SOFTWARE PRACTICE AND EXPERIENCE
Softw. Pract. Ezper. 2003; 00:1-7 Prepared using speauth.cls [Version: 2000/03/16 v2.12]

R

The FRACTAL Component
Model and Its Support in Java

Eric Bruneton!, Thierry Coupaye!, Matthieu Leclercq?, Vivien Quéma?,
Jean-Bernard Stefani?

Y France Telecom R&D

2 INRIA Rhoéne-Alpes

{Eric.Bruneton, Thierry.Coupaye}@rd. francetelecom.com,
{Matthieu.Lleclercq, Vivien. Juema, Jean-Bernard.Stefani}@inrialpes. fr

SUMMARY

This paper presents FRACTAL, a hierarchical and reflective component model with
sharing. Components in this model can be endowed with arbitrary reflective capabilities,
from plain black-box objects to components that allow a fine-grained manipulation
of their internal structure. The paper describes JULIA, a Java implementation of the
model, a small but efficient run-time framework, which relies on a combination of
interceptors and mixins for the programming of reflective features of components. The
paper presents a qualitative and quantitative evaluation of this implementation, showing
that component-based programming in FRACTAL can be made very efficient.

KEY WORDS: component-based programming, reflective component model, aspects and components,
Java components

1. Introduction

By enforcing a strict separation between interface and implementation and by making software
architecture explicit, component-based programming can facilitate the implementation and
maintenance of complex software systems [36]. Indeed, these two principles form the basis
for two essential properties: adaptability and manageability. Their role as units of software
deployment and configuration in particular, are well understood: they allow for pre-run time
adaptation in order to suit arbitrary deployment environments (construction of dedicated
software infrastructures), evolutions in requirements and technical evolutions (maintenance),
and organisational evolutions (integration, interoperation). When seen as run-time structures,
components can serve as the basis for software reconfiguration. By fully delineating subsystem
boundaries, they provide a natural scope for reconfiguration actions and a natural target
for system instrumentation and supervision. Coupled with the use of meta-programming
techniques, component-based programming can hide to application programmers some of the
complexity inherent in the handling of non-functional aspects in a software system, such as

Copyright © 2003 John Wiley & Sons, Ltd.

2 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

distribution and fault-tolerance, as exemplified by the container concept in Enterprise Java
Beans (EJB), CORBA Component Model (CCM), or Microsoft .Net [36].

Existing component-based frameworks and architecture description languages (see e.g. [27]
for a recent survey of ADLs), however, provide only limited support for extension and
adaptation, as witnessed by recent works on component aspectualization, e.g. [22, 30, 32].
The paper [30] argues at length, for instance, about the lack of tailorability of EJB containers,
meaning that there is no mechanism to configure an EJB container or its infrastructural
services, nor is it possible to add new services to it.

This limitation implies several important drawbacks: it prevents the easy and possibly
dynamic introduction of different control facilities for components such as non-functional
aspects; it prevents application designers and programmers from making important trade-
offs such as degree of configurability vs performance and space consumption; and it can
make difficult the use of these frameworks and languages in different environments, including
embedded systems. Even with reflective component models such as OpenCOM [20], i.e. models
of components endowed with an explicit meta-object protocol to control the execution of
components and introduce support for different non-functional aspects, we find it necessary to
be able to finely tailor the reflective capabilities endowed in components in order to support
the different trade-offs which are critical in low-level software infrastructure design, e.g. in
operating system or middleware construction.

We present in this paper a component model, called FRACTAL, that alleviates the above
problems by introducing a notion of component endowed with an open set of control
capabilities. In other terms, components in FRACTATL are reflective, in the sense that their
execution and their internal structure can be made explicit and controlled through well-defined
interfaces. These reflective capabilities, however, are not fixed in the model but can be extended
and adapted to fit the programmer’s constraints and objectives.

Importantly, we also present in this paper how such an open component model can be
efficiently supported in Java by an extensible run-time framework, called JULIA. JULIA
incorporates an innovative use of mixin classes to allow the definition and combination
of arbitrary component controllers. This provides a JULIA programmer with effective and
extensible means to deal with different cross-cutting aspects in controlling components.

The main contributions of the paper are as follows:

e We define a hierarchical component model with sharing, that supports an extensible set
of component control capabilities.

e We show how this model can be effectively supported in Java by means of an extensible
software framework, that provides for both static and dynamic configurability.

e We show that our component model and run-time framework can be used effectively to
build highly configurable, yet efficient, distributed systems.

The paper is organized as follows. Section 2 presents the main features of the FRACTAL
model. Section 3 describes JULIA, a Java framework that supports the FRACTAL model. Section
4 evaluates the model and its supporting framework. Section 5 discusses related work. Section
6 concludes the paper with some indications for future work.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 3
&

2. The FRACTAL component model

The FRACTAL component model (see [18] for a detailed specification), is a general component
model which is intended to implement, deploy and manage (i.e. monitor, control and
dynamically configure) complex software systems, including in particular operating systems
and middleware. This motivates the main features of the model:

e Composite components (components that contain sub-components), in order to have a
uniform view of applications at various levels of abstraction.

e Shared components (sub-components of multiple enclosing composite components),
in order to model resources and resource sharing while maintaining component
encapsulation.

e Introspection capabilities, in order to monitor and control the execution of a running
system.

e Re-configuration capabilities, in order to deploy and dynamically configure a system.

To allow programmers to tune the control of reflective features of components to the
requirements of their applications, FRACTAL is defined as an extensible system. Control
features of components are not predetermined in the model, rather the model allows for a
continuum of reflective features or levels of control, ranging from no control (black-boxes,
standard objects) to full-fledged introspection and intercession capabilities (including e.g.
access and manipulation of component contents, control over components life-cycle and
behavior, etc).

2.1. Components and bindings

A FRACTAL component is a run-time entity that is encapsulated, has a distinct identity,
and that supports one or more interfaces. An interface is an access point to a component
(similar to a “port” in other component models), that implements an interface type (i.e. a type
specifying the operations supported by the access point). Interfaces can be of two kinds: server
interfaces, which correspond to access points accepting incoming operation invocations, and
client interfaces, which correspond to access points supporting outgoing operation invocations.

A FRACTAL component (see Figure 1) can be understood generally as being composed of
a membrane, which supports interfaces to introspect and reconfigure its internal features,
and a content, which consists in a finite set of other components (called sub-components).
The membrane of a component can have external and internal interfaces. External interfaces
are accessible from outside the component, while internal interfaces are only accessible from
the component’s sub-components. The membrane of a component is typically composed of
several controllers. Typically, a membrane can provide an explicit and causally connected
representation of the component’s sub-components and superpose a control behavior to
the behavior of the component’s sub-components, including suspending, checkpointing and
resuming activities of these sub-components. Controllers can also play the role of interceptors.
Interceptors are used to export the external interface of a subcomponent as an external
interface of the parent component. They can intercept the oncoming and outgoing operation
invocations of an exported interface and they can add additional behavior to the handling of

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

4 E.BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI

control interfaces

server interface
J

client interface

Figure 1. A Fractal component

such invocations (e.g. pre and post-handlers). Each component membrane can thus be seen
as implementing a particular semantics of composition for the component’s sub-components.
Controller can be understood as meta-objects or meta-groups as they appear in reflective
languages and systems.

