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ABSTRACT 
Many reverse-engineering tools have been developed to de- 
rive abstract representations from source code. Yet, most of 
these tools completely ignore recovery of the all-important 
rationale behind the design decisions that have lead to its 
physical shape. Design patterns capture the rationale behind 
proven design solutions and discuss the trade-offs among 
their alternatives. We argue that it is these patterns of thought 
that are at the root of many of the key elements of large-scale 
software systems, and that, in order to comprehend these sys- 
tems, we need to recover and understand the patterns on 
which they were built. In this paper, we present our environ- 
ment for the reverse engineering of design components based 
on the structural descriptions of design patterns. We give an 
overview of the environment, explain three case studies, and 
discuss how pattern-based reverse-engineering helped gain 
insight into the design rationale of some of the pieces of three 
large-scale C++ software systems. 

Keywords 
Reverse-engineering, design recovery, design component, 
design pattern, object-oriented design, visualization, tool 
support. 

1 INTRODUCTION 

Reverse-engineering is “the process of analyzing a subject 
system to (a) identify the system’s components and their in- 
terrelationships and (b) create representations of a system in 
another form at a higher level of abstraction” [ 111. The goal 
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is to develop a more global picture on the subject system, 
which is the fist major step towards its understanding or 
transformation into a system that better reflects the quality 
needs of the application domain at hand. One necessity to 
achieve this goal is a clear representation of rhe system’s 
physical and logical structure; but this is still insufficient for 
a developer to fully comprehend the purpose of a given piece 
of software [5]. Underlining this statement, Booth estimates 
that “it takes a professional programmer about 6-9 months to 
become really proficient with a larger framework”, and he 
adds that “this rate increases rather exponential to the com- 
plexity of software” [6]. We agree with Beck and Johnson 
that one reason for this gigantic effort for software compre- 
hension and evolution is that “existing design notations focus 
on communicating the what of designs, but almost complete- 
ly ignore the why” [4]. They argue that comprehe.nsion of the 
rationale behind the design decisions is as much important as 
thorough understanding of the software’s structural and log- 
ical constituents. Yet, for the most part, current reverse-engi- 
neering tools completely neglect recovery of the design 
rationale. 

Design patterns capture the rationale behind recurringly 
proven design solutions and illuminate the trade-offs that are 
inherent in almost any solution to a non-trivial design prob- 
lem. In forward engineering, the advantages of design pat- 
terns are widely accepted [4], but in reverse-engineering 
their usefulness encounters strong resistance throughout 
both the pattern and the reverse-engineering communities 
[8]. The main arguments are that patterns can be implement- 
ed in many different ways without ever being the same twice, 
and that the same structure may recur with widely different 
intents. In addition, existing studies that were aimed at de- 
tecting design patterns in existing software systems [l, 221 
failed to convey the usefulness of this approach to reverse- 
engineering, considering the minimal results of recovered 
pattern instances. Nevertheless, it is these patterns of thought 
that comprise the rationale of many pieces of an existing 
software system, and to comprehend the software, we need 
to recover these patterns, be it automatically or manually. 
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Figure 1: Overview of the SPOOL environment. 

In the SPOOL project (Spreading Desirable Properties into 
the Design of Object-Oriented, Large-Scale Software Sys- 
tems), a joint industry/university collaboration between the 
software quality assessment team of Bell Canada and the 
GEL0 group at the University of Montreal, we have ad- 
dressed this problem by implanting into the SPOOL environ- 
ment for design pattern engineering [27] functionality for 
supporting the recovery of design patterns. Note that with 
“support” we underline the purpose of the environment as an 
aid for gaining a pattern-based overview of the software sys- 
tem at hand. It would be pretentious to argue that the envi- 
ronment itself can comprehend the rationale behind a design, 
“which would go far beyond the current state-of-the-art in ar- 
tificial intelligence” [7]; however, by generating appropriate 
views, it may lead a human analyzer to the recovery of the 
rationale behind some of its most critical parts. Using the en- 
vironment, the analyzer can zoom into these design compo- 
nents’ that resemble patterns, extract them as diagrams in 
their own right, contrast the pattern description with the im- 
plemented structures, or, in the case of a false positive, dis- 
miss the existence of the automatically identified pattern 
instance. 

