseUML2 project. Eclipse Project
Universal Tool Platform, www.eclipse.org/uml2/.

[10] Eclipse project. Eclipse Modeling Framework (EMF).
Eclipse Project Universal Tool Platform,
www.eclipse.org/emf/.

[11] Eclipse Project: Graphical Editing Framework (GEF).
Eclipse Project Universal Tool Platform,
www.eclipse.org/gef/.

[12] Eclipse Project: AspectJ project. eclipse.org,
www.eclipse.org/aspectj/.

[13] Filman, R. E., Elrad, T., Clarke, S. and Aksit, M. Aspect-
Oriented Software Development. Pearson Education, 2005.

[14] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Longman Publishing Co., Inc., 1995.

[15] Gradecki, J. and Lesiecki, N. Mastering AspectJ - Aspect
Oriented Programming in Java. Wiley Publishing Inc, 2003.

[16] Gargiulo, J. and Mancoridis, S. Gadget: A Tool for
Extracting the Dynamic Structure of Java Programs. In
Proceedings of the International Conference on Software

Engineering and Knowledge Engineering SEKE (June 2001).
2001.

[17] Gannod, G. and Murthy, S. Using Log Files to Reconstruct
State-Based Software Architectures. In Proceedings of the
Working Conference on Software Architecture
Reconstruction Workshop. IEEE, 2002, 5-7.

[18] GNU: The plotutils Package. Free Software Foundation Inc.,
www.gnu.org/software/plotutils/.

[19] Greenfield, J., Short, K., Cook, S. and Kent, S. Software
Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools. Wiley Publishing Inc, 2004.

[20] Hamou-Lhadj, A. and Lethbridge, T. C. A survey of trace
exploration tools and techniques. In Proceedings of the 2004
Conference of the Centre For Advanced Studies on
Collaborative Research (Markham, Ontario, Canada,
October 04 - 07, 2004). H. Lutfiyya, J. Singer, and D. A.
Stewart, Eds. IBM Centre for Advanced Studies Conference.
IBM Press, 2004, 42-55.

[21] Jacobsen, I., Griss, M. and Jonnson, P. Software Reuse:
Architecture, Process and Organization for Business
Success. Addison-Wesley Professional, 1997

[22] JGraph ltd. JGraph. www.jgraph.com/.

[23] Kiselev, I. Aspect-Oriented Programming with AspectJ.
Sams Publishing, 2003.

[24] Fraikin, F. and Leonhardt, T. SeDiTeC " Testing Based on
Sequence Diagrams. In Proceedings of the 17th IEEE
international Conference on Automated Software
Engineering (September 23 - 27, 2002). Automated Software
Engineering. IEEE Computer Society, Washington, DC,
2002, 261.

[25] Kollman, R., Selonen, P., Stroulia, E., Systä, T., and
Zundorf, A. A Study on the Current State of the Art in Tool-
Supported UML-Based Static Reverse Engineering. In
Proceedings of the Ninth Working Conference on Reverse
Engineering (Wcre'02) (October 29 - November 01, 2002).
WCRE. IEEE Computer Society, Washington, DC, 2002, 22.

[26] Krasner, G. E. and Pope, S. T. A Cookbook for Using the
Model-View-Controller User Interface Paradigm in
Smalltalk-80. SIGS Publications, 1988, pages 26-49.

[27] Lowagie, B. iText. www.lowagie.com/iText/.

[28] Mukerji, J. and Miller, J. MDA Guide Version 1.0.1. Object
Management Group, www.omg.org, 2003.

[29] Merdes, M., Häußler, J. and Zipf, A. GML2GML: Generic
and Interoperable Round-Trip Geodata Editing - Concepts
and Example. 8th AGILE Conference on GIScience, 2005.

[30] OMG: Meta Object Facility (MOF) Specification Version
1.4. Object Management Group, www.omg.org, 2002.

[31] OMG: XML Metadata Interchange (XMI) Specification
version 2.0. Object Management Group, www.omg.org,
2003.

