
FACS 2006

Modeling Environment for Component Model
Checking from Hierarchical Architecture

Pavel Parizeka,1, Frantisek Plasila,b,1

a Department of Software Engineering
Charles University, Faculty of Mathematics and Physics

Prague, Czech Republic
{parizek, plasil} @ nenya.ms.mff.cuni.cz

b Institute of Computer Science
Academy of Sciences of the Czech Republic

Prague, Czech Republic
plasil @ cs.cas.cz

Abstract

Application of model checking to isolated software components is not directly possible because a component
does not form a complete program - the problem of missing environment occurs. A solution is to create an
environment of some form for the component subject to model checking. As the most general environment
can cause model checking of the component to be infeasible, we model the environment on the basis of
a particular context the component is to be used in. More specifically, our approach exploits hierarchical
component architecture and component behavior specification defined via behavior protocols, all that pro-
vided in ADL. This way, the environment represents the behavior of the rest of the particular application
with respect to the target component. We present an algorithm for computing the model of environment’s
behavior that is based on syntactical expansion and substitution of behavior protocols.

Keywords: Software components, behavior protocols, environment for model checking, hierarchical
component architecture

1 Introduction

Various methods of formal verification have already proven to be useful for finding
errors in large and complex software systems, and particularly in critical systems,
thus helping increase reliability of such systems. At present, one of the most pop-
ular approaches to verification of software systems is model checking [3], which is
an algorithmic technique for checking whether a finite model of a target system
satisfies a certain property. Typically, the model has the form of a finite labeled
transition system and the property can be expressed as a temporal logic expression
(LTL, CTL). Checking whether a property is satisfied in the model is based on an
exhaustive traversal of the state space determined by the model. This way, model

1 This work was partially supported by the Grant Agency of the Czech Republic (project number
201/06/0770).

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Parizek, Plasil

checking can help to find concurrency errors like deadlocks, which are very subtle
and quite hard to discover with traditional approaches such as testing. However,
the main advantage of model checking - traversal of the complete state space (i.e.
checking of the property in each state) - is also its main weakness. Especially in case
of more complex software systems, the state space may be large enough to make
model checking of a system not feasible; this is well-known as the state explosion
problem.

A completely different approach to building more reliable software systems is to
decompose large and complex systems into smaller and well-defined units - software
components. Typically, components are considered to be entities with well-defined
provided (server) and required (client) interfaces, and in some cases also with for-
mally specified behavior. A component-based application is a collection of individ-
ual components, which are interconnected via well-defined bindings between their
interfaces.

Components that have no externally observable internal structure, while hav-
ing real implementation in a certain programming language, are called primitive
components. Components containing nested subcomponents, i.e. components with
observable internal structure, are called composite components. The structure of a
composite component, commonly referred to as component architecture, is typically
defined in an Architecture Description Language (ADL) [2][7][8]. Usually, defini-
tion of a composite component in an ADL specifies also the external provided and
required interfaces of all components, bindings between the component and its sub-
components, and optionally component behavior (e.g. in an LTS-based formalism).

An example of a composite component, which will be used to illustrate the
ideas presented throughout the rest of the paper, is depicted on Fig. 1. The com-
ponent DBServer provides the db interface of type IDatabase and contains four
primitive subcomponents - Database, Logger, Transaction Manager, and Backup
Scheduler. The db interface of the DBServer component is implemented by del-
egation to the Database subcomponent. The Logger and Transaction Manager
subcomponents are bound to the required interfaces of the Database component,
and the Transaction Manager component is bound also to the required interface of
the Backup Scheduler component. In the rest of the paper, we will be interested es-
pecially in the Transaction Manager component, which provides the start, stop,
begin, commit and abort methods on its provided interface tm of type ITxMngr,
and the backup method on its provided interface bk of type IBackup.

1.1 Problem of Missing Environment

A viable approach is the application of model checking to individual software compo-
nents, for example, in order to verify that the component’s implementation satisfies
a formal specification of the component’s behavior. As an individual component
obviously generates a smaller state space than the whole application, the problem
of state explosion is also mitigated this way, at least partially.

