
Reverse Engineering: A Roadmap
Hausi M Jller, Jens Jahnke, Dennis Smith, Margaret-Anne Storey,

Scott Tilley & Kenny Wong

Key Research Pointers

Teach reverse engineering, program understanding, and software analysis in computer
science, computer engineering, and software engineering curricula.
Investigate infrastructure, methods, and tools for continuous program understanding to
support the entire evolution of a software system from the early design stages to the
long-term legacy stages.
Develop. methods and technology for computer-aided data and database reverse
engineering.
Develop tools that provide better support for human reasoning in an incremental and
evolutionary reverse engineering process that can be customized to different application
contexts.
Concentrate on the tool adoption problem by improving the usability and end-user
programmability of reverse engineering tools to ease their integration into actual
development processes.

The Authors

Dr. Hausi MOiler is a Professor in the Department of Computer Science at the
University of Victoria, British Columbia, Canada. He is a Visiting Scientist with the
Centre for Advanced Studies at the IBM Toronto Laboratory and the Carnegie Mellon
Software Engineering Institute. He is a principal investigator of CSER, a Canadian
Consortium for Software Engineering Research and the IRIS (Institute for Robotics and
Intelligent Systems) Network of Centres for Excellence. Together with his research
group he investigates technologies to migrate legacy software to object-oriented and
network-centric platforms. Dr. MOller's research interests include software engineering,
software evolution, reverse engineering, software reengineering, program
understanding, and software architecture. He is General Chair for ICSE-2001, the
IEEE/ACM International Conference on Software Engineering in Toronto. He was a
Program Co-Chair for ICSM-94, the IEEE International Conference on Software
Maintenance in Victoria, CASE-95, the IEEE International Workshop on Computer-Aided
Software Engineering in Toronto, and IWPC-96, the IEEE International Workshop on
Program Comprehension in Berlin. Dr. MOiler is on the Editorial Board of IEEE
Transactions on Software Engineering.

4"7

Dr. Jens-Holger Jahnke is an Assistant Professor for Soflware Engineering in the Deparlment of Computer Sdence at the
Universib, of Vidoria in Victoria, British Columbia, Canada. From 1994 to 1999 he was a Research Associate in the
Software Engineering Group at 1he University of Paderbom in Paderbom, Germany. He holds a Diploma Degree in
Applied Computer Science from the University of Dorlrnund, Germany, and a Doctoral Degree in Computer Science
from the University of Paderbom, Germany. He is a member of the IEEE and the ACM. His research interesls are in
the area of software and data engineering and in particular in legacy information system reengineering and
migration. He is one of the leading researchers in the area of data reverse engineering. His recent work combines
formal techniques from the domain of graph lransformation systems with theories on approximate reasoning to
develop human centered, semi-automatic reverse engineering tools.

Dr. Margaret-Anne (Peggy) S~:,'ey is an Assis~nt ~ in ~he Deporlment of Computer ~ at 1he Un'M~Jty of V,:~ia
in the new Software Engineering program. She is a fellow of the British Columbia Advanced Systems Institute (ASI)
and collaborates with the IBM Pacific Development Center on Human-Computer Interaction issues for eCommerce
and distributed learning applications. In addition, she is one of the principal investigators for CSER (Centre for
Software Engineering Research) developing and evaluating software migration technology. Her research interests
include experimental software engineering, program understanding, human-computer interaction, information
visualization and graph drawing.

Dr. Dennis B. Smilh is a senior member ofthe'edlnical slofF in the Produd Line ~ Program at the Software Engineering
Institute. He is the technical lead in the effort for migrating legacy systems to product lines. In this role he has
integrated a number of techniques for modemizing legacy systems from both a ~-.hnical and business perspective.
Dr. Smith has been the lead in a variely of engagements with external dienls. He led a widely publiazed audit ofthe
FA~s troubled ISSS system. This report produced a set of recommendations for change, resu~ng in major changes to
the development process, and the development of an eventual successful follow-on system. Earlier, Dr. Smith was
project leader for the CASE environments project. This project examined the underlying issues of CASE integration,
process support for environments and the adoption of technology. Dr. Smith is a co-author of the book, Prindples of
CASE Tool Integration, Oxford University Press, 1994. He has published a wide variety of articles and technical
reports, and has given talks and keynotes at a number of conferences and workshops. He is also a co-editor of the
IEEE and ISO recommended praclice on CASE,adoplion. He has been general chair oflwo international conferences,
IWPC'99 and STEP99. Dr. Smith has an M.A. and PhD from Princeton Universily, and a B.A from Columbia
University.

Dr. Scott'[illey is an Assistant Prof~sor in the Deparlment of Computer Sdence at fne University of California, Riverside,
Principal of S.R. "[illey & Associates, a Southem California-based information technology consulting bbutique, and a
VLs~ng Scientist with the Software Engineering Ins'litute at Camegie Mellon University. At the Universrty of Califomia,
Dr. "l]lle/s research and teaching areas indude net-centric computing, reverse engineering for program understanding,
and Web site evolution. At S.R. Tilley & Associates, he specializes in tracking the development of emerging
technologies and advising dienls on the potential impact of these technologies on their businesses. His work at the
Soflware Engineering Inslitute is wifn the Reengineering Center, which focuses on lrans'rlioning best praclices in legacy
system reengineering in a disciplined manner. He writes a column on net-centric computing for SEI Interactive,
publishes SIGPC, an online magazine focusing on the personal computer industry and its impact on computer
.science, informalion technology, and software engineering, and is the aulhor of over 50 published papers. He has a
Ph.D. from the University of Victoria.

Dr. K~nyWong isan Assis~nt Professor in 1he Depar~entof Compu~ng ~ atfne Unive~ofAlbena. He EEived his
Ph.D. degree from the University of Victoria in 1999. His research interests indude software evolution, program
understanding, reverse engineering tools, and software integration. Over the past six years, he has participated in
collaboratk, e proieds sponsored by the Natural Sciences and Engineering Research Coundl, the Institute for Robotics
and Intelligent Systems, and the Consortium for Software Engineering Research. These projects have focused on
building, applying, and evalua~ng reverse engineering technologies. He is also a principal invesligator of the Alberta
Soflware Engineering Research Consorlium, which involves software engineering researchers from the Universi~es of
Alberta and Calgary. He is a member of the Assodation for Computing Machinery, USENIX, and the IEEE Computer
Society.

48

Reverse Engineering: A Roadmap

Hausi A. M i i l l e r

Dep t . o f C o m p u t e r S c i ence

Un ive r s i ty o f Victor ia , C a n a d a

hausi@csr, uvic .ca

Jens H. Jahnke
Dept . o f C o m p u t e r Sc i ence

Un ive r s i ty o f Victor ia , C a n a d a

j ens@csr, uvic. ca

Dennis B. Smith
S o f t w a r e E n g i n e e r i n g Ins t i tu te

C a r n e g i e M e l l o n Univers i ty , U S A

dbs @ sei. cmu. edu

M a r g a r e t - A n n e Storey
Dept . o f C o m p u t e r Sc i ence

Un ive r s i t y o f Victor ia , C a n a d a

mstorey@csr, uvic. ca

Scott R. Tilley
Dept . o f C o m p u t e r Sc i ence

Un ive r s i t y o f Ca l i fo rn ia ,

R ive r s ide , U S A

stilleyOcs, ucr. edu

KennyWong
Dept . o f C o m p u t i n g Sc i ence

U n i v e r s i t y o f A l b e n a , C a n a d a

kenw@cs.ualberta.ca

ABSTRACT
By the early 1990s the need for reengineering legacy systems
was already acute, but recently the demand has increased sig-
nificantly with the shift toward web-based user interfaces.
The demand by all business sectors to adapt their informa-
tion systems to the Web has created a tremendous need for
methods, tools, and infrastructures to evolve and exploit ex-
isting applications efficiently and cost-effectively. Reverse
engineering has been heralded as one of the most promising
technologies to combat this.legacy systems problem.