[32] OMG: UML 2.0 Superstructure Specification. Object
Management Group, www.omg.org, 2004.

[33] Oechsle, R. and Schmitt, T. JAVAVIS: Automatic Program
Visualization with Object and Sequence Diagrams Using the

133

Java Debug Interface (JDI). In Revised Lectures on Software
Visualization, international Seminar (May 20 - 25, 2001). S.
Diehl, Ed. Lecture Notes In Computer Science, vol. 2269.
Springer-Verlag, London, 2002, 176-190.

[34] Pauw, W. D., Jensen, E., Mitchell, N., Sevitsky, G.,
Vlissides, J. M., and Yang, J. Visualizing the Execution of
Java Programs. In Revised Lectures on Software
Visualization, international Seminar (May 20 - 25, 2001). S.
Diehl, Ed. Lecture Notes In Computer Science, vol. 2269.
Springer-Verlag, London, 2002, 151-162.

[35] Qoppa. jPDFWriter. Qoppa Software,
www.qoppa.com/jpindex.html.

[36] PRESTO. RED Project. Presto Research Group Ohio State
University, nomad.cse.ohio-state.edu/red/.

[37] Rountev, A., Volgin, O., and Reddoch, M. Static control-
flow analysis for reverse engineering of UML sequence
diagrams. In the 6th ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering
(Lisbon, Portugal, September 05 - 06, 2005). M. Ernst and T.
Jensen, Eds. PASTE '05. ACM Press, New York, NY, 2005,
96-102.

[38] Systä, T., Koskimies, K., and Müller, H. 2001. Shimba—an
environment for reverse engineering Java software systems.
Softw. Pract. Exper. 31, 4 (Apr. 2001), 371-394.

[39] Soley, R. and Group, O. S. Model Driven Architecture.
Object Management Group, www.omg.org, 2000.

[40] Spinellis, D. UMLGraph. www.spinellis.gr/sw/umlgraph/.

[41] Spinnelis, D.: On the Declarative Specification of Models.
IEEE Software Volume 20 Issue 2. 2003, pages 94-96.

[42] Sharp, R. and Rountev, A. Interactive Exploration of UML
Sequence Diagrams. In Proceedings of the IEEE Workshop

on Visualizing Software for Understanding and Analysis
(VISSOFT'05). 2005, 8-13.

[43] Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner,
D., Merdes, M., Malaka, R. The MORABIT Approach to
Runtime Component Testing. In Proceedings of the Second
International Workshop on Testing and Quality Assurance
for Component-Based Systems. (TQACBS06). 2006

[44] Sun Microsystems. API Enhancements to the JavaBeans
Component API in v1.4. Sun Microsystems Inc,
java.sun.com/j2se/1.4.2/docs/guide/beans/changes14.html,
2002.

[45] Sun Microsystems. Java Platform Debugger Architecture
(JPDA). Sun Microsystems Inc.,
http://java.sun.com/products/jpda/index.jsp.

[46] Stahl, T. and Völter, M. Model-Driven Software
Development. Wiley, 2006.

[47] Sysoft. Animation of UML Sequence Diagrams" - Amarcos.
Sysoft, http://www.sysoft-fr.com/en/Amarcos/ams-uml.asp.

[48] Thoms, C. and Holzer, B. Codegenerierung mit dem
openArchitectureWare Generator 3.0 - The Next Generation.
javamagazin 07/2005, 2005.

[49] W3C. Extensible Stylesheet Language (XSL) Version 1.0.
W3C Recommendation, www.w3.org, 2001.

[50] W3C. Scalable Vector Graphics (SVG) Version 1.1
Specification, W3C Recommendation, www.w3.org, 2003

[51] W3C. Java Language Binding for the SVG Document Object
Model. W3C Recommendation, www.w3.org. 2003.

[52] W3C. ECMAScript Language Binding for SVG, W3C
Recommendation, www.w3.org, 2003.

[53] W3C. XSL Transformations (XSLT) Version 1.0
Specification. W3C Recommendation, www.w3.org, 1999

134

