
The Vienna Component Framework
Enabling Composition Across Component Models

Johann Oberleitner Thomas Gschwind
Technische Universit~it Wien

Institut ftir Informationssysteme
Argentinierstral3e 8/E 1841

A- 1040 Wien, Austria
{j oe,tom,j azayeri } @ infosys.tuwien, ac. at

Mehdi Jazayeri

Abstract

The Vienna Component Framework (VCF) supports the
interoperability and composability of components across
different component models, a facility that is lacking in
existing component models. The VCF presents a unified
component model--implemented by a fafade component--
to the application programmer. The programmer may write
new components by composing components from different
component models, accessed through the VCE The model
supports common component features, namely, methods,
properties, and events. To support a component model
within the VCF, a plugin component is needed that provides
access to the component model. The paper presents the
VCF's design, implementation issues, and evaluation. Per-

formance measurements of VCF implementations of COM,
Enterprise JavaBeans, CORBA distributed objects, and Jav-
aBeans show that the overhead of accessing components
through the VCF is negligible for distributed components.

1. Introduction

A primary goal of component-based software engineer-
ing is to promote the use of reusable and pre-tested compo-
nents across projects. As in other engineering disciplines, in
which components are well established the reuse of existing
parts leads to shorter development cycles, higher quality, in-
creased functionality and hence reduced costs.

In recent years component models such as Enterprise
JavaBeans, CORBA objects, and COM+ components have
emerged that provide standards for component implemen-
tation and component interoperability [12]. Additionally,
component models provide services and infrastructure to
components such as a meta-information facility, naming
and trading services, and transaction monitors. Hence, com-

ponent developers can use these predefined services and
rely on the vendor of a component model implementation
to get this support.

The implementation standards define how a component's
external interfaces are accessed. These interfaces are the
only way to access a component's functionality, such as its
operations or its state, from outside the component, hence
enforcing the principle of information hiding.

A component model is an indispensable element in a
component-based software technology. However, strict
standards are also a limiting factor in a component-based
software environment. Although all component models de-
fine similar features such as methods, properties and events,
a standardized way does not exist for implementing a com-
ponent for a particular model and for porting it to a differ-
ent component model. Even worse, the significantly easier
problem of using a component that is implemented for one
component model from a component of another model is
only solved for certain pairs of component models.

In an ideal setting, a developer would be able to use the
best components available without having to think about the
component model they have been implemented for. Such
an example could be a stock ticker application that uses a
CORBA component for a stock quote service, a JavaBean
component that provides an elaborate charting facility and
Microsoft's Internet Explorer, a COM component, for dis-
playing current market news.

To solve these composition problems, we have devel-
oped the Vienna Component Framework (VCF), a Java
based class framework that allows the access of components
across different models and the construction of new compo-
nents in a platform independent way. Two different factors
limit the reuse of component source code: the standards that
define how a component has to be constructed and the de-
pendency of the component on services provided only by a
certain component model. Our framework abstracts both of

0-7695-1877-X/03 $17.00 © 2003 IEEE 25

these within interfaces. These interfaces build a meta-model
for component models. A particular component model is
supported by writing a plug-in that queries the component
model for its component's meta-information, builds a rep-
resentation of the component and all of its features and pro-
vides the required functionality to access these features. So
far, we have implemented plugins for COM, CORBA, En-
terprise JavaBeans and JavaBeans demonstrating the exten-
sibility of the framework.

The remainder of the paper is structured as follows. In
Section 2 we discuss today's commonly used component
models. On the basis of the commonalities and differences
of these component models, we discuss the design and over-
all architecture of VCF in Section 3. Section 4 explains the
steps necessary to add support for a new component model
and Section 5 focuses on the construction of new compo-
nents. The evaluation of our approach is shown in Section 6.
Related work is described in Section 7. Finally, we draw
some conclusions in Section 8.

2. Component Models

To understand how to abstract the features of component
models into a uniform framework, one must first analyze
the commonalities and differences among currently avail-
able component models. Knowledge of these differences
and commonalities will help the reader to understand the
design and architecture of VCF presented in Section 3.

2.1. C O M +

Microsoft's Component Object Model (COM) [8, 17] is
used heavily within Microsoft's operating systems. COM
components are declared using Microsoft IDL (MIDL) that
supports the description of COM component classes and
interfaces. Unlike CORBA, interfaces define only meth-
ods. Properties are declared using setter and getter methods
having special attributes attached to them. MIDL uses its
own type system that is based on the C type system includ-
ing pointers to interfaces. Components are usually imple-
mented with C++ classes or with another COM-capable lan-
guage. Recent additions to COM have been server-side fa-
cilities for load-balancing and transaction monitoring, bet-
ter known as COM+. However, the client side programming
model has remained the same.

Meta-information is provided by type libraries. These
libraries can be constructed from the IDL with Microsoft's
IDL compiler. To access a component dynamically the so-
called I D i s p a t c h interface can be used. This interface
provides a method to create an invocation dynamically.

2.2. C O R B A

The Common Object Request Broker Architecture
(CORBA) [20, 13] has been defined by the OMG to pro-
vide an object infrastructure for interoperability among dif-
ferent hardware and software products. A CORBA object
is declared by writing an IDL file that contains the interface
definition of the object. This interface takes the definitions
of an object's operations and its attributes. The IDL file is
compiled by an IDL compiler that generates client stubs and
server skeletons for a given language.

The IDL has its own type system which is loosely based
on C++. This type system is mapped onto the type system
of a given programming language as defined by the corre-
sponding language binding. In case of the Java program-
ming language primitive types are converted to Java types
and CORBA object types are converted to client stubs.

