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Abstract 
 
Design patterns have been applied in many large 

software systems to help developers coping with 
recurring design problems. However, pattern-related 
information is generally lost in system source code. 
Discovering design pattern instances from source 
code can help to understand and analyze the software 
systems. In this paper, we present several experiments 
on design pattern discovery using our tool. We also 
compare the results of our experiments with other 
approaches and identify the need of benchmarks. 

 

1. Introduction 
Since the initial introduction of design patterns in 

[9], they have been widely adopted by software 
industry. Many software developers routinely apply 
design patterns in their software systems to reuse 
expert design experience and record design decisions. 
However, such high-level design information is 
typically lost in system source code when the systems 
are deployed. The architectural design document is 
normally not deployed with source code. Even the 
design document is available, it may not be consistent 
with the source code after the system has evolved and 
been changed due to new requirements. In addition, 
many legacy systems do not have documents 
available. It is generally hard to trace such design 
decisions in source code. Without such information, 
the benefits of using design patterns may be 
compromised. The developers may not be able to 
communicate in terms of design patterns and change 
the systems with the guidance of design patterns 
during the system maintenance and evolution. Thus, 
discovering the design patterns applied in a software 
system may help on not only the understanding of the 
system but also its maintenance and evolution.  

The analysis and understanding of software 
systems treat system source code as data. Design 
patterns may be recognized from this source code data. 
Therefore, just like data mining and analysis, software 
source code become data that is subject to analysis. 
There are a large number of open-source software 

systems available, which can be excellent candidates 
for program analysis. In particular, many open-source 
systems embedded design patterns. Experiments on 
discovering design patterns from these open-source 
systems can not only help on system understanding, 
but also lead to benchmarks for comparing different 
approaches. 

In this paper, we present several experiments on 
design pattern discovery from the open-source 
systems, including JUnit [28], JEdit [26], JHotDraw 
[27], and Java.AWT [25]. Our experiments use our 
design pattern discovery tool, DP-Miner, presented in 
[8]. Our results show the numbers of design patterns 
discovered from each open-source system. We also 
discuss our results and pinpoint the importance of 
benchmarks for design pattern discovery. 

The rest of this paper is organized as follows. 
Section 2 presents the related work. Section 3 details 
our experiments on four open-source software 
systems. We compare our results with others and 
discuss some current issues in Section 4. The last 
section concludes this paper.  

2. Related Work 
Several approaches on design pattern discovery 

have been proposed in the literature. Experiments on 
open-source systems have also been conducted by 
these approaches. However, different approaches 
reported different results when discovering the same 
design patterns in the same open-source systems. It 
lacks the studies on the benchmarks of these systems. 

Tsantalis et al. [19] applies an existing similarity 
score algorithm to detect design patterns. Structural 
relations between classes are encoded in multiple 
graphs and matrices. Similarly the design patterns are 
also encoded in matrices. The discovery of design 
patterns is achieved by calculating the similarity score 
between the matrices of system source and those of 
patterns. Currently their toolkit is able to detect the 
Adapter, Bridge, Composite, Decorator, Factory 
Method, Observer, Prototype, Singleton, Strategy, 
Template Method, and Visitor patterns. They 
experiment their toolkit on JUnit, JEdit and 
JRefactory. 
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A multi-stage searching process consisting 
structural metrics evaluation and method delegation 
constraints evaluation is proposed by Antoniol et al. 
[2]. In their structural metrics evaluation, they extract 
class metrics. Numbers of attributes, operations, and 
relations are all considered class metrics and are 
extracted from the intermediate representation in 
Abstract Object Language (AOL) Abstract Syntax 
Tree (AST). Their toolkit is capable of detecting the 
Adapter, Bridge, Composite, Decorator and Proxy 
patterns. It has been run on some public domain code, 
such as LEDA, libg++, galib, gruff, and socket, and 
some industrial systems.  

