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Abstract. Although there exist several software model checkers that check
the code against properties specified e.g. via a temporal logic and assertions,
or just verifying low-level properties (like unhandled exceptions), none of
them supports checking of software components against a high-level behavior
specification. We present our approach to model checking of software
components implemented in Java against a high-level specification of their
behavior defined via behavior protocols [1], which employs the Java
PathFinder model checker and the protocol checker. The property checked by
the Java PathFinder (JPF) tool (correctness of particular method call
sequences) is validated via its cooperation with the protocol checker. We
show  that just the publisher/listener pattern claimed to be the key flexibility
support of JPF (even though proved very useful for our purpose) was not
enough to achieve this kind of checking.

1  Introduction

Model checking is one of the approaches to formal verification of finite state
hardware and software systems. A model checker usually accepts a finite model of
a target system and a property expressed in some property specification language,
and checks whether the model satisfies the property via traversal of the state space
that is generated from the model. Especially model checking of software is a



popular research topic nowadays, mainly because there are several issues that have
to be solved before the technique can be used for real-life applications.

A general problem of model checking is the necessity to create a model of the
system to be checked. Manual construction of the model is an error-prone process,
and even if the model is automatically extracted from a specification of the system
or from the source code, it is an abstraction - therefore, a model checker may find
errors in the model that are not present in the original program and vice versa. A
solution is to use a model checker that does not need to have a model, but works
directly with the implementation of a target system. 

In case of properties to be checked, the most common ways to express them are
via a temporal logic (LTL, CTL) and in the form of assertions. However, it is also
possible to check for a predefined set of properties - deadlocks or properties
specific to a certain class of systems such as device drivers.

 As to software model checking at the program source code level, a crucial
problem is the size of state space triggered by the model of a program (i.e. the
problem of state explosion). Despite that, there exist such model checkers. For Java
programs, these are most notably the Java PathFinder (JPF) [5] and Bandera [7]
tools. (An advantage of JPF over Bandera is that the most recent release of the
latter is an alpha version, not being fully stable yet, and that JPF is also more
extensible). The properties checked are either predefined (e.g. absence of a
deadlock) or to be specified in LTL (Bandera) and via assertions related to the code
(JPF).  A typical feature of both Bandera and JPF is the combination of static
program analysis and model checking. The former is used to create a program
model; to lower the state space size, abstraction techniques are applied - these
include partial order reduction [13] and data abstraction [13]. 

State explosion can be also mitigated by the decomposition of a software system
into small and well-defined units, components. Typically, a software component
generates smaller state space than the whole system and therefore can be checked
with fewer requirements on space and time. Nevertheless, model checking of code
of software components usually brings along the problem of missing environment,
what means that it is not possible to model check an isolated component, because
it does not form a complete program with an explicit starting point (e.g. the main
method). In order to solve this obstacle, it is necessary to create a model of the
environment of the component subject to model checking, including the
specification of possible values of method parameters, and then check the whole
program, composed of the environment and component. A specific feature of
software components is the existence of ADLs (Architecture Description
Languages) used to specify component interfaces, and first of all composition of
components via bindings of their interfaces (i.e to specify the architecture of a
component-based application at a higher level of abstraction than code). Some
ADLs even include the option to specify behavior of the components, typically in
a LTS-based formalism [15, 18, 16, 17].

 An obvious challenge, not addressed yet to our knowledge,  is to check the code
of software components against a high-level behavior specification provided at the
ADL component specification level.
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Figure 1: Architecture of the DBServer component

1.1  Goal and structure of the paper

The goal of the paper is to show how the challenge mentioned above can be
addressed for software components implemented in the Java language and a high-
level specification of their behavior defined via behavior protocols [1] employed
in ADL. We present our approach that integrates the Java PathFinder model
checker with the behavior protocol checker [4].

The remainder of the paper is organized as follows. Sect. 2 presents an example
of a component ADL specification, Sect. 3 provides an overview of behavior
protocols [1] and Sect. 4 introduces the Java PathFinder model checker. Sect. 5
presents the key contribution - the description of our solution for model checking
of primitive (non-composed) software component’s code against behavior protocols
that makes JPF cooperate with the protocol checker. Sect. 6 provides results of
evaluation and the rest of the paper contains related work and conclusion.

