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Abstract

Component-based software engineering has become a common approach in many areas of software devel-
opment. With respect to other approaches, it offers fast development by composition which, thanks to
explicit provisions and requirements of components, can be easily verified. However, there is a gap between
component systems focusing on abstract models and component systems focusing on implementation. In
this paper, we present an approach to overcome this gap using reverse engineering. The approach has
been designed during the Econet international project and allows extracting architectural and behavioural
information from plain Java applications.
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1 Introduction

Component-based software engineering is still a challenging topic in both industrial
and academic research. Most of the academic approaches focus on abstract models
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and specification of components (sometimes close to architectural description lan-
guages) with verifiable properties such as safety and liveness; some of them deal
with refinement and code generation, but many times these systems support only
specification of components and no implementation. On the contrary, the industrial
systems such as CCM, EJB, or OSGI are implementation-oriented. They define flat
components only, without hierarchical structures. They have strong and mature
runtime infrastructure, but provide no support for verification of any properties.
Therefore, reuse of components in different contexts may be difficult, as correctness
of their usage cannot be assured. Applications specified in the formerly mentioned
systems are many times implemented using the latter ones (or even using no com-
ponents but objects only) and also vice-versa. But such a situation directly leads
to a gap between component specifications and component implementations, as un-
controlled changes can happen on each of these two levels. Sometimes this gap is
called architecture erosion [7].

A major issue is to fill this gap and tie the specification and implementation
together. A way to address this gap is to define model transformation techniques
in order to generate code from the component specifications. This can be qualified
as the engineering way and it is similar to MDA and MDE approaches. It is quite
complex since we should, in theory, prove the correctness of the translation and
also because there are various target frameworks and languages. Another way is to
focus on program code analysis in order to extract component specification from the
component actual code. This can be qualified as the reverse engineering way. This
way is even more complex than the previous one due to many reasons like there exists
(1) no widely accepted common component model for specifications, (2) no direct
structural information in the code, in order to extract an application architecture,
(3) no common approach for abstracting behavioural description of components.
Both the engineering and reverse engineering ways remain open research issues.
The latter approach is even more important when dealing with existing legacy
applications, which should be integrated with new ones.

The goal of the paper is to contribute to the reverse engineering way by develop-
ing techniques for extraction of structural and behavioural descriptions from code
and for the verification of these descriptions back against the new/modified code.
The presented work has been done in the scope of the Econet international project.

This paper reports the current state of the project. The target contributions are:
(1) an open architecture to tackle the problem of re-engineering Java programs to
software components, (2) a common component metamodel that supports a general
component API, (3) processes for reverse engineering of structure and behaviour,
and (4) a prototype created as an Eclipse plugin, which integrates all the mentioned
pieces together.

The paper is organized as follows. Section 2 overviews the Econet project and
details the architecture of the whole approach. The architecture exposes a common
part related to models (Section 3) and two abstraction processes (Section 4). An
implementation of the integrated prototype and also performed experiments (done
using the CoCoME benchmark [24]) are in Section 5. A comparison of our approach
with related work is described in Section 6, and we conclude the paper in Section 7.
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2 Project Overview

The goal of the project is to establish a link between component codes (the source
model) and component specifications (the target abstract model). The advantages
of existence of the abstract model are mainly to provide a more accessible documen-
tation, to find convenient tools for verifying various properties of the component
systems such as safety and liveness, to improve the architectural restructuring and
evolution. Instead of studying only the structural features of the system, we also
work on behavioural abstractions. Behaviour is related to the dynamic and func-
tional features of the components and services. The mechanisms used for component
specifications are grounded on different formalisms: design by contract, algebraic
specifications, state machines, regular expressions and so on. Each of above men-
tioned formalisms offers a set of advantages and has some drawbacks. Design by
contract, a declarative specification only, supports an “incomplete” behaviour spec-
ification. Algebraic specifications generally have sound semantics but are, in most
cases, difficult to understand by people and not all kind of components can be
specified. The labeled transitions systems (LTS) and the regular expressions (RE)
formalisms are suited for dynamic descriptions and have formal semantics.