Structure constraints is defined as Prolog 
predicates [11] and behavioral constraints as Prolog 
procedure based on temporal logic of actions (TLA) 
[12] by Heuzeroth et al. They use AST as the 
intermediate representation of their system. They 
conducted the experiment on the Java code of their 
own pattern recovery tool and discovered the 
Composite, Decorator and Observer pattern instances.  

Niere et al. [14][15] implement their top-down-
bottom-up approach on FUJABA platform [24], which 
uses AST as intermediate representation. In [20], 
behavioral analysis are emphasized and sequence 
diagrams are considered as pattern rules for behavioral 
characteristics. They conducted the experiments on the 
Java.AWT package and JGL libraries with the 
discovery of the Bridge, Strategy and Composite 
patterns. 

Blewitt and Bundy [5] develop a proof system 
Hedgehog, which is capable of reasoning design 
patterns in Java language. They emphasize the 
importance of semantic constraints which describe 
how classes are related to each other and how 
implementations of particular methods operate. An 
experiment is done on Java.AWT package to recover 
the Command, Factory, Proxy, Singleton patterns. 

Design Pattern Markup Language (DPML), an 
XML-based language, is presented in [3]. Balanyi and 
Ferenc introduce an approach with DPML as 
representation format for patterns. Source code, on the 
other hand, is analyzed and built into an Abstract 
Semantic Graph (ASG). Finding a design pattern in 
their approach is to match ASG sub-structures with the 
DPML description of the pattern. Some experiments 
are performed on some open-source C++ projects, 
such as Jikes, Leda, StarOffice Calc and StarOffice 
Writer. The patterns discovered by their tool are 
Abstract Factory, Adapter, Bridge, Builder, Chain of 
Responsibility, Decorator, Factory Method, Prototype, 
Proxy, Singleton, Strategy, Template Method, and 
Visitor.  

Shi and Olsson [17] propose using dataflow 
diagram and control flow diagram which works 
perfect on Singleton and Flyweight patterns. Their 

tool, PINOT, is able to detect most of the GoF 
patterns, namely Abstract Factory, Adapter, Bridge, 
Chain of Responsibility, Composite, Decorator, 
Façade, Factory Method, Flyweight, Mediator, 
Observer, Proxy, Singleton, Strategy, Template 
Method, and Visitor. Experiments have been 
conducted on JDK, Java.AWT and JHotDraw. 

Gueheneuc et al. [10] propose to fingerprint design 
patterns from source code using machine learning 
techniques. Size, filiations, cohesion, and coupling are 
the finger prints of classes. This algorithm eliminates 
the classes that do not match these metrics and 
therefore reduces searching space. Experiment on 
JHotDraw is done to detect the Abstract Factory, 
Adapter, Builder, Command, Composite, Decorator, 
Factory Method, Observer, Prototype, Singleton, 
State, Strategy, Template Method, Visitor patterns. 

3. Experiments 
In order to discover design pattern instances from 

object-oriented software systems, we introduced a 
novel approach based on matrix and weight in [8] and 
implemented it in our toolkit, DP-Miner. More 
specifically, DP-Miner builds a matrix of a source 
system with all classes in the system to be the rows 
and columns, and the relationships between each pair 
of classes to be the value of the corresponding cell in 
the matrix. Realizing that the product of prime 
numbers can be decoded into a unique group of prime 
numbers, we represent different relationships by 
different prime numbers and combination of 
relationships by product of prime numbers in each cell 
value. DP-Miner also encodes the numbers of 
attributes, operations, and relationships of each class 
in the system into weight by the product of prime 
numbers. Similarly, our approach encodes the 
information of each design pattern into its 
corresponding matrix and weights. Therefore, the 
discovery of design patterns is reduced to matching 
such matrices and weights in arithmetic computations. 