1. Note that we introduced the term design component as the reification 
of design elements, such as patterns, idioms, or application-specific solu- 
tions, and their provision as software components (JavaBeans, CGA4 
objects, or the like), which are manipulated via specialization, adaptation, 
assembly, and revision. We refer to [20] for further details on this approach 
to software composition. For the purpose of this paper we use the term 
design componenr as a package of structural model descriptions together 
with informal documentation, such as intent, applicability, or known-uses. 

In this paper, we apply our environment to the reverse engi- 
neering of design components that are based on some of the 
design pattern descriptions defined by Gamma et al. [14]. 
The purpose is to introduce pattern-based reverse engineer- 
ing as a valuable technique for software comprehension and 
thus counter the widely-held believe that design patterns are 
only meaningful in forward engineering. Applying our ap- 
proach to several case studies extracted from industrial, 
large-scale software, we show that pattern-based reverse-en- 
gineering of design components is helpful for understanding 
software-in-the-large. In Section 2, we explain the architec- 
ture of the SPOOL environment. In section 3, we describe 
the three C++ systems which we used for experimentation, 
present three case studies that show how we applied pattem- 
based reverse-engineering of design components, and dis- 
cuss the findings of our experiments. Section 4 compares our 
approach with related techniques. Section 5 concludes the 
paper and provides an outlook into future work. 

2 REVERSE-ENGINEERING ENVIRONMENT 

The purpose of the SPOOL reverse-engineering environment 
is to help understand software by its organization around pat- 
terns. It consists of techniques and tools for source code cap- 
turing, a design repository, and functionality for pattern- 
based design recovery and design representation (see Figure 
1). 
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Source Code Capturing 

The purpose of source code capturing is to extract an initial 
model from existing source code. At this time, we support 
only C++. Using the C++ source code analysis system 
GEN++ [12] (Source Code Parser), our environment gener- 
ates an ASCII-based representation of the relevant source 
code elements (UMLKDIF Intermediate Source Model). 
The purpose of this intermediate representation is to make 
the environment independent of any specific programming 
language, and to provide a data exchange mechanism for 
Bell Canada’s suite of software comprehension tools. We 
adopted the CDZF transferfomzat [lo] as the syntax and the 
UML metamodel 1.1 [30] as the semantic model of the inter- 
mediate format. Note that we had to extend the UML meta- 
model 1.1 to cover the facets of C++ we deemed essential for 
the recovery of pattern-based design components. An import 
utility (UMLKDIF parser), which we developed with the 
parser generator JavaCC [ 171, parses this UML-based CDIF 
format and stores the data into the design repository. At the 
current state of development, we capture and manage in the 
repository the source code information (Source Code Model) 
as listed in Table 1. 

1. 
2. 

3. 

4. 

5. 

5.1. 

5.2. 

5.3. 

5.4. 

5.5. 

6. 

7. 

Files (name, directory). 

Classijiers - classes, structures, unions, anonymous unions, 
primitive types (char, int, float, etc.), enumerations [name, file, 
visibility]. Class declarations are resolved to point to their defi- 
nitions. 

Generalization relationships [superclass, subclass, visibility]. 

Attributes [name, type, owner, visibility]. Global and static vari- 
ables are stored in utility classes (as suggested by the UML), 
one associated to each file. Variable declarations are resolved to 
point to their definitions. 

Operations and methods [name, visibility, polymorphic, kind]. 
Methods are. the implementations of operations. Free functions 
and operators are stored in utility classes (as suggested by the 
Uh4L), one associated to each file. Kind stands for constructor, 
destructor, standard, or operator. 

Parameters [name, type]. The type is a classifier. 

Return types [name, type]. The type is a ckzwi$er. 

Call actions - [operation, sender, receiver]. The receiver points 
to the class to which a request (operation) is sent. The sender is 
the classifier that owns the method of the call action, 

Create actions. These represent object instantiations. 

Variable use within a method. This set contains all member 
attributes, parameters, and local attributes used by the method. 

Friendship relationships between classes and operations. 

Class andfunction template instantiations. These are stored as 
normal classes resp. operations and methods. 

Table 1: Source code information managed in the repository. 

Design Repository 

The purpose of the design repository is to provide for cen- 
tralized storage, manipulation, and querying of the source 
code models, the abstract design components that are to be 
recovered (e.g, “off-the-shelf’ design patterns as found in the 
literature and described in template format), and the imple- 
mented design components within the source code models. 
The schema of the design repository is based on our extend- 
ed UML metamodel 1.1 [30]. The object-oriented database 
management system Poet 5.1 [26] serves as I:he repository 
backend. The schema is represented as a Java 1.1 class hier- 
archy. The classes within this hierarchy constitute the models 
of the WC-based graphic editor of the tool. Using the 
precompiler of Poet 5.1’s Java ZIght Binding, an object-ori- 
ented database can be generated from this class hierarchy. 