The FRACTAL model provides two mechanisms to define the architecture of an application:
component nesting we have just described and bindings. Communication between FRACTAL
components is only possible if their interfaces are bound. FRACTAL supports both primitive
bindings and composite bindings. A primitive binding is a binding between one client interface
and one server interface in the same address space (which can be modeled as a component),
which means that operation invocations emitted by the client interface should be accepted
by the specified server interface. A primitive binding is called that way for it can be readily
implemented by pointers or direct language references (e.g. Java references). A composite
binding is a communication path between an arbitrary number of component interfaces.
These bindings are built out of a set of primitive bindings and binding components (stubs,
skeletons, adapters, etc). A binding is a normal FRACTAL component whose role is to
mediate communication between other components. The binding concept corresponds to the
connector concept that is defined in other component models. Note that, except for primitive
bindings, there is no predefined set of bindings in FRACTAL. In fact bindings can be built
explicitly by composition, just as other components. Importantly, bindings can embody remote
communication paths between interfaces, and span different address spaces and different
machines in a network. This allows the construction of distributed configuration of FRACTAL
components.

An original feature of the FRACTAL component model is that a given component can
be included in several other components. Such a component is said to be shared between
these components. Consider, for example, a menu and a toolbar components (see Figure 2),
with an "undo" toolbar button corresponding to an "undo" menu item. It is natural to
represent, the menu items and toolbar buttons as sub components, encapsulated in the menu
and toolbar components, respectively. But, without sharing, this solution does not work for

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

SPE THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA)
&

T T T T T T

Menu Menu NS EEEEEN
— =]
EEEEER
- ~ 1= e
Toolbar Toolbar S EEEEER
|. 1 Jl—' Undo :

a
EEEEEER

Architecture without shared components Architecture with shared components

Figure 2. Component sharing in Fractal

the "undo" button and menu item, which must have the same state (enabled or disabled):
these components, or an associated state component, must be put outside the menu and
toolbar components. With component sharing, the state component can be shared between
the menu and toolbar components, in order to preserve component encapsulation. Shared
components are also useful to faithfully model access to low-level system resources (which are
typically shared between applications), and to help separate "aspects" in component based
applications (for instance it is possible to have components representing address spaces, i.e.
a physical architecture, with sub components shared with other components representing a
logical architecture)

2.2. Levels of control

The FRACTAL model does not enforce a fixed and pre-determined set of controllers in
component membranes (hence the phrase “open component model”). Tt allows instead
arbitrary forms of membranes, with different control and interception semantics. The FRACTAL
specifiation, however, identifies specific forms of membranes and controllers, corresponding to
different levels of control (or reflection capabilities) on components.

At the lowest level of control, a FRACTAL component is a black box, that does not
provide any introspection or intercession capability. Such components, called base components,

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

6 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

are comparable to plain objects in an object-oriented programming language such as Java
(although, even at the lowest level of control, the model allows components to have a varying
number of interfaces during their lifetime). Their explicit inclusion in the model facilitates the
integration of legacy software.

At the next level of control, a FRACTAL component provides a Component interface, similar
to the IUnknown in the COM model, that allows one to discover all its external (client and
server) interfaces. Each interface has a name that distinguishes it from other interfaces of the
component. At this level of control, components still do not provide any control function, but
the Component interface provides elementary means for introspecting the external structure
of a component. Also at this level of control, component interfaces may additionally support,
via multiple interface inheritance, operations that allow to retrieve the Component interface of
the supporting component. Such operations are gathered in the Interface interface type.

At upper levels of control, a FRACTAL component can expose elements of its internal
structure, and provide increased introspection and intercession capabilities. The FRACTATL
specification provides several examples of useful forms of controllers, which can be combined
and extended to yield components with different reflective features:

e Attribute controller: An attribute is a configurable property of a component. A
component can provide an AttributeController interface to expose getter and setter
operations for its attributes.

e Binding controller: A component can provide the BindingController interface to allow
binding and unbinding its client interfaces to server interfaces by means of primitive
bindings.

e Content controller: A component can provide the ContentController interface to list,
add and remove subcomponents in its contents.

e Life-cycle controller: A component can provide the LifeCycleController interface
to allow explicit control over its main behavioral phases, in support for dynamic
reconfiguration. Basic lifecycle methods supported by a LifeCycleController interface
include methods to start and stop the execution of the component.

2.3. Type system

The FrRACTAL model is endowed with an optional type system (some components such as
base components need not adhere to the type system). Interface types describe the operations
supported by an interface, the role of the interface (client or server), as well as its contingency
and its cardinality. The contingency of an interface indicates if the functionality corresponding
to this interface is guaranteed to be available or not, while the component is running;:

e The operations of a mandatory interface are guaranteed to be available when the
component is running. For a client interface, this means that the interface must be bound.
As a consequence, a component with mandatory client interfaces cannot be started until
all these interfaces are bound.

e The operations of an optional interface are not guaranteed to be available. For a
server interface, this can happen e.g. when the complementary internal interface of the

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 7
&

supporting component is not bound to a sub-component interface. For a client interface,
this means that the component can execute without this interface being bound.

The cardinality of an interface type T specifies how many interfaces of type T a given
commponent may have. A singleton cardinality means that a given component must have
exactly one interface of type T'. A collection cardinality means that a given component may
have an arbitrary number of interfaces of type T'. Such interfaces are typically created lazily,
e.g. upon request of a bind operation through a BindingController interface.

Component types are just sets of component interface types. The type system is equipped
with a subtyping relation which embodies constraints to ensure substitutability of components.

2.4. Instantiation

The FRACTAL model also defines factory components, i.e. components that can create
new components. Again, the FRACTAL model does not constrain the form and nature of
factory components, but the FRACTAL specification provides useful forms of such factories.
In particular, it distinguishes between generic component factories, which can create several
kinds of components, and standard factories, which can create only one kind of components,
all with the same component type. A generic factory provides the GenericFactory interface,
which allows a new component to be created, given its type, and an appropriate description of
its membrane (controllers) and content. A template is a special standard factory that creates
components that have the same internal structure as the template. Thus, a template component
can have several templates as sub-components (sub-templates). A component created by such
a template will have as many sub-components as sub-templates in the template, which will be
bound together in the same way as the sub-templates are. Templates are useful to manifest at
run-time a particular configuration.

3. The JuLiA framework

The JuriA framework supports the construction of software systems with FRACTAL
components written in Java. The main design goal for JULIA was to implement a framework to
program FRACTAL component membranes. In particular, we wanted to provide an extensible
set of control objects, from which the user can freely choose and assemble the controller and
interceptor objects he or she wants, in order to build the membrane of a FRACTAL component.
The second design goal was to provide a continuum from static configuration to dynamic
reconfiguration, so that the user can make the speed/memory tradeoffs he or she wants. The
last design goal was to implement a framework that can be used on any JVM and/or JDK,
including very constrained ones such as the KVM, and the J2ME profile (where there is no
ClassLoader class, no reflection API, no collection API, etc). In addition to the previous design
goals, we also made two hypotheses in order to simplify the implementation: we suppose there
is only one (re)configuration thread at a given time, and we also suppose that the component
data structures do not need to be protected against malicious components.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

8 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI

Component BindingController LifeCycleController ?

server interface
J

Interface object

client interface

"impl" link

M odel Implementation in Julia

Figure 3. An abstract component and a possible implementation in JuLIA

3.1. Main Data Structures

A FRACTAL component is generally represented by many Java objects, which can be separated
into three groups (see Fig. 3):

e the objects that implement the component interfaces, in white in Fig. 3 (one object
per component interface; each object has an impl reference to an object that really
implements the Java interface, and to which all method calls are delegated; this reference
is null for client interfaces; for server interfaces it can reference an interceptor or an object
of the content part),

e the objects that implement the membrane of the component, in gray and light gray in
the figure (a controller object can implement zero of more control interfaces),

e and the objects that implement the content part of the component (not shown in the
figure).