However, considering only primitive components, the problem with model check-
ing of these components is that they are not complete programs (e.g. with main
method) - and model checkers typically analyze only complete programs. This

2

Parizek, Plasil

Database

Logger

db : IDatabase

tm : ITxMngr

logger : ILog

Transaction
Manager

logger : ILog

tm : ITxMngr

db : IDatabase

DBServer

bk : IBackup

Backup
Scheduler
bk : IBackup

Fig. 1. Architecture of the DBServer component

triggers the problem of missing environment. An obvious solution is to create an
environment of some form for each primitive component subject to model checking,
and then separately check the complete programs, each composed of a primitive
component and its environment.

Such an environment has to fulfill the following key requirements:

• It should be created in a way that minimizes the state space size of the program
composed from the component and its environment, while at the same time, it
should be complex enough to exercise the target component under all reasonable
behaviors (sequences and parallel interleavings of method calls) and all combina-
tions of input values.

• It should allow the model checker to search for concurrency errors; this is typically
reflected by calling methods of the component by more threads of control.

• It should force the model checker to check all the control flow paths in the com-
ponent’s code; this is usually addressed by calling each method of the component
several times with different combinations of parameter values - particular com-
bination for a method invocation being selected non-deterministically via means
provided by the model checker.

An environment for Transaction Manager (from Fig. 1) that fulfills all three
requirements could take the form depicted in Fig. 2 (only fragments of its Java code
are presented). From that it is clear that manual construction of the environment
is tedious and error-prone process. Therefore, we aim at creating a tool that would
generate the environment in an automated way, i.e. an environment generator.
As an input, the environment generator will get the specification of a component’s
environment, which has to determine all behaviors and combinations of input values.
Having the proper environment specification, the tool is able to produce a reasonable
environment for component model checking, which fulfills all the requirements stated
above.

3

Parizek, Plasil

public class EnvDbThread extends Thread
{
ITxMngr tm;

public void run()
{
String id = tm.begin(getRandomString());
if (getRandomBool()) tm.commit(id);
else tm.abort(id);
...

}
}

public class EnvBkThread extends Thread
{
IBackup bk;

public void run()
{
bk.backup(); ...

}
}

public static void main(String[] args)
{
TransactionMngrImpl tm = new TransactionMngrImpl();

tm.start();

new EnvDbThread(tm).start();
new EnvDbThread(tm).start();
new EnvBkThread(tm).start();

tm.stop();
}

Fig. 2. Fragments of Java code of environment for the Transaction Manager component

The specification itself may be divided into (i) a model of the environment’s
behavior and (ii) a definition of possible combinations of input values (i.e. method
parameters). All of this can be provided manually by the user or retrieved, for
example, from the ADL specification of the whole component-based application. In
this text, we focus on modeling of the environment’s behavior (our current approach
to definition of possible combinations of input values is described in [9]).

4

Parizek, Plasil

1.2 Goals and Structure of the Paper

The paper aims at addressing the problem of modeling the environment for model
checking of primitive software components that have their behavior specified in
the formalism of behavior protocols [12]. The main goal is to present our ap-
proach to modeling of the environment’s behavior, which exploits the definition of a
component’s architecture and specification of the component behavior via behavior
protocols provided in ADL.

The remainder of the paper is organized as follows. Sect. 2 provides an overview
of behavior protocols. Sect. 3 presents the key contribution - our solution to
computing the model of environment’s behavior from (i) the graph of bindings
between components in the architecture and (ii) the behavior specifications of all
the components (defined via behavior protocols) in the architecture. The rest of
the paper contains evaluation, related work and a conclusion.

2 Behavior Protocols

For specification and modeling of behavior of software components, we use the
formalism of behavior protocols.