Complexity of the abstraction process depends on a “distance” between the
source concepts and the target concepts. To manage complexity, we set the following
starting assumptions:

(i) The source model is limited to Java code.

(ii) The target models are abstract component models such as Sofa [11], Kmelia
[4], Kadl [22], Fractal [10]. These models consider both structural and
behavioural features and provide tool support for verification.

Figure 1 shows the used architecture of the presented approach, which is struc-
tured as follows:
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Fig. 1. Econet Project Architecture

• The metamodel part provides the foundation API (Application Programming
Interface) for the component model processing. It addresses both the problem of
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handling several component models in a generic way and the problem of linking
models and codes (traceability).

• Process SA is an iterative process that extracts and infers architectural and typing
features from a plain or annotated Java code.

• Process BA extracts a dynamic behaviour specification for the components identi-
fied during the process SA. The idea is to make the reverse engineering as general
as possible but only variants of LTS (eLTS of Kmelia [4], STS of STSLib [15])
and the regular expressions (EBP of Sofa [23]) are currently targetted.

Each of these parts is described in detail in the following sections.

3 Model Management

By managing models we mean: providing a generic component model API, handling
source programs, and linking both levels. We define a metamodel to describe models
(section 3.2) and annotations to implement a kind of traceability (section 3.1).

3.1 Annotations

In order to let the source-based code analysers benefit from the cumulative informa-
tion gathered from other tools without having to query the model, it was decided to
store model information in the source code. Since JDK 1.5, the Java language has
a support for annotations [6], that store information which can be processed either
at compilation time or at runtime. Similarly to Javadoc elements, the annotations
are meta-tags that you can add to your code by applying them to package declara-
tions, type declarations, constructors, methods, etc. A library of annotations has
been developed to establish the link between Java structural features and model
elements. For example, the Java definition for the component annotation is:
/∗∗
∗ One or more Java c l a s s e s can be as s i gned to a s i n g l e component .
∗ Such an assignment i s s p e c i f i e d by t h i s annotat ion .
∗/

@Target ( ElementType .TYPE)
public @inte r f a c e InComponent {

/∗∗
∗ @return the array o f sou r c e s f o r t h i s annotat ion
∗/

St r ing [ ] annotat ionSrc ( ) ;
/∗∗
∗ @return the array ( one entry per annotat ion source ) conta in ing component
∗ Names which the annotated c l a s s i s a s s i gned to . I f a s i n g l e
∗ source d e c l a r e s the c l a s s to p a r t i c i p a t e in s e v e r a l components ,
∗ i t s entry should be a comma−separated l i s t o f component names
∗/

St r ing [ ] componentName ( ) ;
}

Since a single Java element cannot be annotated more than once by an annota-
tion type, every annotation we designed has arrays as fields, in order to store the
information extracted by the different tools or users. Filtering or combining that
information can then be done in subsequent steps of the process.
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3.2 Metamodel

Within the envisioned reverse engineering process, there is need for a meta-
model that defines the required component modelling concepts and their inter-
relationships. Such a metamodel has to satisfy at least three basic constraints. The
first constraint concerns genericity; the metamodel should abstract over different
concrete component models (Fractal, Sofa, Kmelia, and Kadl), by gathering a
common set of concepts and postponing specific concepts to concrete model map-
pings. Second, it has to include means for managing the tight connections be-
tween model elements and the corresponding (Java) features implementing them.
Third, the metamodel must be rigorously specified, including all the necessary Well
Formedness Rules (WFRs) and useful query operations. Moreover, appropriate tool
support for metamodel testing and repository code generation should be ensured.

The above mentioned requirements have led to the definition of a Common Com-
ponent MetaModel (CCMM), whose overall architecture is illustrated on Figure 2.
While designing it, we have used abstraction in order to solve the genericity prob-
lem; common aspects of the considered component models have been extracted as
shared concepts, while particular ones have been included by means of specialization
relationships. Moreover, we have tried to reach a compromise between minimality
(limiting the number of concepts by avoiding unnecessary ones) and extensibility
(staying as general as possible, in order to be able to include other concepts later).