Pattern-Based Design Recovery 

The purpose of pattern-based design recovery is to help 
structure parts of class diagrams to resemble pattern 
diagrams (see Figure 2, window 4). We envision three 
techniques to support this task: automatic design recovery, 
manual design recovery, and semi-automatic design 
recovery. Automatic design recovery relates to the fully 
automated structuring of software designs according to 
pattern descriptions, which are stored in the repository as 
abstract design components. We have implemented query 
mechanisms that can recognize the structural descriptions in 
the source code models, extract these from the source code, 
and visualize them within the class hierarchies. This 
technique will be further detailed in Section 3. Manual 
design recovery relates to the structuring of software designs 
by manually grouping design elements, such as classes, 
methods, attributes, or relationships, to reflect a pattern. Our 
environment allows the developer to select model elements 
and associate them with the roles of the respective pattern 
elements. Manual design recovery gives the human analyzer 
the possibility to look at a model from their own perspectives 
and cluster design elements to design components. It 
provides the flexibility that is necessary to group and 
communicate ad-hoc solutions as proto-patterns [2], which 
may at some time even become patterns. Semi-automatic 
design recovery combines both strategies, automatic and 
manual recovery. It may be implemented as ai multi-phase 
recovery process. The first phase consists of the automatic 
detection of low-level idioms or the general core of pattern 
descriptions. Subsequent phases match the identified 
instances with more specific implementation details, which 
may be provided interactively by the analyzer who is in 
control of the recovery process. He or she may interrupt 
recovery runs to confirm or decline the existence of a pattern 
occurrence, and to manually supply specifics that are not 
covered by the default recovery queries. At the current stage 
of development, we have implemented the techniques for 
automated and manual design recovery. 
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Figure 2: Graphic user interface of SPOOL environment: inheritance graph diagrams with tree layout (window l), spring layout (window 2),
and property sheet (window 3) to control a diagram’s content; visualization of abstract component roles in the source code model (window
4); extraction of implemented design components and comparison with the respective abstract design component (window 5); display of in-
formal design component constituents (window 6).

Design representation

The purpose of design representation is to provide for the in-
teractive visualization and refinement of source code mod-
els, abstract design components, and implemented
components. It is our contention that only the interplay
among human cognition, automatic information matching
and filtering, visual representations, and flexible visual
transformations can lead to the all-important why behind the
key design decisions in large-scale software systems. Figure
2 illustrates our graphic environment which we developed to
this end.

Windows 1 and 2 show the inheritance hierarchy of ET++
[15] (tree layout generated with Dot [21] and spring layout
generated with Neato [24]). Via the property sheet associat-
ed with such diagrams (window 3), all the other association
relationships stored in the repository, such as instantiation or
aggregation relationships, can be illustrated as well, in both
separate or combined forms. Different colors distinguish the
different kinds of association relationships. On the left hand
side of each window, a tree view can be optionally displayed
(windows 1, 4, 5, and 6) to convey in textual form the source
code models, abstract design components, or implemented
design components. Through a diagram’s pop-up menu, de-

sign queries on the information contents of the diagram at
hand can be launched, with subsequent visualization of the
query results (window 4). In our environment, each of the
supported abstract design components (the pattern-like
structures to be discovered) comprises a so-called reference
class. This is the class in the component’s structure diagram
that is considered most characteristic of the component’s na-
ture*. Upon design recovery, we draw incrementally bound-
ing  boxes  a round  the  re fe rence  c lasses  o f  the
implementations of an abstract design component (window
4). In this way, a class that is the reference class for several
of these implemented design components (“multiple refer-
ence class”) will exhibit a taller bounding box than a class
that is just part of a single component. Keeping the size of
these bounding boxes constant during zooming leads to the
effect that once their diagrams are sufficiently zoomed out
(window 4), multiple reference classes will protrude from
the diagram. The implemented design components can then
be extracted into a separate diagram and related to the class-
es, methods, and attributes of their respective abstract design
components (window 5), which in this study represent the
descriptions of design patterns. The more informal constitu-

2. The reference class of an abstract design component can be changed
interactively at the discretion of the user of the environment.
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ents, such as intent, motivation, or applicability, can be 
viewed in the same or in separate diagrams (window 6). 
These informal descriptions are crucial for understanding the 
design, as they capture the rationale that may be at the root 
of the automatically identified design component. 