This paper presents a roadmap for reverse engineering re-
search for the first decade of the new millennium, building
on the program comprehension theories of the 1980s and the
reverse engineering technology of the 1990s.

Keywords
Software engineering, reverse engineering, data reverse en-
gineering, program understanding, program comprehension,
software analysis, software evolution, software maintenance,
software reengineering, software migration, software tools,
tool adoption, tool evaluation.

1 INTRODUCTION
The notion of computers automatically finding useful infor-
mation is an exciting and promising aspect of just about any
application intended to be of practical use [55]. A decade
ago, following up on the successes of the early CASE tools,
Chikofsky and Cross introduced a taxonomy for reverse engi-
neering and design recovery [20]. They defined reverse engi-
neering to be "analyzing a subject system to identify its cur-
rent components and their dependencies, and to extract and
create system abstractions and design information."

Over the past ten years, researchers have produced a number

Permission to make digital or hard copies of all or part of this work tbr
personal or classroom use is ~m'anted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a tee.
Future of Sofware Engineering Limerick Ireland
Copyright ACM 2000 1-58113-253-0/00/6...$5.00

of capabilities to explore, manipulate, analyze, summarize,
hyperlink, synthesize, componentize, and visualize software
artifacts. These capabilities include documentation in many
forms and intermediate representations for code, data, and ar-
chitecture. Many reverse engineering tools focus on extract-
ing the structure of a legacy system with the goal of transfer-
ring this information into the minds of the software engineers
trying to reengineer or reuse it. In corporate settings, reverse
engineering tools still have a long way to go before becom-
ing an effective and integral part of the standard toolset that
a typical software engineer uses day-to-day.

The vitality of the field has been demonstrated by three an-
nual conferences that helped to spark interest in the field and
shape its ideas and focus: the Working Conference on Re-
verse Engineering (WCRE), the International Workshop on
Program Comprehension (IWPC), and the Workshop on Pro-
gram Analysis for Software Tools and Engineering (PASTE).

This paper presents a roadmap for reverse engineering re-
search for the first decade of the new millennium, building
on the program comprehension theories of the 1980s and the
reverse engineering technology of the 1990s. We describe se-
lected research agendas for code and data reverse engineer-
ing, as well as research strategies for tool development and
evaluation. Investing in program understanding technology
is critical for the software and information technology indus-
try to control the inherent high costs and risks of legacy sys-
tem evolution. Reverse engineering is a truly exciting field of
research that is ready to be taught in computer science, com-
puter engineering, and software engineering curricula [68].

In summarizing the major research trends, accomplishments,
and unanswered needs, this paper is divided into four ma-
jor parts. Section 2 concentrates on code reverse engineer-
ing, which has been the main focus of attention in this field
over the past decade. In contrast, data reverse engineering,
the topic of Section 3, is not as well established, but is ex-
pected to gain prominence in the new millennium. Section 4
explores the spectrum of reverse engineering tools. Section 5
deals with the question of why software reverse engineering
tools are not more widely used, and Section 6 concludes the

49

paper.

2 CODE REVERSE ENGINEERING
In current research and practice, the focus of both forward
and reverse engineering is at the code level. Forward engi-
neering processes are geared toward producing quality code.
The importance of the code level is underscored in legacy
systems where important business rules are actually buried in
the code [86]. During the evolution of software, change is ap-
plied to the source code, to add function, fix defects, and en-
hance quality. In systems with poor documentation, the code
is the only reliable source of information about the system.
As a result, the process of reverse engineering has focused
on understanding the code.

Over the past ten years, reverse engineering research has pro-
duced a number of capabilities for analyzing code, including
subsystem decomposition [13, 86], concept synthesis [8], de-
sign, program and change pattern matching [16, 31, 59, 76],
program slicing and dicing [89], analysis of static and dy-
namic dependencies [80], object-oriented metrics [19], and
software exploration and visualization [65]. In general, these
analyses have been successful at treating the software at the
syntactic level to address specific information needs and to
span relatively narrow information gaps.

However, the code does not contain all the information that
is needed. Typically, knowledge about architecture and de-
sign tradeoffs, engineering constraints, and the application
domain only exists in the minds of the software engineers [3].
Over time, memories fade, people leave, documents decay,
and complexity increases [46]. Consequently, an under-
standing gap arises between known, useful information and
the required information needed to enable software change.
At some point, the gap may become too wide to be easily
spanned by the syntactic, semantic, and dynamic analyses
provided by traditional programming tools.

Thus when we focus only at the low levels of abstraction, we
miss the big picture behind the evolution of a software sys-
tem [42]. There is a need to focus future research on the more
significant levels of the business processes and the software
architecture. For example, knowledge of software architec-
ture from multiple user perspectives is needed to make large-
scale, structural changes [91], and the capability to perform
architecture reconstruction is becoming increasingly impor-
tant [3]. Developers need information about the impacts of
potential changes. Managers need information to assign and
coordinate their personnel. If the information to create this
knowledge can be maintained continuously, we could gener-
ate the required perspectives on a continuous basis without
costly reverse engineering efforts.

Because such analyses are rarely performed today, current
system evolution efforts often experience a time of crisis at
which the gap between desired information and available in-
formation becomes critical. At that point reverse engineering
techniques are inserted in a "big bang" attempt to regain use-

ful understanding and insight. The structural, functional, and
behavioral code analyses [58], however, require intensive hu-
man input to construct from scratch. These analyses are dif-
ficult to interpret, and are costly efforts with high risk.

Continuous Program Understanding
To avoid a crisis, it is important to address information needs
more effectively throughout the software lifecycle. We need
to better support the forward and backward traceability of
software artifacts. For example, in the forward direction,
given a design module, it is important to be able to obtain
the code elements that implement it. In the backward direc-
tion, given a source or object file, we need to be able to obtain
the business rule to which it contributes. In addition it is im-
portant to determine when it is most appropriate to focus the
analysis at different levels of abstraction [7, 43].

For understanding purposes, traceability is especially impor-
tant. We need to be able to take a pattem of change, such
as updating a tax law, and map this law explicitly into soft-
ware structures. Part of program comprehension is to recon-
struct mappings between the application and implementation
domains [14]. Thus, to ease long-term understanding, these
mappings must be made explicit, recorded, reused, and up-
dated continuously. The vision is that reverse engineering
would be applied incrementally, in small loops with forward
engineering, rather than as a desperate attempt at resurrecting
a poorly understood system.

Several research issues, formulated as questions, need to be
addressed to enable this capability for "continuous program
understanding" [90].

• What are the long-term information needs of a software
system?

• What patterns of change do software systems undergo?
• What mappings need to be explicitly recorded?
• What kind of software repository could represent the re-

quired information?
• What are the requirements of tool support to produce

and manipulate the mappings?
• How can this support coexist with traditional, code-

dominated tools, users, and processes?