CCMM_Core

CCMM_Behaviour

CCMM_Basic

CCMM_Instance

CCMM_CodeMapping

<<spec>>
CCMM_Addins

<<spec>>

CCMM_ModelManagement

CCMM_Classifiers

(from CCMM_Basic)

CCMM_Elements

(from CCMM_Basic)

CCMM_Types

(from CCMM_Basic)

CCMM_Components

(from CCMM_Core)

CCMM_Architecture

(from CCMM_Core)
CCMM_Annotations

(from CCMM_Core)

CCMM_Behaviour_Basic

(from CCMM_Behaviour)

CCMM_Behaviour_LTS

<<spec>>

(from CCMM_Behaviour)

CCMM_Behaviour_RE

<<spec>>

(from CCMM_Behaviour)

Fig. 2. Common Component MetaModel (CCMM) v1.1

Following the separation of concerns principle, the metamodel is organized
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on packages according to the specification document [5]. CCMM Basic gathers all
needed elementary modeling concepts; it is inspired by Ecore and UML 2.0 and
includes metaclasses that define (model) elements, types, and classifiers. Based
on CCMM Basic, CCMM Core is the fundamental metamodel package. By means of
its three subpackages, it defines the structure of components and component ar-
chitectures, together with some annotations-related aspects. Within it, the links
to the Java code are managed by means of special metaclass attributes, which
have been prefixed by s (from source) to distinguish them from regular attributes.
While structural aspects of components are handled within CCMM Core, the descrip-
tion of their associated dynamic behaviour is isolated inside the CCMM Behaviour
package. The specific formalisms are defined within CCMM Behaviour RE and
CCMM Behaviour LTS, respectively. CCMM Instance describes component instances’
management, while CCMM ModelManagement details the structure of a component
repository. The CCMM Addins and CCMM CodeMapping packages have been designed
having in mind a possible evolution of the metamodel. The former includes concepts
related to properties and constraints/assertions. The latter offers an alternative to
the solution adopted within CCMM Core (special attributes) in order to handle the
model-code mapping. This is achieved by introducing metaclasses corresponding
to Java features and representing the mapping by means of associations. The least
solution would be to implement a full code metamodel (e.g. JMI) but it is too heavy
and subject to standard compliance and evolution. All <<spec>>-stereotyped pack-
ages have been ignored while generating the first version of the metamodel API.
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Classifier
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Fig. 3. CCMM Components package

The class diagram in Figure 3 details the CCMM Components package. A
ComponentType is a black-box entity, defined as a specialization of Classifier. It
may own Attributes and Operations, and the latter ones may be grouped to form
Interfaces. The s classes attribute holds a model-code link, by storing the names
of all Java classes that implement a certain ComponentType. Any ComponentType
interacts with the environment through a number of InteractionPoints. Each
of these expresses either a provision or a requirement, and may target either
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an Interface or an Operation. The type of target depends on the concrete
component model considered; it is an interface in case of SOFA, and an opera-
tion in case of Kmelia. Nevertheless, all interactionPoints owned by a certain
ComponentType should have the same target type, fact expressed by means of the
consistentInteractionPoints OCL invariant below.
context ComponentType inv c on s i s t e n t I n t e r a c t i o nPo i n t s :
−− i f at l e a s t one i n t e r a c t i o n po int t a r g e t s an i n t e r f a c e ,
s e l f . i n t e r a c t i onPo in t s−>e x i s t s ( ip : I n t e r a c t i onPo in t | ip . t a r g e t s I n t e r f a c e ( ) ) implies
−− a l l i n t e r a c t i o n po in t s should t a r g e t i n t e r f a c e s
s e l f . i n t e r a c t i onPo in t s−>s e l e c t ( ip : I n t e r a c t i onPo in t | ip . ta rge t sOpera t i on ())−> s i z e ()=0

For sake of readability, the above WFR uses two query operations defined for
InteractionPoint, namely targetsInterface and targetsOperation. We give
the former’s body in the following, the OCL expression for the latter being similar.
context I n t e r a c t i onPo in t : : t a r g e t s I n t e r f a c e ( ) : Boolean
body : s e l f . targetO . oc l I sUnde f ined ( )

4 Behaviour and Architecture Abstraction from Code

The abstraction is split in two orthogonal processes: abstraction of structures (types,
services, components, and architectures) and abstraction of dynamic behaviours
(flows and communications).