2  Example

In this section we provide an example, which will be used to illustrate the ideas
presented throughout the rest of the paper. Consider the component architecture in
Fig.1. Here the component DBServer provides the IDatabase  interface and
contains three primitive subcomponents - Database, Logger and Transaction
Manager. The IDatabase interface is implemented by the delegation to the
Database subcomponent. The other two subcomponents of the DBServer
component are bound to the required interfaces of the Database subcomponent.

Fragments of an ADL specification for the DBServer and Database
components may take the following form:



frame DBServer {
  provides:
    IDatabase db;
  protocol:
    ?db.start ; (?db.add || ?db.get || ?db.remove)* ;
?db.stop
};

frame Database {
  provides:
    IDatabase db;
  requires:
    ILog logger;
    ITxMngr tm;
 protocol:
    // presented in Sect. 3
};

These fragments specify the frame (boundary, a collection of interface instances)
of the components DBServer and Database. For instance, the specification  states
that Database has two required interfaces (logger of the type ILog and tm of
the type ITxMngr); in a similar vein, db of the type IDatabase is its provided
interface. The protocol section of each of the frames contains the behavior
specification (in the form of behavior protocols explained in Sect. 3) of the
respective component.

Fragments of Java source code of all interfaces and implementation of the
Database component follow:

public interface IDatabase
{
    public void start();
    public void stop();
    public void add(String key, Object data);
    public Object get(String key);
    public void remove(String key);
}

public interface ILog
{
    public void log(String message);
}

public interface ITxMngr
{
    public void init();
    public void destroy();
    public void begin();
    public void commit();
    public void rollback();
}

public class DatabaseImpl implements IDatabase
{
    private ILog logger;
    private ITxMngr tm;

    public void start()
    {
        logger.log(“start”);
        tm.init();



    }

    public void stop()
    {
        logger.log(“stop”);
        tm.destroy();
    }

    public void add(String key, Object data)
    {
        tm.begin();
        ... // adding data
        if (ok) tm.commit();
        else tm.rollback();
    }

    public Object get(String key)
    {
        // similar to the add method
    }
   
    public void remove(String key)
    {
        // similar to the add method
    }
}

3  Behavior Protocols

3.1  Basics

A behavior protocol is an expression that describes the behavior of a software
component in terms of atomic events on the provided and required interfaces of a
component, i.e. in terms of accepted and emitted method call requests and
responses on those interfaces. The semantics of a behavior protocol is defined in
terms of Labelled Transition System (LTS), where transitions are labeled by atomic
events.

Each atomic event in a behavior protocol has the following syntax: <prefix>
<interface>.<method> <suffix>. The prefix ? denotes an accept event and
the prefix ! denotes an emit event. The suffix 8 stands for a request (i.e. a method
call) and the suffix 9 stands for a response (i.e. return from a method).

Several useful shortcuts are defined - an expression of the form !i.m is a
shortcut for the protocol !i.m8 ; ?i.m9, an expression of the form ?i.m is a
shortcut for the protocol ?i.m8 ; !i.m9 and an expression of the form
?i.m{prot} is a shortcut for the protocol ?i.m8 ; prot ; !i.m9. The NULL
keyword denotes an empty protocol.

The protocol section of the ADL example in Sect. 2 illustrates how most of the
operators of behavior protocols are applied. It includes the sequence operator ;, the
repetition operator *, the alternative operator +, and the or-parallel operator ||.
There is also an and-parallel operator |, yielding all the possible interleavings of



the event traces defined by its operands. The or-parallel operator is a shortcut
(p || q stands for p + q + (p | q), where p and q are behavior protocols).

A behavior protocol defines a possibly infinite set of traces, where each trace is
a finite sequence of atomic events.

The following protocol specifies a part of the Database component’s behavior.

?db.start8 ; !logger.start8 ; ?logger.start9 ; !tm.init8 ;
?tm.init9 ; !db.start9

It starts with accepting request for start call on db, then, as a reaction, issues
the request for start call on logger and accepts the response, does the same for
the init call on tm, and, finally, issues a response to start call on db.

For every component, we assume its frame protocol [1] is specified in ADL. The
frame protocol describes the external behavior of a component, which means the
protocol pertains only the events on the external interfaces determined by the
component’s frame. For every composite component, its architecture protocol can
be generated as a parallel composition of the frame protocols of the subcomponents
at the first level of nesting [1].

