
Program and Interface Slicing for

Reverse Engineering*

Jon Beck

Dept. of Statistics and Computer Science

West Virginia University

Morgantown, WV 26506

beck@ cs.wvu.wvnet.edu

Abstract

Reverse engitwering involves a great deal of effort in

comprehension of the current implementation of a software

system and the ways in which it differs from the original

design. Automated suppo~ tools are critical to the success

of such efforts. We show how program slicing techniques

can be employed to assist in the comprehension of large

software systems, through traditional slicing techniques at

the statement level, and through a new technique, interjace

slicing, at the module level.

1 Introduction

Reverse engineering is partly the result of inadequate

design capture in software development and partly the

result of inexomble advance of software science. Inade-

quate design capture results in code that is difficult to

supportj maintain, and reuse. The continuous advancement
in software science can result in even today’s good code

seeming archaic tomorrow. Both situations demand the

tools and techniques of reverse engineering. Rekoff defined

reverse engineering as the process of developing a set of

specifications for a complex hardware system by an

orderly examination of specimens of that system [21] -

typically by someone other than the original designer. The

applicability to software has been demonstrated by work

such as that described in [17] and the conferences on

Software Maintenance. Few systems have the same

maintainers as they had designers, and few designers

possess the ability to remember for long the multitude of

design choices made during a software development effort.

Furthermore, the complexity of the source code for large

systems makes comprehending design choices embedded

within the code extremely difficult without support tools.

Chikofsky and Cross [4] characterize forward engineer-

*This work was supported in part by NASA as part of the

RBSE project, cooperative agreement NCC-9-16, and in part

by a grant from MountainNe~ Inc.

David Eichmann

Department of Computer Science

University of Houston - Clear Lake

2700 Bay Area Boulevard, Box 113

Houston, TX 77058

eichmann@cs. wvu.wvnet.edu

ing as the traditional process of moving from high-level

abstractions and logical designs to the physical implemen-

tation of a system, reverse engineering as the process of

analyzing a system to identify the its components and their

interrelationships, and creating representations of the

system in another form or at a higher level of abstraction;

and reengineering as the examination and alteration of a

system to reconstitute it in a new form and the subsequent

implementation of the new form. Hence, forward engineer-

ing drives the creation of implementation from design

representations, reverse engineering drives the recreation

of the design representations from the implementation, and
reengineering drives the creation of a new implementation

from an old implementation. Intermediate representations

can play implicit or explicit roles in these transformations.

Reverse engineering and reengineering transformations

involve the reabstraction of an existing implementation.

However, reabstraction techniques frequently suffer from

noise induced in the implementation by maintenance

efforts. Program slicing provides a toolset to provide both

semantic and syntactic reabstraction, without regard to

additional enhancements or patches done to the imple-

mentation. Further, decomposition slice lattices [8] provide

a visualization mechanism for the relationships between

the syntactically and semantically correct subsets of pro-

gram behavior, In particular, the lattice of slices for a

current implementation differs from the lattice of slices for

the original implementation in ways specifically related to

the maintenance done on the system. Reabstraction, there-

fore, can be concentrated on the differences between the

original and current lattices.

We take a rather broad perspective as to the nature of

reverse engineering, decomposing it into two phases,

algorithm recognition and design recognition. Algorithm

recognition involves extraction of behavior from the

implementation. Design recognition involves extraction of
rationale for behavior from the atgorithm. Many traditional

techniques employed in reverse engineering (e.g., structure

charta and call graphs) are inadequate for the recognition

509
0270-5257/93 $03.00 @ 1993 IEEE

of algorithms, and certainly for the recognition of design.

Slicing mechanisms provide an excellent foundation on

which to construct recognition tools.

Our perspective is coloxed by our interest in slicing in

the contexts of repositories and reusability. Long-lived

components frequently accrete much functionality over

their lifetimes (the kitchen sink syndrome), making the

comprehension required for modification or reabstraction

increasingly difficult. We introduce a new form of pro-

gram slicing, called inter$zce slicing, to support one of the

goals of reverse engineering, providing knowledge about

a component to support its modifkation. Interface slicing

eliminates the need for some manual reverse engineering

efforts, as it automates specific kinds of moditkations.

Repository use involves many of the tools and tech-

niques of reverse engineering to fiit select and then

modify components for a new system. Interface slicing

reduces the burden of comprehension through a reduction

of the size and complexity of subsystem interfaces.

In this paper we present a case for the use of conven-

tional and interface slicing as enabling mechanisms for

numerous reverse engineering and reengineering tasks. We

fmt discuss the applicability of conventional slicing to

algorithm extraction and design recovery at statement-level

granularity. We then present interface slicing and show

how it provides similar capabilities at module-level

granularity.

We employ the following terms. Module is a general

term for a collection of subprograms, possibly with

information hiding mechanism it includes but is not

limited to Ada packages. Component refers to a module in

a reuse repository. A component is thus a code asset of a

repository, possibly also incorporated into a program.

We will use Ada for our examples, as Ada’s features

facilitate the types of transformations which we invoke, but

our concepts are not confined to any particular hmguage.