Reverse Engineering Process
In addition to an emphasis on "continuous program under-
standing," it is important to focus efforts on a better definition
of the reverse engineering process. Reverse engineering has
typically been performed in an ad hoc manner. To address the
technical issues effectively, the process must become more
mature and repeatable, and more of its elements need to be
supported by automated tools.

For example, a developer might require the software com-
ponents that contribute to a specific system responsibility.
The subsystem view to present this information should not
require tedious manual manipulation. Instead, the mapping
between responsibility and components should be consulted

50

and a script would then generate the required view, with the
option for minor, personal customization by the user.

Such a script is an instance of a reverse engineering pat-
tern [90], a commonly used task or solution to produce un-
derstanding in a particular situation. By cataloging such pat-
terns and automating them through tool support, we would
improve the maturity of the reverse engineering process.
Thus, the insights of the SEI Capability Maturity Model®
(CMM®) framework [36, 37] ought to apply to reverse en-
gineering as well as forward engineering. Future research
ought to focus on ways to make the process of reverse engi-
neering more repeatable, defined, managed, and optimized.

Increased process maturity would enable better assessment
of the risks, costs, and economics of reengineering activities.
With poorly understood processes, the success of a reengi-
neering project rests solely on the ingenuity of the people
involved--ingenuity that disappears when the project ends.
For evolving large software systems over long periods of
time, an appreciation of both product and process improve-
ment is needed.

Research Direction
In summary, for future research in reverse engineering, it is
important to understand software at various levels of abstrac-
tion and maintain mappings between these levels. Catalogs
of information, tool, and process requirements are needed
as a prelude to enabling continuous program understanding.
Useful reverse engineering processes need to be identified
and better supported, as an important step to make the dis-
cipline of reengineering more rational. Reverse engineering
tools and processes need to evolve with the development en-
vironment that stresses components, the Web, and distributed
systems [6].

3 DATA REVERSE ENGINEERING
Most software systems for business and industry are informa-
tion systems, that is, they maintain and process vast amounts
of persistent business data. While the main focus of code
reverse engineering is on improving human understanding
about how this information is processed, data reverse engi-
neering tackles the question of what information is stored and
how this information can be used in a different context.

Research in data reverse engineering has been under-
represented in the software reverse engineering arena for
two main reasons. First, there is a traditional partition
between the database systems and software engineering
communities. Second, code reverse engineering appears at
first sight to be more challenging and interesting than data
reverse engineering for academic researchers.

Recently, data reverse engineering concepts and techniques
have gained increasing attention in the reverse engineer-
ing arena. This has been driven by requirements for data-
oriented mass software changes resulting from needs such
as the Y2K problem, the European currency conversion, or

the migration of information systems to the Web and towards
electronic commerce.

Researchers now recognize that the quality of a legacy
system's recovered data documentation can make or break
strategic information technology goals. For example data
analysis is crucial in identifying the central business objects
needed for migrating software systems to object-oriented
platforms. A negative example can be seen from the fact that
difficulties in comprehending the data structure of legacy sys-
tems have been cited as barriers in replacing legacy software
with modern business solutions (e.g., SAP, Baan, or PEO-
PLESOFT [22]).

The increased use of data warehouses and data mining tech-
niques for strategic decision support systems [86]have also
motivated an interest in data reverse engineering technology.
Incorporating data from various legacy systems in data ware-
houses requires a consistent mapping of legacy data struc-
tures on a common business object model. Similar chal-
lenges also occur with the web-based integration of formerly
autonomous legacy information systems into cooperative,
net-centric infrastructures.

Data reverse engineering techniques can also be used to as-
sess the overall quality of software systems. An implemented
persistent data structure with significant design flaws indi-
cates a poorly implemented software system. An analysis
of the data structures can help companies make decisions
on whether to purchase (and maintain) commercial-off-the-
shelf software packages. Data reverse engineering can also
be used to assess the quality of the DBMS schema catalog of
vendor software, and thus it can represent one of the evalua-
tion criteria for a potential software product [10].

In general, reverse engineering the persistent data structure of
software systems using a DBMS is more specifically referred
to as database reverse engineering. Since most DBMSs pro-
vide the functionality to extract initial information about the
implemented physical data structure, database reverse engi-
neering has a higher potential for automation than data re-
verse engineering [1]. Consequently, most existing reverse
engineering tools in this area consider information systems
that employ a database platform. Many of these approaches
are specifically targeted to relational systems [4, 26, 33, 40,
51, 64, 70].

Data Reverse Engineering Process and the Role of Tools
Figure 1 shows that the data (base) reverse engineering pro-
cess consists of two major activities, referred to as analysis
and abstraction, respectively.

Data Analysis
The analysis activity aims to recover an up-to-date logical
data model that is structurally complete and semantically an-
notated. In most cases, important information about the data
model is missing in the physical schema catalog extracted
from the DBMS. However, indicators for structural and se-

51

Figure 1: Data reverse engineering process

and idiosyncratic optimization patterns [11]. Most ex-
isting tools do not provide the necessary customizabil-
ity to be applicable to this variety of application con-
texts. Some approaches address this problem by provid-
ing mechanisms for end-user programming with script-
ing languages [33]. In principle such tools provide a
high amount of flexibility. However, coding analysis
operations and heuristics with scripting languages of-
ten require significant skills and experience. To ad-
dress this problem, a number of dedicated, more ab-
stract formalisms have been proposed to specify and
customize reverse engineering processes [40, 70]. Due
to their high level of abstraction these approaches facil-
itate the customization process. However, they do not
provide the same amount of flexibility as scripting lan-
guages. Consequently, a hybrid solution that combines
high-level (e.g., rule-based) formalisms with low-level
(e.g., programming scripts)is a fruitful area for explo-
ration.

mantic schema constraints can be found in various parts of
the legacy information system, including its data, procedu-
ral code, and documentation. Developers, users, and domain
experts can often contribute valuable knowledge. In general,
data analysis is an exploratory and human-intensive activity
that requires a significant amount of experience and skills.
Current tools provide only minimal support in this activity
beyond visualizing the structure of an extracted schema cat-
alog.

Even though it is unlikely that the cognitive task of data anal-
ysis can ever be fully automated, computer-aided reverse en-
gineering tools have the potential to dramatically reduce the
effort spent in this phase. They could be a major aid in search-
ing, collecting, and combining indicators for structural and
semantic schema constraints and guiding the reengineer from
an initially incomplete data model to a complete and consis-
tent result. However, to achieve this kind of support, current
data reverse engineering tools need to overcome the follow-
ing two significant problems:

• Imperfect knowledge. Data analysis inherently deals
with uncertain assumptions and heuristics about legacy
data models [39]. Combining detected semantic indi-
cators (e.g., stereotypical code patterns or instances of
hypothetical naming conventions in the schema catalog)
often leads to uncertain and/or contradicting analysis re-
sults. Data reverse engineering tools have to tolerate
imperfect knowledge to support this interactive process
and to incrementally guide the reengineer to a consistent
data model.

• Customizability. Legacy information systems are
based on many different hardware and software plat-
forms and programming languages. Their data models
have been developed using various design conventions

Conceptual Abstraction
Conceptual abstraction aims to map the logical data model
derived from data analysis to an equivalent conceptual de-
sign. This design is usually represented by an entity-
relationship or object-oriented model and provides the neces-
sary level of abstraction required by most subsequent reengi-
neering activities (cf. Figure 1). Currently, several tools sup-
port data abstraction. However, in practice, most of them are
of limited use because they fail to fulfill at least one of the
following two requirements:

Iteration. The data reverse engineering process in-
volves a sequence of analysis and abstraction activities
with several cycles of iteration. After an initial analysis
phase, the reengineer produces an initial abstract design
that serves as the basis for discussion with domain ex-
perts and further investigations. This first abstract de-
sign needs to be altered as new knowledge about the
legacy system becomes available. Although iteration
is not well supported by current tools, an incremental
change propagation mechanism is presented by Jahnke
and Wadsack [41].