Design representation also encompasses interactive descrip- 
tion of design components. Using the UML class diagram 
notation and HTML, our environment allows for the mode- 
ling, documenting, and storing of new abstract design com- 
ponents in the design repository. The environment also 
supports the refinement and generalization of existing ab- 
stract components. This is essential as design components 
can be rendered in different forms. For example, a design 
component representing an Adapter pattern can be refined 
into a Class Adapter or an Object Adapter, and similarly, a 
Composite may be specialized into a Transparent Composite 
or a Safe Composite component [20]. 

The user interface of the SPOOL environment is implement- 
ed based on Java 1.1, the Swing 1.0.3 framework for user in- 
terface widgets, and the graphic editor application 
framework jKi’it/GO [18]. At the current stage of develop- 
ment, we have implemented a class diagram editor based on 
the UML notation 1.1 [30]. The informal constituents of de- 
sign patterns are described with HTML. For visualizing the 
HTML code, we use the ICEBrowser [16] JavaBeans com- 
ponent. To generate initial layouts of the system at hand, we 
developed an interface to external layout generators. We in- 
tegrated Dot [21] for hierarchy layouts and Neato [24] for 
spring layouts. 

3 APPLYING PATTERN-BASED REVERSE ENGI- 
NEERING 

The purpose of this section is to point out the importance of 
pattern-based reverse-engineering of design components for 
the comprehension of large-scale software. We chose a case 
study approach to illustrate and discuss some of our findings 
when analyzing three industrial systems. We have selected 
the following abstract design components, which we based 
on the corresponding descriptions in the pattern catalogue of 
Gamma et al.: Template Method, Factory Method and 
Bridge [ 141. Below, we first describe the three industrial sys- 
tems which we analyzed. Then, we show how we reverse-en- 
gineered the selected components in System-A, System-B, 
and ET++, respectively. 

Industrial Systems 

To assess the feasibility of pattern-based reverse engineering 
and the usefulness of the SPOOL environment, we analyzed 
the source code of three industrial C++ systems. Bell Canada 
provided us with two large-scale systems from the domain of 
telecommunications. For confidentiality reasons, we call 
these systems System-A and System-B. Our third test system 
is the well-known application framework ET++ 3.0 [15], as 

included in the SNiFF+ development environment [29]. Ta- 
ble 2 shows some size metrics for these systems. Note that 
header files from the compiler are included in these numbers. 

1 #of files (.C I .h) I 1,900 1 1,153 1 48.5 1 

1 # of attributes I 28,360 1 13,624 1 4460 1 

size of the system in the 
repository 

) 63.1 MB 1 41.0MB 1 19.3MB 1 

Table 2: Size metrics of industrial systems. 

Case #l: Template Method 

“Template Methods define the skeleton of an algorithm in an 
operation, deferring some steps to subclasses.” [14] Tem- 
plate methods are often referred to as the characterizing 
building blocks of white box frameworks, which let clients 
extend the framework by overriding pre-defined hook meth- 
ods that are called by the framework [ 131. The rationale be- 
hind a Template Method is to make the steps of an algorithm 
easily exchangeable. The trade-off is that if not used with 
care, Template Methods can contribute to overly complex 
software, especially when the hook methods themselves are 
Template Methods deferring functionality to other hook 
methods. In large, framework-based application software, 
such as System-A, knowledge about the existence and loca- 
tion of Template Methods is crucial for the judicious evolu- 
tion of the applications. 

Concrete Class FE3 PrimittiOperationl() 
PrimitiveOperation2() 

Figure 3: Structure of Template Method [14]. 

We reified the Template Method pattern (Figure 3 shows its 
structure) as an abstract design component, stored it in our 
repository, and associated it with a query that searches the 
source code models for the component’s structure. The de- 
fault implementation of the Template Method query travers- 
es all classes (AbstractClass), goes into each method 
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(TemplateMethod), looks up the operation call tree for local 
operation calls (PrimitiveOperation), and verifies if Primiti- 
veoperution is polymorphic. If all conditions are met, all rel- 
evant information is passed to a Design Component Builder 
object, which creates an Implemented Design Component 
containing references to the identified elements in the source 
code model. Note that through query options, the human an- 
alyzer can specify deviations from the default behavior of the 
query, for instance, to recover only those TemplateMethods 
in which PrimitiveOperation in AbstractClass is pure virtual 
(in the case of a C++ system), or to check if PrimitiveOper- 
ation is overridden by at least one class (ConcreteClass) in 
the Abstract Class’s subclass hierarchy. 