2 Conventional program slicing

In this section, we describe how program slicing can be

applied to some of the goals of reverse engineering. While

program slicing of any type is insufficient by itself to
completely accomplish the goals of reverse engineering,

program slicing can be used as a powerful support tool to
complement other techniques employed by the software

engineer attempting to understand, redocmnent, and mod@

existing software systems.

Weiser introduced the concept of program slicing while
studying the abstraction mechanisms used by programmers
in analyzing existing programs while debugging code [25,
26,27]. Before Weiser’s work, all abstraction mechanisms

to date had decomposed programs into “units” by grouping

sequential program elements. At the lowest level, a raw

dump of an executable program consists of a very large

number of homogeneous units, bytes, far too many for the

mind to grasp, The process of understanding a program

consists of organizing this huge number of units into fewer

units, allowing the program to be viewed at a higher level

of abstraction. For example, a single assembly language

statement replaces many sequential bytes of the dump,

while a compiler allows the replacement of many assembly

language statements with one high-level statement. Further,

a hierarchical organization can be imposed on statements

by grouping many sequential statements into subprograms,

subprograms into modules, and so on.

After experiments in which he studied the behavior of

programmers who were attempting to comprehend and

debug programs, Weiser concluded that while the grouping

of sequential sets of statements did indeed serve as an aid

to program comprehension, programmers who were

attempting to debug a program used a different mental

abstraction mechanism for grouping program statements.

Specifically, they used a mental mechanism which grouped

generally non-sequential sets of statements. Weiser

concluded that the statements grouped in this way were

those which applied to “units of data components,” that is,

variables. He found that he could understand the mental

abstraction of the debugging process by examining data

flow diagrams of a program. He called his theory of data

behavior abstraction slicing, and the units of abstraction,

slices. The slices abstract a program based on the behavior

of the program with respect to a specified set of variables

rather than with respect to sequential statement listing. A

slice is a complete program which contains a subset of the

statements of the original program, and which performs a

subset of the computations performed by the original

program. The slice is obtained by removing statements

from the original program which do not affect the speci-

fied behavior of interest. The slicing algorithm must ensure

that the behavior of the slice is also a subset of the

original program behavior.

A number of researchers (e.g., [7,13]) have worked to

improve the techniques of program slicing. The techniques

employed are covered by these authors, we wish only to

note that the consensus technique for slicing involves fwst

building a program representation with some form of de-

pendenm ~aph using data- and control-flow analysis, then

generating actual slices gmph operations. These forms of

slicing we will henceforth term conventional slicing, in

distinction from the new form, interJace szicing, which we

present below.

2.1 Slicing in software engineering

In addition to the original focus on program comprehen-

sion and debugging, slicing has been used to address

510

various sofhvare engineering issues including program

maintenance and testing [15,8], integrated development

environments [14], module cohesion metrics [18], program

variant merging [12], repository component generation [8],

pamllelization [26], and software portability [16], As has

been noted many times (e.g., [4]), software (forward)

engineering and reverse engineering, far from being

separate, often involve complementary and even overlap-

ping tools and techniques. It is not surprising, therefore,

that program slicing, a technique which has seen wide

application to the problems of traditional forward software

engineering, would have strong applicability to reverse

engineering tasks as well. We wish to suggest one or two

applications in which slicing can be applied to the goals of

reverse engineering in ways which have previously not

been considered.

2.2 Redocumentation for maintenance

Gallagher and Lyle [8] have developed the idea of

totally decomposing a program by slicing and arranging

the decomposition slices into a lattice based on the partial

ordering of statement set inclusion, They use this decom-

position lattice as the basis for guamnteeing whether a

change made to a program will or will not have any effect

outside a specitlc set of program statements. Because the

decomposition is total, the locus of a desired statement

change is within at least one decomposition slice the rest

of the program is the complement. Based on the partial

ordering of the lattice, that locus is either independent of

the complemen~ or not. If independent, the change can be

made with the guarantee that the complemen~ which is the

rest of the program, will not be affected by the change in

any way; a program modified by such a change must only

be retested and revalidated within the decomposition slice.

If the locus of change is not independen~ then the comple-

ment is affected by the change, and thus an investigation

of that effect is necessary. The arrangement of the program

into a total decomposition slice lattice provides a redocu-

mentation of the program which makes clear to the main-

tainer the relationships of statements which are dependent

upon one another, and those which are independent.

This lattice arrangement of slices has far more potential

for reverse engineering than has yet been suggested,

however. Consider the example program used by Gallagher

and Lyle [8], a version of the Unix wc program, which

counts occurrences of chamcters, words, and lines. The

root slice, involving only the character variable, actually

provides a clich6 (see Section 2.4) for correct character-
level I/O in a Unix system.

The incremental changes mentioned above will cause

the slice lattice for the new version of the system to dtifer

at particular vertices from the lattice for the original

system. Examining the slice lattice for an existing system

and how it differs from the lattice for the original system,

which corresponds to the original design, specifically

identifks those portions of the current system in need of

redocumentation.