4.1 Architecture Extraction

From a plain Java code and user interaction, the architecture extractor (called
process SA) produces an annotated Java code and the corresponding component
model. Many parameters have an influence on this process (do we have a component
model or not, do we have existing annotations or not, is the implementation the
result of some component translation, do we have several sources for the annotations,
do we have user informations or not...). In order to fix a general but customisable
schema we set some restrictions:

• Input: (1) the annotations are those related to CCMM (in the future we may
consider roundtrip engineering and accept specific annotations) (2) UML models
are not accepted as direct inputs (only user information).

• Output: (3) only flat component behaviours are targeted, (4) process SA is not
directly responsible of the consistency between a model and the corresponding
Java annotated code, (5) the conformance of the produced component model is
checked at the metamodel level.

Process SA is designed as an iterative process over a toolbox architecture (Figure
4) where one iteration applies one transformation. The idea is to combine primitive
transformations in a customised human driven process. The input jac may be a
plain or annotated source code. The input cm (a CCMM instance) may be empty
or disconnected from any jac. Examples of primitive transformations are: annotate
a Java program from user information, build a component model from a plain or
an annotated Java source, analyse a distributed program to detect components
(deployment), analyse dependencies using graph tools and extract clusters.
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Fig. 4. An architectural view of the process SA

As an example, let us consider the case of finding abstractions from a plain
Java code without annotations. At first sight it is not easy because of the distance
between the object and component concepts. Let us define some simple tasks allow-
ing to build a first and minimal architecture which can be refined later in another
iteration.

• Identify or extract the boundaries for primitive and composite components. The
resulting architecture is a tree structure where the primitive components are the
leaves and the composites are the nodes.

• Identify or extract the communications and classify services as required or pro-
vided. In such applications, communications are usually reduced to message send.

• Establish the interfaces of each component and classify. Interfaces are sets of
methods.

Hence, we propose extraction rules and some controls which can help in detecting
potential problems or non-expected situations. Due to lack of space, this section
describes only the main rules we have defined.

The first rule we consider is that a component cannot be passed as an effective
parameter of a method but it is possible for constructors. The main reason is: we
expect to respect encapsulation or communication integrity [1]. This is an important
property since it implies the existence of some communication channels which can
be identified with a static code analysis. Thus we analyse a Java project and
extract the main types defined in it, forgetting external data types or primitives
ones. These types are called the types of interest. Then a type of interest which
is used as parameter type in a method is flagged as a data type. Furthermore, the
subclasses of this type are also flagged as data types, since their instances could be
used as effective parameters using subtyping rules.

The second rule is to extract a possible composite structure from the analysis of
the fields. Ideally, the composite structure (or part-of relationship) should be a tree
or a forest. The analysis simply browses the candidate types and collects recursively
their structure. However, the process has to collect the inherited structure from the
super classes, that means to collect private, public, protected and default-package
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fields in the inheritance up to Object. We collect all kinds of fields since, even if a
field is not accessible in a class, a public accessor can be defined to read or write it.

The third rule is to extract communications from the code of methods. We
consider that there is a communication from type E to type R with message mesg,
if and only if mesg occurs in the implementation of E and its local sender type R
provides the mesg service. Here mesg is a signature in the Java sense.

The fourth rule is twofolds since it computes the required and provided services
of each type. For the required services: They come directly from the previous
analysis of communications. For the provided services: an analysis of each type is
done to extract the public or default package methods of the type.

