

Experiments on Design Pattern Discovery

Jing Dong, Yajing Zhao

Department of Computer Science
University of Texas at Dallas
Richardson, TX 75083, USA

{jdong, yxz045100}@utdallas.edu

Abstract

Design patterns have been applied in many large

software systems to help developers coping with
recurring design problems. However, pattern-related
information is generally lost in system source code.
Discovering design pattern instances from source
code can help to understand and analyze the software
systems. In this paper, we present several experiments
on design pattern discovery using our tool. We also
compare the results of our experiments with other
approaches and identify the need of benchmarks.

1. Introduction
Since the initial introduction of design patterns in

[9], they have been widely adopted by software
industry. Many software developers routinely apply
design patterns in their software systems to reuse
expert design experience and record design decisions.
However, such high-level design information is
typically lost in system source code when the systems
are deployed. The architectural design document is
normally not deployed with source code. Even the
design document is available, it may not be consistent
with the source code after the system has evolved and
been changed due to new requirements. In addition,
many legacy systems do not have documents
available. It is generally hard to trace such design
decisions in source code. Without such information,
the benefits of using design patterns may be
compromised. The developers may not be able to
communicate in terms of design patterns and change
the systems with the guidance of design patterns
during the system maintenance and evolution. Thus,
discovering the design patterns applied in a software
system may help on not only the understanding of the
system but also its maintenance and evolution.

The analysis and understanding of software
systems treat system source code as data. Design
patterns may be recognized from this source code data.
Therefore, just like data mining and analysis, software
source code become data that is subject to analysis.
There are a large number of open-source software

systems available, which can be excellent candidates
for program analysis. In particular, many open-source
systems embedded design patterns. Experiments on
discovering design patterns from these open-source
systems can not only help on system understanding,
but also lead to benchmarks for comparing different
approaches.

In this paper, we present several experiments on
design pattern discovery from the open-source
systems, including JUnit [28], JEdit [26], JHotDraw
[27], and Java.AWT [25]. Our experiments use our
design pattern discovery tool, DP-Miner, presented in
[8]. Our results show the numbers of design patterns
discovered from each open-source system. We also
discuss our results and pinpoint the importance of
benchmarks for design pattern discovery.

The rest of this paper is organized as follows.
Section 2 presents the related work. Section 3 details
our experiments on four open-source software
systems. We compare our results with others and
discuss some current issues in Section 4. The last
section concludes this paper.

2. Related Work
Several approaches on design pattern discovery

have been proposed in the literature. Experiments on
open-source systems have also been conducted by
these approaches. However, different approaches
reported different results when discovering the same
design patterns in the same open-source systems. It
lacks the studies on the benchmarks of these systems.

Tsantalis et al. [19] applies an existing similarity
score algorithm to detect design patterns. Structural
relations between classes are encoded in multiple
graphs and matrices. Similarly the design patterns are
also encoded in matrices. The discovery of design
patterns is achieved by calculating the similarity score
between the matrices of system source and those of
patterns. Currently their toolkit is able to detect the
Adapter, Bridge, Composite, Decorator, Factory
Method, Observer, Prototype, Singleton, Strategy,
Template Method, and Visitor patterns. They
experiment their toolkit on JUnit, JEdit and
JRefactory.

Third International Workshop on Predictor Models in Software Engineering (PROMISE'07)
0-7695-2954-2/07 $20.00 © 2007

A multi-stage searching process consisting
structural metrics evaluation and method delegation
constraints evaluation is proposed by Antoniol et al.
[2]. In their structural metrics evaluation, they extract
class metrics. Numbers of attributes, operations, and
relations are all considered class metrics and are
extracted from the intermediate representation in
Abstract Object Language (AOL) Abstract Syntax
Tree (AST). Their toolkit is capable of detecting the
Adapter, Bridge, Composite, Decorator and Proxy
patterns. It has been run on some public domain code,
such as LEDA, libg++, galib, gruff, and socket, and
some industrial systems.