2.3 Design recovery

Source-to-source transformation approaches to reengi-

neering are typically based on some form of pattern

matching. Engberts, et al,, [6] and Platoff, et al. [19] use

pattern matching techniques to transform source code to

program concepts (both syntactic and semantic) and to

(application specific) domain concepts. However, their

concept recognition mechanisms are limited by their

implementation language (COBOL and C, respectively).

Block structured languages can smear concepts across

multiple procedures in multiple scopes, requiring a slicing-

like mechanism to extract them in a form that a pattem-

matcher can recognize.

2.4 Related work

The notion of organizing a program in ways other than

the traditional hierarchy of units of increasing abstraction

is not unique to slicing, Soloway and Ehrlich [23] devel-

oped the theory that programming lmowledge consists in

part of programming plans. A programming plan is an

abstract structure which a programmer uses as a template

or link between a goal and a specific program fragment

instance. A programmer might use, for example, a data

guard plan to help accomplish the goal of preventing

division by zero. In the program, the data guard plan is

manifested in the test predicate and control structure

necessary to prevent division by zero, while allowing

division by appropriate values. While a plan may be a

single abstract entity, it is manifested in a program by

statements which are, in general, non-sequential. Indeed, in

many cases, an appropriate choice of slicing criterion

applied to a program segment is sufficient to recover an

intact plan as a slice. Rich and Wills [22] have developed

a prototype module of the Programmer’s Apprentice called

the Recognize which automatically recognizes clichis,

which essentially are the manifestation of plans in pro-

grams. Similarly to slicers, the Recognize stores program

information in the form of a flow graph; the clich6s are

then found by graph analysis.

3 Interface slicing

Intuitively, an inter@e dice maybe viewed as a subset

of the behavior of a module, just like the original notion

511

of a conventional slice. However, while a conventional

slice seeks to isolate the behavior of a specified set of

program variables, even across module boundaries, an
interface slice seeks to isolate specified behaviors which a

given module exports to its containing software system.

While conventional slicing was originally designed

primarily for debugging and comprehension, interface
slicing was primmily developed as a tool for nse in a reuse
repository environment to 1) enhance the reusabilhy of

components in the repository and 2) improve the quality of

code which results from the reuse effort. But just as the
role of conventional slicing has expanded to many areas of

forward and reverse engineering, so we see abroad appli-

cability of interface slicing to comprehension, maintenance,

redocumentation, and reengineering.

3.1 A simple example

We present here a simple example designed to give the

flavor of interface slicing. The example illustrates one

application of interface slicing, in which it is used to

roiect a subset of an Ada uacka~e’s function~itv..-J... . .- -./

1 package togglel is
2 f unct ion on return boolean;
3 function off return boolean;

4 procedure set;

5 procedure reset;
6 end togglel;
7 package body togglel is
8 value: boolean : = false;

9 function on return boolean is

10 begin

11 return value = true;
12 end on;

13 f unct ion off return boolean is
14 begin
15 return value = false;
16 end off;

17 procedure set is

18 begin

19 value : = true;

20 end set;

21 procedure reset is

22 begin
23 value : = false;
24 end reset;
25 end togglel;

‘igure 1 A boolean toggle package
Consider a simple ADT implemented as an Ada txwk-.

age which expo~- the operations necessary to implement

a boolean toggle and which maintains the state of the

toggle. An example of such an ADT is given in Figure 1.
This package exports the operations on, o~ set, and reseL

On and ofi are query operations which examine the state

of the toggle, while set and reset are operations which
modify the state of the toggle. Suppose that a program

under development needs the funct.ionalhy that this toggle

ADT provides. In a standard software development scenar-

io in which this package is available in the repository, the

specification of the package would be available for inspec-

tion. After being selected from the repository as the ap-

propriate component, the package would be incorporated

into the software system. Togglel would be witkd in the

appropriate scope of the system under development which

needed the toggle functionality.

However, suppose that in developing a system we fmd

that we need, not all, but only some of the functionality of

the togglel package. Sw~@JQ’, suPPose tit we Wve

need of only the on, set, and reset operations, but not of

the or operation. In a standard development scenario, we

have two options, neither of which is ideal. ‘fhe fwst

option is to incorporate the complete toggle package in

toto, exactly as described above. A disadvantage of this

option is that in the finished software system, the or

function becomes “dead” code in the sense that it is never

called or executed. Alternatively, the second option is to

manually edit the source code of ?ogglel and delete the ofl

operation from both body and specification of the package.

A disadvantage of this option is that manual editing

requires full code-level comprehension of the togglel

package and involves the very real danger of introducing

logicaJ bugs into the package due to hidden linkages and

dependence, and introducing syntactic bugs due to typing

errors.

Indeed, the option of manually editing the source code

assumes that we have access to it. But t.hk is not necessar-

ily the case, especially in a commercial reuse repository

context. If an interface slicer is available, it is easy to

propose a repository structure which gives full cude access
to the slicer, allowing automated modification, while

restricting human access to the specifkation, thus preserv-

ing the integrity of proprietary software rights.