The above rules apply under some hypotheses on the Java code. The program is a
source code (binary Java code could be analysed in more or less the same way, either
directly or after decompiling). We consider that the code to analyse is contained
in a unique project (an Eclipse project) which can import predefined projects or
libraries. We assume that in a Java file, what JDT [18] called a compilation unit,
there is only one main type which can be a component type or a data type. This
constraint is simple to relax, but we don’t want to analyse code which is too badly
structured. We don’t consider generic types, this is a main future extension of this
work. To relax this restriction is not easy since Java 1.5 introduces a sophisticated
type system and we have to distinguish generic definition, instantiation of them,
their use in fields, inheritance and methods. A component type in Java could be
an interface, a concrete or an abstract class. However, a component type must
be instantiated and this is only possible with concrete classes. We also do not
analyse static methods since, until now, we do not get a precise feeling of their
use regarding a component approach. Nevertheless, the component extracting task
remains a challenge.

4.2 Behaviour Extraction

As an input, behaviour extraction (process BA) takes (i) the source codes, (ii) the
architectural information, and optionally (iii) user hints for the extraction. The
architectural information can be either in a form of source code annotations or
retrieved from the CCMM repository. If provided, user hints are specified in the
form of source code annotations. The result of behaviour extraction is a high-level
specification of component’s behaviour. Targets of the extraction include family of
formalisms based on behaviour protocols (BP, EBP, and TBP) as well as formalisms
based on LTS, e.g. eLTS and STS.

Since the expressive power of the considered target formalisms is smaller than
the power of implementation languages, obviously, the complete information cannot
be preserved. However, with user’s assistance and a clever use of over-specification,
reasonable results can be achieved. The envisioned extraction process is depicted
on Figure 5. In short, the automated extraction process is applied on the annotated
source codes. For simple enough code, the extraction succeeds and provides the
desired behaviour specification. However, in the case of too complex code, the
extraction may fail. Should this happen, user may manually refine the annotations
hints and/or the implementation and retry.
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Fig. 5. Iterative behaviour extraction

In well-designed component systems, complex computations are often encapsu-
lated inside primitive components. For such systems, the corresponding behaviour
specification of components is likely to exist and be discovered in only a few itera-
tions. On the other hand, successive failures of the automatic extraction may help
identify that the complexity is inappropriately exposed throughout the architecture.

The extraction process is implemented by the jAbstractor tool. From a high-
level view, the jAbstractor tool works in three steps. First, the Java sources are
parsed. Second, a number of transformations is applied to the parse tree. The
transformations use the architectural information. Goal of the transformations is to
simplify the parse tree enough to be directly transformable to the target formalism
while keeping as much information as possible. As the third step, the simplified
parse trees are transformed to the target formalism.

Since users may have different requirements on the way the architectural infor-
mation is passed to the tool, and on the target formalism used at the final step we
have focused on the modularity of the whole tool. The result is that there is a num-
ber of extension points defined by particular interfaces that can be implemented
in different ways to fulfil different goals of particular users. There is one inter-
face providing an architectural information to the tool. Currently, the available
implementation is able to extract the architectural information from source code
annotations (see Section 3.1). Another interface encapsulates the final transforma-
tion. It takes a simplified Java source code and produces a high level specification.
Currently, there are two implementations. One produces labelled transition systems
and the other produces a behaviour protocol specification [23]. An important point
is that the complex transformations are applied on the Java parse tree, so that those
do not have to be implemented for each output formalism separately.

Figure 6 depicts the overall architecture of the jAbstractor tool. First, the Java
parse tree is produced by the Recoder tool. Recoder [26] is a parser of Java sources
and provides an in-memory representation of the Java parse tree, which is then used
by the jAbstractor modules. Recoder also provides information about declaration
references within the tree and a support for writing user-defined transformations
over the tree. Usage of third-party parser eased the development a lot. Then, there
are some transformations which make the parse tree simpler. Currently, the control
flow is inspected and only those parts that are related to the observable external
behaviour of the component are kept. More precisely, there is a notion of important
parse tree nodes which actually influence the component external behaviour. The
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Fig. 6. behaviour extraction work flow

important nodes are method declarations on provided interfaces, method calls on
required interfaces, accesses to important variables and control flow statements that
connect those statements together. Another transformation is method inlining to
create a new class which directly corresponds to the primitive component. There
is a single method for each method on a provided interface. The method bodies
contains bodies of methods invoked on objects belonging to the same component,
which is achieved by method inlining. Also, member variables of other classes must
be merged to the result class. Finally, since the merged class corresponds to the
primitive component, the final transformation to the target specification language
is supposed only to map Java language constructs to the constructs of the target
language. Here, overspecification may be employed, to overcome expressiveness gap.
If the overspecification is not enough to overcome the gap, the whole transformation
fails and suggests to the user to refine annotations.