Structure constraints is defined as Prolog
predicates [11] and behavioral constraints as Prolog
procedure based on temporal logic of actions (TLA)
[12] by Heuzeroth et al. They use AST as the
intermediate representation of their system. They
conducted the experiment on the Java code of their
own pattern recovery tool and discovered the
Composite, Decorator and Observer pattern instances.

Niere et al. [14][15] implement their top-down-
bottom-up approach on FUJABA platform [24], which
uses AST as intermediate representation. In [20],
behavioral analysis are emphasized and sequence
diagrams are considered as pattern rules for behavioral
characteristics. They conducted the experiments on the
Java.AWT package and JGL libraries with the
discovery of the Bridge, Strategy and Composite
patterns.

Blewitt and Bundy [5] develop a proof system
Hedgehog, which is capable of reasoning design
patterns in Java language. They emphasize the
importance of semantic constraints which describe
how classes are related to each other and how
implementations of particular methods operate. An
experiment is done on Java.AWT package to recover
the Command, Factory, Proxy, Singleton patterns.

Design Pattern Markup Language (DPML), an
XML-based language, is presented in [3]. Balanyi and
Ferenc introduce an approach with DPML as
representation format for patterns. Source code, on the
other hand, is analyzed and built into an Abstract
Semantic Graph (ASG). Finding a design pattern in
their approach is to match ASG sub-structures with the
DPML description of the pattern. Some experiments
are performed on some open-source C++ projects,
such as Jikes, Leda, StarOffice Calc and StarOffice
Writer. The patterns discovered by their tool are
Abstract Factory, Adapter, Bridge, Builder, Chain of
Responsibility, Decorator, Factory Method, Prototype,
Proxy, Singleton, Strategy, Template Method, and
Visitor.

Shi and Olsson [17] propose using dataflow
diagram and control flow diagram which works
perfect on Singleton and Flyweight patterns. Their

tool, PINOT, is able to detect most of the GoF
patterns, namely Abstract Factory, Adapter, Bridge,
Chain of Responsibility, Composite, Decorator,
Façade, Factory Method, Flyweight, Mediator,
Observer, Proxy, Singleton, Strategy, Template
Method, and Visitor. Experiments have been
conducted on JDK, Java.AWT and JHotDraw.

Gueheneuc et al. [10] propose to fingerprint design
patterns from source code using machine learning
techniques. Size, filiations, cohesion, and coupling are
the finger prints of classes. This algorithm eliminates
the classes that do not match these metrics and
therefore reduces searching space. Experiment on
JHotDraw is done to detect the Abstract Factory,
Adapter, Builder, Command, Composite, Decorator,
Factory Method, Observer, Prototype, Singleton,
State, Strategy, Template Method, Visitor patterns.

3. Experiments
In order to discover design pattern instances from

object-oriented software systems, we introduced a
novel approach based on matrix and weight in [8] and
implemented it in our toolkit, DP-Miner. More
specifically, DP-Miner builds a matrix of a source
system with all classes in the system to be the rows
and columns, and the relationships between each pair
of classes to be the value of the corresponding cell in
the matrix. Realizing that the product of prime
numbers can be decoded into a unique group of prime
numbers, we represent different relationships by
different prime numbers and combination of
relationships by product of prime numbers in each cell
value. DP-Miner also encodes the numbers of
attributes, operations, and relationships of each class
in the system into weight by the product of prime
numbers. Similarly, our approach encodes the
information of each design pattern into its
corresponding matrix and weights. Therefore, the
discovery of design patterns is reduced to matching
such matrices and weights in arithmetic computations.

Our discovery processes include the structural,
behavioral, and semantic analysis. The structural
analysis concentrates on the matching of the static
design models between the design patterns and the
software system. Because most of design patterns
describe both structural and behavioral aspects of a
design experience, only structural analysis may result
in false positive cases. The behavioral analysis can
help to check whether desired behavioral
characteristics exist in the candidate results from the
structural analysis. DP-Miner checks behavior
characters, such as method delegation, based on
structure analysis results. Some design patterns, such
as the Bridge and Strategy patterns, are similar in their
structures and behaviors, but only differ from their

Third International Workshop on Predictor Models in Software Engineering (PROMISE'07)
0-7695-2954-2/07 $20.00 © 2007

intents and motivations. The semantic analysis aims at
distinguishing some of these patterns by their naming
conventions.