CORBA's communication model is based on object invo-
cation where objects may reside locally or remotely. Each
request to a CORBA object is processed by the client stub
which forwards the request to an Object Request Broker
(ORB) that is located on the host of the client. This ORB
uses a communication channel to communicate with the
ORB on the host of the object's server process. This sec-
ond ORB forwards the invocation to an appropriate method
in the server process.

The OMG has predefined many different services that
can be used to enhance the functionality of a CORBA object
at development time. A client can use the name service to
look up an existing object. Other important services are re-
sponsible for transactions, persistence, notification and se-
curity. Meta-information for an object is available through
an Interface Repository (IR) that provides programmatic ac-
cess to information about objects. The interface repository
usually obtains this information from the IDL files. This in-
formation together with Dynamic Interface Invocation (DII)
can be used to construct and make dynamic calls at run-
time.

2.3. Enterprise JavaBeans

The Enterprise JavaBeans (EJB) [5] component model
is an essential part of Sun's J2EE environment and uses the
type system of Java. EJBs are components that reside within
a container on an application server. The implementation
of an EJB consists of Java classes that are deployed in the
container. Clients use an enterprise bean's home and remote
interface to invoke its methods. The home interface defines
methods to create or to look up component instances. The
remote interface provides access to a given instance. To
interact with an EJB component, the client first obtains a
reference to the bean's home interface which the client can
use to create a new component instance of the bean or to

26

look up an existing one. Both of these operations return a
reference that implements the remote interface.

Enterprise JavaBeans can implement different concepts.
Entity beans model business concepts that are represented
in database tables. Session beans model a workflow and
thus implement a particular task [18]. Usually, they are
stateless and have no properties. Message-driven beans are
similar to session beans but work in message-oriented mid-
dleware settings. They are not considered in this paper.

An EJB application server provides distributed services
to their components such as a persistence service, a trans-
action service, and a security service. These services can
be used in a programmatic way and in a descriptive way.
Hence, it is not necessary to prepare a component to de-
fine transactions and security facilities at compile time
since these features can be added by providing a descriptor
file when a component is deployed within the application
server.

Unlike other component models, EJBs do not support
events. Additionally, there is no standardized means to find
out at runtime if a component uses a particular service pro-
vided by the EJB application server.

2.4. JavaBeans

JavaBeans [11] is a simple component model that re-
lies on the Java programming language. Unlike the other
component models presented so far, it only supports com-
ponents executed locally within the client's virtual machine.
A JavaBean is a Java class that has a default constructor and
supports the Java serialization mechanism.

JavaBeans support methods, properties and events.
These can be defined using the following naming conven-
tions [11]. Publicly accessible methods that have a g o t or
a s e t prefix are considered to model property access. The
name of the property is deduced from the method's name. A
similar approach has been followed for events. All methods
that do not fall into properties or eventsets are just meth-
ods of the JavaBean. These syntax guidelines, however, can
be overridden providing a B e a n I n f o class that specifies
which properties, events and methods are accessible from
clients.

Since a JavaBean is just a Java class the component
model uses Java's type system. An instance of a compo-
nent is a normal Java object and hence clients access these
instances like any other Java object. To query a JavaBean
for its meta-information, however, introspection should be
used instead of Java's reflection mechanism. Introspection
automatically derives the available properties and events on
the basis of the above naming conventions and makes use
of a BeanInfo class if available.

2.5. Comparisons

In the last sections we have shown the characteristics of
widely used component models. Of particular interest are
the type systems of the different component models. Jav-
aBeans and Enterprise JavaBeans rely on Java's type sys-
tem, CORBA and COM, however, use their own type sys-
tems. CORBA object servers and clients use the type sys-
tem defined by the OMG's IDL. CORBA's Java language
binding provides a mapping to Java types. Unfortunately, a
language b!nding for Sun's Java Virtual Machine does not
exist for COM.

All component models provide dynamic invocation. Al-
though the APIs differ considerably, they allow construction
of requests dynamically at runtime. Metadata provides in-
formation about components and can be used to query the
features of component models. The implementation of this
metadata interface and the specifics of the information dif-
fer among the component models. All of the component
models presented above, however, provide enough infor-
mation to build an internal representation of a component's
features.

3. Design

The purpose of the Vienna Component Framework
(VCF) is to provide an API that allows for the use of multi-
ple different component models in a uniform way. This en-
ables the use of components implemented for different com-
ponent models from within a single project without having
to deal with the internals of the different component mod-
els. This increases the range of components available to
software developers.

For the implementation of the VCF, we have chosen to
use the Java programming language. The principles of this
framework, however, apply equally well to implementations
in other object-oriented programming languages.'

3.1. Architecture

VCF supports several component models. Each compo-
nent model is represented by a plugin. Support for a new
component model can be added by implementing a new
component model plugin. Each component model plugin
has to provide the functionality to access the features of the
corresponding component model. This includes the features
for controlling the lifecycle of a component's instance, for
making that instance persistent, and for accessing its state
and operations.

Component model plugins are not used directly but in-
stead are accessed through a faqade component as shown in
Figure 1. This allows the integration of new functionality
that can be applied to any component model in the faqade

27

[.. ' ... i l
::; == : . , : . : . : . : . : . : . : . : . : . : , : . : . : . : . : , : . : . : . : . : . : . : . ;!¢~:{:~:!:!:::.::[:{:~:~:h':~:!:i:!$i:!:~!:::[:!:!.: : . . , . . . , - , , . . . - . , . . - • . ::"
~ ! ~!i~!iiii::::::::::?~ii:!::i{!ili{!i ~I~:~ :::::::::::::::::::::::::::::::::::::::~1~ ? [~{~HH~i[[~hH[~]~i~!i i ! i~l ~i!iii~~:!$!:!$1:!!}:i:!:~:!:i:~:!:i:[~$~:i:~:i!~'!;~: :ii!i~ii?~!jii!!:i:i~i:)!i~i!iiii~:!~i!i!ii!i~?i! i [[.

