
Pattern-Based Reverse-Engineering of Design Components

Rudolf K. Keller Reinhard Schauer Sdbastien Robitaille Patrick P’ag6
DCpartement IRO

UniversitC de Mont&l
C.P. 6128, succursale Centre-ville

Mont&al, Qutbec H3C 357, Canada
+15143436782

{ keller,schauer,robitais,pagepa} @iro.umontreal.ca

ABSTRACT
Many reverse-engineering tools have been developed to de-
rive abstract representations from source code. Yet, most of
these tools completely ignore recovery of the all-important
rationale behind the design decisions that have lead to its
physical shape. Design patterns capture the rationale behind
proven design solutions and discuss the trade-offs among
their alternatives. We argue that it is these patterns of thought
that are at the root of many of the key elements of large-scale
software systems, and that, in order to comprehend these sys-
tems, we need to recover and understand the patterns on
which they were built. In this paper, we present our environ-
ment for the reverse engineering of design components based
on the structural descriptions of design patterns. We give an
overview of the environment, explain three case studies, and
discuss how pattern-based reverse-engineering helped gain
insight into the design rationale of some of the pieces of three
large-scale C++ software systems.

Keywords
Reverse-engineering, design recovery, design component,
design pattern, object-oriented design, visualization, tool
support.

1 INTRODUCTION

Reverse-engineering is “the process of analyzing a subject
system to (a) identify the system’s components and their in-
terrelationships and (b) create representations of a system in
another form at a higher level of abstraction” [111. The goal

This research was supported by the SPOOL project organized by
CSER (Consortium for Software Engineering Research) which is
funded by Bell Canada, NSERC (National Sciences and Research
Council of Canada), and NRC (National Research Council of Can-
ada).

Copyright ACM 1999 I-581 13-074-0/99/05...$5.00

is to develop a more global picture on the subject system,
which is the fist major step towards its understanding or
transformation into a system that better reflects the quality
needs of the application domain at hand. One necessity to
achieve this goal is a clear representation of rhe system’s
physical and logical structure; but this is still insufficient for
a developer to fully comprehend the purpose of a given piece
of software [5]. Underlining this statement, Booth estimates
that “it takes a professional programmer about 6-9 months to
become really proficient with a larger framework”, and he
adds that “this rate increases rather exponential to the com-
plexity of software” [6]. We agree with Beck and Johnson
that one reason for this gigantic effort for software compre-
hension and evolution is that “existing design notations focus
on communicating the what of designs, but almost complete-
ly ignore the why” [4]. They argue that comprehe.nsion of the
rationale behind the design decisions is as much important as
thorough understanding of the software’s structural and log-
ical constituents. Yet, for the most part, current reverse-engi-
neering tools completely neglect recovery of the design
rationale.

Design patterns capture the rationale behind recurringly
proven design solutions and illuminate the trade-offs that are
inherent in almost any solution to a non-trivial design prob-
lem. In forward engineering, the advantages of design pat-
terns are widely accepted [4], but in reverse-engineering
their usefulness encounters strong resistance throughout
both the pattern and the reverse-engineering communities
[8]. The main arguments are that patterns can be implement-
ed in many different ways without ever being the same twice,
and that the same structure may recur with widely different
intents. In addition, existing studies that were aimed at de-
tecting design patterns in existing software systems [l, 221
failed to convey the usefulness of this approach to reverse-
engineering, considering the minimal results of recovered
pattern instances. Nevertheless, it is these patterns of thought
that comprise the rationale of many pieces of an existing
software system, and to comprehend the software, we need
to recover these patterns, be it automatically or manually.

226

GEN+ +

JavaCC

Source Code Capturing

b4a,

4
UMUCDIF Intermediate

Source Model

Design Representation

* Editing Source Code Models &
Abstract Design Components

* Generalizing and Refining
Abstract Design Components

* Visualizing Implemented
Design Components

. . Do& Neato

_ I ICEBrowser

Java 1.1
- jKi.t/GO 1.1.2

Swing 1.0.3

Design Components
Implemented Design Components

Design Repository

Implemented
Design

Components

Design Components I_ Models J CDesign Components J ;

Source Code Model Abstract Design Components
I

Pattern-Based Design Recovery
(automatic, manual, semi-automatic)

Figure 1: Overview of the SPOOL environment.

In the SPOOL project (Spreading Desirable Properties into
the Design of Object-Oriented, Large-Scale Software Sys-
tems), a joint industry/university collaboration between the
software quality assessment team of Bell Canada and the
GEL0 group at the University of Montreal, we have ad-
dressed this problem by implanting into the SPOOL environ-
ment for design pattern engineering [27] functionality for
supporting the recovery of design patterns. Note that with
“support” we underline the purpose of the environment as an
aid for gaining a pattern-based overview of the software sys-
tem at hand. It would be pretentious to argue that the envi-
ronment itself can comprehend the rationale behind a design,
“which would go far beyond the current state-of-the-art in ar-
tificial intelligence” [7]; however, by generating appropriate
views, it may lead a human analyzer to the recovery of the
rationale behind some of its most critical parts. Using the en-
vironment, the analyzer can zoom into these design compo-
nents’ that resemble patterns, extract them as diagrams in
their own right, contrast the pattern description with the im-
plemented structures, or, in the case of a false positive, dis-
miss the existence of the automatically identified pattern
instance.