Interface slicing provides a third alternative which does

not have the disadvantages of the two options discussed

above. In the scenario described above, we wish to use a

subset of the functionality provided by a component. All

of the functionality exported by an encapsulated module is,

by definition, described in the interface of the module; we

are interested in a subset of that functionality. In effect, we
wish to remove, i.e. slice away, the unneeded functionality,

as in mannal editing, but without the attendant problems of

editing. By examining only the specification of the module

we lmow that the module contains some functionality that

we want in our system under development but we also

know that it contains more functionality than we want.

We thus invoke the notion of an interface slicing tool
which takes as input 1) a complete module consisting of
interface specification and code body, and 2) a list consist-

ing of the subset of the operations which we desire. This

512

package togglel is
function on return boolean;
procedure set;
procedure reset;

end togglel;
package body togglel is

value: boolean := false;

function on return boolean is

begin

return value = true;
end on;

procedure set is

begin
value := true;

end set;

procedure reset is
begin

value := false;

end reset;

end togglel;
(

‘igure2 togglel sliced oneon, set, reseb

1
2
3
4
5
6
7
8

1:
11
12
13
14
15
16
17
18
19
20

21

22

23

24

25
26
27
28

29
30
31

32

package toggle2 is
function on return boolean;

function off return boolean;
procedure set;

procedure reset;
procedure swap;

end toggle2;

package body toggle2 is
value: boolean := false;

function on return boolean is

begin
return value = true;

end on;
function off return boolean is

begin
return value = false;

end off;
procedure set is

begin
value := true;

end set;

procedure reset is

begin
value := false;

end reset;
procedure swap is

begin
if on then reset;

else set;
end if;

end swap;

end toggle2;

Figure3Aiarger boolean toggle package

Iististheinte@ace slicing criterion. l%e tool produeesas

output a slice, a new module which is a subset of the

original, but which contains all and only the code nec-

essary to support the functionality specified inthe slicing

criterion of desired operations. In the example above, we

desiredthefunctionality oftheoperationson, set, andresel

in the togglel package, but not that of of. A slice of

togglel on the slicing criterion <on,set,rese~ is shown in

Figure2,Notethat inthissimplestexample, theslicecon-

sistsmerelyof the original package without the specifica-

tiouorbody of the unwanted function o~, just as would

havebeenproduced bymanuallydeleting theoflprocedure

from the package specification and body. This simple

example has no linkages or dependence among its

operations; we will now discuss these.

As a second example, consider the more sophisticated

boolean toggle which is implemental by the package

showuinFigure 3. Inadditionto theopemtionsof togglel,

this package also ex~rts the operation swap which re-

verses the value of the toggle. Suppose that we wish to

include in the software system just the functionalities of

the operations on and swap, with toggle2 available in the

repository. Inthissituation, anaiveediting of the foggle2

package to remove o% set, and reset will no longer

suffice, because swap has dependence on on, set, and

reset. In order to include swap, we must also include set

and reset. The result of interface slicing toggle2 on <on,

swap>is shown in Figme4. Note that while set and reset

no longer appear in the interface, they do appear in the

body of the-sliced package.

?ackage toggle2 is

function on return boolean;
procedure swap;

~nd toggle2;

?ackage body toggle2 is

value: boolean := false;
function on return boolean is

begin
return value = true;

end on;
procedure set is

begin

value := true;

end set;
procedure reset is

begin
value := false;

end reset;
procedure swap is

begin

if on then reset;
else set;
end if;

end swap;

end toggle2;

,. -..
lgure4 rogglezsucea oneon, swap

The speciilc dependence among swap, on, set, and

reset arise dueto the specific code implementation of the

package.Theyare notduetothedesign ofthesurrounding

513

software system, nor to the requirements or specification

of the toggle package. We could easily envision an imple-

mentation in which swap depends upon off rather than

upon on. This comprehension of the package is required

for manual editing; interface slicing obviates this compre-

hension requirement. Using an interface slicing tool, we do

not have to know anything about the internal dependence

of the toggle package for this modification, as the slicer

does the dependence analysis during its operation.

3.2 An interface slicing mechanism

The previous examples illustrate the usefulness of inter-

face slicing but do not indicate how it can be accom-

plished. Here, we demonstrate a method for generating the

interface slices of the previous section.

When a package is wifhed in a standard Ada environ-

ment, the entire package is imported into the software

system. This includes all public and private variables, sub-

progmms, and types. But as illustrated in the examples

above, we make the generalization that typically any

particular software system will need only a subset of the

functionality of a given repository component. This is

particularly likely to be true in three common cases. The

f~st is the case of a component written to be a general

component in a non-domain-specitic repository, which was

written for reuse, and which thus will contain all possible

anticipated functionality, the better to accommodate all

possible anticipated uses. The second case in which only

a subset of a component would typically be desired is that

of a component in a domain-specific repository which was

originally written for a specific system. Such a component

will typically have custom functionalities tailored for its

original target system which will not be needed when it is

used as a general component. The third case is that of a

component which has been reused many times, each time

having a bit more functionality accreted to it. This is

exemplifkd by the creeping featurism of Unix programs.