A behavior protocol is an expression that specifies the behavior of a software
component in terms of specific atomic events on the component’s provided and
required interfaces, those events being accepted and emitted method call requests
and responses. Each behavior protocol defines a possibly infinite set of traces, where
each trace is a finite sequence of atomic events - we use L(prot) to denote the set of
traces specified by a protocol prot. The semantics of a behavior protocol is defined
in terms of labeled transition system (LTS), with transitions labeled by atomic
events.

Syntactically, a behavior protocol reminds a regular expression, with a set of
atomic actions working as the underlying alphabet. Each atomic event has the fol-
lowing syntax: <prefix><interface>.<method><suffix>. The prefix ? denotes
an accept event, the prefix ! denotes an emit event, the suffix ↑ denotes a re-
quest (i.e. a method call), and the suffix ↓ denotes a response (i.e. return from
a method). Several shortcuts, which make the protocols more readable, are also
defined. For example, an expression of the form ?i.m{prot} is a shortcut for the
protocol ?i.m↑;prot;!i.m↓, and an expression of the form ?i.m is a shortcut for
the protocol ?i.m↑;!i.m↓. The NULL keyword denotes an empty protocol.

In addition to standard operators ; (sequence), + (alternative), and * (repeti-
tion), behavior protocols provide the and-parallel operator |, which generates all
the possible interleavings of event traces defined by its operands, and the or-parallel
operator || (p || q stands for p + q + (p | q)).

The component’s frame protocol [12] describes the external behavior of the com-
ponent by defining all the valid sequences of events (i.e. traces) on the component’s
external interfaces. For composite components, the architecture protocol describes
the composed behavior of all subcomponents at the first level of nesting; it is gen-
erated as a parallel composition of frame protocols of the subcomponents.

The frame protocol of Transaction Manager (Sect. 1) is

5

Parizek, Plasil

(?tm.start ; ?tm.begin* ; (?tm.begin* | ?tm.commit* |
?tm.abort*) ; ?tm.stop) | ?bk.backup*

It is a parallel composition of two subprotocols. The first of them specifies that
the component should accept finite number of calls of backup on the bk interface.
The second subprotocol states that the component has to accept call of start on its
tm interface and then a finite number of calls of begin on tm, then it should accept
calls of begin, commit and abort on tm in parallel, and finally it should accept the
call of stop on tm.

The frame protocol of Database might be

?db.start{!logger.start ; !tm.start} ;
(
?db.add{!tm.begin ; (!tm.commit + !tm.abort)}
+
?db.get{!tm.begin ; (!tm.commit + !tm.abort)}
+
?db.remove{!tm.begin ; (!tm.commit + !tm.abort)}

)* ;
?db.stop{!logger.stop ; !tm.stop},

the frame protocol of DBServer might be

?db.start ; (?db.add + ?db.get + ?db.remove)* ; ?db.stop,

and the frame protocol of Backup Scheduler might be !bk.backup*.
An advantage of using behavior protocols for specification of component’s behav-

ior is the possibility to check whether the components equipped with frame protocols
are behaviorally compliant, i.e. whether the components communicate without er-
rors. We distinguish between (i) the horizontal compliance of components at the
same level of nesting and (ii) the vertical compliance of a frame of a composite
component with the underlying architecture (expressed by the architecture proto-
col). Nevertheless, checking of behavior compliance makes sense only under the
assumption that the implementation of each primitive component satisfies its frame
protocol (we say that the component obeys its frame protocol). This holds only
if the component accepts/issues only such method-call related event sequences on
its external provided and required interfaces that are specified by the component’s
frame protocol. An obvious approach to checking whether a component obeys its
frame protocol is to use code model checking; for that purpose we have a tool [10]
that accepts only complete programs as input, and therefore we need to create an en-
vironment that, together with the component, makes a complete program accepted
by our tool.