Our discovery processes include the structural, 
behavioral, and semantic analysis. The structural 
analysis concentrates on the matching of the static 
design models between the design patterns and the 
software system. Because most of design patterns 
describe both structural and behavioral aspects of a 
design experience, only structural analysis may result 
in false positive cases. The behavioral analysis can 
help to check whether desired behavioral 
characteristics exist in the candidate results from the 
structural analysis. DP-Miner checks behavior 
characters, such as method delegation, based on 
structure analysis results. Some design patterns, such 
as the Bridge and Strategy patterns, are similar in their 
structures and behaviors, but only differ from their 
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intents and motivations. The semantic analysis aims at 
distinguishing some of these patterns by their naming 
conventions. 

While our attention was mainly on the introduction 
of the algorithms and methods of our approach in [8], 
we present several experiments on large open-source 
systems in this paper. We also discuss our results on 
the discovery of four design patterns, Adapter, Bridge, 
Strategy, and Composite, from these systems and 
argue for the benchmarks of design pattern recovery. 
In our experiments, we concentrate on the analysis of 
a small number of design patterns because the 
discovery processes for different design patterns are 
generally quite similar. They only differ on the 
characteristic descriptions of each pattern. Focusing on 
a small number of patterns allows us to study deeper 
in the pattern discovery problem. 

Most existing studies conduct experiments on open 
source systems, such as Java Swing package, Java 
Awt package, QuickUML, etc, which contain 
hundreds to thousands classes. Our experiments use 
four open-source systems, the Java Abstract Window 
Toolkit (AWT) [25], JUnit [28], JEdit [26], and 
JHotDraw [27]. Java.AWT is a library for developing 
graphical user interfaces for Java programs. JUnit is a 
regression test framework that helps developers to 
implement unit tests in Java. JEdit is a mature text 
editor for programmers, which provides many features 
for ease of use. JHotDraw is a two-dimensional 
graphics framework for technical and structured 
drawing editors written in Java. Table 1 shows the 
system information in our experiments, including the 
versions of systems and the number of classes and 
files each system has. 

Table 1 Subject System Descriptions 
Systems Version Class # File # 
Java.AWT JDK1.4.2 570 345 
JUnit 3.8.2 126 93 
JEdit 4.2 1001 394 
JHotDraw 6.0 beta 1 530 484 

 
We select these open-source software systems as 

the subjects of our experiments because the idea of 
design patterns is already mature and widely applied 
in software industry at the time they were developed. 
Thus, these systems contain design patterns in their 
software design and their usages of patterns follow the 
pattern principles as introduced in [9]. In addition, 
other works on design pattern discovery use one or 
some of these systems to evaluate their approaches. It 
allows us to compare and evaluate our experiment 
results.  

3.1 Results 
Using DP-Miner, we conducted our experiments 

on these four systems. The number of discovered 
instances for each pattern is shown in Table 2, which 
shows that Java.AWT includes more instances of the 
Adapter, Bridge, Strategy, and Composite patterns 
than other systems do. In addition, the numbers of the 
instances of the Bridge and Strategy patterns are very 
similar. The main difference between them is their 
design intention, whether the pattern is to define a 
family of algorithms or it is to decouple the abstraction 
from the implementation. The candidate sets obtained 
after the structural and behavioral analysis are the 
same for both patterns. They only differ semantically. 

Table 3 through Table 6 show the numbers of 
candidate pattern instances acquired at each analysis 
phase for all four systems. These tables illustrate how 
behavioral analysis and semantic analysis eliminate 
false positive candidates from the results of the 
structural analysis. We relax the criteria for structural 
analysis in order to reduce the number of false 
negative cases. Thus, the results of structural analysis 
may include a higher number of candidates. Our 
approach relies on the behavioral and semantic 
analysis to eliminate the false positives. 

Our behavioral analysis is based on the results 
from the structural analysis. Thus, it deals with a 
smaller number of classes from the original systems. 
For example, the JUnit package contains a total of 126 
classes. After structural analysis, only 6 to 15 
candidate instances of the four patterns are discovered. 
Thus, the search space of the behavioral analysis is 
reduced to the classes of these 6 to 15 pattern 
instances. After behavioral analysis, 3 to 6 candidate 
instances are left, which limits the search space for the 
semantic analysis further down. 