L:~i~;~;~;~;~;~:~i~.~;~;~j~:~:~:~i~;~i~ii~i~i~i~

Figure 1. Architecture of the VCF

class without changing the plugins' syntactic or semantic
structure [10]. Each instance of a particular component is
hosted in an instance of the corresponding plugin class.

3.2. M e t a d a t a Interface

One key feature of today's component models is that they
provide metadata that allows clients to identify the features
that a component provides during run-time. Features iden-
tify the different means to interact with a component such
as a property that can be changed or an event that may be
triggered by the component. Features may statically apply
to all instances of a component such as the lifecycle feature,
or they may apply to individual instances of a component
such as a property.

Since different component models use different features,
a component model plugin only has to provide support
for those features provided by the underlying component
model. VCF provides support for the most commonly used
features. A component model plugin, however, may provide
support for additional features in case a component model
requires a feature not provided natively by VCE

Currently, VCF provides support for the following fea-
tures:

Lifecycle provides methods to create and to explicitly de-
stroy instances of a component.

Persistence allows a component instance to be stored on
and retrieved from persistent storage.

Method gives access to the methods provided by a compo-
nent.

Property allows the manipulation of a component's state.

Event allows other components to react to events generated
by this component.

All features that are provided by a plugin are re-
turned in a feature container returned by the the plugin's
g e t F e a g u r e s method. This feature container provides
standardized means to add and remove features, and allows
queries for a particular feature. These queries range from
retrieving all features of an instance to fine-grained queries
like searching for all methods that have a particular return
type and whose names match a regular expression.

3.3. C o m p o n e n t Access

Components may be accessed through the metadata in-
terface or through component stubs created by VCE The
metadata interface allows a component to be queried for its
features similar to Java's reflection API. The classes rep-
resenting the individual features provide methods to access
the functionality provided by a feature implementation. Us-
ing a component's metadata interface is necessary to inter-
act with components that are loaded during run-time. For
instance, this allows application builders to discover, i n -
stantiate, and manipulate arbitrary software components. A
sample class using VCF's metadata interface is shown in
Figure 2.

publ i c c l a s s Test {
p r o t e c t e d Component a n I n s t a n c e ;

void c rea teComponen t (
Componen tDesc r ip t i on de sc) {
a n I n s t a n c e = F a c t o r y . c r e a t e (d e s c) ;

}
void accessComponent () {

I F e a t u r e C o n t a i n e r fc=
a n I n s t a n c e . g e t F e a t u r e s (

new P r o p e r t y Q u a l i f i e r (" t e x t ")) ;
I P r o p e r t y p r o p e r t y = f c . f i r s t E l e m e n t () ;
p r o p e r t y . s e t V a l u e (" n e w _ T e x t ") ;

}
St r ing r e t r i e v e V a l u e () {

I F e a t u r e C o n t a i n e r fc=
a n I n s t a n c e . g e t F e a t u r e s (

new P r o p e r t y Q u a l i f i e r (" t e x t ")) ;
I P r o p e r t y p r o p e r t y = f c . f i r s t E l e m e n t () ;
return p r o p e r t y . g e t V a l u e () ;

Figure 2. Changing a Property through a Com-
ponent's Metadata

Using these interfaces has two disadvantages: it is te-
dious to use for programmers and it imposes a performance
overhead since several lines of code are required to access

28

p u b l i c void p r i n t B o o k (S t r i n g i sbn) {
/ / o b t a i n a r e f e r e n c e to an i n s t a n c e o f t h e
/ / COM l i b r a r y c o m p o n e n t
COMLibrary l ib ra ry=new COMLibrary (i s b n) ;

Str ing [] a u t h o r s = l i b r a r y . g e t A u t h o r s () ;
Str ing t i t l e = l i b r a r y . g e t T i t l e () ;

Figure 3. Sample Code - Interface Access

a feature. Even worse, the access is not statically typed
which can lead to programming errors which are hard to
find. Hence, to overcome these deficiencies we have pro-
vided a facility that generates stub classes providing direct
access to the component. A sample method using such a
stub is shown in Figure 3.

Although some component models already provide Java
interfaces to access their components' features, only meth-
ods are accessed in a uniform way. Events and other compli-
cated features are accessed syntactically and semantically in
different ways. Our framework maps these different APIs to
a single one. If a Java interface exists for a particular com-
ponent model, the stub classes use these methods to avoid
the performance overhead of the metadata interface.

3.4. Typing

Like all of the widely used component models, VCF uses
strongly typed components. Different component models,
however, use different type systems. Hence, to enable in-
teroperability between these component models, VCF con-
verts between the different type systems used by the differ-
ent component models.

Type conversion can be effected by simulating the dif-
ferent data types used by the individual component models.
While this approach ensures a minimal loss of information,
it imposes a huge performance overhead since every oper-
ation on a primitive type would have to be simulated by a
user-defined type. Additionally, it would require a conver-
sion routine for every type of a component model to the
corresponding types of all of the other component models,
or otherwise the loss of information would not be minimal.