1. Note that we introduced the term design component as the reification
of design elements, such as patterns, idioms, or application-specific solu-
tions, and their provision as software components (JavaBeans, CGA4
objects, or the like), which are manipulated via specialization, adaptation,
assembly, and revision. We refer to [20] for further details on this approach
to software composition. For the purpose of this paper we use the term
design componenr as a package of structural model descriptions together
with informal documentation, such as intent, applicability, or known-uses.

In this paper, we apply our environment to the reverse engi-
neering of design components that are based on some of the
design pattern descriptions defined by Gamma et al. [14].
The purpose is to introduce pattern-based reverse engineer-
ing as a valuable technique for software comprehension and
thus counter the widely-held believe that design patterns are
only meaningful in forward engineering. Applying our ap-
proach to several case studies extracted from industrial,
large-scale software, we show that pattern-based reverse-en-
gineering of design components is helpful for understanding
software-in-the-large. In Section 2, we explain the architec-
ture of the SPOOL environment. In section 3, we describe
the three C++ systems which we used for experimentation,
present three case studies that show how we applied pattem-
based reverse-engineering of design components, and dis-
cuss the findings of our experiments. Section 4 compares our
approach with related techniques. Section 5 concludes the
paper and provides an outlook into future work.

2 REVERSE-ENGINEERING ENVIRONMENT

The purpose of the SPOOL reverse-engineering environment
is to help understand software by its organization around pat-
terns. It consists of techniques and tools for source code cap-
turing, a design repository, and functionality for pattern-
based design recovery and design representation (see Figure
1).

227

Source Code Capturing

The purpose of source code capturing is to extract an initial
model from existing source code. At this time, we support
only C++. Using the C++ source code analysis system
GEN++ [12] (Source Code Parser), our environment gener-
ates an ASCII-based representation of the relevant source
code elements (UMLKDIF Intermediate Source Model).
The purpose of this intermediate representation is to make
the environment independent of any specific programming
language, and to provide a data exchange mechanism for
Bell Canada’s suite of software comprehension tools. We
adopted the CDZF transferfomzat [lo] as the syntax and the
UML metamodel 1.1 [30] as the semantic model of the inter-
mediate format. Note that we had to extend the UML meta-
model 1.1 to cover the facets of C++ we deemed essential for
the recovery of pattern-based design components. An import
utility (UMLKDIF parser), which we developed with the
parser generator JavaCC [171, parses this UML-based CDIF
format and stores the data into the design repository. At the
current state of development, we capture and manage in the
repository the source code information (Source Code Model)
as listed in Table 1.

1.
2.

3.

4.

5.

5.1.

5.2.

5.3.

5.4.

5.5.

6.

7.

Files (name, directory).

Classijiers - classes, structures, unions, anonymous unions,
primitive types (char, int, float, etc.), enumerations [name, file,
visibility]. Class declarations are resolved to point to their defi-
nitions.

Generalization relationships [superclass, subclass, visibility].

Attributes [name, type, owner, visibility]. Global and static vari-
ables are stored in utility classes (as suggested by the UML),
one associated to each file. Variable declarations are resolved to
point to their definitions.

Operations and methods [name, visibility, polymorphic, kind].
Methods are. the implementations of operations. Free functions
and operators are stored in utility classes (as suggested by the
Uh4L), one associated to each file. Kind stands for constructor,
destructor, standard, or operator.

Parameters [name, type]. The type is a classifier.

Return types [name, type]. The type is a ckzwi$er.

Call actions - [operation, sender, receiver]. The receiver points
to the class to which a request (operation) is sent. The sender is
the classifier that owns the method of the call action,

Create actions. These represent object instantiations.

Variable use within a method. This set contains all member
attributes, parameters, and local attributes used by the method.

Friendship relationships between classes and operations.

Class andfunction template instantiations. These are stored as
normal classes resp. operations and methods.

Table 1: Source code information managed in the repository.

Design Repository

The purpose of the design repository is to provide for cen-
tralized storage, manipulation, and querying of the source
code models, the abstract design components that are to be
recovered (e.g, “off-the-shelf’ design patterns as found in the
literature and described in template format), and the imple-
mented design components within the source code models.
The schema of the design repository is based on our extend-
ed UML metamodel 1.1 [30]. The object-oriented database
management system Poet 5.1 [26] serves as I:he repository
backend. The schema is represented as a Java 1.1 class hier-
archy. The classes within this hierarchy constitute the models
of the WC-based graphic editor of the tool. Using the
precompiler of Poet 5.1’s Java ZIght Binding, an object-ori-
ented database can be generated from this class hierarchy.