The fact that each component interface is represented by its own Java object comes from the
fact that component interfaces are typed (i.e., a component interface object implements both
Interface and the Java interface corresponding to this interface). It is not possible to do better,
unless perhaps by using very complex bytecode manipulations that modify the signature of all
the methods of all classes.

The objects that represent the membrane of a component can be separated into two groups:
the objects that implement the control interfaces (in gray in Fig. 3), and (optional) interceptor
objects (in light gray) that intercept incoming and/or outgoing method calls on non-control
interfaces. These objects implement respectively the Controller and the Interceptor interfaces.
Each controller and interceptor object can contain references to other controller / interceptor
objects (since the control aspects are generally not independent - or “orthogonal” - they must
generally communicate between each other).

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 9
&

Instantiation

JULIA components can be created manually or automatically. The manual method can be
used to create any kind of components, while the automatic one is restricted to components
whose type follows the basic type system defined in the FRACTAL specification, which provide
a Component interface, and which provide interface introspection functions. In both methods,
a component, must be created as follows:

e creation of the component interface objects (if the component must provide interface
introspection), of the controller objects, of the interceptor objects, and of the component’s
content (for container components).

e initialization of the impl references between the component interfaces objects and the
content, controller and interceptor objects.

e creation of an InitializationContext, and set up of this context, with references to the
previous objects.

e initialization of the controller and interceptor objects by calling their initFcController
method, with the previous InitializationContext object as parameter (this step allows the
controller and interceptor objects to initialize themselves, i.e. to set up the references
between all these objects).

In the automatic method, i.e. when components are created through the GenericFactory
interface, the operations that must be done at the previous steps are deduced from the
component’s type, and from its membrane and content descriptor. Once these descriptors
have been analyzed and checked, and once the previous operations have been determined,
a sub class of the InitilizationContext class that implements these operations is generated,
directly in bytecode form, with the InitializationContextClassGenerator. Finally the component
is created by using this generated class (in other words, the controller and content descriptors
are compiled on the fly, once and for all, instead of being interpreted and checked each time a
component must be created).

3.2. Mixin classes
3.2.1. Motivations

The main design goal of JULIA is to implement a reusable and extensible framework to program
component membranes. In particular, since everything in the Fractal specification is optional,
JULIA must provide implementations of the Fractal API interfaces for any conformance
level. For example, JULTA must provide a basic Component implementation, as well as an
implementation for components whose type follows the basic type system (in the first case
Component behaves like a read only hash map; in the second case, because of collection
interface types, the getFclnterface method can lazily create new component interfaces - see
section 2.3). Likewise, JULIA must provide a basic BindingController implementation, as well as
an implementation for cases where the basic type system is used, where a life cycle controller
is present, or where composite components are used (these implementations are needed to
check type, life cycle or content related constraints on bindings). There must also be an

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

10 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI

implementation for cases where both the basic type system and a life cycle controller are used,
or where the basic type system, life cycle controllers, and composite components are used. And
these implementations must be extensible, in order to take into account, user defined controllers
when needed.

In order to provide all these implementations, a first solution would be to use class
inheritance. But this solution is not feasible, because it leads to a combinatorial explosion,
and to a lot of code duplication. Consider for example the BindingController interface, and
the "type system", "life cycle" and "composite" concerns. These three concerns give 23 = 8
possible combinations. Therefore, in order to implement these three concerns, eight classes (and
not just three) must be provided. Moreover these eight classes can not be provided without
duplicating code, if multiple inheritance is not available.

Another solution to this problem would be to use an Aspect Oriented Programming (AOP)
tool or language, such as Aspect/J [24], since the goal of these tools and languages is to
solve the “crosscutting” problems. Aspect/J, for example, could effectively be used to solve
the above problem: aspect classes could indeed be used instead of sub classes, which would
solve the combinatory problems (an aspect can be applied to multiple classes and aspects).
But using Aspect/J would introduce a new problem, due to the fact that, in Aspect/J, 1)
aspects must be applied at compile time, and 2) this process requires the source code of the
base classes*. It would then be impossible to distribute JULIA in compiled form, because then
users would not be able to apply new aspects to the existing JULIA classes (in order to add
new control aspects that crosscut existing ones).

What is needed to really solve our modularity and extensibility problem is therefore a kind
of AOP tool or language that can be used at load time or at runtime, without needing the
source code of the base classes, such as JAC [29]. The current JULIA version does not use
JAC or other similar systems: it uses instead some kind of mizrin classes. A mixin class is
a class whose super class is specified in an abstract way, by specifying the minimum set of
fields and methods it should have. A mixin class can therefore be applied (i.e. override and
add methods) to any super class that defines at least these fields and methods. This property
solves the above combinatory problem. Moreover, mixin classes used in JULTIA can be mixed
at load time, thanks to our bytecode generator ASM [1] (unlike in AspectJ and in most mixin
based inheritance languages, where mixed classes are declared at compile time).

3.2.2. Implementation
Instead of using a Java extension to program the mixin classes, which would require an
extended Java compiler or a pre processor, mixin classes in JULIA are programmed by using

patterns. For example the JAM [15] mixin class shown below (on the left) is written in pure
Java as follows (on the right):

*This is no longer true with version 1.1 of AspectJ, but this was the case in 2002 when JuLia was developed.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA
&

11

mixin A { abstract class A {
inherited public void m () abstract void _super_m ();
public int count; public int count;
public void m () { public void m () {
++count; ++count;
super.m() ; _super_m() ;
} }
} }

In other words, the super prefix is used to denote the inherited members in JAM, i.e.
the members that are required in a base class, for the mixin class to be applicable to it. More
precisely, the super prefix is used to denote methods that are overridden by the mixin class.

Members that are required but not overridden are denoted with this :

abstract class M implements I {
abstract void _super_m ();
abstract void _this_n ();

public int count;
public void m () {
++count;
_this_n(Q);
_super_m() ;
}
}

Mixin classes can be mixed, resulting in normal classes. More precisely, the result of mixing
several mixin classes My, ... M,,, in this order, is a normal class that is equivalent to a class
M,, extending the M,,_; class, itself extending the M,,_5 class, ... itself extending the M; class
(constructors are ignored; an empty public constructor is generated for the mixed classes).
Several mixin classes can be mixed only if each method and field required by a mixin class M;
is provided by a mixin class M;, with j < ¢ (each required method and field may be provided

by a different mixin). For example, if N and O designate the following mixins:

abstract class N implements I { abstract class 0 implements I {
abstract void _super_m (); public void m () {
System.out.println("m");
public void m () { }
System.out.println("m called"); public void n () {
_super_m() ; System.out.println("n");
} }
} }

then the mixed class O N M is equivalent to the following class (note that this class implements

all the interfaces implemented by the mixin classes):

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7

Prepared using speauth.cls

12 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

public class C55d992cb_0 implements I, Generated {

// from 0O

private void m$1 () {
System.out.println("m");

}

public void n () {
System.out.println("n");

}

// from N

private void m$0 () {
System.out.println("m called");
m$10);

}

// from M

public int count;

public void m () {
++count;
nQ);
m$0 () ;

}

}

The mixed classes are generated dynamically, directly in bytecode form with ASM [1], by
the MixinClassGenerator class. In order to ease debugging, the class generator keeps the line
numbers of the mixin classes in the mixed class. More precisely, a line number [of the mixin
class at index ¢ (in the list of mixin classes, and starting from 1) is transformed into 1000*%+1.
For example, if a new Exception().printStackTrace() were added in the N.m method, the stack
trace would contain a line at C55d992cb 0.m$0(ONM:2005), meaning that the exception was
created in method m$0 of the C55d992cb 0 class, whose source is the ONM mixed class, at
line 5 of mixin 2, i.e. at line 5 of the N mixin class.