Due to these problems, we have chosen to convert ev-
ery type to and from its Java counterpart. This limits the
number of conversion routines to two times the number of
component models and allows us to encapsulate the conver-
sion routines within the plugin that supports a given com-
ponent model. Most primitive types such as number values,
booleans or character strings can be converted easily across
different type systems. Arrays and records that contain no
operations can be converted to Java arrays and Java classes
respectively. However, we encountered several problems.

Java does not support unsigned data types. Hence, the
use of such unsigned data types in COM or CORBA could
lead to a loss of precision when converted to the corre-
sponding signed data type in Java such as converting an
u n s i g n e d l o n g to a Java l o n g . If such data types are
used the full value range is used rarely. However, we made
the conversion routines exchangeable at component instan-
tiation time to let VCF users decide which conversion rou-
tines shall be used by the plugin.

Another problem is that Java does not support to pass
method parameters by reference. Some component models,
however, such as COM and CORBA support outgoing pa-
rameters and require such parameters. Although Java's call-
by-value semantics does not prohibit the modification of ob-
ject parameters some Java classes do not permit such a mod-
ification. To solve this problem we create holder classes au-
tomatically for the corresponding Java classes. A similar
approach has been taken by CORBA and the Java language
binding [20].

Of particular interest with typing issues are types that
transport a component's instance pointer or reference. We
can distinguish two different occurrences of this. When a
reference to an instance is returned to a component's client
it has to be converted into a VCF component reference. This
is the responsibility of the component model's plugin. Each
plugin examines the reference stored in the plugin's com-
ponent model format, e.g. a COM pointer. If a correspond-
ing VCF component exists already a reference to this com-
ponent is returned. Otherwise a new VCF component is
created, the reference to the native component instance is
stored and this instance is analyzed by the plugin.

Passing a component reference to another component is
more difficult. When the passed component reference is
built for the same component model as the target compo-
nent the problem can be reduced to extracting the com-
ponent's reference from the plugin. Other cases are more
problematic. In general it is necessary to use a proxy [10]
component for the target component model that delegates
calls back to the passed component. Currently we have
built these proxy only for JavaBeans and EJB. A proxy
for COM would need similar mechanisms to the connec-
tion point mechanism described in Section 4.4. Similarly a
CORBA proxy can be realized by using CORBA's Dynamic
Skeleton Interface (DSI) [20].

4. Implementing a Component-Model Plugin

This section discusses the implementation choices for
a component model plugin and those that we have made.
The description is intended to help the reader understand
the work involved in implementing a new component model
plugin.

A plugin for a component model consists of one main

29

plugin class that implements the IComponentPlugIn
interface. This class creates the features responsible for life-
cycle control and persistence in its constructor. All features
that are provided by the plugin are returned in a feature con-
tainer by the the plugin's getFeatures method. This feature
container provides standardized means to add and remove
features, and allows queries for a particular feature. These
queries range from retrieving all features of an instance to
fine-grained queries like searching for all methods that have
a particular return type and whose names match a regular
expression.

,,interface,, k -interlace,,
IFeatureContainer F IFeature
+queryForO 1 +name()
+getFeature 0 +qualifier()
+addFeature 0 +attributes()
+removeFeature 0 +compareTo 0

I I I
I Hnterface~ ,Lifecycle J J "interface" ... IMethod I I ,,interface,,iProperty I

Figure 4. Features

As shown in Figure 4, each type of feature is represented
by an interface that extends the I F e a t u r e interface. Ad-
ditionally, each feature contains a qualifier that unambigu-
ously distinguishes instances of a feature from each other
and may have custom attributes associated with it. A cus-
tom attribute can be used to store information about the fea-
ture without modifying its functionality. Clients can query
for attributes and change their behavior when they detect the
existence of such attributes. For instance, GUI tools could
hide a feature from the user if its "user level" attribute has
the value "expert."

Unlike CORBA, COM does not provide a language
binding for the Java programming language except for
Microsoft's Virtual Machine that is no longer supported.
Hence, we access COM using Java's Native Interface (JNI),
Java's facility to access operating system dependent native
code.

4.1. Lifecycle

The lifecycle of a component is controlled with the
ILifecycle interface (Figure 5). This interface pro-
vides methods to create and destroy components. The cre-
ate method takes a parameter that is provided by clients to
specify which component should be instantiated as well as
an additional initialization parameter to initialize the com-
ponent instance.

Once an instance has been created, each lifecycle fea-
ture informs the plugin class to analyze the metadata of the

i n t e r f a c e IL i f ecy c l e extends
void c r e a t e (I n i t P a r a m e t e r
void d e s t r o y () ;

}

I F e a t u r e {
p a r a m e t e r) ;

Figure 5. Lifecycle feature

newly created component. During this analysis an instance
for each feature implemented by the component is created.

The destroy method invokes the appropriate component
model specific mechanisms to destroy a component in-
stance, and invalidates the contained instance reference.

4.2. Methods

The I M e t h o d interface (Figure 6) provides information
about a single method of a component. It provides methods
to query for the return type and the parameter types of the
method. Parameters have methods to set and retrieve their
values. The invoke method takes an array of parameters and
invokes the method.

i n t e r f a c e IMethod extends I F e a t u r e {
Objec t invoke (I P a r a m e t e r [] p a r a m e t e r s) ;
Class g e t R e t u r n T y p e () ;

Class [] g e t P a r a m e t e r T y p e s () ;
I P a r a m e t e r [] g e t P a r a m e t e r s () ;

Figure 6. Interface for methods

Since all component models support methods, the imple-
mentation of I M e t h o d ' s functionality is straightforward.
JavaBeans and Enterprise JavaBeans methods are invoked
via Java reflection. CORBA's Interface Repository pro-
vides all necessary information to look up a method's name,
its return type and its parameter types. Invocations are
implemented using CORBA's Dynamic Invocation Inter-
face (DII). COM's type information provides information
about COM methods. To invoke a COM component method
we use COM's I D i s p a t c h interface. To access this in-
terface we access a C++ DLL that is invoked with Java's
Native Interface (JNI). Since C++ and Java have different
binary representations for data types all types are converted
by the plugin at runtime.