Pattern-Based Design Recovery

The purpose of pattern-based design recovery is to help
structure parts of class diagrams to resemble pattern
diagrams (see Figure 2, window 4). We envision three
techniques to support this task: automatic design recovery,
manual design recovery, and semi-automatic design
recovery. Automatic design recovery relates to the fully
automated structuring of software designs according to
pattern descriptions, which are stored in the repository as
abstract design components. We have implemented query
mechanisms that can recognize the structural descriptions in
the source code models, extract these from the source code,
and visualize them within the class hierarchies. This
technique will be further detailed in Section 3. Manual
design recovery relates to the structuring of software designs
by manually grouping design elements, such as classes,
methods, attributes, or relationships, to reflect a pattern. Our
environment allows the developer to select model elements
and associate them with the roles of the respective pattern
elements. Manual design recovery gives the human analyzer
the possibility to look at a model from their own perspectives
and cluster design elements to design components. It
provides the flexibility that is necessary to group and
communicate ad-hoc solutions as proto-patterns [2], which
may at some time even become patterns. Semi-automatic
design recovery combines both strategies, automatic and
manual recovery. It may be implemented as ai multi-phase
recovery process. The first phase consists of the automatic
detection of low-level idioms or the general core of pattern
descriptions. Subsequent phases match the identified
instances with more specific implementation details, which
may be provided interactively by the analyzer who is in
control of the recovery process. He or she may interrupt
recovery runs to confirm or decline the existence of a pattern
occurrence, and to manually supply specifics that are not
covered by the default recovery queries. At the current stage
of development, we have implemented the techniques for
automated and manual design recovery.

228

Figure 2: Graphic user interface of SPOOL environment: inheritance graph diagrams with tree layout (window l), spring layout (window 2),
and property sheet (window 3) to control a diagram’s content; visualization of abstract component roles in the source code model (window
4); extraction of implemented design components and comparison with the respective abstract design component (window 5); display of in-
formal design component constituents (window 6).

Design representation

The purpose of design representation is to provide for the in-
teractive visualization and refinement of source code mod-
els, abstract design components, and implemented
components. It is our contention that only the interplay
among human cognition, automatic information matching
and filtering, visual representations, and flexible visual
transformations can lead to the all-important why behind the
key design decisions in large-scale software systems. Figure
2 illustrates our graphic environment which we developed to
this end.

Windows 1 and 2 show the inheritance hierarchy of ET++
[15] (tree layout generated with Dot [21] and spring layout
generated with Neato [24]). Via the property sheet associat-
ed with such diagrams (window 3), all the other association
relationships stored in the repository, such as instantiation or
aggregation relationships, can be illustrated as well, in both
separate or combined forms. Different colors distinguish the
different kinds of association relationships. On the left hand
side of each window, a tree view can be optionally displayed
(windows 1, 4, 5, and 6) to convey in textual form the source
code models, abstract design components, or implemented
design components. Through a diagram’s pop-up menu, de-

sign queries on the information contents of the diagram at
hand can be launched, with subsequent visualization of the
query results (window 4). In our environment, each of the
supported abstract design components (the pattern-like
structures to be discovered) comprises a so-called reference
class. This is the class in the component’s structure diagram
that is considered most characteristic of the component’s na-
ture*. Upon design recovery, we draw incrementally bound-
ing boxes a round the re fe rence c lasses o f the
implementations of an abstract design component (window
4). In this way, a class that is the reference class for several
of these implemented design components (“multiple refer-
ence class”) will exhibit a taller bounding box than a class
that is just part of a single component. Keeping the size of
these bounding boxes constant during zooming leads to the
effect that once their diagrams are sufficiently zoomed out
(window 4), multiple reference classes will protrude from
the diagram. The implemented design components can then
be extracted into a separate diagram and related to the class-
es, methods, and attributes of their respective abstract design
components (window 5), which in this study represent the
descriptions of design patterns. The more informal constitu-

2. The reference class of an abstract design component can be changed
interactively at the discretion of the user of the environment.

229

ents, such as intent, motivation, or applicability, can be
viewed in the same or in separate diagrams (window 6).
These informal descriptions are crucial for understanding the
design, as they capture the rationale that may be at the root
of the automatically identified design component.

Design representation also encompasses interactive descrip-
tion of design components. Using the UML class diagram
notation and HTML, our environment allows for the mode-
ling, documenting, and storing of new abstract design com-
ponents in the design repository. The environment also
supports the refinement and generalization of existing ab-
stract components. This is essential as design components
can be rendered in different forms. For example, a design
component representing an Adapter pattern can be refined
into a Class Adapter or an Object Adapter, and similarly, a
Composite may be specialized into a Transparent Composite
or a Safe Composite component [20].

The user interface of the SPOOL environment is implement-
ed based on Java 1.1, the Swing 1.0.3 framework for user in-
terface widgets, and the graphic editor application
framework jKi’it/GO [18]. At the current stage of develop-
ment, we have implemented a class diagram editor based on
the UML notation 1.1 [30]. The informal constituents of de-
sign patterns are described with HTML. For visualizing the
HTML code, we use the ICEBrowser [16] JavaBeans com-
ponent. To generate initial layouts of the system at hand, we
developed an interface to external layout generators. We in-
tegrated Dot [21] for hierarchy layouts and Neato [24] for
spring layouts.