While our attention was mainly on the introduction
of the algorithms and methods of our approach in [8],
we present several experiments on large open-source
systems in this paper. We also discuss our results on
the discovery of four design patterns, Adapter, Bridge,
Strategy, and Composite, from these systems and
argue for the benchmarks of design pattern recovery.
In our experiments, we concentrate on the analysis of
a small number of design patterns because the
discovery processes for different design patterns are
generally quite similar. They only differ on the
characteristic descriptions of each pattern. Focusing on
a small number of patterns allows us to study deeper
in the pattern discovery problem.

Most existing studies conduct experiments on open
source systems, such as Java Swing package, Java
Awt package, QuickUML, etc, which contain
hundreds to thousands classes. Our experiments use
four open-source systems, the Java Abstract Window
Toolkit (AWT) [25], JUnit [28], JEdit [26], and
JHotDraw [27]. Java.AWT is a library for developing
graphical user interfaces for Java programs. JUnit is a
regression test framework that helps developers to
implement unit tests in Java. JEdit is a mature text
editor for programmers, which provides many features
for ease of use. JHotDraw is a two-dimensional
graphics framework for technical and structured
drawing editors written in Java. Table 1 shows the
system information in our experiments, including the
versions of systems and the number of classes and
files each system has.

Table 1 Subject System Descriptions
Systems Version Class # File #
Java.AWT JDK1.4.2 570 345
JUnit 3.8.2 126 93
JEdit 4.2 1001 394
JHotDraw 6.0 beta 1 530 484

We select these open-source software systems as

the subjects of our experiments because the idea of
design patterns is already mature and widely applied
in software industry at the time they were developed.
Thus, these systems contain design patterns in their
software design and their usages of patterns follow the
pattern principles as introduced in [9]. In addition,
other works on design pattern discovery use one or
some of these systems to evaluate their approaches. It
allows us to compare and evaluate our experiment
results.

3.1 Results
Using DP-Miner, we conducted our experiments

on these four systems. The number of discovered
instances for each pattern is shown in Table 2, which
shows that Java.AWT includes more instances of the
Adapter, Bridge, Strategy, and Composite patterns
than other systems do. In addition, the numbers of the
instances of the Bridge and Strategy patterns are very
similar. The main difference between them is their
design intention, whether the pattern is to define a
family of algorithms or it is to decouple the abstraction
from the implementation. The candidate sets obtained
after the structural and behavioral analysis are the
same for both patterns. They only differ semantically.

Table 3 through Table 6 show the numbers of
candidate pattern instances acquired at each analysis
phase for all four systems. These tables illustrate how
behavioral analysis and semantic analysis eliminate
false positive candidates from the results of the
structural analysis. We relax the criteria for structural
analysis in order to reduce the number of false
negative cases. Thus, the results of structural analysis
may include a higher number of candidates. Our
approach relies on the behavioral and semantic
analysis to eliminate the false positives.

Our behavioral analysis is based on the results
from the structural analysis. Thus, it deals with a
smaller number of classes from the original systems.
For example, the JUnit package contains a total of 126
classes. After structural analysis, only 6 to 15
candidate instances of the four patterns are discovered.
Thus, the search space of the behavioral analysis is
reduced to the classes of these 6 to 15 pattern
instances. After behavioral analysis, 3 to 6 candidate
instances are left, which limits the search space for the
semantic analysis further down.