4.3. Properties

The state of components that is externally visible can be
accessed with the I P r o p e r t y interface (Figure 7). The

30

methods of this interface are responsible for setting and re-
trieving a property's value. In addition a method for return-
ing a property's type is available. Another method is used
to determine if the property is read-only.

i n t e r f a c e IProper ty e x t e n d s I F e a t u r e {
void se tVa lue (Ob jec t v a l u e) ;
Object ge tValue () ;
Class getType () ;
boolean readOnly () ;

}

Figure 7. Interface for properties

In the case of JavaBeans, certain methods are tagged by
syntax conventions to be used as property accessors. Al-
though this is not strictly defined for Enterprise JavaBeans
we use the same naming conventions for EJBs too. The ac-
cess provided by CORBA is different. CORBA interfaces
provide attributes that can be used to model properties ex-
plicitly. We use the information from the interface reposi-
tory about these attributes to implement the functionality of
the IProperty interface. Similar to the implementation
of CORBA's method feature the accessor methods are called
with DII. COM does not provide attributes as CORBA does.
But it uses attributes that mark a method as responsible to
get or set a property's value. Hence, we have used these
methods to implement properties for COM.

4.4. Event se t s

Eventsets are used to implement callbacks. Component
instances send events to their clients leading to the invo-
cation of a method of the client. We followed the design
of JavaBeans and used listeners to realize this. As shown
in Figure 8 listeners can be added and removed. Addition-
ally, the IEventset interface provides methods that re-
turn information about listener methods and the type of the
listener class. The listener interface has to be implemented
by clients and is called by the component instance when a
client has to be notified about the occurrence of an event.

i n t e r f a c e I E v e n t s e t e x t e n d s I F e a t u r e {
IMethod[] l i s t e n e r M e t h o d s () ;
Class g e t L i s t e n e r C l a s s () ;

void a d d E v e n t L i s t e n e r (L i s t e n e r 1);
void r e m o v e E v e n t L i s t e n e r (L i s t e n e r 1);

Figure 8. Interface for eventsets

The implementation of this feature was more challenging
than the implementation of methods or properties. First,

the mapping is not always as straightforward as in the case
of methods. Second, since the client component and the
server component change their roles when using callbacks
it was necessary to provide a listener class for the client
that is compatible with the listener interface specified by
the component.

In the case of JavaBeans, the mapping just forwards the
calls for registering listeners to the bean instance. Enter-
prise JavaBeans do not provide events. Although it might
be possible to use Java's Message Service (JMS) to simu-
late events, we do not support this. For CORBA, we use
CORBA's event service [23]. An appropriate listener inter-
face is generated and compiled during the first instantiation
of a component. COM's analog to an eventset is a connec-
tion point [3]. COM components provide connection points
that allow clients to subscribe to the events they can emit.
Clients may either implement the callback interface or the
IDispatch interface [17]. This means that it is not nec-
essary to generate a class that implements the outgoing in-
terface but it suffices to implement the invoke method of
the I D i s p a t c h interface [3]. This method takes the id of
the target method and all parameters to provide the required
functionality. From the type information stored in the type
library we create Java interfaces for all outgoing interfaces.
If not already created and compiled this interface is created
at instantiation time of a component. We have implemented
an event sink in C++ that forwards the events with JNI to the
appropriate listener classes that are implemented in Java.

4.5. P e r s i s t e n c e

Persistence allows clients to store a component's state
on, and load it from, persistent storage. We have provided
the I p e r s i s t (Figure 9) interface that provides this func-
tionality. Desktop component models sometimes provide
an explicit facility to store an instance data onto persis-
tent storage. Hence, we have encapsulated Java's serial-
ization mechanism and COM's persistence interfaces into
I p e r s i s t to save and restore instance data from a data
storage.

Server-side component persistence that stores instances
in relational databases such as EJB persistence is implicit
and usually transparent to clients. Hence, for these compo-
nents, we only store enough information to reconstruct the
corresponding instance.

i n t e r f a c e I P e r s i s t e x t e n d s
void load (S t o r a g e s) ;
void save (S t o r a g e s) ;

}

I F e a t u r e {

Figure 9. Interface for persistence

31

4.6. GUI

To provide a uniform GUI representation of components
of different component models we have defined a feature in-
terface that returns a j a v a . a w t . C o m p o n e n t object that
displays the component's visual representation. In case of
JavaBeans this is the bean instance itself. Enterprise Beans
and CORBA objects do not provide a GUI at all, hence the
interface is not implemented and will not be found by the
feature container. COM provides ActiveX controls that are
extensively used within Microsoft's operating systems. Java
AWT provides means to get operating system handles of its
windows. We use this to create an ActiveX host window in-
side the AWT window. Finally, we put the ActiveX control
inside this host window.

4.7. Summary

To implement a new plugin for a component model, the
following steps have to be taken. First, the plugin class has
to be implemented. This class creates the feature container
where it registers all features that can be used to instantiate
a component instance, such as the lifecycle feature or the
persistence feature. For each type of feature supported by a
component model a class that encapsulates the functionality
of the feature has to be implemented. This class should im-
plement the VCF interface that corresponds to the type of
feature. If necessary, however, a new type of feature can be
added just by defining a new feature interface and a qual-
ifier to identify that feature. Once a component has been
created, either by the lifecycle feature or by the persistence
feature, its metadata can be analyzed. For each entity found
in the metadata the appropriate feature class is instantiated
and added to the plugin's feature container.