3 APPLYING PATTERN-BASED REVERSE ENGI-
NEERING

The purpose of this section is to point out the importance of
pattern-based reverse-engineering of design components for
the comprehension of large-scale software. We chose a case
study approach to illustrate and discuss some of our findings
when analyzing three industrial systems. We have selected
the following abstract design components, which we based
on the corresponding descriptions in the pattern catalogue of
Gamma et al.: Template Method, Factory Method and
Bridge [141. Below, we first describe the three industrial sys-
tems which we analyzed. Then, we show how we reverse-en-
gineered the selected components in System-A, System-B,
and ET++, respectively.

Industrial Systems

To assess the feasibility of pattern-based reverse engineering
and the usefulness of the SPOOL environment, we analyzed
the source code of three industrial C++ systems. Bell Canada
provided us with two large-scale systems from the domain of
telecommunications. For confidentiality reasons, we call
these systems System-A and System-B. Our third test system
is the well-known application framework ET++ 3.0 [15], as

included in the SNiFF+ development environment [29]. Ta-
ble 2 shows some size metrics for these systems. Note that
header files from the compiler are included in these numbers.

1 #of files (.C I .h) I 1,900 1 1,153 1 48.5 1

1 # of attributes I 28,360 1 13,624 1 4460 1

size of the system in the
repository

) 63.1 MB 1 41.0MB 1 19.3MB 1

Table 2: Size metrics of industrial systems.

Case #l: Template Method

“Template Methods define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.” [14] Tem-
plate methods are often referred to as the characterizing
building blocks of white box frameworks, which let clients
extend the framework by overriding pre-defined hook meth-
ods that are called by the framework [131. The rationale be-
hind a Template Method is to make the steps of an algorithm
easily exchangeable. The trade-off is that if not used with
care, Template Methods can contribute to overly complex
software, especially when the hook methods themselves are
Template Methods deferring functionality to other hook
methods. In large, framework-based application software,
such as System-A, knowledge about the existence and loca-
tion of Template Methods is crucial for the judicious evolu-
tion of the applications.

Concrete Class FE3 PrimittiOperationl()
PrimitiveOperation2()

Figure 3: Structure of Template Method [14].

We reified the Template Method pattern (Figure 3 shows its
structure) as an abstract design component, stored it in our
repository, and associated it with a query that searches the
source code models for the component’s structure. The de-
fault implementation of the Template Method query travers-
es all classes (AbstractClass), goes into each method

230

(TemplateMethod), looks up the operation call tree for local
operation calls (PrimitiveOperation), and verifies if Primiti-
veoperution is polymorphic. If all conditions are met, all rel-
evant information is passed to a Design Component Builder
object, which creates an Implemented Design Component
containing references to the identified elements in the source
code model. Note that through query options, the human an-
alyzer can specify deviations from the default behavior of the
query, for instance, to recover only those TemplateMethods
in which PrimitiveOperation in AbstractClass is pure virtual
(in the case of a C++ system), or to check if PrimitiveOper-
ation is overridden by at least one class (ConcreteClass) in
the Abstract Class’s subclass hierarchy.

Figure 4: Template Methods in System-A.

Figure 4 illustrates the recovered Template Methods in one
class tree of System-A (note that the reference class of Tem-
plate Method is AbstractClass). This diagram clearly shows
the key players within this part of the application, and con-
veys an impression of how many such mini-algorithms,
which may be refined in subclasses, exist in the class tree.
For instance, the main class, clearly visible on top of the di-
agram, contains 43 Template Methods. More detailed infor-
mation can be recovered by zooming into the diagram,
showing operations and attributes, or by spawning another
diagram that shows the implementation of one particular
Template Method only.

It is our experience that knowledge on both the rationale and
the existence of Template Methods is essential to develop an
understanding on how to hook into the mechanisms that are
enforced by a framework-like architecture. Such knowledge
may be of great help in flattening the learning curve of a
framework.

Case #2: Factory Method

“Factory Methods define an interface for creating an object,
but let subclasses decide which class to instantiate.” [14]
Factory Methods are specialized Template Methods in that
the PrimitiveOperation in the ConcreteClass instantiates a
concrete product (see Figure 5). Factory Methods are often

used when different objects have the same construction proc-
ess. The construction algorithm is coded in the Creator class,
and the steps that instantiate the objects are deferred to the
subclasses.

Figure 5: Structure of Factory Method [14].

The query for the Factory Method is, obviously, similar to
that of the Template Method, except for the condition that the
FactoryMethod in ConcreteCreator is required to instantiate
a ConcreteProduct. By default, the query does not enforce
that ConcreteProduct be a subclass of another class (Prod-
uct), but this additional constraint can be specified through
query options.

Figure 6: Factory methods in System-B: overview diagram (upper
window); extracted Factory Methods (lower window).