Table 2 Pattern Discovery Results 

 

Table 3 Pattern Recovery of Each Phase for Java 
AWT Package 

System 
Java.AWT 

Structural 
Analysis 

Behavioral 
Analysis 

Semantic 
Analysis 

Adapter 57 21 N/A 
Bridge 100 76 65 
Strategy 100 76 76 
Composite 92 3 N/A 

 

Systems Adapter Bridge Strategy Composite 
Java.AWT 21 65 76 3 
JUnit 3 6 6 3 
JEdit 17 24 24 0 
JHotDraw 4 58 64 0 
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Table 4 Pattern Recovery of Each Phase for JUnit  
System 
JUnit 

Structural 
Analysis 

Behavioral 
Analysis 

Semantic 
Analysis 

Adapter 15 3 N/A 
Bridge 6 6 6 
Strategy 6 6 6 
Composite 9 3 N/A 

 

Table 5 Pattern Recovery of Each Phase for JEdit  
System 
JEdit 

Structural 
Analysis 

Behavioral 
Analysis 

Semantic 
Analysis 

Adapter 80 17 N/A 
Bridge 33 24 24 
Strategy 33 24 24 
Composite 0 0 N/A 

 

Table 6 Pattern Recovery of Each Phase for 
JHotDraw 

System 
JHotDraw 

Structural 
Analysis 

Behavioral 
Analysis 

Semantic 
Analysis 

Adapter 27 4 N/A 
Bridge 74 64 58 
Strategy 74 64 64 
Composite 0 0 0 

 
Our behavioral analysis results show significant 

reductions of the candidate instances of the Adapter 
and Composite patterns than those of the Bridge and 
Strategy patterns. The main reason is that the former 
patterns include more behavioral characteristics than 
the latter do. These distinct behavioral characteristics 
help to eliminate a large number of false positive 
cases. 

As shown in these tables, the results of the 
structural and behavioral analysis of the Bridge and 
Strategy patterns are the same for all four systems. 
The main reason is that the structural and behavioral 
characteristics of the Bridge and Strategy patterns are 
pretty much the same. The major difference of these 
two patterns is their intents and motivations that are 
generally not available from the system source code. 
While such semantic information is hard to recover, 
we found that many developers follow some naming 
conventions, which may leave some traces of their 
original intents. Therefore, checking class names, 
attribute names, and method names may provide 
certain indications of pattern usages. If a clue suggests 
the candidate is for sure not an instance of some 
pattern, the semantic analysis removes it from the 
candidate set. For example, the behavioral analysis 
results in 64 candidate instances of the Bridge and 
Strategy patterns in JHotDraw6.0 beta 1. One of the 
instances includes the ETSLADisposalStrategy class. 

This class name is a good indication of the potential 
instance of the Strategy, rather than Bridge, pattern. 
Our Semantic analysis deems it as an instance of the 
Strategy pattern. After the semantic analysis, 6 
candidate instances in JHotDraw are found to be 
Strategy instead of Bridge based on naming 
conventions by our tool. 

Due to the lack of design documentation of these 
open-source software systems, it is generally hard to 
validate the experimental results. Even if there is such 
design document available, the system 
implementations may sometimes divaricates from its 
original designs such that the design and 
implementation are inconsistent. In order to determine 
the precision of our approach, therefore, we manually 
checked the results generated by our tool and see 
whether they are real pattern instances. This manual 
checking was carried out with the results of JHotDraw 
as shown in Table 7, where TP and FP stand for true 
positive and false positive, respectively. It shows that 
there are 5 and 6 false positives in our result for the 
Bridge and Strategy patterns, respectively. These false 
positives are not eliminated during behavioral analysis. 
The main reason is that a method invocation may take 
many different forms in object-oriented programming 
languages. It is sometimes required to check the 
existence of some method invocation of an object in 
the behavioral analysis. For example, a foo() method 
of an object can be invoked directly by object.foo(), 
where object can be a direct instance of the desired 
class, a copy of some other instance of the desired 
class, return value of a method with the desired class 
as return type, a cast of an object of the superclass of 
the desired class, etc. To deal with such complexity, 
DP-Miner only checks the existence of a method 
invocation to foo() without considering to which 
object it belongs. By including such checking in our 
behavioral analysis, it allows our tool to include more 
true positives. On the other hand, it may also introduce 
some false positives caused by the invocations of the 
foo() methods that belong to some objects of undesired 
classes. 