5. Component Construction

The Vienna Component Framework provides a generic
programming model to build new components. This pro-
gramming model allows the programmer to write regular
Java classes to build new components. These Java classes
and their source code are used to generate source code for
any component model supported by a plugin that imple-
ments the code generation feature. Hence, the effort neces-
sary to implement components for Enterprise JavaBeans, or
CORBA is reduced considerably. We call the classes imple-
mented for our programming model VCF metaclasses since
they are the building blocks for new components.

The programming model we use has been influenced by
the naming conventions for JavaBeans. These guidelines
provide conventions for developers to define properties and
eventsets within the Java programming language but with-
out introducing additional language constructs. We have

extended these conventions to features not covered by the
JavaBeans syntax guidelines such as lifecycle and client-
side persistence. In particular, the naming conventions for
feature methods consist of its feature name and the features
qualifier, for instance the lifecycle destroy method would be
named LifecycleDestroy. Features that are already
available in JavaBeans use those naming conventions.

To support the construction mechanism, we have imple-
mented a special component plugin that enhances the Jav-
aBeans plugin. Its purpose is to parse the meta-information
provided by the metaclasses and to parse their source code
files. Each feature instance that is created has also some cor-
responding source code fragments. Hence, we attach these
source code fragments to the features as an attribute. Fi-
nally, we have an enhanced representation of a component
with its features and with the source code fragments that
contain the implementation of the features.

Each component model discussed in this paper has its
own programming model. During code generation the en-
hanced representation is used to construct source code for
these programming models. All features are processed iter-
atively. For each feature the source code fragments stored
within the attributes are used to generate the required meth-
ods, and fields in the created source files.

Since our metaclasses are based on the JavaBeans syn-
tax conventions, the existing class can already be used as
a JavaBean. In case of CORBA, we generate the OMG
IDL file, and the CORBA object server implementation as
Java classes. Java types have to be converted to appropriate
CORBA types. In case of Enterprise Beans we generate the
home interface, the remote interface, the bean implementa-
tion class and the XML deployment descriptor. It is not pos-
sible to access recent Java versions from COM components
in a straightforward way. Hence, we generate a basic COM
component based on C++. The signatures of the methods in
the C++ code and in the MS IDL file are generated from the
features in the internal representation of the metaclass. In-
side the C++ code we make a lookup if a Java VM exists in
the current process. If not, we start a virtual machine with
means provided by Java's Native Interface. Inside this vir-
tual machine we instantiate an instance of the metaclass and
forward all calls to the COM component to these methods.
This delegation code also includes the necessary routines to
convert between the COM and the Java type system.

Since our framework can be used inside metaclasses it is
easily possible to build composite components that contain
other components, possibly of different component mod-
els. In particular it is possible to encapsulate Enterprise
JavaBeans in COM+ components and vice versa.

32

6. Evaluation

We have evaluated VCF with respect to its genericity and
the performance it offers. As we have presented in Sec-
tion 4, we have already implemented VCF plugins for the
COM, CORBA, EJB, and JavaBeans component models.
With the implementation of these plugins, we have demon-
strated that VCF is generic enough to support the integration
of the most commonly used component models. Addition-
ally, we have started the implementation of plugins for X 11
applications, SOAP web services [2], and Gnome Bonobo
components. Although the implementation of these plugins
has not been completed our current results are promising.

To demonstrate VCF's ability to enable composition
across multiple different component models, we have im-
plemented the stock ticker application mentioned in Sec-
tion 1 which combines CORBA, JavaBeans and COM com-
ponents. Although Java has some support for CORBA we
have been able to remove the code necessary for connect-
ing to a CORBA name server and the code responsible for
making a connection to a CORBA event channel [13]. Sim-
ilarly, the access for COM components was as simple as ac-
cessing normal Java classes. Using JavaBeans in VCF does
not lead to any reduction in code size. Fortunately it does
not increase it either. The uniformity across all component
models remained the same for all three component models
used.

To test the performance provided by VCE we have im-
plemented a test component for each of the component
models currently supported by VCE These components
provide 4 operations.

ping taking no argument and returning nothing.

pong taking a string as argument and returning the same
string.

upper taking a string as argument and returning its upper-
case representation.

eoneat taking five strings as argument and returning the
concatenation of them.

Our COM server side component using COM+ was run-
ning on a Pentium II/300MHz processor with 128MB mem-
ory and Windows 2000 and the CORBA and EJB compo-
nents were running on a Duron/800MHz processor with
256MB memory and Linux 2.4.7. The JavaBean com-
ponent as well as our clients were running on a Pen-
tium III/550MHz processor with 256MB memory and Win-
dows 2000. For each operation and component model, we
have executed three runs with 10000 executions per run.
The average of the three executions is shown in Table 1.

For the COM plugin the overhead is about 20%. One
reason for this gap is that the native COM implementation

COM+ CORBA
ping (native) 6849 12799
ping (VCF) 15031 (6970) 13349
pong (native) 17495 20560
pong (VCF) 21551 (18006) 21301
upper (native) 17595 20289
upper (VCF) 21631 (18056) 20980
concat (native) 35542 31085
concat (VCF) 40508 (38072) 32106

EJB JB
33638 0
33939 30
38165 100
38586 150
38536 60
38605 310
42828 130
43833 581

Table 1. Measured access times (ms)

was implemented using C++ and hence unlike with VCF,
COM's types did not have to be converted to Java. Af-
ter this test, however, we optimized the COM plugin. The
performance values of the optimized version are shown in
parenthesis.