3.3. Interceptors

Some control aspects, such as the control of bindings, can be completely implemented in a
generic way, in a single controller object. But most control aspects must be implemented in
two parts: a generic part, and a non generic “hook” part that must be weaved into the user
code. In JuULIA, this non generic “hook” part is made of the interceptor objects (see Section
3.1), and the weaving is done by inserting these interceptor objects between user objects.

The interceptor classes, since they are not generic (they must implement one or more
user interfaces), cannot be written by hand, unlike controller classes, and must therefore be
generated automatically. As in some Meta Object Protocol (MOP) implementations, JULIA
generates these classes directly in compiled form, by using the ASM library. This is much
faster than generating these classes in source code form, which allows JULIA to generate

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 13
&

them dynamically, during the application’s execution (but JULIA also offers the possibility
to generate them statically, before launching an application).

However, unlike in most MOP implementations, the generator that generates the interceptor
classes is open and extensible. This flexibility was introduced for efficiency reasons. Indeed this
open generator can be used not only to generate interception code that reifies all method calls,
as in MOPs, but also to generate much more efficient code, specialized for a given set of aspects.
This open generator is described in the rest of this section.

The interceptor class generator takes as parameters the name of a super class, the name(s)
of one or more application specific interface(s), and one or more aspect code weaver(s). It
generates a sub class of the given super class that implements all the given application
specific interfaces and that, for each application specific method, implements all the aspects
corresponding to the given aspect code weavers.

Each aspect code weaver is an object that can manipulate the bytecode of each application
specific method arbitrarily. For example, an aspect code weaver A can modify an empty
interception method void m () { return delegate.m() } into:

void m () {
// pre code A
try {
delegate.m();
} finally {
// post code A
}
}

where the pre and post code blocks can be adapted to the precise arguments and return types
of m, while another aspect code generator B will modify this method into:

void m () {
// pre code B
delegate.m();

}

When an interceptor class is generated by using several aspect code weavers, the
transformations performed by these weavers are automatically composed together. For
example, if A and B are used to generate an interceptor class, the result for the previous
m method is the following (depending on the order in which A and B are composed):

void m () { void m () {

// pre code A // pre code B

try { // pre code A
// pre code B try {
delegate.m(); delegate.m();

} finally { } finally {
// post code A // post code A

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7

Prepared using speauth.cls

14 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

} }
} }

Note that, thanks to this elementary automatic weaving, which is very similar to what can
be found in Aspect/J, several aspects can be managed by a single interceptor object: there is
no need to have chains of interceptor objects, each object corresponding to an aspect.

Like the controller objects, the aspects managed by the interceptor objects of a given
component can all be specified by the user when the component is created. The user can
therefore not only choose the control interfaces he or she wants, but also the interceptor
objects he or she wants.

JuLIA provides two specific aspect code weavers (to manage the life cycle and trace aspects),
and two generic code weavers that reify method calls (one that just reifies method names, and
one that also reifies the arguments). Users can of course provide their own code weavers, but
writing such a weaver requires a good knowledge of the Java bytecode instructions.

3.4. Optimizations
3.4.1. Intra component optimizations

In order to save memory, JULIA provides some optimization options to merge some or all the
objects that make up a component into a single Java object. These optimizations are based
on a tool provided by JULIA, which uses the ASM library to merge several controller classes
into a single class. This tool is based on the following assumptions:

e each controller object can provide and require zero or more Java interfaces. The
provided interfaces must be implemented by the object, and there must be one field per
required interface, whose name must begin with weaveable for a mandatory interface, or
weaveableOpt for an optional interface (see below). Each controller class that requires at
least one interface must also implement the Controller interface (see below).

e in a given configuration, a given interface cannot be provided by more than one object
(except for the Controller interface). Otherwise it would be impossible to merge these
objects (an object cannot implement a given interface in several ways).

e the bindings between objects in a given configuration are established automatically in
a two steps process: a) each controller object of the configuration is registered into a
"naming service" (in practice, this naming service is the InitializationContext interface),
and b) each controller object initializes itself by using the previous "naming service" to
retrieve the interface it requires.

To be more precise, lets suppose we have four control interfaces I, J, K and L, and three
controller classes lImpl, Jimpl and Klmpl. These classes should look like this:

public class IImpl implements Controller, I {

public J weaveablelJ; // = required interface of type J
public L weaveableOptL; // = optional required interface of type L
public int foo; // normal field
Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7

Prepared using speauth.cls

SPE THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 15
&

// implementation of the Controller interface
public void initFcController (InitializationContext ic) {
weaveableJ = (J)ic.getInterface("j");
weaveableOptL = (L)ic.getOptionallnterface("1");
}
// other methods
public void foo (String name) {
weaveableJ.bar (weaveableOptL, foo, weaveableC.getFcInterface(name));
}
}

public class JImpl implements Controller, J {
public K weaveableK;
public void initFcController (InitializationContext ic) {
weaveableK = (K)ic.getInterface("k");
}
// other methods ...

public class KImpl implements Controller, K {
// other methods ...
X

In the non optimized case, a component with these three controller objects is instantiated
in the following steps. First an instance of llmpl, JImpl and Klmpl is created, then the resulting
objects are put in an InitializationContext object, and finally the initFcController method is
called on each controller object with this context as argument. In the optimized case, the class
obtained by "merging" (see below) the Ilmpl, Jimpl and Klmpl is dynamically generated (or
loaded from the classpath if it has been statically generated before launching the application,
or just returned if it has already been generated or loaded) and then an instance of this class
is created.

The "merging" process is the following. Basically, all the methods and fields of each class
are copied into a new class (the resulting class does not depend on the order into which the
classes are copied). However the fields whose name begins with weaveable are replaced with
this, and those whose name begins with weaveableOpt are replaced either with this, if a class
that implements the corresponding type is present in the list of the classes to be merged, or
null otherwise. Finally, the initFcController methods from the Controller interface are merged
into a single initFcController method. The result is the following class:

public class Cb234f2 implements Controller, I, J, K, ..., Generated {
// fields and methods copied from ITImpl:
public int foo;
public void foo (String name) {
bar(null, foo, this.getFcInterface(name));

}

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

16 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

private void initFcController$0 (InitializationContext ic) {
(D) ic.getInterface("j");
(L)ic.getOptionalInterface("1");

}

// fields and methods copied from JImpl (not shown)

// fields and methods copied from KImpl (not shown)

// merged initFcController method:

public void initFcController (InitializationContext ic) {
initFcController$0(ic);
initFcController$1(ic);
initFcController$2(ic);

}

}

As explained in section 3.1, the membrane of a component is made of controller objects and
of interceptor objects. The above optimization only applies to controller objects. Therefore,
even with this optimization, the membrane of a component is still made, in general, of several
Java objects. However, if the interceptor objects all delegate to the same object, and if they do
not have conflicting interfaces, it is possible to really have only one Java object for the whole
membrane of the component. In this case, which happens for most primitive components, the
instantiation process is the following:

e 3 class that merges the controller classes is generated or loaded as before,

e a sub class of this class that implements the interception code for each method of each
functional interface is generated or loaded,

e this sub class is instantiated.