Table 7 Recovery Precision for JHotDraw 
JHotDraw TP FP Precision 
Adapter 4 0 100% 
Bridge 53 5 91.38% 
Strategy 58 6 90.63% 
Composite 0 0 100% 

 
3.2 Benchmark 

Open source systems, such as JUnit and JHotDraw, 
typically do not have detail design documentation. 
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Hence, it is unclear which design patterns have been 
used and where they are applied in the systems. 
Without such information, it is hard to measure the 
precision and recall of design pattern discovery 
approaches. In this paper, we emphasize the 
importance of benchmarking design pattern instances 
existing in different open-source systems. Although 
existing approaches may recover design patterns from 
source code, there are discrepancies in these results 
when discovering the same pattern from the system 
open-source systems. Such discrepancies include 
different numbers of the same design patterns are 
recovered from the same system by different 
approaches. Even if the number of a particular design 
pattern recovered from the same system is the same 
for some approaches, the particular location of such 
pattern instances may differ as well. Thus, not only the 
numbers of the particular design pattern instances are 
discovered in the open source systems, but also their 
location shall be benchmarked. Benchmarking design 
pattern instances applied in open source systems may 
allow evaluating the results of different approaches.  

 
Table 8 Instances found manually but missed by DP-

Miner 

 CONTEXT STRATEGY 
[1] LineConnection Connector 
[2] ChangeConnectionHandle Connector 
[3] ConnectionTool Connector 
[4] PolygonHandle Locator 
[5] LocatorHandle Locator 
[6] LocatorConnector Locator 
[7] SelectionTool DrawingView 

 
Due to the flexibility of design pattern applications, 

there may be several different ways to implement a 
design pattern. Such implementation variations are one 
of the main causes of imprecision in design pattern 
discovery processes. Although our approach tries to 
tackle different variations of a design pattern, there 
still are false-positive and true-negative cases in the 
results of DP-Miner. In this case, we have to manually 
inspect the source code for such instances. Table 7 
presents the precision of DP-Miner for JHotDraw 
based on our manual inspections. We provide a 
complete table of all Strategy pattern instances 
discovered from JHotDraw v6.0 beta1 by DP-Miner in 
[23], where the names of classes participating in each 
instance are listed. The precision of our tool on the 
Strategy pattern in JHotDraw is 90.63%, listed in 
Table 7. Besides precision, we also attempt to 
compute the recall of DP-Miner. We manually 
checked JHotDraw for the Strategy pattern instances 
and found 7 real instances, listed in Table 8, which are 
missed by DP-Miner. Although we could not claim we 

have manually found all the Strategy pattern instances 
applied, we roughly find out the recall of DP-Miner is 
at most 89.23%. Based on DP-Miner and our manual 
inspections, we present an initial benchmarking result 
of the Strategy pattern from JHotDraw v6.0 beta1 in 
[23]. 

4. Comparison and Discussions 
Several other approaches on design pattern 

discovery have also included the experiments on 
Java.AWT [1, 5, 14, 15, 16, 17, 18, 19, 20], JUnit [1], 
[19], JEdit [1], and JHotDraw [1, 4, 10, 13, 17, 19] 
Some of these experiments discovered the instances of 
the Adapter [17], [19], Bridge [16, 17, 19], Strategy 
[16, 17, 19], and Composite [13, 16, 17, 19] patterns 
from these systems. We have studied the results of 
design pattern discovery from these other approaches 
and found different approaches reached different 
results for the same patterns in the same systems. We 
manually investigated the corresponding source code 
and discovered the following issues with the current 
state of design pattern discovery techniques. 