3 Modeling the Environment with Behavior Protocols

As indicated in Sect. 1.1, a model of the environment’s behavior has to be supplied
as a part of the environment specification that is provided to an environment gen-
erator. The model of the environment’s behavior should reflect the fact that the
resulting environment has to represent the behavior of all other components that

6

Parizek, Plasil

can possibly be bound to the target component. As an example, consider the com-
ponent architecture on Fig. 1; the environment for Transaction Manager should
represent at least the behavior of Database and Backup Scheduler with respect
to Transaction Manager.

Our first solution to modeling of the environment’s behavior, presented in [9],
uses the inverted frame protocol [1] of the target component, which is constructed
from the component’s frame protocol by replacing all the accept events by emit
events and vice versa. Such a model is the most general one, as the component’s
frame protocol specifies all the sequences of events the component can accept/issue
on its external (provided and required) interfaces. A drawback of this solution is that
the environment generated this way can be very complex, frequently making model
checking of the program composed of the component and its environment suffer
from state explosion. In [9] we presented an attempt to mitigate this drawback
by designing heuristic transformations and approximations of the frame protocol
that simplify the resulting environment to an extent that makes checking feasible.
However, a problem with this approach is that the resulting environment exercises
the target component only by a subset of the behaviors defined by the component’s
frame protocol; therefore, checking whether the component obeys its frame protocol
is not exhaustive in such a case.

In order to solve this problem, we propose a new approach to modeling the envi-
ronment’s behavior on the basis of a particular context - in our case, an architecture
the component is expected to be used in. More specifically, our approach exploits
(i) the definition of the architecture the target component is a part of, and (ii) the
behavior specification (defined as behavior protocols) of all the components that
form the architecture. Here, the basic idea is to use context protocol of the target
component, which specifies the actual use of the target component by the other
components of the architecture (and vice versa), as the model of the environment’s
behavior.

Using the context protocol instead of the inverted frame protocol as the model
of the environment’s behavior is useful especially in the case, where a particular
component-based application exploits only a subset of the functionality provided by
the target component - the context protocol then specifies only a subset of behaviors
determined by the inverted frame protocol, thus helping mitigate the problem of
state explosion.

To illustrate the advantage of using the context protocol instead of the inverted
frame protocol, consider again the architecture on Fig. 1, having the frame protocols
of the Transaction Manager, Database, and Backup Scheduler components as
presented in Sect. 2. Since the frame protocol of Database effectively specifies
call of begin on its required interface tm followed by an alternative between calls
to commit and abort on tm, all that repeated for a finite number of times, then,
despite the fact that the frame protocol of Transaction Manager specifies parallel
calls of those methods, the context protocol for Transaction Manager is

(!tm.start ; (!tm.begin ; (!tm.commit + !tm.abort))* ; !tm.stop)
| !bk.backup*

Such a context protocol for Transaction Manager obviously specifies a subset of

7

Parizek, Plasil

behaviors determined by the component’s (inverted) frame protocol, and, therefore,
model checking of Transaction Manager with the environment modeled by this
context protocol will have lower time and space requirements, than if the inverted
frame protocol was used for this purpose.

Notice also, that the behavior determined by the component’s context protocol
has to be a subset of behavior specified by the component’s inverted frame proto-
col for the checking of a component against its frame protocol to work correctly;
otherwise the model checker could report some “false errors” in addition to viola-
tions of the component’s frame protocol by its implementation, since also the traces
not allowed by the frame protocol will be defined in the context protocol (with
corresponding behavior being encoded in the generated environment) in this case.
In other words, for the inverted frame protocol IFC of the component C and its
context protocol CTXC , the formula L(CTXC) ⊆ L(IFC) must hold.

3.1 Computing the Model of Environment’s Behavior

Technically, our approach is to compute a behavior protocol that models behavior of
target component’s environment from (i) frame protocols of the other components
at the same level of nesting, (ii) the inverted frame protocol of the parent component
and (iii) the bindings between component’s interfaces; we denote the output, i.e.
the model of the environment’s behavior, to be the environment protocol of the
target component. The ideal algorithm for this purpose is the one that fulfills the
following two requirements:

• It should take only a fraction of time required by actual model checking of the
target component, as the task of environment construction is only a prerequisite
to the process of model checking, which has big time and space requirements on
its own.