Figure 6 illustrates the results of the Factory Method query
as applied to System-B. The upper window shows the inher-
itance tree of all classes of System-B, which we layed out
with Neato. Due to the high zooming ratio (the small points
constitute large inheritance trees), the recovered design com-
ponents protrude from the diagram. This is crucial informa-
tion that can help find a basis for understanding a complex
piece of software, which is presented in the lower window of
Figure 6. We zoomed into the tallest bounding box and ex-
tracted the detailed information into a separate diagram
(lower window). It illustrates a central Creator class, which
defines 13 abstract Factory Method operations, and an over-
all 57 subclasses, which implement these operations.

This automatically generated diagram provides essential in-
formation about the rationale behind the design at hand. The
developers designed this part of System-B for easy extension
with new classes. This was necessary as this part of the sys-

231

tern deals with user interface forms and input tables, which
by nature change very fast. The diagram also tells us that the
designers decided to instantiate objects in the same classes
that provide the functionality for their manipulation. In the
example at hand, a better solution would have been the use
of an Abstract Factory, which “provides an interface for cre-
ating families of related or dependent objects” [14]. This
would have provided for more flexibility as the manipulation
functionality could have evolved independently from the ob-
ject created by the factory. Thus, a different family of ob-
jects, which may reflect changed user requirements or a
different user interface platform, could have been plugged
into the class hierarchy without the need of subclassing ex-
isting classes. This would have reduced the number of class-
es from 57 to about 30, improving understandability and
maintainability.

This case study illustrates pattern-based reverse-engineering
of design components as a technique that can help a human
analyzer not only to comprehend a complex piece of soft-
ware, but also to make substantial design improvements.

Case #3: Bridge

The intent of a Bridge pattern is to “decouple an abstraction
from its implementation so that the two can vary independ-
ently.” [14] The Bridge is a design technique that can avoid
combinatorial explosion of class hierarchies if a domain con-
cept in different variations can be implemented in multiple
ways. If realized using inheritance, each variation would
have a subclass for each of the possible implementations. To
avoid this, the Bridge suggests separate class hierarchies for
the abstraction and the implementation (Figure 7).

I I
ConcretelmplementorA 1 1 ConcretelmplementorE

1 I
I Operationlmp() Oparationlmp()

Figure 7: Structure of Bridge [141.

We include the Bridge as one of those patterns that demand
human insight to be recovered from source code. The Bridge
is a semantic concept that can have many forms of physical
appearance in the source code. For instance, we have identi-
fied Bridges with Abstractions that are not subclassed, Con-
creteImplementors that do not have a common superclass, or
OperationImps that constitute Template Methods (see Sec-
tion 4.1) in which not OperutionZmp, but its hook method is
overridden. Our Bridge query captures these cases, and as an
additional heuristic verifies that Abstraction and Implemen-
tor are not in the same path of the inheritance tree, which oth-

erwise would be counter to the very intent of the Bridge. The
final result was 46 Bridge-based design components in
ET++, which not unsurprisingly included many false posi-
tives. It is our contention that the systematic discovery of the
Bridge pattern within source code needs huma.n insight into
the problem domain of the software at hand. However, as
Figure 8 illustrates, a machine can generate appropriate dia-
grams that are of great value for the human analyzer to iden-
tify instances of the Bridge.

Figure 8: Bridges in ET++: overview diagram (upper window);
ET-TextView class (lower left window); ET-Window class
(lower right window).

In the upper window of Figure 8, we illustrate all recovered
Bridges in ET++. Abstraction serves as the reference class,
which is decorated with a bounding box for each Operation
that delegates functionality to a subclass of the abstract Zm-
plementor that is the target of the maximum number of dele-
gations. More specifically, our default Bridge query looks for
classes with an instance variable (imp) of a type Implemen-
tor. It then goes into the operation call tree of each method
(Operation) in Abstraction, and verifies if the receiver of an
operation call (Operationlmp) is of type Implementor and is
overridden by at least one subclass of Implementor (Con-
cretelmplementor). By default, we also allow that Opera-
tionlmp be a Template Method, meaning that not
Operutionlmp itself is overridden, but one of its polymorphic
hook methods (see Case #l). We discovered many Bridge
Implementor’s in industrial code that were based on Tem-
plate Methods.

Our query reported 46 Bridge-based design components in
ET++, yet most of the visualized Bridges .had only up to
three bounding boxes (i.e., operation calls to Implementor),
meaning that most probably these automatically recovered
implementations of Bridge reflect only its structure, but not
its intent. Clearly visible in Figure 8 are a few reference
classes with tall bounding boxes (right side of upper win-
dow). The lower windows of Figure 8 illustrate lhe three ref-
erence classes that exhibit the most bounding boxes. The
lower left window shows ET-TextView with its superclass
ET-StaticTextVikw, both delegating multiple methods
to ET-Text (not displayed in Figure 8). The documentation
of ET++ [15] describes ET-TextView and ET-Text as
the view and model of the MVC architectural design pattern,

232

which is in this example applied to text handling. In other
words, subclasses of ET-TextView provide different ren-
dering strategies for instances of ET-Text, thus serving as
the abstractions for ET-Text implementors, which is the
very intent of the Bridge design pattern. The lower right win-
dow of Figure 8 shows the ET-Window class with 11
bounding boxes. Gamma et al. [141 describe this case as one
of the known uses of Bridge. In ET++, the
ET-WindowPort class serves as the abstract Implementor
for different kinds of windows, and ET-XWindowPort
and ET-SunWindowPort as the ConcreteImplementors.