Table 2 Pattern Discovery Results

Table 3 Pattern Recovery of Each Phase for Java
AWT Package

System
Java.AWT

Structural
Analysis

Behavioral
Analysis

Semantic
Analysis

Adapter 57 21 N/A
Bridge 100 76 65
Strategy 100 76 76
Composite 92 3 N/A

Systems Adapter Bridge Strategy Composite
Java.AWT 21 65 76 3
JUnit 3 6 6 3
JEdit 17 24 24 0
JHotDraw 4 58 64 0

Third International Workshop on Predictor Models in Software Engineering (PROMISE'07)
0-7695-2954-2/07 $20.00 © 2007

Table 4 Pattern Recovery of Each Phase for JUnit
System
JUnit

Structural
Analysis

Behavioral
Analysis

Semantic
Analysis

Adapter 15 3 N/A
Bridge 6 6 6
Strategy 6 6 6
Composite 9 3 N/A

Table 5 Pattern Recovery of Each Phase for JEdit
System
JEdit

Structural
Analysis

Behavioral
Analysis

Semantic
Analysis

Adapter 80 17 N/A
Bridge 33 24 24
Strategy 33 24 24
Composite 0 0 N/A

Table 6 Pattern Recovery of Each Phase for
JHotDraw

System
JHotDraw

Structural
Analysis

Behavioral
Analysis

Semantic
Analysis

Adapter 27 4 N/A
Bridge 74 64 58
Strategy 74 64 64
Composite 0 0 0

Our behavioral analysis results show significant

reductions of the candidate instances of the Adapter
and Composite patterns than those of the Bridge and
Strategy patterns. The main reason is that the former
patterns include more behavioral characteristics than
the latter do. These distinct behavioral characteristics
help to eliminate a large number of false positive
cases.

As shown in these tables, the results of the
structural and behavioral analysis of the Bridge and
Strategy patterns are the same for all four systems.
The main reason is that the structural and behavioral
characteristics of the Bridge and Strategy patterns are
pretty much the same. The major difference of these
two patterns is their intents and motivations that are
generally not available from the system source code.
While such semantic information is hard to recover,
we found that many developers follow some naming
conventions, which may leave some traces of their
original intents. Therefore, checking class names,
attribute names, and method names may provide
certain indications of pattern usages. If a clue suggests
the candidate is for sure not an instance of some
pattern, the semantic analysis removes it from the
candidate set. For example, the behavioral analysis
results in 64 candidate instances of the Bridge and
Strategy patterns in JHotDraw6.0 beta 1. One of the
instances includes the ETSLADisposalStrategy class.

This class name is a good indication of the potential
instance of the Strategy, rather than Bridge, pattern.
Our Semantic analysis deems it as an instance of the
Strategy pattern. After the semantic analysis, 6
candidate instances in JHotDraw are found to be
Strategy instead of Bridge based on naming
conventions by our tool.

Due to the lack of design documentation of these
open-source software systems, it is generally hard to
validate the experimental results. Even if there is such
design document available, the system
implementations may sometimes divaricates from its
original designs such that the design and
implementation are inconsistent. In order to determine
the precision of our approach, therefore, we manually
checked the results generated by our tool and see
whether they are real pattern instances. This manual
checking was carried out with the results of JHotDraw
as shown in Table 7, where TP and FP stand for true
positive and false positive, respectively. It shows that
there are 5 and 6 false positives in our result for the
Bridge and Strategy patterns, respectively. These false
positives are not eliminated during behavioral analysis.
The main reason is that a method invocation may take
many different forms in object-oriented programming
languages. It is sometimes required to check the
existence of some method invocation of an object in
the behavioral analysis. For example, a foo() method
of an object can be invoked directly by object.foo(),
where object can be a direct instance of the desired
class, a copy of some other instance of the desired
class, return value of a method with the desired class
as return type, a cast of an object of the superclass of
the desired class, etc. To deal with such complexity,
DP-Miner only checks the existence of a method
invocation to foo() without considering to which
object it belongs. By including such checking in our
behavioral analysis, it allows our tool to include more
true positives. On the other hand, it may also introduce
some false positives caused by the invocations of the
foo() methods that belong to some objects of undesired
classes.

Table 7 Recovery Precision for JHotDraw
JHotDraw TP FP Precision
Adapter 4 0 100%
Bridge 53 5 91.38%
Strategy 58 6 90.63%
Composite 0 0 100%

3.2 Benchmark

Open source systems, such as JUnit and JHotDraw,
typically do not have detail design documentation.