• The algorithm should be precise; i.e. the resulting environment protocol should
represent exactly those behaviors that can be exercised on the target component
by other components taking part in the particular architecture, i.e. it should
specify the same behavior like the target component’s context protocol. Repre-
senting a subset of those behaviors would prevent exhaustive model checking and
representing a superset of those behaviors could possibly reduce efficiency of the
checking (by increasing the state space size).

However, for the algorithm to have low time requirements (which is our top
priority), it is necessary to make a compromise on the second requirement, as com-
puting the environment protocol that specifies exactly the same behavior as the
context protocol could be a very time- and space-consuming task for some inputs.
In such cases, the algorithm should produce an environment protocol that is a su-
perset of the context protocol (in terms of behavior specified by it) in an efficient
way. Nevertheless, considering the inverted frame protocol IFC of the component
C, its context protocol CTXC , and its environment protocol EC , then the formula
L(CTXC) ⊆ L(EC) ⊆ L(IFC) must hold. Consequently, the component’s environ-
ment protocol will specify the same behavior as its inverted frame protocol in the
worst case.

8

Parizek, Plasil

DBServer

Database

Transaction
ManagerLogger

DBServer::db - Database::db

Database::tm -
Transaction Manager::tm

Database::logger -
Logger::logger

DBServer

Database

DBServer::db - Database::db

a) b)
Backup

Scheduler

Backup Scheduler::bk -
Transaction Manager::bk

Backup
Scheduler

Fig. 3. a) graph of bindings between components; b) binding trees for the Transaction Manager component

3.1.1 Syntactical Approach
We designed an algorithm, which is based on syntactical expansion and substitution
of (parts of) behavior protocols. Its input consists of the frame protocols of all the
components in the architecture (except the target one) and the graph of the bindings
between the components, and its output is the environment protocol of the target
component. The algorithm is divided into three steps, described below.

The first step is the reduction of the graph of bindings to a subgraph that
contains only the paths that start at a parent component or at a component with
no provided interfaces (or with all its provided interfaces unbound) and end at
a component that is bound to the target component. In fact, the subgraph is a
set of acyclic graphs, which we call binding trees (despite the fact that some of
them may actually be DAGs) - there is one binding tree for the parent component,
if defined in the architecture, and one binding tree for each component with no
provided interfaces (or with all its provided interfaces unbound). Considering the
architecture on Fig. 1, the graph of bindings on Fig. 3a, and the Transaction
Manager component as the target one, this step of the algorithm will produce a
subgraph that is depicted at the Fig. 3b. The first binding tree of the subgraph
consists of two nodes - the root node corresponding to the DBServer component,
and its child node corresponding to the Database component - and one edge that
represents the binding between the two components, and the second binding tree
consists of one node corresponding to the Backup Scheduler component.

In the second step, a part of the environment protocol is constructed for each
binding tree via syntactical expansion of protocols during traversal of a tree in the
DFS manner. The frame protocol of the component (or inverted frame protocol in
case of a parent component) corresponding to the root node of a tree represents
the initial version of the part of the environment protocol for the particular binding
tree. Then, when backtracking over an edge from a node A to a node B (which
is the parent of A) during DFS, all bindings between the required interfaces of
the component CB (represented by the node B) and provided interfaces of the
component CA (represented by the node A) are taken, and for each of these bindings
all the calls on the corresponding required interface of CB (as defined in its frame
protocol) are replaced with reactions to those calls (as defined in the frame protocol

9

Parizek, Plasil

of CA) in the current version of the part of the environment protocol. If the frame
protocol of CA specifies two or more reactions to some specific method call that are
connected via the and-parallel operator, it is necessary to use all these reactions
together with the connecting and-parallel operators preserved for the purpose of
replacing the corresponding call.

a)

+

;

!db.add ?db.add

+

;