The frame protocol of the Database component, with the syntactical shortcuts
mentioned above applied, might be:

?db.start{!logger.start ; !tm.init} ; 
(
  ?db.add{!tm.begin ; (!tm.commit + !tm.rollback)} 
  ||
  ?db.get{!tm.begin ; (!tm.commit + !tm.rollback)}
  ||
  ?db.remove{!tm.begin ; (!tm.commit + !tm.rollback)} 
)* ; 
?db.stop{!logger.stop ; !tm.destroy}

The behavior specified by this protocol reflects the expected usage pattern of the
component and also its reaction to each call accepted on its db interface. For
example, it states that when the component accepts a request for add call on db, it
should (in the following order)

1) call the begin method on tm,
2) call one of the commit and rollback methods on tm, and, finally,
3) issue a response to the add call on db.

In addition, the protocol states that calls of add, get, remove on db can be
accepted in parallel and this can be repeated a finite number of times.

Important feature of behavior protocols is the notion of behavior compliance
which allows to say whether two components, equipped with frame protocols, can
communicate without errors or not. Horizontal compliance of components that are
at the same level of nesting is evaluated via mechanism similar to parallel
composition of their frame protocols the result of which are not only the traces
produced by the | operator, but also all erroneous traces reflecting communication
errors (such as no activity and bad activity [2]). Vertical compliance between a
frame and an underlying architecture is evaluated by being treated as horizontal



compliance between the architecture’s protocol and inverted frame protocol
(constructed from the frame’s protocol by replacing all accept events with emit
events and vice versa)[3].  

Obviously, the whole component-based system, in which the horizontal and
vertical compliance is verified at all levels of component nesting, works fine under
the assumption that the code of each primitive component really implements what
was specified by its frame protocol. More precisely, on its frame interfaces the
component has to accept/issue such method call-related event sequences that
correspond to the traces specified by the frame protocol - it has to obey its frame
protocol [1].

3.2  Protocol Checker

For the purpose of static checking of compliance between two protocols, we use the
static protocol checker [4] developed in our research group. Taking two protocols
as arguments, it creates a parse tree for each of these protocols and then produces
a composite parse tree that determines the state space reflecting the parallel
composition of the two protocols. A transition in the state space represents
execution of an atomic event. In each step of state space traversal, the checker
acquires the list of possible transitions from the current state. In search for
communication errors, it systematically, in the DFS manner, explores all branches
in the state space that correspond to those transitions.

In addition, in our research group, we have also developed a runtime protocol
checker to check whether a component does not violate obeying of its frame
protocol in a particular run. The tested component is equipped by interceptors at its
frame’s interfaces which notify the runtime checker on the method call related
events. Not needing to traverse the whole state space (and employ backtracking),
the run time checker just selects the transition that corresponds to an actually
observed event; if there is no such available in the state space, it reports a violation
of the frame protocol’s obeying.

4  Java PathFinder

Java PathFinder (JPF) [5] is a modern explicit state software model checker for
Java byte code. More specifically, it is a specialized Java Virtual Machine (JPF
VM), which runs on top of the underlying host JVM, and, in contrary to the
standard JVM, executes the program in all possible ways. The state space of a
target program is a tree in principle, with branches determined by the threads’
instructions interleaving and possible values of input data.

Like other model checkers for concurrent programs, JPF supports partial order
reduction (POR) [13]. It is reflected in that JPF actually traverses a reduced state
space where each state is associated with one of the following events (“points”) in
the byte code execution: 



(a) Scheduling point. The current instruction is thread scheduling relevant (e.g.
it accesses a shared variable, starts/stops a thread, blocks a thread, etc.)

(b) Value point. A value selection takes place (see below).
In order to enable checking of a code unit (e.g. a method) for different values of

input data (e.g. method parameters), JPF contains a static class Verify that
provides methods for a systematic selection of values of virtually any type. The
methods of Verify are to be called in the checked code. For example, if the
checked code unit executes Verify.random(3), an integer value from the range
0..3 is selected.  However, after reaching an end state, JPF backtracks (recursively)
up to the Verify.random(3) call and selects another value from 0..3; this is
repeated until all the values from this interval have been used for execution.
Obviously, employing methods of Verify increases  the state space size since each
selected value triggers a different branch in the state space.