Bidirectional mapping process. Current data reverse
engineering tools follow a strictly bottom-up data ab-
straction process, that is, the abstraction is produced
through a transformation of the analyzed logical data
model. This approach is less adequate if a pre-existing
partial design for the data structure is available from
documentation or the knowledge of domain experts or
developers. Using such information efficiently in re-
verse engineering legacy information systems would re-
quire a hybrid bottom-up/top-down abstraction process.
Furthermore, such a process is required when more than
one legacy data structure has to be mapped to a common

52

abstract data model (e.g., when several information sys-
tems are federated or integrated with a data warehouse).

Research Direction
Based on this discussion, the reverse engineering community
needs to develop tools that provide more adequate support for
human reasoning in an incremental and evolutionary reverse
engineering process that can be customized to different ap-
plication contexts.

4 REVERSE ENGINEERING TOOLS
Techniques used to aid program understanding can be
grouped into three categories: unaided browsing, leveraging
corporate knowledge and experience, and computer-aided
techniques like reverse engineering [83].

Unaided browsing is essentially "humanware": the software
engineer manually flips through source code in printed form
or browses it online, perhaps using the file system as a nav-
igation aid. This approach has inherent limitations based on
the amount of information that a software engineer may be
able to keep track of in his or her head.

Leveraging corporate knowledge and experience can be ac-
complished through mentoring or by conducting informal
interviews with personnel l~owledgeable about the subject
system. This approach can be very valuable if there are peo-
ple available who have been associated with the system as it
has evolved over time. They carry important information in
their heads about design decisions, major changes over time,
and troublesome subsystems.

For example, corporate memory may be able to provide guid-
ance on where to look when carrying out a new maintenance
activity if it is similar to another change that took place in the
past. This approach is useful both for gaining a big- picture
understanding of the system and for learning about selected
subsystems in detail.

However, leveraging corporate knowledge and experience is
not always possible. The original designers may have left the
company. The software system may have been acquired from
another company. Or the system may have had its mainte-
nance out-sourced. In these situations, computer-aided re-
verse engineering is necessary. A reverse-engineering en-
vironment can manage the complexities of program under-
standing by helping the software engineer extract high-level
information from low-level artifacts, such as source code.
This frees software engineers from tedious, manual, and
error-prone tasks such as code reading, searching, and pattern
matching by inspection.

Current Tool Effectiveness
Given that reverse engineering tools seem to be a key to aid-
ing program understanding, how effective are today's offer-
ings in meeting this goal? In both academic and corporate
settings, reverse engineering tools have a long way to go be-
fore becoming an effective and integral part of the standard

toolset a typical software engineer calls upon in day-to-day
usage [82]. Perhaps the biggest challenge to increased ef-
fectiveness of reverse engineering tools is wider adoption:
tools can't be effective if they aren't used, and most soft-
ware engineers have little knowledge of current tools and
their capabilities. While there is a relatively healthy market
for unit-testing tools, code debugging utilities, and integrated
development environments, the market for reverse engineer-
ing tools remains quite limited.

In addition to awareness, adoption represents a critical bar-
rier. Most people lack the necessary skills needed to make
proper use of reverse engineering tools. The root of the adop-
tion problem is really two-fold: a lack of software analysis
skills on the part of today's software engineers, and a lack
of integration between advanced reverse engineering tools
and more commonplace software utilities such as those men-
tioned above. The art of program understanding requires
knowledge of program analysis techniques that are essen-
tially tool-independent. Since most programmers lack this
type of foundational knowledge, even the best of tools won't
be of much help.

From an integration perspective, most reverse engineering
tools attempt to create a completely integrated environ-
ment in which the reverse engineering tool assumes it has
overall control. However, such an approach precludes the
easy integration of reverse engineering tools into toolsets
commonly used in both academic research and in indus-
try. In a UNIX-like environment, the established troika of
edit/compile/debug tools are common [34]. Representative
tools in this group include emacs and vi for editing, gcc for
compiling, and gdb for debugging. In a Windows NT envi-
ronment, the tools may have different names, but they serve
similar purposes. The only real difference is cost and choice.
A recent case study [84] illustrates the challenges facing stu-
dents in a short-term project and the difficulties they face in
solving the problem. Learning how to effectively use a re-
verse engineering tool is low on their list of priorities, even
when such a tool is available.

In a corporate setting, the situation is not so very different.
A relatively short project often means little time to learn new
tools. The tools used in a commercial software development
firm may be slightly richer than those in the academic setting.
However, displacing an existing tool with a new tool-----even
if that tool is arguably better--is an extremely difficult task.

What Can Be Done
To address the challenges of reverse engineering tool effec-
tiveness, there are several possible avenues to explore. These
candidate solutions should address the two primary issues
identified above: awareness and adoption. First, computer
science and software engineering curriculums can encourage
greater use of reverse engineering tools. They can carefully
balance code synthesis (which is commonly taught) with pro-
gram analysis (which is rarely taught). By learning the analy-

53

sis techniques used in the art of program understanding, stu-
dents would be in a better position to leverage the capabili-
ties of reverse engineering tools that can automate many of
the analysis tasks.

To increase the adoption rate of reverse engineering tools,
vendors need to address several issues. The tools need to be
better integrated with common development environments
on the popular platforms. They also need to be easier to
use. A lengthy training period is a strong disincentive to tool
adoption.

An issue related to both integration and ease-of-use is "good
enough" or "just in time" understanding. If one watches how
a software engineer uses other tools, they rarely exercise all
of the tool's functionality. Indeed, the 80/20 rule seems to ap-
ply: 80% of the time they use less than 20% of the tool's ca-
pabilities. If the critical capabilities that constitute the 20%
of commonly used functions were identified, vendors might
be better able to integrate at least this level of support into
other vendors' environments. For example, the use of sim-
ple tools such as grep to look for patterns in source code is
inefficient. These inefficiencies are the result of inexactness
of regular expressions versus programming language syntax
and semantics, as well as the large number of false positive
matches. Yet grep is still widely used because of cost, avail-
ability and ease of use. Perhaps simply augmentinggrepwith
more context-dependent or domain-aware capabilities would
be a better approach than a full-fledged search engine, with a
new pattern language, a proprietary repository, and tangential
capabilities.

5 EVALUATING RE VE RSE E N G I N E E R I N G T O O L S
This paper includes many references to tools and techniques
to support reverse engineering. But an important considera-
tion when choosing a path through these technologies, is how
to measure the success of the tools or theories that may be
selected. Many reverse engineering tools concentrate on ex-
tracting the structure or architecture of a legacy system with
the goal of transferring this information into the minds of the
software engineers trying to maintain or reuse it. That is, the
tool's purpose is to increase the understanding that software
engineers or/and managers have of the system being reverse
engineered. But, since there is no agreed-upon definition or
test of understanding [21], it is difficult to claim that program
comprehension has been improved when program compre-
hension itseff cannot be measured.