Discussion of case studies

The purpose of our work is to provide a technique that can
supplement current reverse-engineering tools with the sup-
port to recover the all-important rationale behind the design
decisions. We based this technique on design patterns and
presented three case studies, each illustrating a different pat-
tern on a different industrial system. Related studies on pat-
tern detection [1,221 provided tables indicating numbers for
the detected patterns and the true pattern implementations in
the investigated systems. We argue that these numbers are
misleading as they neither express quality of the analyzed
software or the detection tool, nor convey the rationale be-
hind the pattern-based design (see Section 4 for further dis-
cussion). We believe in the strength of visualization and the
integration of the human into the recovery process. There-
fore, we selected a case study approach to convey the practi-
cability of pattern-based reverse-engineering. However, for
comparison purposes, we summarize the results of our de-
fault recovery queries in Table 2.

Template Method

System-A System-B

3,243 1,857

ET++

1,022

Factory Method 247 168 44

Bridge 108 95 46

Table 2: Implemented pattern-based design components.

As the structures of Template Method (Figure 3) and Factory
Method (Figure 5) unambiguously reflect the intent of the re-
spective pattern, and in light of our rich software repository,
which includes information on both operation calls and pol-
ymorphic methods, we can rely on the recovered design
components for both patterns being correct. The Bridge pat-
tern, on the other hand, requires human judgement. It is one
of those patterns that can be implemented in many different
ways. We captured some of these implementations, and, as
case study 3 illustrates, used the technique of growing
bounding boxes to visually identify those Abstractions that
delegate many operations to an Implementor. In System-A,
for example, the reference classes of 13 out of 108 discov-
ered Bridge design components exhibited more than 5
bounding boxes; 6 of these were surrounded by more than 50

bounding boxes, which was clearly visible in the diagram. 4
design components were real Bridge pattern implementa-
tions, the 2 others delegated many operations to another
class, which provided much functionality, but did not have
the semantics of an Implementor for the Abstraction at hand.

4 RELATED WORK

Below, we will briefly review a number of studies dealing
with the detection and the identification of design patterns.
Also, we will discuss related work addressing fine-grained
design recovery. Finally, we will reflect on the added value
of our approach in the realm of documentation with patterns.

Several studies reported in the literature aim at detecting de-
sign patterns in object-oriented software based on structural
descriptions. Kraemer and Prechelt [22] developed a Prolog
based front-end to the Paradigm Plus CASE tool. They ob-
served a precision ranging from 14 to 50 percent. Similar re-
sults are reported by Antonio1 et al. [l]. However, as the
number of patterns found in the analyzed software was close
to zero, the precision factor has little significance. Moreover,
both studies report that only the header files of C++ pro-
grams were analyzed, meaning that their experiments were
conducted in the absence of information on function calls
and object instantiations. Moreover, Kraemer and Prechelt
[22] do not report whether they considered polymorphism in
their tool, and Antonio1 et al. [l] mention that they do not
handle polymorphism, information which we consider indis-
pensable for the identification of pattern-like structures in
source code models. Note that we consider the information
currently managed by our repository (Table 1) as the mini-
mum for serious recovery of pattern-based design compo-
nents. Finally, we believe that only by the direct involvement
of the human analyzer in the recovery process interesting
pattern-based design components may be found.

Other studies that have influenced our work report on identi-
fying patterns in existing software. Brown [7] reviews the
Gamma et al. patterns and provides an overview of how to
identify each pattern in Smalltalk software. He discusses the
difficulties of recovery of patterns in existing software, but
also stresses the feasibility of detecting useful patterns in
source code. Martin [23] summarizes his experience when
manually looking for patterns in existing software. Despite
the fact that the application that his team investigated had
been designed without any formal knowledge on patterns,
they discovered that “in one or other form every pattern of
Gamma et al. was used.” Both studies convey the message
that it is the human analyzer who needs to be in control of the
detection process.

The recovery of design components has been subject of ac-
tive research under varying terminology. Rich and Waters
coin the term cliche for “commonly used combinations of el-
ements with familiar names” [28]. Similarly, Baniassad and
Murphy [3] define conceptual modules as “a set of lines of

233

source code that are to be treated as a logical unit.” The dif-
ference between these techniques and pattern-based recov-
ery of design components is in the level of abstraction.
Whereas cliches and conceptual modules represent only
small algorithms or data structures, patterns illustrate the
complex relationships among the large pieces of software
and, equally important, embody informal explications of the
rationale behind the suggested designs. It is our contention
that reverse-engineering of large-scale software needs to put
more emphasize onto discovering these well-known patterns
of thought. Revisiting the statement of Johnson in our intro-
duction, it is the rationale behind the design decisions (the
why) that needs to be recovered to gain insight into more
complex pieces of software. Cliches, conceptual modules,
and alike cannot convey the why, but certainly are much
needed building blocks for achieving more elaborate recov-
ery of pattern-based design components.