By default, JPF searches the state space of the checked program for “low-level”
properties like deadlocks, unhandled exceptions and failed assertions, however
since it is extensible via the publisher/listener pattern, it allows to observe the
course of the state space traversal. This way, listeners can check for specific
properties in each visited state. 

Each state of a checked program, as stored by JPF, consists of the heap, static
area and stacks of all threads thus representing the current state of the checked
program at a particular scheduling or value point.  When traversing the state space,
JPF checks whether the current state has been already visited. In a positive case,
it backtracks to the nearest scheduling or value point, for which there exist an
unexplored branch and continues along that. This backtracking is based on keeping
a stack representing the currently explored path in the state space (an item in the
stack determines the list of not yet visited branches).

5  Model Checking Against Behavior Protocols

5.1  Motivation - Analysis of Options

Our key desire is to check whether a primitive component, implemented in Java,
obeys its frame protocol. Since JPF is, without any extension, able to check only
low-level properties (Sect. 4), and obeying a frame protocol is a quite high-level
property, checking for this property in JPF is not directly possible. We identified
the following options to tackle this problem:

(i) Protocol assertions: To enhance the component’s code with assertions
reflecting the frame protocol, and then let JPF check for violation of the assertions.

(ii) State spaces integration: To modify JPF in such a way that (a) any method
call on an external (frame) interface of the component will be respected in POR, i.e
there will be a state associated with the call, and (b) the state space representing the
frame protocol will be an integral part of the state space searched by JPF; the later
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Figure 2: Communication between the JPF and Protocol Checker - traversal of
state spaces in the onward direction

can be achieved by some kind of parallel composition of the protocol related and
code related state spaces. 

(iii) Checkers’ cooperation: To modify POR as described above (ii(a)) and keep
the code and protocol related state spaces separated and let model checker for each
of them cooperate, i.e. to let JPF and protocol checker cooperate.

Since (i) inherently involves the kind of program analysis not easily reusable
from JPF, and (ii) means a major modification of both JPF and model checker
(moreover triggering the need to cope with portability issues with respect to future
JPF versions), we have decided to go for (iii) whereas a key modification (not a
major one) seemed to be necessary mainly at the protocol checker side.

5.2  Cooperation of Java PathFinder and Protocol Checker

Since JPF and the protocol checker work on different levels of abstraction - JPF at
the level of byte code instructions and the protocol checker at the level of behavior
protocols - and their states represent different information, it is necessary to define
a mapping from the JPF state space, which is the lower-level one, into the state
space of the protocol checker. Fortunately, this is possible since both state spaces
can reflect all executions of the checked program in terms of frame methods’ calls
(even though at a different level of abstraction). The mapping is implemented as a
JPF listener. The listener traces all executions of the invoke and return byte code
instructions that are corresponding to methods of the provided and required
interfaces of a target component, and notifies the protocol checker of such
instructions in the form of atomic events, thus telling the protocol checker which
transition from the list of all possible transitions it should take. The notification is
done during traversal of the JPF state space in both the onward and backward
directions. 

When the protocol checker is notified about an event that does not correspond
to any element of the list of available transitions in the current state, it reports a
violation of the frame protocol to JPF. In a similar vein, JPF notifies the protocol
checker when it reaches an end state (i.e. and end of a branch of its state space,
corresponding to the end of the main method), and if, in that case, the protocol
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checker is not in an end state of its own state space (e.g. it expects some more
events to occur), an error is reported as well.

Communication between the Java PathFinder and the protocol checker during
checking of the beginning of the add method, provided by the Database
component, is depicted on Fig. 2 and Fig. 3. In both figures, the left part shows the
JPF state space and the right part shows the state space of the protocol checker; the
numbers determine order of the related activities. Fig. 2 illustrates traversal of both
state spaces in the onward direction and Fig. 3 the process of backtracking from an
already visited state.

5.3  Modifications of JPF

In the process of implementing cooperation of JPF with the protocol checker, we
had to enhance the functionality of JPF (i.e. to make several modifications of its
source code) in order to support the mapping from the JPF state space into the state
space of the protocol checker. The modifications include:

(i) POR modification. The code responsible for partial order reduction was
modified by adding a new frame call point reflecting execution of an invoke or
return instruction that corresponds to an event in the frame protocol. Even though
this addition increases the state space size for most programs, it was inherently
necessary.