As stated above, the interface slicing tool has as input

the original complete package and a slicing criterion which

is a list of desired public subprograms, types, and vari-

ables. This list is supplied without knowledge of the

package implementation. The problem at hand for the

slicer is to determine from a static analysis of the package
what portion of the package is necessary to support the

items in the slicing criterion. The solution to the problem

is to perform a reachability analysis [9], based on the

slicing criterion, of a dependence graph of the package.

3.3 The interface dependence graph

In this discussion, for simplicity, we assume no nesting.
That is, all the subprograms defined in the package are at

the top level of the package. The specific dependence

graph required for this analysis we term the package’s

interjhce dependence graph (IDG). The IDG of a package

can be constructed with a single pass over the source code

of the package’s specification and body in the following

manner. Each node of the graph corresponds to a statement

which defines: any type (including subtypes, subranges,

generics), any global variable (including constants and

generic formal parameters), or any subprogram (including

tasks and exceptions). Every node is labeled with the name

of the defined program element to which the node corre-

sponds, and nodes are annotated with source code line

numbers and program element type signatures. Since we

are not considering nesting in this example, it is not neces-

sary to keep track of the scope of definitions: every

definition is global to the package.

The edges of the ID(3 are dependence edges, con-

structed as follows. There is an edge from node x, corre-

sponding to program element X, to node y, corresponding

to program element Y, if X contains a definition- or use-

reference to Y. If X contains a pointer, there must be an

edge from X to every possible target of the pointer. Self-

edges, indicating direct xecnrsion, are not necessary and

are omitted. IDGs for the togglel and toggle2 packages

described above are shown in Figure 5.

Once the ID(3 has been constructed, generating an inter-

face slice based on a slicing criterion of desired function-

ality is a straightforward process. Starting with the nodes

in the graph which comespond to the named items in the

slicing criterion, generate the transitive closure of those

nodes by following the dependence edges. The interface

slice consists of the program elements which correspond

to the transitive closure, plus any needed syntactic sugar

(see Section 3.7) required for the package structure.

For instance, consider the interface slice which this

process generates for the togglel example discussed
earlier. The example discussed an interface slice for the

togglel package, whose IDG is shown in Figure 5(a),

based on the slicing criterion <on,set,rese~. The transitive

closure of this criterion consists of the nodes on, set, resel,

and value. This means that the slice should consist of the

subprograms on, set, and reset, and the definition of value.

This was the same conclusion we reached by informal

considemtion, as shown in F@re 2. Similarly, the transi-
tive closure of the criterion <on,swap> for Figure 5(b)

consists of the nodes on, set, reset, swap, and value,

corresponding to the subprograms and variable by those

names in the package toggle2. This also matches the

conclusion reached above, as shown in Figure 4.

3.4 An extended example

The examples above illustrate the general concept of

514

swap

(a) togglel (b) t0ugle2

Figure 5 IDGs for fogglel and togg/e2

interface slicing, but leave out some important details. To

till in some of these details, we will next examine a pair

of generic Ada packages which are in the public domain.

(They were extracted and modifkd horn the ASR reposito-

ry on SIMTEL 20 and were originally written by B. Altus

and R. Kownacki of Intermetrics.) These packages were

written to be used as building blocks for Ada programs,

similarly to the components of Booth [3] or Uhl and

Schmid [24]. The fiist of the packages implements the

ADT set in the package SetPkgTemplate. The package is

instantiated by supplying it with two parametem, the fwst

being the type of element which the set is to contain, and

the second a comparison function to determine the equality

of two elements of this type. The package provides all the

operations necessary to create, manipulate, query, and

destroy sets.

SetPkgTemplate happens to use a list ADT as the

underlying structure upon which it builds the set ADT, and

so the set package requires the second of the two generic

packages discussed here, which implements the list ADT

as the package ListPkgTetnplate. This is a singly-linked

dynamic list implementation which exports all the opera-

tions necessary to create, manipulate, query, and destroy

lists. This package requires three generic parameters. The

fwst two are similar to the generic pammeters of the set

package, namely, the type of element in the list and the

equality function. The third generic parameter is a copy

function which gives the list package the ability to copy a

list element to provide for one-level-deep copying of the

list.

In the particular list and set packages we used for this

example, there are some private subprograms and types.

Private program elements are not available to be used in

an interface slicing criterion; only the exported subpro-

grams, variables, and types in the specification can be in

the slicing criterion. However, private program elements
must be included in the ID(3, as the transitive closure of a

public element may flow to a private element. Thus, with

the exception that private elements may not appear in the

slicing criterion, private elements are treated identically to

public ones during the interface slicing process. The slicer

is a privileged code transformation tool and has complete

access to all portions of the source code.