?db.add !db.add

!tm.begin

b)

+

;

?tm.abort !tm.begin ?tm.abort

!db.add ?db.addα α

γ γ

Fig. 4. a) parse tree for the frame protocol of Database; b) illustration of one step in construction of the
environment protocol for Transaction Manager - replacement of call to db.add with a reaction to the call
(specified in the frame protocol of Database)

For illustration of the syntactical expansion of protocols, consider the first bind-
ing tree on Fig. 3b and the Transaction Manager component as the target one.
Then, when backtracking over the edge that represents the binding between DBServer
and Database, the call !db.add will be expanded to a reaction to this call that is
specified in the frame protocol of Database, i.e. to a subprotocol !tm.begin ;
(!tm.commit + !tm.abort), as depicted on Fig. 4 (the figure showing only frag-
ments of parse trees of the protocols).

In the third step of the algorithm, parts of the environment protocol for all
binding trees are connected via the and-parallel operator, thus forming the resulting
environment protocol for the target component. Using the and-parallel operator is
necessary because calls delegated from the parent component (if it exists) can be
performed in parallel with calls performed by components that have no provided
interfaces (or have all of them unbound). Considering our example, there are two
binding trees, one with the DBServer component as its root node and the second
with the Backup Scheduler component as its root node; therefore, the two parts of
the environment protocol that correspond to these binding trees will be connected
with the and-parallel operator.

Finally, the environment protocol is simplified to contain only events that rep-
resent calls on the provided interfaces of the target component, as all other events
are not relevant for modeling the environment of the target component and can be
therefore safely ignored.

The output of our algorithm for the Transaction Manager component is de-
picted in Fig. 5. It is an environment protocol that specifies the same behavior as
the component’s context protocol presented in Sect. 3, i.e. both protocols specify
the same set of event sequences. The presence of an alternative between subproto-
cols of the form (!tm.begin ; (!tm.commit + !tm.abort)) is only a syntactical
difference, which could be handled by preprocessing of some form before the envi-

10

Parizek, Plasil

ronment is actually generated from the environment protocol. The reason for the
environment protocol to have this form, not allowing parallel invocation of methods
on the tm interface, is that the frame protocol of DBServer specifies no parallelism;
calls on db specified in the inverted frame protocol of DBServer are replaced with
reactions to those method calls that are specified in the frame protocol of Database,
when the environment protocol is constructed.

(
!tm.start ;
(
(!tm.begin ; (!tm.commit + !tm.abort))
+
(!tm.begin ; (!tm.commit + !tm.abort))
+
(!tm.begin ; (!tm.commit + !tm.abort))

)* ;
!tm.stop

)
|
!bk.backup*

Fig. 5. Environment protocol for the Transaction Manager component

Consequence of the environment protocol for Transaction Manager specifying
only repetition of alternative calls on the tm interface (i.e. real usage of the compo-
nent in the given architecture) is that the environment modeled by this environment
protocol will determine smaller state space (of the program composed of the com-
ponent and environment) than if the component’s inverted frame protocol, which
allows for parallel calls of these methods, is used for modeling of the environment’s
behavior.

4 Evaluation

As already mentioned in Sect. 3, an advantage of modeling the environment’s
behavior via environment protocol is that the environment protocol reflects the real
usage of the target component in the specific architecture the component is used
in, and, therefore, it will typically specify a subset of behaviors determined by the
inverted frame protocol of the target component. On the other hand, a drawback
of using the environment protocol is that checking of the component has to be
performed again for each architecture the component is used in, since a different
subset of behaviors defined by the component’s frame protocol may be exploited in
each component architecture. In any case, checking whether the target component
obeys its frame protocol is exhaustive (with respect to the specific architecture), if
the environment protocol is used - not like when the heuristic transformations of
the inverted frame protocol are applied, which make checking of the component not
exhaustive (although more feasible in most cases).