Figure 4: Template Methods in System-A. 

Figure 4 illustrates the recovered Template Methods in one 
class tree of System-A (note that the reference class of Tem- 
plate Method is AbstractClass). This diagram clearly shows 
the key players within this part of the application, and con- 
veys an impression of how many such mini-algorithms, 
which may be refined in subclasses, exist in the class tree. 
For instance, the main class, clearly visible on top of the di- 
agram, contains 43 Template Methods. More detailed infor- 
mation can be recovered by zooming into the diagram, 
showing operations and attributes, or by spawning another 
diagram that shows the implementation of one particular 
Template Method only. 

It is our experience that knowledge on both the rationale and 
the existence of Template Methods is essential to develop an 
understanding on how to hook into the mechanisms that are 
enforced by a framework-like architecture. Such knowledge 
may be of great help in flattening the learning curve of a 
framework. 

Case #2: Factory Method 

“Factory Methods define an interface for creating an object, 
but let subclasses decide which class to instantiate.” [14] 
Factory Methods are specialized Template Methods in that 
the PrimitiveOperation in the ConcreteClass instantiates a 
concrete product (see Figure 5). Factory Methods are often 

used when different objects have the same construction proc- 
ess. The construction algorithm is coded in the Creator class, 
and the steps that instantiate the objects are deferred to the 
subclasses. 

Figure 5: Structure of Factory Method [14]. 

The query for the Factory Method is, obviously, similar to 
that of the Template Method, except for the condition that the 
FactoryMethod in ConcreteCreator is required to instantiate 
a ConcreteProduct. By default, the query does not enforce 
that ConcreteProduct be a subclass of another class (Prod- 
uct), but this additional constraint can be specified through 
query options. 

Figure 6: Factory methods in System-B: overview diagram (upper 
window); extracted Factory Methods (lower window). 

Figure 6 illustrates the results of the Factory Method query 
as applied to System-B. The upper window shows the inher- 
itance tree of all classes of System-B, which we layed out 
with Neato. Due to the high zooming ratio (the small points 
constitute large inheritance trees), the recovered design com- 
ponents protrude from the diagram. This is crucial informa- 
tion that can help find a basis for understanding a complex 
piece of software, which is presented in the lower window of 
Figure 6. We zoomed into the tallest bounding box and ex- 
tracted the detailed information into a separate diagram 
(lower window). It illustrates a central Creator class, which 
defines 13 abstract Factory Method operations, and an over- 
all 57 subclasses, which implement these operations. 

This automatically generated diagram provides essential in- 
formation about the rationale behind the design at hand. The 
developers designed this part of System-B for easy extension 
with new classes. This was necessary as this part of the sys- 
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tern deals with user interface forms and input tables, which 
by nature change very fast. The diagram also tells us that the 
designers decided to instantiate objects in the same classes 
that provide the functionality for their manipulation. In the 
example at hand, a better solution would have been the use 
of an Abstract Factory, which “provides an interface for cre- 
ating families of related or dependent objects” [14]. This 
would have provided for more flexibility as the manipulation 
functionality could have evolved independently from the ob- 
ject created by the factory. Thus, a different family of ob- 
jects, which may reflect changed user requirements or a 
different user interface platform, could have been plugged 
into the class hierarchy without the need of subclassing ex- 
isting classes. This would have reduced the number of class- 
es from 57 to about 30, improving understandability and 
maintainability. 

This case study illustrates pattern-based reverse-engineering 
of design components as a technique that can help a human 
analyzer not only to comprehend a complex piece of soft- 
ware, but also to make substantial design improvements. 

Case #3: Bridge 

The intent of a Bridge pattern is to “decouple an abstraction 
from its implementation so that the two can vary independ- 
ently.” [14] The Bridge is a design technique that can avoid 
combinatorial explosion of class hierarchies if a domain con- 
cept in different variations can be implemented in multiple 
ways. If realized using inheritance, each variation would 
have a subclass for each of the possible implementations. To 
avoid this, the Bridge suggests separate class hierarchies for 
the abstraction and the implementation (Figure 7). 