5 Integration, Implementation and Experimentations

The current prototype is implemented as a set of libraries and programs that can be
called either in command line or through a set of Eclipse plugins. The main plugin
is the process plugin, which allows the user to select a Java project, then launch
and connect the different tools.

The process is started by the ComponentFinder (a JDT [18] plugin) which uses
rules described in page 8 to annotate Java elements with model information. That
information is not stored as Java annotations yet, for time reasons rather than com-
plexity. In our experiments (see below) the annotations were added by hand. The
next tool called is the AnnotationToModel extractor. The AnnotationToModel
extractor is parameterised by an AnnotationSelector module which determines
the annotations to be taken into account for generating the model. The fusion be-
tween annotations is customizable by defining subclasses of AnnotationSelector.
The prototype currently uses a naive implementation which should be replaced by
something more elaborate like a user-defined priority order, for instance.

The AnnotationToModel extractor uses the CCMM API plugin (implemented
as an Ecore metamodel, in order to be able to benefit from the strong EMF tool
support) to generate the model, then it checks it against the OCL rules of the
CCMM metamodel and stores it to XML. Violations to the metamodel rules are
stored, but they are not currently automatically used because they might indicate
errors in the annotations or in the selection of annotations. A more complex process
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will have to be used to obtain meaningful feedback if the sources are multiple and
the AnnotationSelector elaborate.

Components that comply with the CCMM metamodel rules are then given as
parameters to the jAbstractor tool which generates a behavioural specification from
its constituent Java classes. The specification is then added to the component in
the model.

Experimentations cover a large-scale set of tests including feasibility, software
testing, pattern discovery, API testing, etc. The experimentation benchmark is the
CoCoME case study [25], which includes a Java application and a documentation
with UML component diagrams. The extraction part of the ComponentFinder has
been tested using the full CoCoME benchmark. Other experiments worked on
subsets only.

A first subset (including only three components) was the basis for the annotation
management experimentation. Annotations were put manually in the code in order
to generate a model from scratch using the AnnotationToModel extractor. A trivial
code generator was also implemented an tested in this case.

A second subset included the CashDesk composite component. The CCMM
tests and validation (covering all specified WFRs and query operations) have been
performed on that subset. It also served as an experimentation field (1) to study
the link between the component level (UML here) and the implementation level
(how close is the implementation to the component model), (2) to investigate the
discovery of annotations from UML descriptions and Java programs (how can we use
manually or systematically UML information to find the annotations, what to look
for in the Java programs). This experimentation 5 showed how far were the abstract
and the implementation models, but also discovered patterns (unfortunately with
exceptions) that were implicitely used in the engineering process.

6 Related Work

Reverse engineering component applications is quite an unexplored topic, while
reverse engineering object oriented applications is quite rich (UML abstraction,
pattern abstraction, model refactoring, etc) [12,21]. We thought we could proceed
from UML models instead of Java code, but actually, the class model does not pro-
vide rich structural abstractions and the dynamic aspects are unfortunately poorly
captured. In the same way, we could use the UML 2.0 component model as the
reference CCMM but it is really too complex, the WFRs do not apply, there are
many missing WFRs and the semantics is informal. Reverse engineering techniques
such as clustering, slicing and trace exploration [20,8,17] are also useful for spe-
cific computations. In CBSE reverse-engineering, the concepts of component and
architecture varies from one approach to another. For example, in [19], design
components are high level concepts close to design patterns, but they are not ab-
stract components. In [13], the authors claim that time has come to investigate
this field. The difference with our approach is that they start from CB legacy code
(CCM, EJB, COM). A simple component metamodel and some structural rules are

5 http://www.lina.sciences.univ-nantes.fr/coloss/projects/econet/test1.pdf
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provided in [14]. We go one step further with more expressive component mod-
els including behavioural features. The work presented in [30] is relevant, since it
provides details for the abstraction (clustering algorithms) of Java programs. The
target model is JavaBeans, while we target more generic and hierarchical models.
Only the structure is abstracted, while, in addition, we consider behaviours to cope
with the communication integrity property. Our analysis of the composite structure
is comparable to their structural clustering algorithm but we simplify by assuming
that component structure is built from the class fields.