The algorithm for computing the environment protocol, which is described in
Sect. 3.1.1, works well and produces expected results; its time and space require-

11

Parizek, Plasil

ments being fractional with respect to actual checking of the component. For ex-
ample, the algorithm is able to detect that methods of the target component are
called sequentially or alternatively in the given architecture, even though the com-
ponent’s frame protocol allows for parallel calls of the methods of the component
(see the example in Sect. 3.1.1 for illustration). Nevertheless, it is hard to esti-
mate the state space reduction achieved by our approach in general, as the level
of reduction depends on each specific case (i.e. how the target component is used
in the particular architecture); a systematic analysis of this issue is subject of our
current research. We also have a proof-of-concept implementation that was tested
on several examples, including the one presented in this paper.

However, our solution has also some drawbacks. One of them is that the syntax-
based algorithm does not produce a correct environment protocol if the component
is able to perform some calls on its required interfaces autonomously. Specifically,
such calls will not be included in the resulting environment protocol, which is then
incorrect because it will not force the environment to wait for these calls to hap-
pen (i.e. wait till the component issues the calls). The reason for not including
autonomous calls on component’s required interfaces in the environment protocol
is that binding trees does not contain bindings of the target component’s required
interfaces to the provided interfaces of other components in the architecture.

Second problem of our approach is that syntactical expansion of protocols may
not produce a correct result in cases, when the frame protocol of a certain component
specifies more reactions to some method call that are connected via the sequence
operator. In that case, it is generally not possible to decide, in an efficient way,
which reaction is the appropriate one for the particular method call.

Third drawback of our solution, less significant than the first two, is that our
algorithm may produce an environment protocol that specifies a superset of behav-
iors determined by the context protocol for some inputs. Nevertheless, one of our
design requirements was to develop an efficient algorithm with respect to both time
and space, and this has been achieved with designing the algorithm to produce the
environment protocol that specifies more behaviors than the context protocol in
some cases.

5 Related work

The problem of model checking of isolated software components, which form a
component-based application, can be seen as a variation of compositional model
checking [4], whose basic idea is to (i) decompose a target system into several com-
ponents, (ii) verify local properties of the components via model checking, and (iii)
deduce global properties of the whole system from the local properties of the com-
ponents. The key point of this approach is checking properties of a composition of
a selected component with a model of its environment, instead of checking prop-
erties of the isolated component; by using an environment, it is guaranteed that
the checked local properties are preserved also at the global level. The difference
between compositional model checking and our approach is that the former aims at
checking global properties of the whole program (or a set of processes) via checking
local properties of individual components (or processes), while our approach aims at

12

Parizek, Plasil

checking the properties specific to individual components (e.g. obeying of a frame
protocol).

For verification of properties of software components, the assume-guarantee ap-
proach [6][11] is often used. The idea is to check a component only in such envi-
ronments that satisfy certain assumptions typically provided by the user; we can
say that the assumptions model the valid environments of a component subject to
model checking. This way, the need to check the component in all possible environ-
ments (or in a universal environment), what is usually an infeasible task, is avoided.
Application of model checking to a component with an environment satisfying a cer-
tain assumption then verifies whether the component satisfies the given property
under the given assumption. If the model checker returns a positive answer, it is
guaranteed that the component, when used in an environment that satisfies the
specific assumption, must satisfy the given property in this environment. In order
for the checking of a component to be of practical use, the assumptions should
together model the real environment of the component (e.g. an architecture the
component is to be used in). The most popular means for expressing the assump-
tions is the temporal logic (LTL), which is commonly used also for specification of
the properties.

However, in our specific case, we use the environment protocol as the assumption
about the environment for model checking of components. This way, we do not have
to check whether such an assumption holds for the environment actually used, as the
environment is generated on the basis of the environment protocol, and therefore
the assumption represented by the environment protocol holds trivially. Typical
application of the assume-guarantee paradigm also requires the assumptions to be
manually created by the user; in our case, we have to manually define the frame
protocols of all the components in the architecture - the environment protocol is
then automatically computed from these frame protocols and bindings between
components (this info is stored in the corresponding ADL file). We are aware
of only one automatic approach to generating the assumptions for compositional
verification, which is based on incremental learning [5].