(ii) State representation extension. Unfortunately, the relation between a frame
call point and a state of the protocol checker may not be unique (so that no mapping
can be found for this JPF state). In particular this happens in a specific case of
correspondence between an if-else statement and an alternative in a frame
protocol; below, the fragment of the source code and the corresponding part of the
frame protocol (in two variants) illustrate such specific case:

    // fragments of frame protocol
  // Java code                  // variant 1
    ...                           //(mA ; mB ; mE ; mF) 
  boolean b;                    //+ 
  b = Verify.randomBool();      //(mC ; mD ; mE ; mF)



  if (b) {                       
    mA(); mB();                  
  }                             //variant 2
  else {                        //(mA ; mB ; mE ; mF)
    mC(); mD();                 //+
    b = true;                   //(mC ; mD ; mX ; mY) 
  }                              
  mE(); mF();
  ...
    

Looking at the source code, it is clear that mE(); mF() will be always executed
with b set to true. Consequently, when JPF backtracks at some point after
executing mF() for the first time, to check the other if-else statement branch,
it reaches an already visited state at the end of the if-else statement (since b ==
true is kept) and backtracks again, not executing the mE and mF methods for the
second time. At that point, the protocol checker will report a protocol violation
though since it expects mE and mF to be called. This happens even though the code
obeys the protocol in variant 1. However, considering the variant 2, the code does
not obey the protocol, but the protocol checker will again report a protocol
violation, however not because the code does not obey the protocol, but again since
it expects mX and mY to be called. 

A solution to this problem was to assign a unique counterpart to a JPF state by
the following JPF extension: Each state representation contains also the frame call
trace for each thread (in addition to heap, static area and thread stack frames).
Therefore the states with the same heap, static area and thread stacks, but with
different frame call traces for a certain thread, are differentiated and their mapping
to protocol checker state space is easy to determine. In the example above, when
the  state representation extension is applied, JPF is forced to execute the mE and
mF methods for the second time because the two branches of the if-else
statement produce different frame call traces.

5.4  Modifications of Protocol Checker

We have extended the static protocol checker with a new functionality in order to
let it accept notifications from a JPF listener and drive the traversal of the protocol
state space according to the received atomic events. In this respect, the added
functionality is similar to the runtime protocol checker; put differently, the
extended protocol checker can be viewed upon as the runtime protocol checker with
support of backtracking. When the extended protocol checker receives an event, it
checks whether it is possible to perform a corresponding transition in its state space
in the desired direction (onward/backward); in a negative case, it reports a violation
of the protocol to the JPF listener.

5.5  The Whole Picture - Making the Pieces Work Together

The tool for model checking of primitive components against behavior protocols,
created via cooperation of JPF and the protocol checker, accepts as input the



implementation of a primitive component (i.e. its byte code), its environment (see
below) and the specification of the component’s architecture and frame protocol in
the form of ADL.

When executed, the tool runs JPF with the protocol checker on the program
composed of the component and its environment. The output is a success message,
if the implementation obeys the frame protocol; otherwise the stack of the protocol
checker and stacks of all threads are printed as a counterexample.

The environment of a target component is generated by another tool
(environment generator) from its frame protocol [20]. Possible values of method
parameters have to be provided in the form of a special Java class that serves as a
container for the sets of values.

6  Evaluation

6.1  Discussion

Even though the proposed solution works “reasonably well” as documented by
the experimental results provided in Sect.6.2, a key drawback of this solution is that
it increases the state space unnecessary by considering the continuation after each
if-else statement twice (by putting it into separate branches) in specific cases
similar to the one described in Sect. 5.3. To illustrate this, consider again the Java
code from example in Sect. 5.3 and the following fragment of the corresponding
frame protocol:

    ((mA ; mB) + (mC ; mD)) ; mE ; mF

Here, the protocol asks the methods mE and mF to be executed only once.
However, JPF with the state representation extension executes mE ; mF for the
second time after backtracking to process the else branch (mC;mD). This way of
handling the if-else statement continuations is the main cause of deterioration
in performance (Sect.6.2).