Despite such difficulty, it is generally agreed that more ef-
fective tools could reduce the amount of time that maintain-
ers need to spend understanding software or that these tools
could improve the quality of the programs that are being
maintained. Coarse-grained analyses of these types of results
can be attempted. There are several investigative techniques
and empirical studies that may be appropriate for studying the
benefits of reverse engineering tools [62]. These include:

• expert reviews,

• user studies,
• field observations,
• case studies, and
• surveys.

In general, there has been a lack of evaluation of reverse en-
gineering tools [47], but there are some examples where the
investigative techniques listed above have been used for eval-
uating tools. In this section, we describe these techniques and
give examples of when these techniques have been applied to
the evaluation of reverse engineering tools.

Exper t reviews
Expert reviews are a set of informal investigative techniques
that are very effective for evaluating tools in the area of
human-computer interaction [69]. One of these techniques,
heuristic evaluation, involves a set of expert reviewers cri-
tiquing the interface using a short list of design criteria [57].
Cognitive walkthroughs, another expert review technique,
involve experts simulating users walking through the inter-
face to carry out typical tasks.

Expert reviews can be applied at any stage in the tool's de-
sign life cycle, and are normally not as expensive or as time-
consuming as more formal methods. For example, a reverse
engineering tool developer could use the Technology Delta
Framework developed by Brown and Wallnau [15] to do an
introspective evaluation of their own tool in the early stages
of development. This framework supports technology eval-
uation in two ways: understanding how the technology dif-
fers from other technologies and then considering how these
differences will support the users' needs. This type of evalu-
ation is very useful but is often overlooked for sophisticated
research tools such as reverse engineering tools.

User studies
User studies are formal experiments where key factors (the
independent variables) are identified and manipulated to
measure their effects on other factors (the dependent vari-
ables). Experiments can be conducted either in a laboratory
or in the field. In a laboratory setting, there is more con-
trol over the independent variables in the experiment. How-
ever, other factors are introduced which may not be applica-
ble in more realistic situations. For example, students are of-
ten used to act as subjects, but students probably do not com-
prehend programs in the same way that industrial program-
mers do [73]. Fenton and Pfleeger refer to formal experi-
ments as research in the small [27]. User studies are more
appropriate for fine-grained analyses of software engineering
activities or processes.

In general, there have been relatively few formal experiments
to evaluate reverse engineering tools. However there are a
few exceptions, most notably [12, 49, 78, 79].

Field observations
Formal user studies in the field can be more difficult to exe-
cute than those in a laboratory setting, because they tend to

54

be more expensive and time consuming. However, informal
user studies where one or two programmers are observed in
their natural setting can be very insightful. Often a researcher
will only have the opportunity to observe one or two pro-
grammers. Although the observation may be intrusive on the
programmers, this technique gives the researcher the oppor-
tunity to observe maintainers using tools in more realistic set-
tings. However, the results from field observations may also
be difficult to generalize because of the small number of sub-
jects normally involved.

Von Mayrhauser and Vans observed programmers in an in-
dustrial setting performing a variety of maintenance activi-
ties [87]. The goal of their study was to validate their inte-
grated code comprehension model. They derived reverse en-
gineering tool capabilities from an analysis of audio-taped,
think-aloud reports of the programmers' information needs
during maintenance activities.

Singer and Lethbridge describe a field experiment to study
the work practices of software engineers working at a large
telecommunications company [73]. They combined various
investigative techniques to gather information on software
engineers' work practices, such as questionnaires issued on
the Web, longitudinal observations of several software engi-
neers, and company wide tool usage statistics. They used the
results from their studies to'motivate the design of a software
exploration tool called TkSEE (Software Exploration Envi-
ronment) [73].

Case studies
Case studies occur when a particular tool is applied to a spe-
cific system, and the experimenter, often introspectively, doc-
uments the activities involved. Case studies are particularly
useful when the experimenter has very little control over the
factors to be studied. Expert reviews can be combined with
specific case studies as a more powerful evaluation tech-
nique.

Bellay and Gall report an evaluation of four reverse engi-
neering tools that analyze C source code [5]: Refine/C [85],
Imagix 4D [38], SNIFF+ [74], and Rigi [53]. They inves-
tigated the capabilities of these tools by applying them to
a real-world embedded software system which implements
part of a train control system. They used a number of assess-
ment criteria derived from Brown and Wallnau's Technology
Delta Framework [15]. The main focus of their case study
was on the tool capabilities to generate graphical reports such
as call trees, control-flow graphs, and data-flow graphs [5].
They concluded that there is no single tool that is the 'best'
as the four tools differ considerably in their respective func-
tionalities.

Armstrong and Trudeau also evaluated several reverse en-
gineering tools. They based their evaluation on the abili-
ties of the tools to extract an architectural design from the
source code of CLIPS (C-Language Interface processing
System) and for browsing the Linux operating system [2].

The five tools they examined were: Rigi [53], the Dali work-
bench [42], the Software Bookshelf [28], CIA [18], and
SNIFF+ [74]. Their investigations focused on the abstraction
and visualization of system components and interactions.

Surveys
Surveys are normally used as a retrospective investigative
technique. For example, surveys can ask questions of the na-
ture: Did the use of tool A reduce the amount of time you had
to spend doing maintenance changes? Although infrequently
used in the field of psychology of programming, surveys can
be useful as a form of exploratory research [9].

Cross et al. designed a preference survey to informally eval-
uate the GRASP software visualization tool [24]. GRASP
uses a Control Structure Diagram (CSD), an algorithmic level
graphical representation of the software. The CSD was com-
pared to four other graphical diagrams [25].

Sim et al. conducted a survey using a web-based question-
naire to find archetypes (i.e., typical or standard examples)
of source code searching by maintainers [71]. Their results
found that the most commonly used tools for searching were
(by increasing usage): editors, grep, find, and integrated de-
velopment environments. Administering the questionnaire
over the Web was found to be very effective for information
gathering.

Summary
This section reviewed various experimental techniques for
evaluating and comparing software exploration tools, an im-
portant category of reverse engineering tools. Each of the in-
vestigative techniques just described has certain advantages
and disadvantages. However, combining these techniques
(as Singer and Lethbridge have done [73]) should produce
stronger results. Moreover, sharing results among research
groups is also very important. For example, Sim and Storey
chaired a workshop where several reverse engineering tools
were compared in a live demonstration [72]. The tools were
applied to a significant case study where each team had to
complete a series of software maintenance and documenta-
tion tasks and collaboration between teams was emphasized.

Adoption of reverse engineering technology in industry has
been very slow [90]. However, we observed in our user stud-
ies [78, 79] that usability is often a major concern. If the tool
is difficult to use, it will affect its adoption rate, no matter how
useful it may be.

6 CONCLUSIONS
The 1980s produced a solid foundation for our field with the
Laws o f Software Evolution [46], theories for the fundamen-
tal strategies of program comprehension [14, 48, 60], and a
taxonomy for reverse engineering [20]. We also realized that
fifty to ninety percent of evolution effort involves program
understanding [75].

The 1990s began with a series of papers that outlined chal-
lenges and research directions for the decade [20, 35, 66, 67,

55

63, 88]. During that decade, the reverse engineering com-
munity developed infrastructures and tools for the three ma-
jor components of a reverse engineering system: parsers, a
repository, and a visualization engine. Researchers devel-
oped strategies for specific reengineering scenarios [13, 30,
32, 45], and as a result investigated program understanding
technology for these scenarios using industrial-strength re-
verse engineering and transformation tools [17].