3.5 A single level of slicing

Suppose that we wish to use the set package in a
progmm we are writing, but we have need for only a few

of the set operations, namely, in this example, Create,

Insert, and Equal, In addition, to use SetPkgTemplate at

all, we must also use the type Set and we must supply the

set element type ElemType. Therefore we wish to slice

SetPkgTemplate on the slicing criterion <Create,lnsert,

Equal, Set,EJemType>. We would like to include all the

code necessary to allow us to use these three operations

and two types, but would like to have only the necessary

code, and no more. In order to slice the set package, we

must examine the IDG for the set package, which is shown

in Figure 6. In the interest of legibility in that and subse-

quent figures, the annotation and labeling of the nodes are

abbreviated. The transitive closure of the five nodes listed

in the slicing criterion, corresponding to the desired slice

of the set package, is shown in Figure 7,

/\
uOl10.. Ewal (s, s) — s.em..

=1~ T
N- lsHOmb.rx.kOs.tle.. Croat.

\ l“J3/”le’”\+4K
x1anm* lr&.....t—S-t— D--- ,Oy

I

Figure 6 IDG for Set/JkgTen?p/ate

Out of the total of 3 global types and 16 subprograms,

one each of which is a generic pammeter, on 151 lines of

code in the original package, the slice contains 3 global

types and 8 subprograms on 84 lines of code. Thus

interface slicing has reduced the number of subprograms

and the number of lines of code by a factor of 2 in this

example, A comparison of Figure 6 vs. Figure 7 shows the

reduction in interface size and complexity of the sliced set

package (see also Table 1).

3.6 Name overloading

To slice SetPkgTemplate, we used the slicing criterion

<Create, Insert, Equal, Set, ElemType>. Giving this exact

slicing criterion to an automatic slicing tool won’ t work,

515

x...

/ \.
IJa&.. Em-l (s, s)\l-ss=z?-i-

me 1— -MdcOs.elter C.-t.

I/tN/
E15#lyp.a s-t

igure 7 Sliced IDG for SetFVrgTemp/ate

however, because the name Equal is overloaded in the

package. Equal appears once in-the package with the type

signature jimction: ElemType x ElemType + boolean,

while it appears again with the type signa~finction: Set

x Set + boolean. Note that the IDG in Figure 6 has

separate nodes for the two occurrences of the overloaded

name Equal. Since Equal is overloaded, the slicing

criterion above is ambiguous, and needs amplilkation with

the argument type signature of Equal, i.e., Equal(Set,Set)

(abbreviated in the figure as Equal(S,S).

3.7 Syntactic sugar

Up to this point, none of the concepts presented have

been language-specific. But while the concepts are lan-

guage-independent an interface slice tool cannot be. Each

language has its own structure and syntax which must be

respected, else the output of the slicer will be syntactically

incorrect. The interface slicer must keep tmck of the

language syntax when generating the slice.

An example of this occurs in SetPkgTemplate, whose

specification includes the line: package List Pkg is

new ListPkgTemplate (ElemType, Equal);. As

we have described it, the interface slicer is a pre-compila-

tion text transforming tool which does not know to which

of the two Equals in SetPkgTemplate this line refers:

Equal is overloaded. By examining the specification of

ListPkgTemplate, we can see that the proper generic
parameter must be the function Equal(ElemType, Elem-
Type), but the interface slicer does not know this.

The interface slicer must include the generic instantia-

tion of ListPkgTemplate in the slice, as this is required

syntax which it has no reason to slice out. If the slicer

includes this line, which has the name Equal in it itmust

also include the definition of Equal. Since Equal is

ambiguous, the slicer must therefore include atl definitions

of Equal, to be sure of including the correct one.

3.8 Generic parameter number and other issues

A procedure which instantiates SetPkgTemplate has to

supply an element type and an equality function. In the

previous examples, the number (2) of these parameters did

not change due to interface slicing. However, it is easy to

produce an example in which interface slicing eliminates

all references to a generic parameter and renders it unnec-

essary. The elimination of unnecessary parameters increas-

es the usefulness of interface slicing in reducing size and

complexity of reused packages.

We cannot simply omit a generic parameter from a

standard non-defaulted Ada package instantiation, however.

For a procedme to instantiate SetPkgTemplate, the compil-

er expects a statement such as: package Set Pkg is

new Set PkgTemplat e (Element Type, Equal-

Func). If we simply drop the EqualFunc from the state-

ment, we will get a compiler error complaining of a

missing generic subprogram argument.

In geneml, with interface slicing we wish to be able to

instantiate each generic package with some number of the

pammeters removed by the interface slicing process. One

approach to reconciling mismatched parameters has been

advanced by Purtilo and Atlee in the module interconnec-

tion language Nimble, which was designed to automatically

adapt module interfaces which have large discrepancies in

their parameters, Merely reconciling their number is easy

for Nimble [20], We therefore assume an interface slicer

would be implemented with some mechanism for reconcil-

ing mismatched numbers of package parameters.

We have not covered here some advanced topics in
interface slicing such as fully nestable structures, defini-

tions withed from other packages, issues related to the

slicing of tasks, and late bhding. Also, we have presented

the slicer as though it were a standalone pre-compilation

code transformed in fact, it should be implemented as a

portion of an integrzmxl development environment with

full access to the libmries and databases of the environ-

ment. Some of these issues am covered in [11 and [51;
others will be in the report on the prototype under con-

struction. The complete Ada specifications of the set and

list packages are in [2].