I I 
ConcretelmplementorA 1 1 ConcretelmplementorE 

1 I 
I Operationlmp() Oparationlmp() 

Figure 7: Structure of Bridge [ 141. 

We include the Bridge as one of those patterns that demand 
human insight to be recovered from source code. The Bridge 
is a semantic concept that can have many forms of physical 
appearance in the source code. For instance, we have identi- 
fied Bridges with Abstractions that are not subclassed, Con- 
creteImplementors that do not have a common superclass, or 
OperationImps that constitute Template Methods (see Sec- 
tion 4.1) in which not OperutionZmp, but its hook method is 
overridden. Our Bridge query captures these cases, and as an 
additional heuristic verifies that Abstraction and Implemen- 
tor are not in the same path of the inheritance tree, which oth- 

erwise would be counter to the very intent of the Bridge. The 
final result was 46 Bridge-based design components in 
ET++, which not unsurprisingly included many false posi- 
tives. It is our contention that the systematic discovery of the 
Bridge pattern within source code needs huma.n insight into 
the problem domain of the software at hand. However, as 
Figure 8 illustrates, a machine can generate appropriate dia- 
grams that are of great value for the human analyzer to iden- 
tify instances of the Bridge. 

Figure 8: Bridges in ET++: overview diagram (upper window); 
ET-TextView class (lower left window); ET-Window class 
(lower right window). 

In the upper window of Figure 8, we illustrate all recovered 
Bridges in ET++. Abstraction serves as the reference class, 
which is decorated with a bounding box for each Operation 
that delegates functionality to a subclass of the abstract Zm- 
plementor that is the target of the maximum number of dele- 
gations. More specifically, our default Bridge query looks for 
classes with an instance variable (imp) of a type Implemen- 
tor. It then goes into the operation call tree of each method 
(Operation) in Abstraction, and verifies if the receiver of an 
operation call (Operationlmp) is of type Implementor and is 
overridden by at least one subclass of Implementor (Con- 
cretelmplementor). By default, we also allow that Opera- 
tionlmp be a Template Method, meaning that not 
Operutionlmp itself is overridden, but one of its polymorphic 
hook methods (see Case #l). We discovered many Bridge 
Implementor’s in industrial code that were based on Tem- 
plate Methods. 

Our query reported 46 Bridge-based design components in 
ET++, yet most of the visualized Bridges .had only up to 
three bounding boxes (i.e., operation calls to Implementor), 
meaning that most probably these automatically recovered 
implementations of Bridge reflect only its structure, but not 
its intent. Clearly visible in Figure 8 are a few reference 
classes with tall bounding boxes (right side of upper win- 
dow). The lower windows of Figure 8 illustrate lhe three ref- 
erence classes that exhibit the most bounding boxes. The 
lower left window shows ET-TextView with its superclass 
ET-StaticTextVikw, both delegating multiple methods 
to ET-Text (not displayed in Figure 8). The documentation 
of ET++ [15] describes ET-TextView and ET-Text as 
the view and model of the MVC architectural design pattern, 
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which is in this example applied to text handling. In other 
words, subclasses of ET-TextView provide different ren- 
dering strategies for instances of ET-Text, thus serving as 
the abstractions for ET-Text implementors, which is the 
very intent of the Bridge design pattern. The lower right win- 
dow of Figure 8 shows the ET-Window class with 11 
bounding boxes. Gamma et al. [ 141 describe this case as one 
of the known uses of Bridge. In ET++, the 
ET-WindowPort class serves as the abstract Implementor 
for different kinds of windows, and ET-XWindowPort 
and ET-SunWindowPort as the ConcreteImplementors. 

Discussion of case studies 

The purpose of our work is to provide a technique that can 
supplement current reverse-engineering tools with the sup- 
port to recover the all-important rationale behind the design 
decisions. We based this technique on design patterns and 
presented three case studies, each illustrating a different pat- 
tern on a different industrial system. Related studies on pat- 
tern detection [ 1,221 provided tables indicating numbers for 
the detected patterns and the true pattern implementations in 
the investigated systems. We argue that these numbers are 
misleading as they neither express quality of the analyzed 
software or the detection tool, nor convey the rationale be- 
hind the pattern-based design (see Section 4 for further dis- 
cussion). We believe in the strength of visualization and the 
integration of the human into the recovery process. There- 
fore, we selected a case study approach to convey the practi- 
cability of pattern-based reverse-engineering. However, for 
comparison purposes, we summarize the results of our de- 
fault recovery queries in Table 2. 