Even though the theory of parsing and its technology has
been around since the 1960s, robust parsers for legacy lan-
guages and their dialects are still not readily available [56].
A notable exception is the IBM VisualAge C++ environment,
which features an API to access the complete abstract syntax
tree [50]. Fortunately, the urgency of the Year 2000 problem
has made the availability of stand-alone parsers a top priority.
But there is more research needed to produce parsing compo-
nents that can be easily integrated with reverse engineering
tools.

With the proliferation of object technology, the expectations
were high during the early 1990s for a common object-
oriented repository to store all the artifacts being accumu-
lated during the evolution of a software system. The research
community made great strides in modelling collections of
software artifacts at various levels of abstraction using graphs
and developing object-oriented schemas for these models,
but in most cases the artifacts for multi million-line software
systems were stored in relational databases and file systems.

The past decade produced many software exploration
tools [12, 18, 23, 29, 42, 52, 53, 54, 61, 65, 73, 77]. We
finally have enough desktop computing power to manipulate
huge graphs of software artifacts effectively. Some software
exploration tools are now built using web browsers to
exploit the fact that the users intimately know these tools for
exploring dependencies [29].

This paper presented four perspectives on the field of reverse
engineering to provide a roadmap for the first decade of the
new millennium. Researchers will continue to develop tech-
nology and tools for generic reverse engineering tasks, partic-
ularly for data reverse engineering (e.g., the recovery of logi-
cal and conceptual schemas), but future research ought to fo-
cus on ways to make the process of reverse engineering more
repeatable, defined, managed, and optimized [90]. We need
to integrate forward and reverse engineering processes for
large evolving software systems and achieve the same appre-
ciation for product and process improvement for long-term
evolution as for the initial development phases [44].

The most promising direction in this area is the continuous
program understanding approach [90]. The premise that soft-
ware reverse engineering needs to be applied continuously
throughout the lifetime of the software and that it is important
to understand and potentially reconstruct the earliest design
and architectural decisions [42] has major tool design impli-
cations. Tool integration and adoption should be central is-

sues for the next decade. For the future, it is critical that we
can effectively answer questions, such as "How much knowl-
edge, at what level of abstraction, do we need to extract from
a subject system, to make informed decisions about reengi-
neering it?" Thus, we need to tailor and adapt the program
understanding tasks to specific reengineering objectives.

We will never be able to predict all needs of the reverse engi-
neers and, therefore, must develop tools that are end-user pro-
grammable [81]. Pervasive scripting is one successful strat-
egy to allow the user to codify, customize, and automate con-
tinuous understanding activities and, at the same time, inte-
grate the reverse engineering tools into his or her personal
software development process and environment. Infrastruc-
tures for tool integration have evolved dramatically in recent
years. We expect that control, data, and presentation integra-
tion technology will continue to advance at amazing rates.
Finally, we need to evaluate reverse engineering tools and
technology in industrial settings with concrete reengineering
tasks at hand.

Even if we perfect reverse engineering technology, there are
inherent high costs and risks in evolving legacy software sys-
tems. Developing strategies to control these costs and risks
is a key research direction for the future. Practitioners need a
reengineering economics book, which would serve as a guide
to determine reengineering costs and to use economic analy-
ses for making improved reengineering decisions.

Probably the most critical issue for the next decade is to teach
students about software evolution. Computer science, com-
puter engineering, and software engineering curricula, by and
large, teach software construction from scratch and neglect to
teach software maintenance and evolution. Contrast this sit-
uation with electrical or civil engineering, where the study of
existing systems and architectures constitutes a major part of
the curriculum. Concepts such as architecture, abstraction,
consistency, completeness, efficiency, or robustness should
be taught from both a software design and a software analy-
sis perspective. Software architecture courses are now estab-
lished in many computer science programs, but topics such
as software evolution, reverse engineering, program under-
standing, software reengineering, or software migration are
rare. We must aim for a balance between software analysis
and software construction in software engineering curricula.

ACKNOWLEDGEMENTS
This research was supported in part by NSERC, the National
Sciences and Engineering Research Council of Canada, by
CAS, the IBM Toronto Centre for Advanced Studies, by
CSER, the Canadian Consortium for Software Engineering
Research, by IRIS, the Institute for Robotics and Intelli-
gent Systems Network of Centres for Excellence, by ASI,
the British Columbia Advanced Systems Institute, by the
Carnegie Mellon Software Engineering Institute, and the
Universities of Alberta, Paderborn, Riverside, and Victoria.

REFERENCES

56

[1] P. Aiken. Data Reverse Engineering: Slaying the
Legacy Dragon. McGraw-Hill, 1995.

[2] M. Armstrong and C. Trudeau. Evaluating architec-
tural extractors. In Proceedings of the 5th Working Con-
ference on Reverse Engineering (WCRE-98), Honolulu,
Hawaii, USA, pages 30-39, October 1998.

[3] L. Bass, P. Clements, and R. Kazman. Software Archi-
tecture in Practice. Addison-Wesley, 1997.

[4] A. Behm, A. Geppert, and K. R. Dittrich. On the
migration of relational schemas and data to object-
oriented database systems. In Proceedings 5th In-
ternational Conference on Re-Technologies for In-
formation Systems, Klagenfurt, Austria, pages 13-
33.0sterreichische Computer Gesellschaft, December
1997.

[5] B. BeUay and H. Gall. An evaluation of reverse engi-
neering tool capabilities. Journal of Software Mainte-
nance: Research and Practice, 10:305-331, 1998.

[6] K. Bennett and V. Rajlich. Software maintenance and
evolution: A roadmap. In this volume, June 2000.

[7] J. Bergey, D. Smith, N. Weiderman, and S. Woods. Op-
tions analysis for reengineering (OAR): Issues and con-
ceptual approach. Technical Report CMU/SEI-99-TN-
014, Carnegie Mellon Software Engineering Institute,
1999.

[8] T. Biggerstaff, B. Mitbander, and D. Webster. Pro-
gram understanding and the concept assignment prob-
lem. Communications of the ACM, 37(5):72-83, May
1994.

[9] A. Blackwell. Questionable practices: The use of ques-
tionnaire in psychology of programming research. The
Psychology of Programming Interest Group Newsletter,
22, July 1998.

[10] M. Blaha. On reverse engineering of vendor databases.
In Working Conference on Reverse Engineering
(WCRE-98), Honolulu, Hawaii, USA, pages 183-190.
IEEE Computer Society Press, October 1998.

[11] M. Blaha and W. Premerlani. Observed idiosyncracies
of relational database designs. In Second Working Con-
ference on Reverse Engineering (WCRE-95), Toronto,
Ontario, Canada. IEEE Computer Society Press, 1995.

[12] K. Brade, M. Guzdial, M. Steckel, and E. Soloway.
Whorl: A visualization tool for software maintenance.
In Proceedings 1992 IEEE Workshop on Visual Lan-
guages, Seattle, Washington, pages 148-154, Septem-
ber 1992.

[13] M. Brodie and M. Stonebraker. Migrating Legacy Sys-
tems: Gateways, Interfaces, and the Incremental Ap-
proach. Morgan Kauffman, 1995.

[14] R. Brooks. Towardsatheoryofcomprehensionofcom-
purer programs. International Journal of Man-Machine
Studies, 18:86-98, 1983.

[15] A. Brown and K. Wallnau. A framework for evaluat-
ing software technology. IEEE Software, pages 39--49,
September 1996.