3.9 A second level of slicing

While slicing SetPkgTempiate results in size and

complexity improvements, a much greater overall savings

can be realized if the slicing process is extended to the list

package upon which the set package is based. Just as the

main program in the example above used functionality
provided by the set package, so the set package requires
functionality provided by the list package. But iust as the.,
main program did not need all of_ the f&ctionality of the

516

set package, so too does the set package need only a
subset of the list package. That subse~ or slice, is based,
as above, on the slicing criterion of public variables, types,
and subprograms exported by the list package which the
set package directly references. It does not matter which

elements the original unsliced set package referenced. Atl

that matters is which elements the sliced set package

references. In the case of the set package sliced on cCre-

ate, Insert, Equal(Set,Set), Set,ElemType>, the references to

the list package consist ok List, EmptyList, Attach(Ztem-

Type,List):List, Create, DeleteItems, FirstValue, IsEmpty,

and IsInList. This is therefore exactly the slicing criterion

on which to slice the list package, based on the original

desire to employ the set package elements Create, Insert,

Equal(Set,Set), Set, and ElemType.

rJ93

Lll

J
L7

‘T
L27

L66

1,47

L97

L15 L43 —L.. LI17 L76

igure 8 IDG for List/JkgTen@ate

The IDG of the original ListPkgTemplate is shown in

Figure 8. (In this figure, for legibility, line numbers are

used rather than identifiers,) This package is large and

complex enough to make manual editing a decidedly

nontrivial task. However, slicing it using the criterion

above, which corresponds to nodes L5, L8, L31, L47, L56,

L63, L66, and L69, produces the much smaller and

simpler graph shown in Figure 9, with a correspondingly

large reduction in overall size and complexity of the

source code which the slicer produces not only as output

for the compiler but even more importantly for the soft-

ware engineer charged with maintenance.

We list in Table 1 the actnat change in size of the IDGs

and packages of the set and list packages in the example

above. We instantiated the packages in a driver progmm

which was minimal in size while still using every Set

entity in the slicing criterion; the executable was generated

by Meridian Ada 4.1.3 for Sun-4 unix. The numbers in the

table indicate that slicing reduces size of the set and list

component source code by more than half, reduces the size

of a test driver program’s executable by a sixth. In other

words, 17% of the executable for our simple unsliced

example progmm produced by a commercial compiler is

dead code. (We don’t wish unfairly to pick cm Meridian

here. Similar results were obtained with a variety of other

compilers and platforms.) While numerical results from a

larger sample of larger programs will have to await the

completion of our interface slicer prototype, based on this

example of size reduction alone, the interface slicer can

help to ease the size and comprehension problems in

software maintenance.

L9K

Figure 9 Sliced IDG for LisfPkgTemp/afe

Because of the package structure and emphasis on

composition-based modular reuse, Ada is very amenable to

interface slicing. Because of the very large installed base

of Ada code, representing substantial development invest-

ment and intellectual capital of both industry and gover-

nment, the potential benefit for efficient reengineering,

adaptation, and reuse of Ada packages is enormous. Inter-

face slicing is a technique which can substantially reduce

the comprehension required for a package’s reuse, and

substantially reduce the size of the software system, in

both source and object forms, resulting from reuse.

4 Future directions

Our future plans include both abstract and practical
enhancement of this work, We will be implementing an

Ada interface slicer this summer as part of our work with

the Reposito~ Based Software Engineaing project, This

slicer will be used to generate the (program and interface)
lattice of slices for those components in our repository that

were written in Ada. We expect this work to allow us to

of nodes # of edges # of lines executable

Full Set + List ~ ~ ~ 49152 bytes
Sliced Set + ~lst 11+15 = 26 10+22 = 40 84+117 = 201 40960 bfles

% Reduction 55% ~ ~ ~

Table 1 Size improvements of IDG and package for Set and List

517

infer relationships between the complexity of the slice

lattices and the tamability and maintainability of the

corresponding components.

We also intend to apply our techniques to object-

oriented languages, particularly focusing on the possibility

of interface slicing class definitions for both the derivation

of new parent classes as part of the reengineering process

and for the purpose of negotiating reuse of existing class

definitions through composition. Recent work in contracts

[10,1 1] appears relevant here. We are also considering our

techniques in the context of reengineering legacy code into

new object-oriented systems.

5 Conclusion

Reverse engineering will always be with US. While

organizations that adopt mature, process-oriented develop-

ment models will find less need to reverse engineer or

reengineer since they will have captured the transforma-

tions as they occur and their rationales as they are generat-

ed, organizations at earlier stages of the maturity continu-

um will not have this alility. The only way in which they

will be able to leverage the intellectual capital buried in

their legacy code is through reverse engineering. Sofhvare

engineering environments must provide a balanced set of

forward and reverse engineering tools to support both

mature organizations in their normal operations and less

mature organizations in their transition to maturity. We

have presented here a portion of the foundation to build

such a toolset.