We envision two solutions to this problem: (a) Coordination of backtracking.
The idea is to allow JPF to backtrack only if the protocol checker is also currently
being in an already visited state. Technically, if JPF is in a state when backtracking
is desirable it asks the protocol checker for a permission to do so (which can be
denied). However, a downside of this technique is the necessity to modify the JPF
core, with all related drawbacks (portability to new JPF versions, ...). (b) State
space integration. This option was already mentioned in Sect. 5.1. The basic idea
is to create JPF state space with compound states, each covering both the program
code and behavior protocol substate. Here backtracking coordination would be
addressed implicitly by requiring it to be possible in both substates of the state in
question.



  

1All test were performed on Intel Pentium 4 HT, 3.0 GHz, 2.0 GB RAM, running Windows 2003
Server Enterprise Edition SP1, and Sun Java SDK build 1.4.2_04-b05

Both solutions are equivalent with respect to backtracking since both of them
allow JPF to backtrack only if both the current state in the program code state space
and the current state in the protocol state space allow to backtrack. However, an
advantage of the first solution (coordination of backtracking) is that it is much
easier to implement and can be made distributed without much effort, i.e. each
checker can run in a separate address space/node, obviously helping fight state
explosion. 

Nevertheless, the bottom line is that just the publisher/listener pattern claimed
to be the key extensibility support of JPF (even though it proved very useful for our
purpose) was not enough to achieve JPF cooperation with our protocol checker. In
particular, out of this pattern,  we had to extend the JPF internal state representation
(internal state model in [6]) and furthermore we faced the problem of backtracking
coordination. If these two issues were directly supported via JPF API, the JPF
extensibility would be substantially enhanced, since we believe at least the former
issue would be a prevailing problem of checking the validity of particular method
call sequences (traces) via JPF.

6.2  Experimental Results

As mentioned above, we have implemented several extensions and modifications
to the original JPF code in order to make it possible to check whether a Java
implementation of a primitive component obeys its frame protocol.

We have run several tests1  to get a performance comparison between the
versions of JPF with the modification of state representation turned off and on, and
to show the impact of the complexity of environment and size of data domains on
the time and space requirements for checking. All tests were done on a non-trivial,
yet simple, primitive component (roughly 100 lines of Java code). The code of the
component is such that its state space mapping to the protocol state space is unique.
This component has a provides interface i1 and three requires interfaces i2, i3,
and i4, each of them featuring some of the methods  m1,m2,..., m5. The
component was checked against the three versions of its frame protocol  stated
below. The simple protocol (1) contains just an alternative and nested call
operators, while the protocol (2) employs also the repetition operator. The most
complex protocol (3) contains in addition the and-parallel operator.

(1) ?i1.m1{!i2.m1 ; !i3.m1 ; !i4.m1} ; ?i1.m2{!i4.m2 ; !i3.m2
; !i2.m2}

(2) ?i1.m1{!i2.m1 ; !i3.m1 ; !i4.m1} ; ( ?i1.m3{!i4.m3 ;
!i2.m3 ; (!i2.m4 + NULL); !i2.m6 ; (!i4.m4 + !i4.m5)})* ;
?i1.m2{!i4.m2 ; !i3.m2 ; !i2.m2}



JPF modification Protocol (1) Protocol (2) Protocol (3)

POR 17 states / 3.3 sec 74 states / 2.5 sec 5085 states / 11.8 sec

POR+states
representation

17 states / 2.7 sec 309 states / 2.7 sec 59011 states / 227 sec

Table 1: State space size / time required of the two JPF modification alternatives  for a
component when checked against three version  of its frame protocol

Protocol (1) Protocol (2) Protocol (3)

One-value domain 17 states / 2.7 sec 309 states / 2.7 sec 59011 states / 228 sec

Two-value domain 17 states / 2.4 sec 749 states / 3.2 sec 163968 states / 389 sec

Four-value domain 17 states / 2.4 sec 2499 states / 4.5 sec 1099386 states / 1548 sec

Table 2: State space / time required for different data domains

(3) ?i1.m1{!i2.m1 ; !i3.m1 ; !i4.m1} ; ( (?i1.m3{!i4.m3 ;
!i2.m3 ; (!i2.m4 + NULL) ; !i2.m6 ; (!i4.m4 + !i4.m5)}) |
(?i1.m4{!i4.m3 ; !i3.m5 ; !i3.m6; (!i4.m4 + !i4.m5)}) )* ;
?i1.m2{!i4.m2 ; !i3.m2 ; !i2.m2}

Table 1 illustrates the effects of the two JPF modifications (POR only and both
POR and state representation extension) in terms of  the state space and time
requirements growth. 