[16] B. Brown, X. Malveau, X. M. III, and T. Mowbray.
AntiPatterns: Refactoring Software, Architectures, and
Projects in Crisis. John Wiley & Sons, 1998.

[17] E. Buss, R. DeMori, W. Gentleman, J. Henshaw,
H. Johnson, K. Kontogiannis, E. Merlo, H. M/iller,
J. Mylopoulos, S. Paul, A. Prakash, M. Stanley, S. R.
Tilley, J. Troster, and K. Wong. Investigating reverse
engineering technologies for the cas program under-
standing project. IBM Systems Journal, 33(3):477-500,
August 1994.

[18] Y.-E Chen, M. Nishimoto, and C. Ramamoorthy. The
C information abstraction system. 1EEE Transactions
on Software Engineering, 16(1):325-334, March 1990.

[19] S. Chidamber and C. Kemerer. A metrics suite for
object-oriented design. IEEE Transactions Software
Engineering, 20(6):476-493, 1994.

[20] E. Chikofsky and J. Cross. Reverse engineering and de-
sign recovery: A taxonomy. IEEE Software, 7(1):13-
17, January 1990.

[21] R. Clayton, S. Rugaber, and L. Wills. On the knowl-
edge required to understand a program. In Proceedings
of the 5th Working Conference on Reverse Engineer-
ing (WCRE-98), Honolulu, Hawaii, USA, pages 69-78,
October 1998.

[22] A. Clewett, D. Franklin, and A. McCown. NetworkRe-
source Planning For SAP R/3, BAAN I~, and PEOPLE-
SOFT." A Guide to Planning Enterprise Applications.
McGraw-Hill, 1998.

[23] M. Consens, A. Mendelzon, and A. Ryman. Visualiz-
ing and querying software structures. In Proceedings
of the 14th International Conference on Software Engi-
neering (ICSE), Melbourne, Australia, pages 138-156.
IEEE Computer Society Press, 1992.

[24] J. Cross II, T. Hendrix, L. Barowski, and K. Mathias.
Scalable visualizations to support reverse engineering:
A framework for evaluation. In Proceedings of the 5th
Working Conference on Reverse Engineering (WCRE-
98), Honolulu, Hawaii, USA, pages 201-209, October
1998.

[25] J. Cross II, S. Maghsoodloo, and T. Hendrix. The con-
trol structure diagram: An initial evaluation. Empirical
Software Engineering, 3(2):131-156, 1998.

57

[26] C. Fahrner and G. Vossen. Transforming relational
database schemas into object-oriented schemas accord-
ing to ODMG-93. In Proceedings of the 4th Interna-
tional Conference on Deductive and Object-Oriented
Databases, 1995.

[27] N. Fenton and S. L. Pfleeger. Software Metrics: A Rig-
orous and Practical Approach. PWS Publishing Com-
pany, 1997.

[28] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Miiller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Jour-
nal, 36(4):564-593, 1997.

[29] P. Finnigan, R. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Miiller, J. Mylopoulos, S. Perelgut, M. Stanley, and
K. Wong. The software bookshelf. IBM Systems Jour-
nal, 36(4):564-593, November 1997.

[30] M. Fowler. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley, 1999.

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1995.

[32] I. Graham. Migrating to Object Technology. Addison-
Wesley, 1994.

[33] J.-L. Hainaut, J. Henrard, J.-M. Hick, and D. Roland.
Database design recovery. Lecture Notes in Computer
Science, 1080:272ff, 1996.

[34] W. Harrison, H. Ossher, and P. Tarr. Software engineer-
ing tools and environments: A roadmap. In this volume,
June 2000.

[35] P. Hausler, M. Pleszkoch, R. Linger, andA. Hevner. Us-
ing function abstraction to understand program behav-
ior. IEEE Software, 7(1):55-63, January 1990.

[36] W. S. Humphrey. Managing the Software Process.
Addison-Wesley, 1989.

[37] W. S. Humphrey. A Discipline for Software Engineer-
ing. Addison-Wesley, 1995.

[38] Imagix 4D. Imagix Corp. http://www.imagix.com.

[39] J. H. Jahnke. Management ofUncertainty and lnconsis-
tency in Database Reengineering Processes. PhD the-
sis, Department of Mathematics and Computer Science,
Universit/it Paderborn, Germany, September 1999.

[40] J. H. Jahnke, W. Schiller, and A. Zfindorf. Generic
fuzzy reasoning nets as a basis for reverse engineering
relational database applications. In Proceedings of Eu-
ropean Software Engineering Conference (ESEC/FSE),
number 1302 in LNCS. Springer, September 1997.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[511

J. H. Jahnke and J. Wadsack. Integration of analysis
and redesign activities in information system reengi-
neering. In Proceedings of the 3rd European Con-
ference on Software Maintenance and Reengineering
(CSMR-99), Amsterdam, The Netherlands, pages 160-
168. IEEE CS, March 1999.

R. Kazman and S. Carrie're. Playing detective: Recon-
structing software architecture from available evidence.
Journal of Automated Software Engineering, 6(2):107-
138, April 1999.

R. Kazman, S. Woods, and S. Carri~re. Requirements
for integrating software architecture and reengineering
models: CORUM II. In Proceedings of the Fifth Work-
ing Conference on Reverse Engineering (WCRE-98),
Honolulu, Hawaii, USA, pages 154-163. IEEE Com-
puter Society Press, October 1998.

U. K61sch. Methodische Integration und Migration
von Informationssystemen in objektorientierte Umge-
bungen. PhD thesis, Forschungszentrum Informafik,
Universit~it Karlsruhe, Germany, December 1999.

K. Kontogiannis, J. Martin, K. Wong, R. Gregory,
H. Mfiller, and J. Mylopoulos. Code migration through
transformations: An experience report. In Proceedings
of CASCON-98, Toronto Ontario, Canada, November
1998.

M. Lehman. Programs, life cycles and laws of software
evolution. Proceedings of lEEE Special Issue on Soft-
ware Engineering, 68(9): 1060-1076, September 1980.

T. Lethbridge and J. Singer. Understanding software
maintenance tools: Some empirical research. In IEEE
Workshop on Empirical Studies of Software Mainte-
nance (WESS-97), Bad, Italy, pages 157-162, October
1997.

S. Letovsky. Cognitive Processes in Program Compre-
hension, pages 58-79. Ablex Publishing Corporation,
1986.

P. Linos, P. Aubet, L. Dumas, Y. Helleboid, E Lejeune,
and E Tulula. Visualizing program dependencies: An
experimental study. Software-Practice and Experience,
24(4):387--403, April 1994.

J. Martin. Leveraging ibm visualage c++ for reverse
engineering tasks. In Proceedings of CASCON-99,
Toronto, Ontario, Canada, November 1999.

E Martin, J. R. Cordy, and R. Abu-Hamdeh. Infor-
mation capacity preserving of relational schemas us-
ing structural transformation. Technical Report ISSN
0836-0227-95-392, Department of Computing and In-
formation Science, Queen's University, Kingston, On-
tario, Canada, November 1995.

58

[52] A. Mendelzon and J. Sametinger. Reverse engineering
by visualizing and querying. Software Concepts and
Tools, 16:170-182, 1995.

[53] H. Miiller and K. Klashinsky. Rigi--A system for
programming-in-the-large. In Proceedings of the
lOth International Conference on Software Engineer-
ing (ICSE), Raffles City, Singapore, pages 80--86. IEEE
Computer Society Press, April 1988.