Template Method 

System-A System-B 

3,243 1,857 

ET++ 

1,022 

Factory Method 247 168 44 

Bridge 108 95 46 

Table 2: Implemented pattern-based design components. 

As the structures of Template Method (Figure 3) and Factory 
Method (Figure 5) unambiguously reflect the intent of the re- 
spective pattern, and in light of our rich software repository, 
which includes information on both operation calls and pol- 
ymorphic methods, we can rely on the recovered design 
components for both patterns being correct. The Bridge pat- 
tern, on the other hand, requires human judgement. It is one 
of those patterns that can be implemented in many different 
ways. We captured some of these implementations, and, as 
case study 3 illustrates, used the technique of growing 
bounding boxes to visually identify those Abstractions that 
delegate many operations to an Implementor. In System-A, 
for example, the reference classes of 13 out of 108 discov- 
ered Bridge design components exhibited more than 5 
bounding boxes; 6 of these were surrounded by more than 50 

bounding boxes, which was clearly visible in the diagram. 4 
design components were real Bridge pattern implementa- 
tions, the 2 others delegated many operations to another 
class, which provided much functionality, but did not have 
the semantics of an Implementor for the Abstraction at hand. 

4 RELATED WORK 

Below, we will briefly review a number of studies dealing 
with the detection and the identification of design patterns. 
Also, we will discuss related work addressing fine-grained 
design recovery. Finally, we will reflect on the added value 
of our approach in the realm of documentation with patterns. 

Several studies reported in the literature aim at detecting de- 
sign patterns in object-oriented software based on structural 
descriptions. Kraemer and Prechelt [22] developed a Prolog 
based front-end to the Paradigm Plus CASE tool. They ob- 
served a precision ranging from 14 to 50 percent. Similar re- 
sults are reported by Antonio1 et al. [l]. However, as the 
number of patterns found in the analyzed software was close 
to zero, the precision factor has little significance. Moreover, 
both studies report that only the header files of C++ pro- 
grams were analyzed, meaning that their experiments were 
conducted in the absence of information on function calls 
and object instantiations. Moreover, Kraemer and Prechelt 
[22] do not report whether they considered polymorphism in 
their tool, and Antonio1 et al. [l] mention that they do not 
handle polymorphism, information which we consider indis- 
pensable for the identification of pattern-like structures in 
source code models. Note that we consider the information 
currently managed by our repository (Table 1) as the mini- 
mum for serious recovery of pattern-based design compo- 
nents. Finally, we believe that only by the direct involvement 
of the human analyzer in the recovery process interesting 
pattern-based design components may be found. 

Other studies that have influenced our work report on identi- 
fying patterns in existing software. Brown [7] reviews the 
Gamma et al. patterns and provides an overview of how to 
identify each pattern in Smalltalk software. He discusses the 
difficulties of recovery of patterns in existing software, but 
also stresses the feasibility of detecting useful patterns in 
source code. Martin [23] summarizes his experience when 
manually looking for patterns in existing software. Despite 
the fact that the application that his team investigated had 
been designed without any formal knowledge on patterns, 
they discovered that “in one or other form every pattern of 
Gamma et al. was used.” Both studies convey the message 
that it is the human analyzer who needs to be in control of the 
detection process. 

The recovery of design components has been subject of ac- 
tive research under varying terminology. Rich and Waters 
coin the term cliche for “commonly used combinations of el- 
ements with familiar names” [28]. Similarly, Baniassad and 
Murphy [3] define conceptual modules as “a set of lines of 
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source code that are to be treated as a logical unit.” The dif- 
ference between these techniques and pattern-based recov- 
ery of design components is in the level of abstraction. 
Whereas cliches and conceptual modules represent only 
small algorithms or data structures, patterns illustrate the 
complex relationships among the large pieces of software 
and, equally important, embody informal explications of the 
rationale behind the suggested designs. It is our contention 
that reverse-engineering of large-scale software needs to put 
more emphasize onto discovering these well-known patterns 
of thought. Revisiting the statement of Johnson in our intro- 
duction, it is the rationale behind the design decisions (the 
why) that needs to be recovered to gain insight into more 
complex pieces of software. Cliches, conceptual modules, 
and alike cannot convey the why, but certainly are much 
needed building blocks for achieving more elaborate recov- 
ery of pattern-based design components. 