Even if the controllers and interceptors are merged into a single object, the content of the
component is still made of a separate object. It is however possible to instantiate a whole
component (i.e. the controllers, the interceptors and the content part) as a single Java object.
In order to do this, the user component class is used as a super class to generate the merged
controller class, which is itself used a super class to generate the interceptor class (as described
above).

3.4.2. Inter component optimisations

In addition to the previous intra component optimizations, which are mainly used to save
memory, JULIA also provides an inter component optimization, namely an algorithm to
create and update shortcut bindings between components, and whose role is to improve time
performances. As explained in section 3.1, each interface of a component contains an impl
reference to an object that really implements the component interface. In the case of a server
interface s, this field generally references an interceptor object, which itself references another
server interface.

More precisely, this is the case with the CompositeBindingMixin. With the OptimizedCom-
positeBindingMixin, the impl references are optimized when possible. For example, in Fig.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 17
&

ey
impl link
N ~
.| impl link
N\
delegate link

optimized impl link

Figure 4. Shortcut bindings

4, since I1 does not have an associated interceptor object, and since component interface
objects such as 12 just forward any incoming method calls to the object referenced by
their impl field, I1 can, and effectively references directly the interceptor associated to I2.
The OptimizedCompositeBindingMixin automatically manages these shortcuts. In particular,
this mixin invalidates and recomputes the necessary shortcuts when a binding is modified
(indeed, modifying a binding somewhere may invalidate existing shortcuts, and/or create new
shortcuts).

3.5. Support for Constrained Environments

One of the goals of JULIA is to be usable even with very constrained JVMs and JDKs, such as
the KVM and the J2ME libraries (CLDC profile). This goal is achieved thanks to the following
properties.

e The size of the JuLia runtime (35kB, plus 10kB for the FRAacTAL API), which is the
only part of JuLia (175 kB as a whole) that is needed at runtime, is compatible with
the capabilities of most constrained environments.

e JULIA can be used in environments that do not provide the Java Reflection API or
the ClassLoader class, which are needed to dynamically generate the JULIA application
specific classes, since these classes can also be generated statically, in a less constrained
environment.

e The JULIA classes that are needed at runtime, or whose code can be copied into
application specific runtime classes, use only the J2ME, CLDC profile APIs, with only
two exceptions for collections and serialization. For collections a subset of the JDK 1.2
collection APT is used. This API is not available in the CLDC profile, but a bytecode
modification tool is provided with JULIA to convert classes that use this subset into
classes that use the CLDC APIs instead. This tool also removes all serialization related
code in JULIA. In other words the JULIA jars cannot be used directly with CLDC, but
can be transformed automatically in new jars that are compatible with this API.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

18 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

4. Evaluation

We provide in this section an evaluation of our model and its implementation. We first provide
a qualitative assessment of our component framework. We then provide a more quantitative
evaluation with micro-benchmarks and with an application benchmark based on a reengineered
message-oriented middleware.

4.1. Qualitative assessment

Modularity JULIA provides several mixins for the binding controller interface, two
implementations of the life cycle controller interface, and one implementation of the content
controller interface. It also provides support to control component attributes, and to
associate names to components. All these aspect implementations, which make different
flexibility /performance tradeoffs, are well separated from each other thanks to mixins, and
can therefore be combined freely. Together with the optimization mechanisms used in JULIA,
this flexibility provides what we call a continuum from static to dynamic configurations, i.e.,
from unreconfigurable but very efficient configurations, to fully dynamically reconfigurable but
less efficient configurations (it is even possible to use different flexibility /performance tradeoffs
for different parts of a single application).

Ezxtensibility Several users of JULIA have extended it to implement new control aspects,
such as transactions [33], auto-adaptability [21], or checking of the component’s behavior,
compared to a formal behavior, expressed for example with assertions (pre/post conditions
and invariants), or with more elaborate formalisms, such as temporal logic [34]. As discussed
below, we have also built with JULIA a component library, called DREAM, for building
message-oriented middleware (MOM) and reengineered an existing MOM using this library.
DREAM components exhibit specific control aspects, dealing with on-line deployment and re-
configuration. In all these experiences, the different mechanisms in JULIA have proved sufficient
to build the required control aspects.

Accessibility Besides JULIA, several tools are available to easily implement, assemble, deploy
and manage Fractal components in Java: Fractlet provides annotations to generate several
artifacts from a single source file (like XDoclet), Fractal ADL can be used to describe and
deploy Fractal architectures, Fractal GUI can be used to graphically edit Fractal ADL XML
files, and Fractal Explorer and Fractal JMX can be used to introspect and manage running

Fractal applications.

Limitations There are however some limitations to JULIA’s modularity and extensibility. For
example, when we implemented JULIA, it was sometimes necessary to refactor an existing
method into two or more methods, so that one of this new methods could be overridden by a
new mixin, without overriding the others. In other words, the mixin mechanism is not sufficient
by itself: the classes must also provide the appropriate “hooks” to apply the mixins. And it is
not easy, if not impossible, to guess the hooks that will be necessary for future aspects (but
this problem is not specific to mixins, it also occurs in AspectJ, for example).

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

SPE THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 19
&

options memory overhead (bytes) | time overhead (us)
lifecycle, no optimization 592 0.110
lifecycle, merge controllers 528 0.110
lifecyle, merge all 504 0.092
no lifecycle, no optimization 496 0.011
no lifecycle, merge controllers 440 0.011
no lifecycle, merge all 432 0.011

Table I. JuLiA performances

4.2. Quantitative evaluation I: Micro-benchmarks

In order to measure the memory and time overhead of components in JULIA, compared to
objects, we measured the memory size of an object, and the duration of an empty method
call on this object, and we compared these results to the memory size of a component
(with a binding controller and a life cycle controller) encapsulating this object, and to the
duration of an empty method call on this component. The results are given in Table I, for
different, optimization options. The measurements were made on a Pentium III 1GHz, with
the JDK1.3, HotSpotVM, on top of Linux. In these conditions the size of an empty object is
8 bytes, and an empty method call on an interface lasts 0.014 us.

As can be seen the class merging options can reduce the memory overhead of components
(merging several objects into a single one saves many object headers, as well as fields that
were used for references between these objects). The time overhead without interceptor is of
the order of one empty method call: it corresponds to the indirection through a component
interface object. With a life cycle interceptor, this overhead is much greater: it is mainly due
to the execution time of two synchronized blocks, which are used to increment and decrement
a counter before and after the method’s execution. This overhead is reduced in the “merge all”
case, because an indirection is saved in this case. In any cases, this overhead is much smaller
than the overhead that is measured when using a generic interceptor that completely reifies
all method calls (4.6 ps for an empty method, and 9 ps for an int inc (int i) method), which
shows the advantages of using an open and extensible interceptor code generator.