Many authors have discussed the advantages of documenting
software, and in particular frameworks, with pattern [9, 19,
25,271. Johnson brings their cause to the point: “Patterns can
describe the purpose of a framework, can let application pro-
grammers use a framework without having to understand in
detail how it works, and can teach many of the design details
embodied in the framework” [191. We claim that only the vis-
u&ation of the implemented patterns in the context of the
application at hand will make documentation with patterns
truly effective, elucidate the rationale behind the frame-
work’s design and make the applied patterns more tangible
and understandable. In reverse-engineering, pattern-based
re-documentation of existing frameworks and large-scale
software needs sophisticated tool support allowing the hu-
man analyzer to look at the software from different perspec-
tives, and thus gain a more-encompassing picture of the
complex relationships among the system’s constituents.

5 CONCLUSION AND FUTURE WORK

Design patterns capture the subtle design decisions that have
proven successful in many software development projects.
They document the rationale behind the design, which is so
important to understand when evolving a software system to
meet the continuously changing requirements. Our experi-
ence when manually analyzing parts of two telecommunica-
tions software systems of Bell Canada confirm the findings
of Martin that most of the design patterns of Gamma et al.
[141 are present in sizeable software systems [23]. However,
we also learned that the effort for the manual recovery of a
significant number of design patterns in large-scale systems
is infeasible, even with the use of state-of-the-art software
comprehension tools, such as SNiFF+. It is our contention,
that effective pattern-based reverse-engineering of sizable
software systems requires support from both pattern analysis
tools and techniques, as well as the cognitive strength of the
human analyzer.

In this paper we have discussed the SPOOL environment for
pattern-based reverse-engineering of design components.
We assessed our technology based on three case studies tak-
en from industrial C++ software systems. The visualization
technique of growing bounding boxes around ,the reference
classes of pattern-based design components proved very
helpful to gain an immediate understanding about the nature
of the pattern in the software at hand. In most cases, the size
of the bounding box indicated if the recovered design com-
ponent also carried the intent of the respective pattern. Ad-
vanced tool support comprising extraction of the design
component into a separate diagram helped verify the exist-
ence of the pattern.

Beyond extending the SPOOL environment with additional
visual aids, we plan to work in five areas directly related to
this study. First, we will continue extending our repository to
capture all major constructs of C++ and to cover additional
programming languages. The schema of the repository will
be based on multiple logical layers, each increasing the level
of abstraction of the source code models. Second, we are in
the process of conceptualizing a generic mapping algorithm
between abstract and implemented design components. This
algorithm takes as input the structure diagrams of abstract
design components in UML format (implemented as Java
classes) and generates optimized search strategies matching
these specifications with the source code model in the repos-
itory. Optional model elements and priorities among the
model elements in the search strategy can be specified as
UML stereotypes. Thus, the human analyzer will be able to
visually specify any combination of classes, methods, and at-
tributes to be identified in the source code models. Third, we
will supplement our current visualization technique, which is
based on bounding boxes around the reference classes of pat-
tern-based design components, with alternative techniques.
This includes the UML-style pattern notation [30] and cus-
tomized rendering for the component at hand. For example,
to convey the essence of the Layers architectural pattern [8],
its classes should be illustrated top-down according to their
association with a layer, or, once jKit/GO [181 supports
three-dimensional graphic objects, within three dimensional
space, each layer being a two-dimensional structure diagram
and the connections among the layers being represented in
the third dimension. Fourth, we have launched a Master’s
project to investigate recovery of pattern-based design com-
ponents with full-text, pattern-matching techniques. We be-
lieve that much information about patterns can be retrieved
by analyzing the names of identifiers and comments. Fifth,
we will integrate our environment with the suite of software
comprehension tools of Bell Canada, including source code
parsers for several programming languages, a tlool for clone
detection, and an environment for metric analys:is. Such inte-
gration will provide the software quality assessment team of
Bell Canada with an industrial-strength environment that can
support them in the assessment of supplier software for
maintenance and evolution.

234

ACKNdWLEDGEMENTS
We would like to thank the following organizations for pro-
viding us with licenses of their tools, thus assisting us in the
development part of our research: Aonix for their Sofnyare-
ThroughPictures CASE tool, Lucent Technologies for their
C++ source code analyzer GEN++ and the layout generators
Dot and Neato, Instantiations for their graphic editor frame-
work jKit/GO, Poet for their object-oriented database man-
agement system Poet 5.1, and TakeFive Software for their
SNiFF+ software development environment.