References

[1] J. Beck, “Interface sticing: a static program analysis tool for

software engineering,” PhD diss., Dept. Stat. & Computer Sci.,

West Virginia Univ., under preparation, 1993.

[2] J. Beck and D. Eichmann, “Program and interface slicing

for reverse engineering~’ Comp. Sci. Tech, Rep. TR-93-3, West
Virginia Univ., 1993.
[3] G. Booth. So@are Components with Aakz, Benjamin-

Cummings, 1987.

[4] E. Chikofsky and J. Cross, “Reverse engineering and design

recovery: a taxonomy;’ IEEE SO*., 7(l), pp 13-17, Jan. 1990.
[5] D. Elchmann and J. Beck, “Balancing generality and
specificity in component-based reuse,” submitted for publication,
1992.
[6] A. Engberts, W. Kozaczynski and J. Ning, “Concept
recognition-based program transformation,” Proc. Co& Sow.

Maintenance, pp 73-82, Sorrento, Italy, 15-17 Oct. 1991.
[7] J. Ferrante, K. Ottenstein, and J. Waxren, “The program
dependence graph and its use in optimization;’ ACM Trans.
Programming Lang. and Sysr., 9(3), pp 319-349, Jul. 1987.

[8] K. Gallagher and J. Lyle, “Using program slicing in

software maintenance,” IEEE Trans. Softw. Eng., 17(8), pp 751-

761, Aug. 1991.

[9] M. Hecht. Flow Antdysis of Computer Programs, Elsevier

Norrh-Holland, 1977.

[10] A. Hebn, I. Holland and D. Gangopadhyay, “Contracts:

Specifying Behavioral Compositions in Object-Oriented Sys-

tems:’ Proc. 00PS.L4ZECOOP W, Ottawa, Canada, pp 169-180,

21-25 Oct. 1990.

[11] I. Holland, “Specifying Reusable Components Using

Contracts;’ Proc. ECOOP 92, Utrecht, The Netherlands, pp 287-

308, 29 Jun. -3 Jul. 1992.

[12] S. Horwitz, J. Prins, and T. Reps, ‘Integrating non-

interfering versions of programs,” in 15th Ann. ACM SIGACT-
SIGPL4NSymp. Principles Prog. Lung., pp 133-145, (San Diego,

13-15 Jan.), ACM Press, 1988.

[13] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural

sticing using dependence graphs;’ ACM Trans. Prog. Lmtg. and
$@., 12(1), pp 26-60, Jan 1990.

[14] P. Livadas, S. Croll, and P. Roy, “Towards an integrated

software maintenance envirotnnen~” in Proc. 1st Softw. Eng.

Research Forum, (Tampa, Florida, 7-9 Nov.), 1991.

[15] J. Lyle and K. Gallagher, “A program decomposition

scheme with applications to software modhication and testing,”

Proc. 22nd Hawaii Intl. Con$ Syst. Sci., pp 479-485, 1989.

[16] J. Mooney and M. Sitaraman, pm. cmmn., Oct. 1992.

[17] W. Osborne and E. Chikofsky (eds.). SpeciaI Issue on

Maintenance, Reverse Engineering and Design Recovery, IEEE
Sojtw., 7(l), Jan. 1990,

[18] L. Ott and J. Thuss, “The relationship between slices and

module cohesion,” Proc. llth Zntl. Conjf Sojtw. Eng., pp 198-

204, May 1989.

[19] M. Platoff, M. Wagner and J. Camaratta, “An integrated

program representation and toolkit for the maintenance of C

programs;’ Proc. Conf So@. Maint., pp 129-137, Sorrento,

Italy, 15-17 Oct. 1991.

[20] J. Purtilo and J. Atlee, “Module reuse by interface adap-

tation:’ Softw.-practice and Exper., 21(6), pp 539-556, Jun. 1991.

[21] M. Rekoff, “On reverse engineering,” IEEE Trans. Sys-

tem.r, Man, and Cybernetics, pp 244-252, Mar. -Apr. 1985.

[22] C. Rich and L. Wilts, “Recognizing a program’s design:

a graph-parsing approach,” IEEE Sojlw., 7(l), pp 82-89, Jan.

1990.

[23] E. Soloway and K. Ehrlich, “Empiricrd studies of

progrdng knowledge,” IEEE Trans. Softw. Eng., SE-10(5), pp

595-609, Sep. 1984.

[24] J. Uhl and H. Schtnid, “A systematic catalogue of

reusable abstract data typs,” Lecture Notes in Computer Science

v 460, Goos and Harttnanis, eds., Springer-Verlag, 1990.

[25] M. Weiser, “Program slicing:’ Proc. 5th Intl. Conj

Sojw. Eng., pp 439-449, May 1981,

[26] M. Weiser, “programmers use slices when debugging,”

Comm. ACM, 25(7), pp 446-452, Jul. 1982.

[27] M. Weiser, “Program slicing;’ IEEE Trans. So~. Eng,,

SE-10(4), pp 352-357, Jul. 1984.

518