Design patterns describe a general guidance of a 
design solution to recurring problems. The application 
of a design pattern is normally flexible with several 
variations. Thus, the implementation of a design 
pattern is typically not unique. For example, one of the 
variations of the Composite pattern is to collapse both 
the Component and Composite classes into a single 
class. Such variations may be considered by some 
approaches but not others. This may cause different 
discovery results from different approaches.  

Each design pattern may include several classes 
that play some particular roles in the pattern. For 
instance, the Adapter pattern generally includes the 
Target, Adapter, and Adaptee classes. Some existing 
approaches tend to match all such roles whereas others 
may consider only partial matches. The former 
approaches may end up discovering less pattern 
instances than the latter do since they have stricter 
criteria for matching. The latter approaches may lead 
to more potential false positives. 

Current object-oriented programming languages 
may provide some special language constructs that 
may greatly simplify the implementation of a design 
pattern. For example, Java provides aggregation 
framework, such as LinkedList, ArrayList, HashMap, 
and Hashtable. These language features may make the 
implementation of the aggregate elements in the 
Composite class of the Composite pattern easy. The 
developers do not need to write their own Add(), 
Remove(), and getChild() operations to manage these 
aggregate elements in the Composite class. They can 
simply choose one of the language features instead. 
This makes the pattern discovery processes trickier 
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because these language features provide their own 
ways of managing the aggregates which are difficult to 
parse. Similar issue has also been discussed in [21]. 
Quite a lot of current approaches missed some 
instances of the Composite pattern due to this reason. 

Current design pattern discovery approaches 
typically do not search design patterns directly from 
source code. Instead, they normally apply some 
existing reverse engineering tools to obtain certain 
intermediate representations, such as the Abstract 
Syntax Tree (AST) of the source code. Different 
approaches may apply different algorithms and 
methods to search for pattern instances from these 
intermediate representations, rather than the source 
code. While it can save time and efforts for 
discovering patterns from these representations, it may 
also cause potential errors in the results because the 
intermediate representations are just an abstraction of 
the source code after all. Some essential characteristics 
of a pattern may be abstracted away from the 
intermediate representations, which causes missing 
pattern instances for some approaches. We found it 
essential to check also the source code no matter 
which intermediate representation is used. Our 
approach uses XMI-based intermediate representations 
for the structural analysis. Our behavioral and 
semantic analysis need to resort back to the system 
source code to reduce the false positives. 

Although there have been several experiments on 
discovering design patterns from these open-source 
systems, there are yet consistent results due to various 
reasons presented previously. Above all, the key 
problem is that there is no benchmark available for 
design pattern discovery. Lacking such benchmarks is 
the main impediment to evaluate and compare design 
pattern discovery techniques and methods. To 
calculate the precision and recall of a pattern matching 
result, in particular, it is essential to know the pattern 
instances actually exist in a system. Without such 
information, it is hard to judge whether an approach 
actually discovers all existing instances of a given 
pattern in a system and whether the discovered 
instances are correct. Although open-source systems 
are publicly accessible, the correct instances of 
patterns are generally not available. We have manually 
checked the JHotDraw system to calculate the 
precision of our results. We are also working on 
manually checking other systems. Our such efforts 
may lead to initial benchmarks for design pattern 
discovery. 

5. Conclusions 
In this paper, we presented our experiments on 

design pattern discovery from open-source systems 
using our tool, DP-Miner. In particular, our 

experiments discover the Adapter, Bridge, Strategy, 
and Composite patterns from the Java.AWT, JUnit, 
JEdit, and JHotDraw systems. A number of design 
pattern instances are recovered from these open-
source systems. Our experimental results show that 
design patterns have been widely applied in these 
systems and can be recovered.  

In addition, we compared our experimental results 
with those of others and found several discrepancies. 
We analyzed this issue and discussed possible 
reasons for the discrepancies. More importantly, we 
argue for benchmarks for design pattern discovery.  
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