Third International Workshop on Predictor Models in Software Engineering (PROMISE'07)
0-7695-2954-2/07 $20.00 © 2007

Hence, it is unclear which design patterns have been
used and where they are applied in the systems.
Without such information, it is hard to measure the
precision and recall of design pattern discovery
approaches. In this paper, we emphasize the
importance of benchmarking design pattern instances
existing in different open-source systems. Although
existing approaches may recover design patterns from
source code, there are discrepancies in these results
when discovering the same pattern from the system
open-source systems. Such discrepancies include
different numbers of the same design patterns are
recovered from the same system by different
approaches. Even if the number of a particular design
pattern recovered from the same system is the same
for some approaches, the particular location of such
pattern instances may differ as well. Thus, not only the
numbers of the particular design pattern instances are
discovered in the open source systems, but also their
location shall be benchmarked. Benchmarking design
pattern instances applied in open source systems may
allow evaluating the results of different approaches.

Table 8 Instances found manually but missed by DP-

Miner

 CONTEXT STRATEGY
[1] LineConnection Connector
[2] ChangeConnectionHandle Connector
[3] ConnectionTool Connector
[4] PolygonHandle Locator
[5] LocatorHandle Locator
[6] LocatorConnector Locator
[7] SelectionTool DrawingView

Due to the flexibility of design pattern applications,

there may be several different ways to implement a
design pattern. Such implementation variations are one
of the main causes of imprecision in design pattern
discovery processes. Although our approach tries to
tackle different variations of a design pattern, there
still are false-positive and true-negative cases in the
results of DP-Miner. In this case, we have to manually
inspect the source code for such instances. Table 7
presents the precision of DP-Miner for JHotDraw
based on our manual inspections. We provide a
complete table of all Strategy pattern instances
discovered from JHotDraw v6.0 beta1 by DP-Miner in
[23], where the names of classes participating in each
instance are listed. The precision of our tool on the
Strategy pattern in JHotDraw is 90.63%, listed in
Table 7. Besides precision, we also attempt to
compute the recall of DP-Miner. We manually
checked JHotDraw for the Strategy pattern instances
and found 7 real instances, listed in Table 8, which are
missed by DP-Miner. Although we could not claim we

have manually found all the Strategy pattern instances
applied, we roughly find out the recall of DP-Miner is
at most 89.23%. Based on DP-Miner and our manual
inspections, we present an initial benchmarking result
of the Strategy pattern from JHotDraw v6.0 beta1 in
[23].

4. Comparison and Discussions
Several other approaches on design pattern

discovery have also included the experiments on
Java.AWT [1, 5, 14, 15, 16, 17, 18, 19, 20], JUnit [1],
[19], JEdit [1], and JHotDraw [1, 4, 10, 13, 17, 19]
Some of these experiments discovered the instances of
the Adapter [17], [19], Bridge [16, 17, 19], Strategy
[16, 17, 19], and Composite [13, 16, 17, 19] patterns
from these systems. We have studied the results of
design pattern discovery from these other approaches
and found different approaches reached different
results for the same patterns in the same systems. We
manually investigated the corresponding source code
and discovered the following issues with the current
state of design pattern discovery techniques.

Design patterns describe a general guidance of a
design solution to recurring problems. The application
of a design pattern is normally flexible with several
variations. Thus, the implementation of a design
pattern is typically not unique. For example, one of the
variations of the Composite pattern is to collapse both
the Component and Composite classes into a single
class. Such variations may be considered by some
approaches but not others. This may cause different
discovery results from different approaches.

Each design pattern may include several classes
that play some particular roles in the pattern. For
instance, the Adapter pattern generally includes the
Target, Adapter, and Adaptee classes. Some existing
approaches tend to match all such roles whereas others
may consider only partial matches. The former
approaches may end up discovering less pattern
instances than the latter do since they have stricter
criteria for matching. The latter approaches may lead
to more potential false positives.