For CORBA and EJB the performance difference is only
about 5%. Unlike for COM the native tests for CORBA
and EJB have been implemented using Java explaining the
smaller performance overhead compared to our COM eval-
uation.

As shown in Table 1 using the JavaBeans component
with VCF imposes a considerable performance penalty. The
overhead is much higher compared to the other component
models since JavaBeans are executed within the same ap-
plication as the client and do not incur the overhead of a
remote procedure call. Another reason is that the JavaBean
plugin still uses Java's reflection API for the generation of
the component's stub classes. Hence, it should be possible
to eliminate much of this performance overhead by using
native Java calls inside the component stubs.

7. Related Work

The design of VCF has its origin in the generic compo-
nent model of the Component Workbench, a visual compo-
nent builder developed by the authors [19]. VCF, however,
is more powerful from this former model in many aspects
such as the component stubs enabling direct access or the
component construction mechanism. Hence, we have built
a new release of the Component Workbench that is based
on VCE We are going to integrate all concepts of VCF that
are not covered by the original model such as component
construction into the Component Workbench. A survey of
composition environments can be found in [15].

The Eclipse Platform allows the construction of inte-
grated development environments (IDEs) for different ap-
plication types such as web sites [6, 7], Java or C++ ap-
plications. Eclipse does not provide uniform access across
different component models such as VCE However, Eclipse
provides a Standard Widget Toolkit (SWT) [6] that com-
bines a platform independent widget library with platform

33

dependent facilities such as ActiveX controls. We plan to
port the Component Workbench to Eclipse in the future.

Interworking specifications support the integration of
middleware systems of different kinds [9]. Usually these
technologies are restricted to combine two distributed com-
ponent models such as Interworking between CORBA and
COM [9] and are not available for all pairs of component
models.

UniFrame [21] is an approach that aims to achieve inter-
operation of heterogeneous and distributed software com-
ponents. It provides a metacomponent model that allows
the access of various component models, support for the in-
tegration and validation of quality of service on an individ-
ual component and distributed system level. The UniFrame
approach also facilitates the use of generative rules for as-
sembling components out of available choices. One essen-
tial part of this approach is the UniFrame Resource Discov-
ery Service (URDS) [24] that provides a solution for the
discovery of heterogeneous and distributed software com-
ponents. URDS has powerful facilities to act as a compo-
nent trader over the Internet. UniFrame supports Java RMI
objects. Efforts have started to integrate other component
models [24]. UniFrame, however, does not support the gen-
eration of components.

Flexible Packaging [4] defines how a software compo-
nent's source code has to be structured to defer some de-
cisions about interaction semantics with other components
until integration time. Only the essential parts of a com-
ponent have to be specified early in the design cycle while
details can be deferred. Flexible Packaging splits up a com-
ponent's functionality and its packaging into, respectively,
a ware part and a packager part. This separation allows that
a component's functionality to be packaged in components
that can be used with different architectural styles. Flexible
packagers make use of an extension of the C programming
language to support the use of typed channels for commu-
nication between wares and packagers. This removes the
dependencies between packagers and wares and allows the
construction of packagers out of description files. While
flexible packaging allows the construction of component
packages independently of the ware for almost all imagin-
able component models there is no automatic support for the
use of components without writing packaging descriptions.
Hence, it is not possible to reuse components where only
metadata is available such as VCF's support for component
use. On the other hand VCF's component construction is
specialized for COTS component models that support com-
mon features such as methods and events as described in
Section 2.

Jiazzi [16] provides a component infrastructure for Java
that enables the construction of large-scale binary compo-
nents with Java. Jiazzi does not use any core language ex-
tensions or language conventions to construct a component.

Instead it uses separate source files that describe the vis-
ible structure of classes in packages. Jiazzi supports the
use of mixins and the open class pattern. However, it sup-
ports only the construction of components that conform to
the Java class format. Hence, these components can be used
from within other Java-based component models but cannot
be used as an Enterprise Bean or a CORBA component in
their own right.

ArchJava [1] extends the Java programming language
with component and connector constructs. These con-
structs enhance the Java type system and the Arch Java com-
piler checks if components can be connected by existence
of component ports. However, component type checking
works on the compiler level. The ArchJava compiler cre-
ates true byte code compatible with normal Java virtual ma-
chines. But ArchJava ports can only be used with other
Arch Java components. Hence, the use of Arch Java with in-
dustrial component models is limited.

Unlike VCF, Jiazzi and ArchJava do not provide uniform
access to existing component models nor do they provide
facilities to generate component code for other component
models. On the other hand, it is possible to build VCF plu-
gins for these environments.

Caboom is a product developed by CalKey Technolo-
gies [14] for rapid design and development of component-
based enterprise applications. It allows the specification of
components in UML with OMG's Model Driven Architec-
ture. Caboom is able to generate ready-to-deploy compo-
nents and whole multi-tier applications for the J2EE, .NET
and COM+ platform. Unlike our framework they generate
class code for various programming languages not out of
one template class but use UML diagrams created by de-
sign tools as starting point for code generation. Caboom
does not facilitate portable modification of source code af-
ter its generation. However, modifications that are applied
to the UML diagram are portable to the models.

Our framework supports modification within a compo-
nent by the use of metaclasses implemented in Java. Al-
though our framework does not support the use of UML di-
agrams it has the advantage that the template code is a Java
class that can be tested and debugged before exporting its
functionality to other component models.