6 Summary

Direct model checking of isolated software components is typically not possible
because a component does not form a complete program which is accepted as an
input by a typical program model checker (the problem of missing environment).
Therefore, a solution is to create an environment of some form for the component
that is subject to model checking.

We proposed to model the environment on the basis of a particular component
architecture the target component is expected to be used in; the architecture being
a context for the component. Specifically, since we aim at hierarchical component
architectures with component behavior modeled via behavior protocols, we model
the component’s environment behavior with an environment protocol computed
from frame protocols of other components taking part in the given architecture.

We have presented an algorithm for computing the environment protocol, which
is based on syntactical expansion and substitution of frame protocols. Finally, we

13

Parizek, Plasil

showed that the solution for modeling the environment’s behavior on the basis of
the environment protocol is more efficient than our previous approach [9] based on
an inverted frame protocol; the reason for this is that the environment protocol
reflects the real usage of the target component in the given architecture, while the
inverted frame protocol specifies the most general environment for the component.

As for future work, we plan to extend our current algorithm for computing
the environment protocol with support for components that call methods on their
required interfaces autonomously.

Acknowledgments

We would like to record a special credit to Jan Kofron for valuable comments re-
garding the design and implementation of the algorithm for computation of the
environment protocol.

References

[1] Adamek, J., and F. Plasil, Erroneous Architecture is a Relative Concept, Proceedings of Software
Engineering and Applications (SEA), ACTA Press, pp. 715-720, Nov 2004

[2] Allen, R., “A Formal Approach to Software Architecture”, PhD Thesis, School of Computer Science,
Carnegie Mellon University, 1997

[3] Clarke, E. M., O. Grumberg, and D. Peled, “Model Checking”, MIT Press, 2000

[4] Clarke, E. M., D. E. Long, and K. L. McMillan, Compositional Model Checking, In Proceedings of the
4th Symposium on Logic in Computer Science, June 1989

[5] Cobleigh, J. M., D. Giannakopoulou, and C. S. Pasareanu, Learning Assumptions for Compositional
Verification, In Proceedings of 9th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), April 2003

[6] Giannakopoulou, D., C. S. Pasareanu, and H. Barringer, Assumption Generation for Software
Component Verification, In Proceedings of the 17th IEEE Conference on Automated Software
Engineering (ASE), IEEE CS, 2002

[7] Magee, J., and J. Kramer, Dynamic Structure in Software Architectures, Proceedings of FSE4, Oct
1996

[8] Medvidovic, N., ADLs and dynamic architecture changes, Joint Proceedings SIGSOFT1996 Workshops,
ACM Press, Oct 1996

[9] Parizek, P., and F. Plasil, Specification and Generation of Environment for Model Checking of Software
Components, Accepted for publication in Proceedings of FESCA 2006, ENTCS, Mar 2006

[10] Parizek, P., F. Plasil, and J. Kofron, Model Checking of Software Components: Combining Java
PathFinder and Behavior Protocol Model Checker, Accepted for publication in Proceedings of 30th
IEEE/NASA Software Engineering Workshop (SEW-30), IEEE CS, Apr 2006

[11] Pasareanu, C. S., M. B. Dwyer, and M. Huth, Assume-Guarantee Model Checking of Software: A
Comparative Case Study, In Proceedings of the 6th SPIN Workshop, LNCS, 1680(1999), pp. 168-183,
1999

[12] Plasil, F., and S. Visnovsky, Behavior Protocols for Software Components, IEEE Transactions on
Software Engineering, 28(2002)

14

	Introduction
	Problem of Missing Environment
	Goals and Structure of the Paper

	Behavior Protocols
	Modeling the Environment with Behavior Protocols
	Computing the Model of Environment's Behavior

	Evaluation
	Related work
	Summary
	References