Current object-oriented programming languages
may provide some special language constructs that
may greatly simplify the implementation of a design
pattern. For example, Java provides aggregation
framework, such as LinkedList, ArrayList, HashMap,
and Hashtable. These language features may make the
implementation of the aggregate elements in the
Composite class of the Composite pattern easy. The
developers do not need to write their own Add(),
Remove(), and getChild() operations to manage these
aggregate elements in the Composite class. They can
simply choose one of the language features instead.
This makes the pattern discovery processes trickier

Third International Workshop on Predictor Models in Software Engineering (PROMISE'07)
0-7695-2954-2/07 $20.00 © 2007

because these language features provide their own
ways of managing the aggregates which are difficult to
parse. Similar issue has also been discussed in [21].
Quite a lot of current approaches missed some
instances of the Composite pattern due to this reason.

Current design pattern discovery approaches
typically do not search design patterns directly from
source code. Instead, they normally apply some
existing reverse engineering tools to obtain certain
intermediate representations, such as the Abstract
Syntax Tree (AST) of the source code. Different
approaches may apply different algorithms and
methods to search for pattern instances from these
intermediate representations, rather than the source
code. While it can save time and efforts for
discovering patterns from these representations, it may
also cause potential errors in the results because the
intermediate representations are just an abstraction of
the source code after all. Some essential characteristics
of a pattern may be abstracted away from the
intermediate representations, which causes missing
pattern instances for some approaches. We found it
essential to check also the source code no matter
which intermediate representation is used. Our
approach uses XMI-based intermediate representations
for the structural analysis. Our behavioral and
semantic analysis need to resort back to the system
source code to reduce the false positives.

Although there have been several experiments on
discovering design patterns from these open-source
systems, there are yet consistent results due to various
reasons presented previously. Above all, the key
problem is that there is no benchmark available for
design pattern discovery. Lacking such benchmarks is
the main impediment to evaluate and compare design
pattern discovery techniques and methods. To
calculate the precision and recall of a pattern matching
result, in particular, it is essential to know the pattern
instances actually exist in a system. Without such
information, it is hard to judge whether an approach
actually discovers all existing instances of a given
pattern in a system and whether the discovered
instances are correct. Although open-source systems
are publicly accessible, the correct instances of
patterns are generally not available. We have manually
checked the JHotDraw system to calculate the
precision of our results. We are also working on
manually checking other systems. Our such efforts
may lead to initial benchmarks for design pattern
discovery.

5. Conclusions
In this paper, we presented our experiments on

design pattern discovery from open-source systems
using our tool, DP-Miner. In particular, our

experiments discover the Adapter, Bridge, Strategy,
and Composite patterns from the Java.AWT, JUnit,
JEdit, and JHotDraw systems. A number of design
pattern instances are recovered from these open-
source systems. Our experimental results show that
design patterns have been widely applied in these
systems and can be recovered.

In addition, we compared our experimental results
with those of others and found several discrepancies.
We analyzed this issue and discussed possible
reasons for the discrepancies. More importantly, we
argue for benchmarks for design pattern discovery.

References
[1] H. Albin-Amiot, P. Cointe, Y. Gueheneuc, and N.

Jussien, “Instantiating and detecting design patterns:
putting bits and pieces together.” In Proceedings 16th
Annual International Conference on Automated
Software Engineering (ASE 2001), 2001.

[2] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design
pattern recovery in object-oriented software.”
Proceedings of the 6th IEEE International Workshop on
Program Understanding (IWPC), pp 153-160, 1998.

[3] Z. Balanyi and R. Ferenc, “Mining design patterns from
C++ source code.” Proceedings of the 19th IEEE
International Conference on Software Maintenance
(ICSM), pp. 305-314, September, 2003.

[4] D. Beyer, A. Noack, and C. Lewerentz, “Simple and
efficient relational querying of software structures.” In
Proceedings of the 10th Working Conference on Reverse
Engineering (WCRE’03), 2003.

[5] A. Blewitt and A. Bundy, “Automatic verification of
Java design patterns.” Proceedings of 16th Annual
International Conference on Automated Software
Engineering (ASE’01), pp. 324-327, 2001.

[6] G. Costagliola, A. De Lucia, V. Deufemia, C. Gravino,
and M. Risi, Design Pattern Recovery by Visual
Language Parsing, Proceeding of the Ninth European
Conference on Software Maintenance and
Reengineering. (CSMR’05), pp. 102-111, 2005.