8. Conclusions

In this paper, we have presented a framework that en-
ables the composition of software components that have
been developed for multiple different component models.
From a practitioner's point of view, such a framework al-
lows software developers to choose from a wider range of
software components without having to know the details of
all the component models available today. They only need
to become familiar with a single component framework,

34

giving them more time to focus on the task at hand. From
a researcher's vantage point, such a framework provides a
basis for the detailed comparison Of different component
models, both at an implementation level and from a per-
formance point of view. Although component models are
conceptually similar, the implementation requirements im-
pose significant differences in their usage, performance, and
inherent interoperability. Most research work to date only
considers individual component models, rather than cross-
model issues.

To evaluate our claims that VCF is able to integrate most
of the component models available today, we have imple-
mented plugins for COM, CORBA, Enterprise JavaBeans,
and JavaBeans as we have shown in Section 4. Using this
infrastructure, we have been able to implement a small ap-
plication using components that have been implemented for
different component models.

We have evaluated the performance of the VCE As
shown in Section 6, VCF imposes only an overhead o f - -
depending on the server-side component model--about 5 -
20% for server side components compared to accessing the
components using their native component models. Addi-
tionally, as we have shown with the COM plugin, it should
be possible to optimize the generated stubs and subse-
quently to reduce the performance overhead to about 2-5%.

In future versions, we plan to focus on the optimization
of accessing components through VCF and to focus on dis-
tributed services such as transactions and security. Further-
more we plan to build additional plugins for web services
accessible via SOAP [2] and for classes built for Microsoft's
.NET framework [22].

Acknowledgments

We gratefully acknowledge the financial support pro-
vided by the European Union as part of the EASYCOMP
project (IST-1999-14151)and an IBM University Partner-
ship Award from IBM Research Division, Zurich Research
Laboratories. We appreciate the helpful comments and sug-
gestions of Heinz Appoyer, Uwe Zdun and the anonymous
reviewers for their helpful comments and suggestions.

References

[1] J. Aldrich, C. Chambers, and D. Notkin. Archjava: Connect-
ing software architecture to implementation. In Proceedings
of the 24th International Conference on Software Engineer-
ing, pages 187-197, 2002.

[2] D. Box et al. Simple Object Access Protocol (SOAP) 1.1.
W3C, May 2000.

[3l K. Brockschmidt. Inside OLE. Microsoft Press, second edi-
tion, 1995.

[4] R. DeLine. Avoiding packaging mismatch with flexible
packaging. IEEE Transactions on Software Engineering,
27(2): 124--143, Feb. 2001.

[5] L. G. DeMichiel, L. El. Yal cinalp, and S. Krishnan. Enter-
prise JavaBeans Specification, Version 2.0. Sun Microsys-
tems, Apr. 2001. Proposed Final Draft 2.

[6] Eclipse platform technical overview. Technical re-
port, Object Technology International, Inc., 2001.
http://www.eclipse.org/whitepaper/eclipse-overview.pdf.

[7] http://www.eclipse.org.
[8] G. Eddon and H. Eddon. Inside Distributed COM. Microsoft

Press, 1998.
[9] W. Emmerich. Engineering Distributed Objects. John Wiley

& Sons, 2000.
[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[11] G. Hamilton, editor. JavaBeans. Sun Microsystems, http://-
java.sun.corn/beans/, July 1997.

[12] G. T. Heineman and W. T. Councill, editors. Component-
Based Software Engineering: Putting the Pieces Together.
Addison-Wesley, 2001.

[13] M. Henning and S. Vinoski. Advanced CORBA Program-
ming with C++. Addison Wesley Longman, Inc., 1999.

[14] B. Jadhav. Caboom White Paper. Campbell, CA 95008,
2001. http:Hwww.calkey.com.

[15] C. LtierandA. vanderHoek. Composition environments for
deployable software components. Technical Report UCI-
ICS-02-18, Department of Information and Computer Sci-
ence, University of California, Irvine, Aug. 2002.

[16] S. McDirmid, M. Flatt, and W. C. Hsieh. Jiazzi: New-age
components for old-fashioned java. In Proceedings of the
2001 ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages & Applications (OOPSLA
'01), pages 211-222, 2001.

[17] Microsoft Corporation. The Component Object Model Spec-
ification, 1995.

[18] R. Monson-Haefel. Enterprise JavaBeans. O'Reilly & As-
sociates, Inc., first edition, June 1999.

[19] J. Oberleitner and T. Gschwind. Composing distributed
components with the component workbench. Technical Re-
port TUV- 1841-2002-17, Technische Universit~it Wien, Jan.
2002. Accepted for publication in the Proceedings of the 3rd
Software Engineering and Middleware Workshop.

[20] Object Management Group. The Common Object Request
Broker: Architecture and Specification, 2.4 edition, 2001.

[21] R. R. Raje, M. Auguston, B. R. Bryant, A. M. Olson, and
C. Burt. A unified approach for the integration of distributed
heterogeneous software components. In Proceedings of the
Monterey Workshop on Engineering Automation for Soft-
ware Intensive System Integration, pages 109-119, 2001.

[22] J. Richter. Applied Microsoft .NET Framework Program-
ming. Microsoft Press, 2002.

[23] J. Siegel. CORBA 3: Fundamentals and Programming. John
Wiley & Sons, Inc., second edition, 2000.

[24] N. N. Siram, R. R. Raje, A. M. Olson, B. R. Bryant, C. C.
Burt, and M. Auguston. An architecture for the uniframe re-
source discovery service. In Proceedings of the 3rd Interna-
tional Workshop on Software Engineering and Middleware
2002 (SEM 2002), pages 22-38, 2002.

35