REFERENCES

VI

PI

[31

t41

PI

161

r71

Bl

[91

r101

1111

WI

p31

Antoniol, G., Fiutem, R. and Cristoforetti, L. Design pattern
recovery in object-oriented software. In 6th International
Workshop on Program Comprehension (Ischia, Italy, June
1998), 153-160.

Appleton, B. Patterns and software: Essential concepts and
terminology. On-line at chttp://www.enteract.com/-bra-
dapp/docs/pattems-intro.html/>.

Baniassad, E. L. A. and Murphy, G. Conceptual module que-
rying for software reengineering. In Proc. of the 20th Inter-
national Conference on Software Engineering (Kyoto,
Japan, April 1998), 64-73.

Beck, K. and Johnson, R. Patterns generate architectures. In
Proc. of the 13th European Conference on Object-Oriented
Programming, Lecture Notes in Computer Science N. 821.
(1994) Springer Verlag, 139-149.

Biggerstaff, T. J. Design recovery for maintenance and reuse.
IEEE Computer 22,7 (July 1989), 36-49.

Booth, G. Object Solutions: Managing the Object-Oriented
Project. (1996) Addison-Wesley, Menlo Park, CA.

Brown, K. Design reverse-engineering and automated design
pattern detection in Smalltalk. On-line at <http://hillside.net/
patterns/papers/>.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.
aud Stal, M. Pattern-Oriented Sofrware Architecture -A Sys-
tem of Patterns. (1996) John Wiley and Sons.

Butler, G., Keller, R. K. and Mili, H. A framework for frame-
work documentation. ACM Computing Surveys 30, 4 (Dec.
1998). to appear.

CDIF Transfer Format. Electronic Industries Association.
On-line at chttp://www.cdif.org/>.

Chikofsky, E. J. and Cross II, J. H. Reverse engineering and
design recovery: A taxonomy. IEEE Software 7, 1 (Jan.
1990), 13-17.

Devaubu, P. T. GENOA - a customizable, language- and
front-end independent code analyzer. In Proc. of the 14th In-
ternational Conference of Software Engineering (Mel-
bourne, Australia, 1992), 307-317.

Fayad, M. and Schmidt, D. C. Object-oriented application
frameworks. Communications of the ACM 40, 10, (October

[I41

WI

WI

[I71

WI

[191

PO1

t211

WI

1231

WI

WI

WI

t271

1281

P9]

1301

1997), 32-38.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Sojtware.
(1995) Addison-Wesley, Menlo Park, CA.

Gamma, E. and Weinand, A. ET++: A portable C++ class li-
brary for a UNIX environment. Union Bank of Switzerland.
Workshop at OOPSLA’90, Ottowa, Canada, 1990.

ICEBrowser. Online documentation. ICESoftt A/S, Bergen,
Norway. On-line at &tp://www.icesoft.no/>.

JavaCC. The Java parser generator. Sun Microsystems, Palo
Alto, CA. On-line at chttp://www.sun.comlsuntestl>.

jKit/GO online documentation. Instantiations, ‘Iualatin, OR.
On-line at <http://www.instantiations.cornl>

Johnson, R. Documenting frameworks with patterns. In
OOPSLA’92, Sigplan Notices 27, 10 (October 1992) 63-76.

Keller, R. K. and Schauer, R. Design components: Towards
software composition at the design level. In Proc. of the 20th
International Conference on Software Engineering (Kyoto,
Japan, April 1998), 302-310.

Kontsofios, E. aud North S. C. Drawing graphs with Dot.
AT&T Bell Laboratories, Murray Hill, NJ. On-line at <http:/
/www.research.att.com/sw/tools/graphviz/>

Kraemer, C. and Prechelt, L. Design recovery by automated
search for structural design patterns in object-oriented soft-
ware. In Ptoc. of the Working Conference on Reverse Engi-
neering (Monterey, CA, November 1996), 208-215.

Martin, R. Discovering design patterns in existing applica-
tions. In J. Coplien and D.C. Schmidt (1995, eds.) Pattern
Languages of Program Design, Addison-Wesley, 365-393.

North S. C. NEAT0 User’s Manual. AT&T Bell Laborato-
ries, Murray Hill, NJ. On-line at chttp://www.re-
search.att.com/sw/tools/graphviz/>

Odenthal, G. and Quibeldey-Cirkel, K. Using patterns for
design and documentation. In Proceedings of the 11th Euro-
pean Conference on Object-Oriented Programming (Jy-
vaskyla, Finland, June 1997), 51 l-529.

POET Java ODMG Binding. Online documentation. Poet
Software Corporation, San Mateo, CA. On-line at <http://
www.poet.coml>.

Schauer, R. and Keller, R. K. Pattern visualization for soft-
ware comprehension. In 6th International Workshop on Pro-
gram Comprehension (Ischia, Italy, June 1998), 153-160.

Rich, C. and Waters R. The programmer’s apprentice: A re-
search overview. IEEE Computer 21, 11 (November 1988),
1 l-24.

SNiFF+. Documentation set. On-line at <http://www.take-
five.comb.

UML. Documentation set version 1.1 (Sept. 1997). On-line
at chttp://www.rational.com/>.

235