[7] J. Dietrich, C. Elgar, A Formal Description of Design
Patterns Using OWL, Proceedings of the 2005
Australian Software Engineering Conference
(ASWEC’05), pp. 243-250, 2005.

[8] J. Dong, D. S. Lad and Y. Zhao, DP-Miner: Design
Pattern Discovery Using Matrix, the Proceedings of the
Fourteenth Annual IEEE International Conference on
Engineering of Computer Based Systems (ECBS),
Arizona, USA, March 2007. (to appear)

[9] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[10] Y. Gueheneuc, H. Sahraoui, and F. Zaidi,
“Fingerprinting design patterns.” Proceedings of the
11th Working Conference on Reverse Engineering
(WCRE), 2004.

[11] D. Heuzeroth, T. Holl, G. Hogstrom, and W. Lowe,
“Automatic design pattern detection.” Proceedings of

Third International Workshop on Predictor Models in Software Engineering (PROMISE'07)
0-7695-2954-2/07 $20.00 © 2007

the 11th International Workshop on Program
Comprehension (IWPC), pp 94-103, 2003.

[12] D. Heuzeroth, S. Mandel, and W. Lowe, “Generating
design pattern detectors from pattern specifications.”
Proceedings of the 18th IEEE International Conference
on Automated Software Engineering (ASE), 2003.

[13] O. Kaczor, Y. Gueheneuc, and S. Hamel, Efficient
Identification of Design Patterns with Bit-vector
Algorithm, Proceedings of the Conference on Software
Maintenance and Reengineering (CSMR’06), Volume
00 22-24, 2006.

[14] J. Niere, W. Schafer, J. P. Wadsack, L. Wendehals, and
J. Welsh, “Towards pattern-based design recovery.” In
Proceedings of the 24th International Conference on
Software Engineering (ICSE), pp 338-348, 2002.

[15] J. Niere, J. P. Wadsack, L. Wendehals, “Handling large
search space in pattern-based reverse engineering.”
Proceedings of the 11th IEEE International Workshop
on Program Comprehension (IWPC), pp. 274-279,
2003.

[16] J. Seemann and J. W. von Gudenberg, “Pattern-based
design recovery of Java software.” In Proceedings of
6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 10-16. ACM
Press, 1998.

[17] N. Shi and R. A. Olsson, “Reverse engineering of
design patterns from java source code.” 21st IEEE/ACM
International Conference on Automated Software
Engineering, 2006.

[18] D. Streitferdt, C. Heller, I. Philippow, “Searching
design patterns in source code.” In Proceedings of the
29th Annual International Computer Software and
Applications Conference (COMPSAC’05), 2005.

[19] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.
Halkidis, “Design Pattern Detection Using Similarity
Scoring.” IEEE transaction on software engineering,
Vol. 32, No. 11, November 2006.

[20] L. Wendehals, Improving design pattern instance
recognition by dynamic analysis. Proceedings of the
ICSE workshop on Dynamic Analysis (WODA), pp. 29-
32, May 2003.

[21] R. J. Wirfs-Brock, "Refreshing Patterns," IEEE
Software, vol.23, no.3, pp. 45-47, May/Jun, 2006.

[22] Design Pattern Detection using Similarity Scoring,
http://java.uom.gr/~nikos/pattern-detection.html

[23] DP-Miner. http://www.utdallas.edu/~jdong/DP_Miner/
[24] Fujaba User Documentation http://wwwcs.uni-

paderborn.de/cs/fujaba/documents/user/manuals/Fujaba
Doc.pdf

[25] Java.awt resource information, September 2006,
http://java.sun.com/j2se/1.5.0/docs/guide/awt/index.htm
l.

[26] JEdit – Programmer’s Text Editor.
http://www.jedit.org/

[27] JHotDraw Start Page. http://www.jhotdraw.org/
[28] JUnit, Testing Resources for Extreme Programming.

http://www.junit.org/

Third International Workshop on Predictor Models in Software Engineering (PROMISE'07)
0-7695-2954-2/07 $20.00 © 2007