The time needed to instantiate a component encapsulating an empty object is of the order
of 0.3 ms, without counting the dynamic class generation time, while the time to needed
instantiate an empty object is of the order of 0.3 us (instantiating a component requires to
instantiate several objects, and many checks are performed before instantiating a component).

Tthe size of the objects that represent the component’s type, which is shared between all components of the
same type, is not taken into account here. This size is of the order of 1500 bytes for a component with 6
interfaces.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

20 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

4.3. Quantitative evaluation II: the DREAM communication framework

In this section we present DREAM, a framework for the construction of asynchronous
middleware, which relies on JULIA. We first briefly describe the framework. Then we show
how it has been used to re-engineer JORAM [3], an open-source JMS-compliant middleware
(Java Messaging Service [2]).

4.8.1. A component-based framework for asynchronous middleware

Motivations The use of asynchronous middleware (MOM for Message-Oriented Middleware)
is recognized as a means of achieving scalability in applications made of loosely coupled
autonomous components that communicate on large-scale networks [16]. Several MOMs have
been developed in the past ten years [3, 19, 35, 37]. The research work has primarily focused
on the support of various non functional properties like message ordering, reliability, security,
etc. Less emphasis has been placed on the MOM configurability. Indeed, existing middleware
are not very configurable, both at the functional and non-functional level. From the functional
point of view, they implement a fixed programming interface (API), thus providing a fixed
subset of asynchronous communication models (publish/subscribe, event/reaction, message
queues, etc.). From the non-functional point of view, existing middleware often provide the
same non-functional properties for all event disseminations. This reduces their performance and
makes them difficult or impossible to use with devices having limited computational resources.

To overcome these limitations, we have developed DREAM (Dynamic REflective
Asynchronous Middleware), a software framework dedicated to the construction of
asynchronous middleware. DREAM provides a component library and a set of tools to
build, configure and deploy middleware implementing various asynchronous communication
paradigms: message passing, event-reaction, publish-subscribe, etc.

Architecture of a DREAM component DREAM components are standard Fractal components
with two characteristic features: the presence of input/output interfaces and the ability to
manipulate DREAM resources (messages and activities).

Input/Output interfaces allow DREAM components to exchange messages. Messages are
always sent from outputs to inputs (Figure 5 (a)). Output and input interfaces come in pairs
corresponding to two kinds of connections, push and pull. As shown in Figure 5 (b) and (c),
"input" and "output" are roles played by normal client and server interfaces (the input and
output roles are played by server and client interfaces, respectively, for a push connection; and
vice versa for a pull connection).

Message managers Messages are managed by dedicated shared components, called
message manager. They allow DREAM components to create, duplicate or delete messages.
Messages are particular Fractal composites that encapsulate chunks. A chunk is a unit of data
allocation. Each chunk provides a server interface exported by the message it belongs to. As
an example, messages that need to be causally ordered have a chunk that provides a Causal
server interface. This interface defines methods to set and get a matrix clock. A message may
encapsulate other messages and is uniquely identified by an interface called Message that gives
access to the message’s chunks and encapsulated messages.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 21

voi d push (Message m{ Message m = pul | ();
/I Processing of message m Il Processing of
} /l message m
Input ry T
oupa T B 1 4
A e 1
push(nessage) ; /I Returns a message
}
(@ (b) (©)
Principle Push connection Pull connection

Figure 5. Connection between input/output interfaces

s

scheduling l ‘ ‘ ‘ l ‘ ‘ ‘ D scheduling
controller queue

o OE®E EHEE (e e
ig::\tlrlzmr
® ®@ @

Figure 6. Activity management

Activity management A DREAM component can either be passive or active. An active
component has its own activities; a passive component doesn’t, i.e. calls to other component
interfaces can only be made in the activity of a calling component. An activity is a Java object
implementing a method run. This method is executed as long as it returns a positive integer.

Active components have three controllers depicted in Figure 6, which we now describe. The
activity controller allows the component to register, unregister, start, and stop activities.
Activities are wrapped by ezecutors that are in charge of the lifecycle of the activities they
wrap. In particular, when a component needs to be stopped, the executors guarantee a safe
interruption of the activies of the component. The number of executors wrapping a given
activity is specified as a parameter of the activity’s registration. Executors are executed by
threads managed by a thread controller. Each thread is associated to a scheduling queue,
where the scheduling controller places the next activities to be executed. This architecture
allows fine-grained control over threads executing in the system, which is a required feature
to build scalable asynchronous middleware as illustrated by the SEDA framework [38].

The DREAM library and tools By lack of space we only describe the core components of the
DREAM library, i.e. the components encapsulating functions and behaviors commonly found in
an asynchronous middleware. Note that the library also contains specific components developed

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

22 E.BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

SCServer SCServer
i

e
‘ Engine ‘ ‘ Engine ‘

; \ Conduit | \ Conduit I\ Globa
' message
L ‘Nawnrk 1 ‘ ‘ Network 2 ‘ ‘Nawuvk3 ‘ ‘ Network 1 ‘ ‘ Network 2 ‘ bus
. _| -\.Local bus _ | -\ Local bus _

Figure 7. Two interconnected agent servers

for particular middleware: for instance, components implementing event-reaction processing.
Examples of such components are given with the example presented in the next section.

Message queues are used to store messages. Queues differ by the way messages are sorted
(FIFO, LIFO, causal order, etc.), and the behavior of the queue when the capacity is exceeded
(blocks vs. removes messages), when the queue is empty, etc.

Transformers have one input to receive messages and one output to deliver transformed
messages. Typical transformers include stampers.

Routers have one input and several outputs (also called “routes”),
received on their input to one or several routes.

Filters have one input and one output. Messages received on the input are either delivered
on the output, or deleted.

Aggregators have one or several inputs to receive the messages to be aggregated, and one
output to deliver the aggregated message.

De-aggregators implement aggregators’ reverse behavior, i.e. they take an aggregated
message and generate appropriate individual messages from it.

Channels allow message exchanges between different address spaces. Channels are
distributed composite components that encapsulate, at least, two components: a ChannelOut

which aims at sending messages to another address space |, and a Channelln ~ which
can receive messages sent by the ChannelQut.

and route messages

4.3.2. Re-engineering JORAM

This section presents how DREAM has been used to re-engineer JORAM. We first briefly
present JORAM. Then we detail its implementation using DREAM. Finally, we compare both
implementations in terms of configurability and performance.

A brief introduction to JORAM JORAM comprises two parts: the ScalAgent message-oriented
middleware (MOM) [17], and a software layer on top of it to support the JMS API.

The ScalAgent MOM is a fault-tolerant platform, written in Java, that combines
asynchronous message communication with a distributed programming model based on
autonomous software entities called agents. Agents behave according to an “event — reaction”
model. They are persistent and each reaction is instantiated as a transaction, allowing recovery

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

SPE THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 23
&

Engine —
AtomicityProtocol 2 Repository
Z
2
o B .”i 1] [l N
Atomic Reactor g "I Agent Repository
[] ES
L] ‘ — -+
@ + s— > 1
z
= S
=]) T | e
< 7 H< |} Factory
E 1= T
—
A
i ¥
Conduit
Router
] A ‘ A\
Network 1 | T Network 2 L
y A
Causal Sorter IDestinalilchsolvn'r I
A] A
\)
"
y A

¥
I ChannelOut I IChanncllll © I

=] ©
7
¥)

v
I ChannclOut I IClumnclln ® I

Figure 8. Architecture of an agent server

in case of node failure. The ScalAgent MOM comprises a set of agent servers. Each agent
server is made up of three entities. The Engine is responsible for the creation and execution of
agents; it ensures their persistency and atomic reaction. The Conduit routes messages from the
engine to the networks. The Networks ensure reliable message delivery and a causal ordering
of messages between servers.