Component recovery and architecture recovery are the main issues for abstract-
ing structures. Here, we summarize some previous work which has been done in
the area of extracting architectural information from Java code. In their technical
paper [9], the authors study the various ways to extract some model information
from Java code. In fact, it can be done with three different approaches: parsing
the source code, disassembling the byte code, or profiling the application execution.
They found that these three techniques have complementary advantages. Parsing
the source code, using the classic grammar-ware technology, is the most complex to
implement and it can lead to detailed models. Disassembling Java byte code gives
similar results to parsing but, since the language is simpler, it is technically less
complex. Profiling consists in getting some feedback from application execution, it
strongly depends on the precise context of execution, but it is easy to do and pro-
vide accurate information about polymorphic call, dynamic types of objects, and
information related to the use of the reflective Java API. The conclusion from [9] is
that: if static analysis is sufficient thus disassembling is probably the best choice.
However, if we want to exploit some comments and code annotations, it is only
possible with source code. These comments and annotations may be really impor-
tant to help the extraction of the structure and architecture for components. If we
need really accurate information, source code analysis is better, since compilation
may omit some relations which could be important from a more abstract point of
view. The problem is still open. For instance, [16] considers that runtime analysis
or profiling is needed, since types and objects may be dynamically created.

So far, the work related to automatic architecture extraction has been discussed.
Regarding the behaviour extraction, the means are similar. One can either monitor
the behaviour of a running software or analyse the software statically. In [27], the
authors use instrumentation of Java bytecode to obtain execution traces from a
running program. Then, the traces can be analysed by various observers capable
of detecting deadlocks, race conditions, and user-specified LTL properties. In [3]
and [31], the authors use those traces to infer automaton-based high level specifica-
tions. Moreover, in [31], static analysis is also considered and both approaches are
compared. In general, the techniques based on monitoring are useful for inferring a
“common” behaviour. However, since they are not exhaustive, there is no guarantee
that the inferred specification covers all possible behaviours. The techniques based
on static analysis are presented in [29] and [2]. In these papers, static analysis is
used to derive protocols describing the correct use of components. When compared,
the techniques based on static analysis employ abstraction possibly resulting in a
specification that represents a superset of the actual behaviours of the system. If
such a specification is used for reasoning and automated detection of errors, false
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positive may occur due to the over-approximation. This is in line with our proposed
method.

Another way to reduce the distance model-code in the domain of CBSE is simply
to merge the levels. This way is illustrated by architectural programming languages
such as JAVA/A [7], ArchJava [1] and ComponentJ [28]. These approaches are not
really satisfactory in our case. Among the limitations, architectures in those lan-
guages are really more concrete than architectural description languages (ADLs).
The separation between model and code can be difficult. ArchJava and Compo-
nentJ lack of abstraction (no behaviour specification). JAVA/A provides a specific
translation framework using the code generation engine HUGO/RT, it does not
support plain Java.

7 Conclusion and Future Work

In this paper, we have presented an approach allowing to extract component abstrac-
tions from plain and/or annotated Java source code. The abstractions are extracted
in two processes — one for the structural information (business types, components,
architectures) and one for the behaviour (dynamics and computations). A common
component metamodel has been designed to make this approach generic enough over
the “abstract” component models. We have implemented the presented approach
as a set of Eclipse plugins and tested it on the CoCoME case study.

Future work concerns at first the finalisation of the implementation into a full
chain of tools. Further research is also necessary in both the structural and be-
havioural extraction processes (in order to cover complex patterns, communication
mechanisms, etc.).
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[11] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing advanced features in a
hierarchical component model. In SERA ’06: Proceedings of the Fourth International Conference
on Software Engineering Research, Management and Applications, pages 40–48. IEEE CS, 2006.
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