Many authors have discussed the advantages of documenting 
software, and in particular frameworks, with pattern [9, 19, 
25,271. Johnson brings their cause to the point: “Patterns can 
describe the purpose of a framework, can let application pro- 
grammers use a framework without having to understand in 
detail how it works, and can teach many of the design details 
embodied in the framework” [ 191. We claim that only the vis- 
u&ation of the implemented patterns in the context of the 
application at hand will make documentation with patterns 
truly effective, elucidate the rationale behind the frame- 
work’s design and make the applied patterns more tangible 
and understandable. In reverse-engineering, pattern-based 
re-documentation of existing frameworks and large-scale 
software needs sophisticated tool support allowing the hu- 
man analyzer to look at the software from different perspec- 
tives, and thus gain a more-encompassing picture of the 
complex relationships among the system’s constituents. 

5 CONCLUSION AND FUTURE WORK 

Design patterns capture the subtle design decisions that have 
proven successful in many software development projects. 
They document the rationale behind the design, which is so 
important to understand when evolving a software system to 
meet the continuously changing requirements. Our experi- 
ence when manually analyzing parts of two telecommunica- 
tions software systems of Bell Canada confirm the findings 
of Martin that most of the design patterns of Gamma et al. 
[ 141 are present in sizeable software systems [23]. However, 
we also learned that the effort for the manual recovery of a 
significant number of design patterns in large-scale systems 
is infeasible, even with the use of state-of-the-art software 
comprehension tools, such as SNiFF+. It is our contention, 
that effective pattern-based reverse-engineering of sizable 
software systems requires support from both pattern analysis 
tools and techniques, as well as the cognitive strength of the 
human analyzer. 

In this paper we have discussed the SPOOL environment for 
pattern-based reverse-engineering of design components. 
We assessed our technology based on three case studies tak- 
en from industrial C++ software systems. The visualization 
technique of growing bounding boxes around ,the reference 
classes of pattern-based design components proved very 
helpful to gain an immediate understanding about the nature 
of the pattern in the software at hand. In most cases, the size 
of the bounding box indicated if the recovered design com- 
ponent also carried the intent of the respective pattern. Ad- 
vanced tool support comprising extraction of the design 
component into a separate diagram helped verify the exist- 
ence of the pattern. 

Beyond extending the SPOOL environment with additional 
visual aids, we plan to work in five areas directly related to 
this study. First, we will continue extending our repository to 
capture all major constructs of C++ and to cover additional 
programming languages. The schema of the repository will 
be based on multiple logical layers, each increasing the level 
of abstraction of the source code models. Second, we are in 
the process of conceptualizing a generic mapping algorithm 
between abstract and implemented design components. This 
algorithm takes as input the structure diagrams of abstract 
design components in UML format (implemented as Java 
classes) and generates optimized search strategies matching 
these specifications with the source code model in the repos- 
itory. Optional model elements and priorities among the 
model elements in the search strategy can be specified as 
UML stereotypes. Thus, the human analyzer will be able to 
visually specify any combination of classes, methods, and at- 
tributes to be identified in the source code models. Third, we 
will supplement our current visualization technique, which is 
based on bounding boxes around the reference classes of pat- 
tern-based design components, with alternative techniques. 
This includes the UML-style pattern notation [30] and cus- 
tomized rendering for the component at hand. For example, 
to convey the essence of the Layers architectural pattern [8], 
its classes should be illustrated top-down according to their 
association with a layer, or, once jKit/GO [ 181 supports 
three-dimensional graphic objects, within three dimensional 
space, each layer being a two-dimensional structure diagram 
and the connections among the layers being represented in 
the third dimension. Fourth, we have launched a Master’s 
project to investigate recovery of pattern-based design com- 
ponents with full-text, pattern-matching techniques. We be- 
lieve that much information about patterns can be retrieved 
by analyzing the names of identifiers and comments. Fifth, 
we will integrate our environment with the suite of software 
comprehension tools of Bell Canada, including source code 
parsers for several programming languages, a tlool for clone 
detection, and an environment for metric analys:is. Such inte- 
gration will provide the software quality assessment team of 
Bell Canada with an industrial-strength environment that can 
support them in the assessment of supplier software for 
maintenance and evolution. 
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