Implementing JORAM using DREAM We have implemented the ScalAgent MOM using
DREAM (see Figure 8). Its main structures (networks, engine and conduit) have been preserved
to facilitate the functional comparison between the ScalAgent MOM and its DREAM re-
implementation.

The engine comprises two main components: the AtomicityProtocol composite that
ensures the atomic execution of agents; the Repository composite, which is in charge of
creating and executing agents. Two typical networks are depicted. Both are composite
components encapsulating a TCPChannellIn, a TCPChannel(Out and a DestinationResolver
component. The latter is a transformer that adds the information required by the
TCPChannelOut component (i.e. IP address, and port number). The Network 2 composite
contains two more components: the CausalSorter causally orders messages; the message queue

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

24 E.BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI

decouples the workflows of the engine and the network. The conduit is implemented by a
router.

4.8.3. Configurability assessment

A first benefit of the DREAM implementation comes from the ability to easily change provided
non-functional properties. For instance, it is straightforward to remove causal ordering, or to
remove the atomic protocol ensuring transactional execution of agents. Both modifications
can be programmatically done at runtime. On the other hand, removing these properties
from the ScalAgent MOM requires modifying and recompiling its source code. Moreover, by
implementing the conduit as a router, an agent server can have multiple engines, which is not
the case in the ScalAgent implementation. This is interesting for two reasons: it allows the
parallelization of agent executions (within an agent server, agent executions are serialized [17])
and different non-functional properties can be simultaneously enforced (persistency, atomicity).

Another benefit brought by implementing the MOM with DREAM is that it is easy to change
the number of active components encapsulated within the agent server. The architecture we
have presented in Figure 8 involves three active components for an agent server with one
network. A mono-threaded architecture can be obtained by removing the message queues
encapsulated within the engine and the network.

A last experiment we have done, is to build an agent server for mobile equipments. These
equipments may be temporarily disconnected from the network and have limited storage
capacity. To overcome these limitations, we have built an engine whose message queue is
replaced by a TCPChannelIn component, and which encapsulates a TCPChannel0Out component
to send messages. Another device acts as a proxy and message storage unit for this engine. This
architecture preserves the MOM functionnality, while saving memory: it is mono-threaded;
messages are pulled instead of pushed; it has no CausalSorter and DestinationResolver
components.

4.8.4. Performance comparisons

Measurements have been performed to compare the efficiency of the same application running
on the ScalAgent MOM and on its DREAM implementation. The application involves four agent
servers; each one hosts one agent. Agents in the application are organized in a virtual ring.
One agent is an initiator of rounds. Each round consists in forwarding the message originated
by the initiator around the ring. We did two series of tests: messages without payload and
messages embedding a 1kB payload. Experiments have been done on four PC Bi-Xeon 1,8
GHz with 1Go, connected by a Gigabit Ethernet adapter, running Linux kernel 2.4.20.

Table II shows the average number of rounds per second, and the memory footprint. We have
compared two implementations using DREAM with the ScalAgent implementation. The first
implementation using DREAM is not dynamically reconfigurable. As we can see, the number of
rounds is slightly better (= 1,2 to 2%) than in the ScalAgent implementation. Concerning
the memory footprint, the DREAM implementation requires 9% more memory, which can
be explained by some of the structure needed by Fractal (= 70kB) and the fact that each
component has several controller objects. This memory overhead is not significant for standard

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

SRE

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA

25

Number of rounds | Memory footprint
MOM 0 KB 1 KB (KB)
ScalAgent 325 255 4 x 1447
DRrEAM (non-reconf.) | 329 260 4 x 1580
DREAM (reconf.) 318 250 4 x 1587

Table II. Performance of DREAM implementations vs ScalAgent implementation

Number of rounds | Memory footprint
MOM 0 kB 1kB (kB)
Dream (3 threads) | 329 260 4 x 1580
Dream (2 threads) | 346 268 4 x 1516
Dream (1 thread) 370 279 4 x 1452

Table III. Impact of the concurrency level

Number of rounds | Memory footprint
MOM 0 kB 1kB (kB)
ScalAgent 182 150 4 x 1447
Dream (4 agent servers) | 188 153 4 x 1580
Dream (2 agent servers) | 222 181 2 x 1687
Dream (1 agent server) | 6597 6445 1 x 1900

Table IV. Impact of the number of engines by agent server

PC. The second implementation is dynamically reconfigurable (in particular, each composite
component supports a life-cycle controller and a content controller). This implementation is
slower than the ScalAgent one (= 2,2 to 2%) and only requires 7kB more than the non-
reconfigurable implementation made using DREAM.

Table III reports on experiments we have done to assess the impact of the concurrency
level on the performances of the ScalAgent MOM. We compare three architectures built
using DREAM that differ by the number of active components they involve. In the 2-thread
architecture the message queue encapsulated in the network has been removed. In the mono-
threaded architecture, both active message queues have been removed (Engine and Network).
We see that, in this particular case, reducing the number of active components improves the
number of rounds (+ 5 to 3% for the 2-thread architecture, and + 12 to 7% for the mono-
threaded architecture). This can be explained by the fact that agents are organized in a virtual
ring, thus each agent server only processes one message at a time. As a consequence, only one
thread is necessary.

We have also evaluated the gain brought by changing the configuration in a multi-engine
agent server. We have compared four different architectures: the ScalAgent one, an equivalent

Copyright © 2003 John Wiley & Sons, Ltd.
Prepared using speauth.cls

Softw. Pract. Exper. 2003; 00:1 7

26 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI
&

DREAM configuration with four mono-engine agent servers, a DREAM configuration with two
2-engine agent servers, and a DREAM configuration with one 4-engine agent server. Contrary to
the previous experiment, agent servers are hosted by the same PC. Moreover, in the latter case,
agents are placed so that two consecutive agents in the virtual ring are hosted by different agent
servers. Table IV shows that using two 2-engine agent servers improves the number of rounds
by 18% and reduces the memory footprint by 47%. The increase of the number of rounds can
be explained by the fact that matrix clocks used by the causal sorter have a n? size, n being
the number of agent servers. Thus, limiting the number of agent servers reduces the size of
the matrix to be sent with messages, and tested before delivering them. Table IV also shows
that using a 4-engine agent servers is 29 (35 for 1kB messages) times faster than using four
mono-engine agent servers. This result may seem surprising, but can be easily explained by
the fact that inter agent communication do not transit via the network components. Instead,
the router directly sends the message to the appropriate engine.

5. Related work

Component models The FRACTAL model occupies an original position in the vast amount
of work dealing with component-based programming and software architecture [36, 27, 25],
because of its combination of features: hierarchical components with sharing, support for
arbitrary binding semantics between components, components with selective reflection. Aside
from the fact that sharing is rarely present in component models (an exception is [28]), most
component models provide little support for reflection (apart from elementary introspection,
as exemplified by the second level of control in the FRACTAL model discussed in Section 2).
A component model that provides extensive reflection capabilities is OpenCOM [20]. Unlike
FRACTAL, however, OpenCOM defines a fixed meta-object protocol for components (in
FRACTAL terms, each OpenCOM component comes equipped with a fixed and predetermined
set of controller objects). With respect to industrial standards such as EJB and CCM, FRACTAL
constitutes a more flexible and open component model (with hierarchical composites and
sharing) which does not embed predetermined non functional services. It is however perfectly
possible to implement such services in FRACTAL, as demonstrated e.g. by the development of
transactional controllers in [33]. Note also that FRACTAL is targeted at system engineering,
for which EJB or CCM would be inadequate.