Table 2 shows the performance of the modified JPF (POR+states representation)
for data domains of increasing complexity (one-, two-, and four-value data domains
are considered). The abstract data sets were used for eleven variables in the source
code. Generally, doubling the size of a data domain of a single globally accessible
variable results in twice as large state space (exponential growth) allowing usually
only small data domains to be taken into account. Nonetheless, such verification
still provides valuable information,  more  thorough than simple testing.

From these experimental results, it is clear that a drawback of modifications to
JPF we made is the growth of the state space, which results in increase of time
requirements of the checking process. Despite that, the state space of a typical
primitive component can be still traversed in a reasonable time: In addition to these
performance tests, we have also successfully applied this  JPF and protocol checker
cooperation to a non-trivial component-based application consisting of 20
components with the architecture and behavior specified via ADL and behavior
protocols (over 300 lines); the verification of a component took from few minutes
to 24 hours in the worst case.  



7  Related work

Besides the Java PathFinder model checker, there exist other tools for model
checking of finite-state software systems [7, 9, 10, 12]. As far as we know, these
model checkers require the checked property to be specified in a particular fixed
way (e.g. custom property specification language, assertions, etc.), Specifically,
none of them targets software components, let alone checking the components’ code
against behavior properties specified at the ADL level as apparent from their short
characteristics provided below.

The Bandera tool set [7] is designed for model checking of Java programs against
temporal logic expressions. It supported the Spin and JPF model checkers originally,
but the next generation of the tool set employs Bogor [8] as the core model checker.

Similar to Bandera, the Zing model checker [9] targets concurrent object-oriented
programs. It accepts a model of a target program, defined in a custom model
specification language, as input and verifies it against user-defined assertions.

The SLAM model checker [10] is a part of the SDV tool for formal verification
of device drivers for the Windows operating systems. It is specific in that it creates
a Boolean abstraction of a target program and uses the principle of refinement to
discard errors that are present in the abstraction but not in the original program (i.e.
false negatives). Properties to be checked are to be specified in a low-level language
called SLIC [11].

The MAGIC tool [12] aims at formal verification of C programs against finite
state machine specifications. It uses compositional approach, which means that it
decomposes a large software system into several components (i.e. procedures
written in the C language), and then verifies each component separately. More
specifically, it is able to verify that a finite state machine (LTS) is a safe abstraction
of a C procedure by employing the abstract-verify-refine paradigm [21].

Charmy [19] is an extensible tool for architectural analysis. It allows for
graphical UML-like specification of a system architecture including topology editor,
sequence and state charts. The specification can be checked in an automatized way
for absence of static specification errors, e.g. for each send message operation in a
component there has to be a receive message operation in another component,
messages with the same name must have the same number of parameters, etc. The
architecture specification can be translated (again in an automatized way) into
Promela (Spin specification language), and it can be checked for an arbitrary
property expressible in LTL.

So the bottom line is that none of these checkers employs the idea of checking a
given model against a specific property via cooperating with another model checker.
However, the technique of integrating a model checker with another tool for
automated verification has been applied several times in the following form: A
model checker is used in a theorem prover as a decision procedure for temporal
properties[14, 22]. Typically, this approach is applied to software systems with large
(or even infinite) state space. For example, an integration of the Isabelle/IOA



theorem prover with the :cke model checker is presented in [14]. The Isabelle tool
employs the :cke tool as an oracle for :-calculus formulas related to I/O automata.

8  Conclusion and future work

In this paper, we presented our approach to model checking of software components
implemented in the Java language against their behavior specification (behavior
protocols [1]), which makes the Java PathFinder model checker [5] cooperate with
the protocol checker [4]. The key benefits include a quick realization, decent
performance, and relatively easy maintainability when facing a new version of JPF.
However, we showed that just the publisher/listener pattern claimed to be the key
flexibility support of JPF (even though proved very useful for our purpose) was not
enough to achieve JPF cooperation with the protocol model checker.    

As to future work, our current research goals include (a) extending JPF with a
direct support for behavior protocols (the options “protocol assertions” and “state
spaces integration” in Sect. 5.1). (b) Coordination of backtracking mentioned in
Sect. 6.1 -  this is of our highest priority. 
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