[54] H. Miiller, S. Tilley, M. O. B. Corrie, and N. Mad-
havji. A reverse engineering environment based on
spatial and visual software interconnection models. In
Proceedings of the Fifth A CM SIGSOFT Symposium on
Software Development Environments (SIGSOFT-92),
Tyson's Corner, Virginia, USA, In ACM Software En-
gineering Notes, volume 17, pages 88-98, December
1992.

[55] T. Munakata. Knowledge discovery. Communications
of the ACM, 42(11):26-29, November 1999.

[56] G. Murphy, D. Notkin, and S. Lan. An empirical study
of static call graph extractors. In Proceedings of the
18th International Conference on Software Engineer-
ing, Berlin, Germany, pages 90-100. IEEE Computer
Society Press, March 1996.

[57] J. Nielsen. Usability Engineering. Academic Press,
New York, 1994.

[58] J. Ning. A Knowledge-based Approach to Auto-
matic Program Analysis. PhD thesis, Department of
Computer Science, University of Illinois at Urbana-
Champaign, 1989.

[59] S. Paul and a. Prakash. On formal query languages for
source code search. IEEE Transactions on Software En-
gineering, SE-20(6):463-475, June 1994.

[60] N. Pennington. Stimulus structures and mental repre-
sentations in expert comprehension of computer pro-
grams. Cognitive Psychology, 19:295-341, 1987.

[61] P. Penny. The Software Landscape: A Visual Formal-
ism for Programming-in-the-Large. PhD thesis, De-
partment of Computer Science, University of Toronto,
1992.

[62] D. Perry, A. Porter, and J. L. Votta. Empirical studies:
A roadmap. In this volume, June 2000.

[63] R. C. W. Peter G. Selfridge and E. J. Chikofsky. Chal-
lenges to the field of reverse engineering. In Working
Conference on Reverse Engineering (WCRE-93), Bal-
timore, Maryland, USA, pages 144-150, 1993.

[64] W. J. Premerlani and M. R. Blaha. An approach for re-
verse engineering of relational databases. Communica-
tions of the ACM, 37(5):42-49, May 1994.

[65]

[66]

[67]

[68]

[69]

[701

[71]

[72]

[73]

[74]

[75]

[76]

[77]

B. A. Price, R. M. Baecker, and I. S. Small. A principled
taxonomy of software visualization. Journal of Visual
Languages and Computing, 4(3):211-266, 1993.

C. Rich and L. Wills. Recognizing a program's design:
A graph-parsing approach. IEEE Software, 7(1):82-89,
January 1990.

S. Rugaber and S. Ornburn. Recognizing design deci-
sions in programs. IEEE Software, 7(1):46-54, January
1990.

M. Shaw. Software engineering education: A roadmap.
In this volume, June 2000.

B. Shneiderman. Designing the User Interface:
Strategies for Effective Human-Computer Interaction.
Addison-Wesley, 1998. Third Edition.

O. Signore, M. Loffredo, M. Gregori, and M. Cima. Re-
construction of er schema from database applications:
a cognitive approach. In Proceedings ofl3th Interna-
tional Conference of ERA, Manchester, UK, pages 387-
402. Springer, 1994.

S. Sim, C. Clarke, and R. Holt. Archetypal source
code searches: A survey of software developers and
maintainers. In Proceedings of the 5th Working Con-
ference on Reverse Engineering (WCRE-98), Honolulu,
Hawaii, USA, pages 180-187, October 1998.

S. Sim and M.-A. D. Storey. A collective
demonstration of program comprehension tools,
a CASCON-99 workshop, November 1999.
http://www.csr.uvic.ca/cascon99/.

J. Singer and T. Lethbridge. Studying work practices
to assist tool design in software engineering. In Pro-
ceedings of the 6th International Workshop on Program
Comprehension (WPC-98), Ischia, Italy, pages 173-
179, June 1998.

SNIFF+. User's Guide and Reference, Take-
Five Software, version 2.3, December 1996.
http://www.takefive.com.

T. Standish. An essay on software reuse. IEEE Trans-
actions on Software Engineering, SE-10(5):49 A, A.97,
September 1984.

P. Stevens and R. Pooley. Systems reengineering pat-
terns. In A CM SIGSOFT Foundations of Software En-
gineering (FSE-98), Lake Buena Vista, Florida, USA,
pages 17-23. ACM Press, 1998.

M.-A. Storey and H. Mfiller. Manipulating and doc-
umenting software structure using shrimp views. In
Proceedings of the International Conference on Soft-
ware Maintenance (ICSM), Opio, France, pages 275-
284. IEEE Computer Society Press, October 1998.

59

[78] M.-A. Storey, K. Wong, P. Fong, D. Hooper, K. Hop-
kins, and H. Miiller. On designing an experiment to
evaluate a reverse engineering tool. In Proceedings
of the 3rd Working Conference on Reverse Engineering
(WCRE-96), Monterey, California, USA, pages 31-40,
November 1996.

[79] M.-A. Storey, K. Wong, and H. Miiller. How do pro-
gram understanding tools affect how programmers un-
derstand programs. In Proceedings of the 4th Working
Conference on Reverse Engineering (WCRE-97), Ams-
terdam, The Netherlands, pages 12-21, October 1997.

[80] T. Sys~. On the relationships between static and dy-
namic models in reverse engineering java software. In
Proceedings of the Sixth Working Conference on Re-
verse Engineering (WCRE-99), Atlanta, Georgia, USA,
pages 304-313. IEEE Computer Society Press, October
1999.

[81] S. Tilley, K. Wong, M.-A. Storey, and H. Miiller. Pro-
grammable reverse engineering. International Journal
of Software Engineering and Knowledge Engineering,
4(4):501-520, December 1994.

[82] S. R. Tilley. Coming attractions in program understand-
ing II: Highlights of 1997 and opportunities for 1998.
Technical Report CMU/SEI-98-TR-001, Carnegie Mel-
lon Software Engineering Institute, February 1998.

[83] S. R. Tilley. The Canonical Activities of Reverse Engi-
neering. Baltzer Science Publishers, The Netherlands,
February 2000.

[84] S. R. Tilley and S. Huang. Just enough understanding
and not enough time. Technical report, Department of
Computer Sciene, University of California Riverside,
December 1999.

[85] J. Troster, J. Henshaw, and E. Buss. Filtering for quality.
In the Proceedings of CASCON-93, Toronto, Ontario,
Canada, pages 429-449, October 1993.

[86] A. Umar. Application (Re)Engineering: Building Web-
Based Applications and Dealing with Legacies. Pren-
tice Hall, 1997.

[87] A. von Mayrhauser and A. Vans. From code under-
standing needs to reverse engineering tool capabilities.
In Proceedings of CASE-93, Singapore, pages 230-239,
July 1993.

[88] R. C. Waters and E. J. Chikofsky. Reverse
engineering--Introduction to the special section.
Communications oftheACM, 37(5):22-25, May 1994.

[89] M. Weiser. Program slicing. IEEE Transactions on Soft-
ware Engineering, SE-10(4):352-357, July 1984.

[90] K. Wong. Reverse Engineering Notebook. PhD thesis,
Department of Computer Science, University of Victo-
ria, October 1999.

[91] K. Wong, S. Tilley, H. Miiller, and M.-A. Storey. Struc-
tural redocumentation. IEEE Software, 12(1):46-54,
January 1995.

60