Software architecture in Java Several component models for Java have been devised in
the last ten years. Apart from "standardized" models such as Java Beans, Enterprise Java
Beans (EJB) or OSGI [4], we find open source initiatives such as Avalon [5] which is a
general component model, Kilim [9], Pico [10] and Hivemind [7] which are targeted towards
software configuration, Spring [12], Carbon [6], and Plexus [11] which are targeted towards
component containers (in the line of EJB). These models suffer generally from the lack of
extensibility and tailorability mentioned in the introduction. Carbon is probably the closest
from FRACTAL as it provides extensibility and dynamicity through a mechanism based on
decorators and interceptors and a JMX-based supervision. Two recent proposals for Java-
based component programming include Jiazzi [26] and ArchJava [13]. Unlike these works, our

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 27

approach to component-based programming in Java does not rely on language extensions for
configuration purpose: JULIA is a small run-time library, complemented with simple byte-code
generators. This, coupled with the reflective character of the FRACTAL model, provides for a
more dynamic and extensible basis for component-based programming than Jiazzi, ArchJava,
works cited above and most existing architecture description languages (ADLs). Note that
FraAcTAL and Jurnia directly support arbitrary connector abstractions, through the notion
of bindings. We have, for instance, implemented synchronous distributed bindings with an
RMI-like semantics just by wrapping the communication subsystem of the Jonathan Java
ORB [23], and asynchronous distributed bindings with message queuing and publish /subscribe
semantics by similarly wrapping message channels from the DREAM library introduced in the
previous section. ArchJava also supports arbitrary connector abstractions [14], but provides
little support for component reflection as in FRACTAL and JuriA. Unlike JULIA, however,
ArchJava supports sophisticated type checking that guarantees communication integrity (i.e.
that components only communicate along declared connections between ports - in FRACTAL,
that components only communicate along established bindings between interfaces).

Combining aspects and components The techniques used in JULIA to support the
programming of controller and interceptor objects in a FRACTAL component membrane are
related to several recent works on the aspectualization of components or component containers,
such as e.g. [22, 30, 32, 8, 12]. The mixin and aspect code generators in JULIA provide a
lightweight, flexible yet efficient means to aspectualize components. In line with its design
goals, JULIA does not seek to provide extensive language support as AOP tools such as
AspectJ or JAC provide. However such language support can certainly be build on top of
JuLiA. Prose [31] provides dynamic aspect weaving (whereas JULIA currently supports only
load-time controller generation), with performance which appears to be comparable to that of
JULIA. Prose, however, relies on a modified JVM, which makes it impractical for production
use. In contrast, JULIA can make use of standard JVMs, including JVMs for constrained
environments.

6. Conclusion

We have presented the FRACTAL component model and its Java implementation, JULIA.
FRACTAL is open in the sense that FRACTAL components are endowed with an extensible
set of reflective capabilities (controller and interceptor objects), ranging from no reflective
feature at all (black boxes or plain objects) to user-defined controllers and interceptors, with
arbitrary introspection and intercession capabilities. JULIA consists in a small run-time library,
together with bytecode generators, that relies on mixins and load time aspect weaving to
allow the creation and combination of controller and interceptor classes. We have evaluated
the effectiveness of the model and its Java implementation, in particular through the re-
engineering of an existing open source message-oriented middleware. The simple application
benchmark we have used indicates that the performance of complex component-based systems
built with JULIA compares favorably with standard Java implementations of functionally
equivalent systems. In fact, as our performance evaluation shows, the gains in static and

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

28 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUEMA, J-B. STEFANI

dynamic configurability can also provide significant gains in performance by adapting system
configurations to the application context.

FRrRACTAL and JULIA have already been, and are being used for several developments, by
the authors and others. We hope to benefit from these developments to further develop the
FRACTAL component technology. Among the ongoing and future work we can mention: the
development of a dynamic ADL, the exploitation of containment types and related type systems
to enforce architectural integrity constraints such as communication integrity, the investigation
of dynamic aspect weaving techniques to augment or complement the JULIA toolset, and the
formal specification of the FRACTAL model with a view to assess its correctness and to connect
it with formal verification tools.

Awvailability JuLIA is freely available under an LGPL license at the following URL:
http://fractal.objectweb.org.

REFERENCES

J—

. ASM: A Java Byte-Code Manipulation Framework, 2002. Objectweb, http://wuw.objectweb.org/asm/.

. Java Message Service Specification Final Release 1.1, Mars 2002. Sun Microsystems,

http://java.sun.com/products/jms/docs.html.

. JORAM: Java Open Reliable Asynchronous Messaging, 2002. Objectweb, http://joram.objectweb.org/.

OSGi Service Platform, Release 3, 2003. http://www.osgi.org/.

The Apache Avalon project, 2004. http://avalon.apache.org/.

The Carbon project, 2004. http://carbon.sourceforge.net/.

The Hivemind project, 2004. http://jakarta.apache.org/hivemind.

. The JBoss Aspect Oriented Programming project, 2004. http://www.jboss.org/.

. The Kilim project, 2004. Objectweb, http://kilim.objectweb.org/.

. The PicoContainer project, 2004. http://www.picocontainer.org/.

11. The Plexus project, 2004. http://plexus.codehaus.org/.

12. The Spring framework, 2004. http://www.springframework.org/.

13. J. Aldrich, C. Chambers, and D. Notkin. Architectural Reasoning in ArchJava. In Proceedings 16th
ECOOP, 2002.

14. J. Aldrich, V. Sazawal, C. Chambers, and David Notkin. Language Support for Connector Abstractions.
In Proceedings 17th FCOOP, 2003.

15. D. Ancona, G. Lagorio, and E. Zucca. A Smooth Extension of Java with Mixins. In ECOOP’00, LNCS
1850, 2000.

16. G. Banavar, T. Chandra, R. Strom, and D. Sturman. A Case for Message Oriented Middleware. In
Lecture Notes in Computer Science, volume 1693, pages 1 18, Bratislava, Slovak Republic, September
1999. 13th International Symposium on Distributed Computing. ISBN 3-540-66531-5.

17. L. Bellissard, N. de Palma, A. Freyssinet, M. Herrmann, and S. Lacourte. An Agent Plateform for Reliable
Asynchronous Distributed Programming. In Symposium on Reliable Distributed Systems (SRDS’99),
Lausanne, Switzerland, October 1999.

18. E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal Component Model. Technical report, Specification
v2, ObjectWeb Consortium, 2003.

19. A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evaluation of a Wide-Area Event Notification
Service. ACM Transactions on Computer Systems, 19(3):332-383, 2001.

20. M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas. An Efficient Component Model for the Construction
of Adaptive Middleware. Tn Proceedings of the IFIP/ACM Middleware Conference, 2001.

21. P. David and T. Ledoux. Towards a Framework for Self-adaptive Component-Based Applications. In
DAIS 2003, LNCS 2893, 2003.

22. F. Duclos, J. Estublier, and P. Morat. Describing and Using Non Functional Aspects in Component Based

Applications. In AOSD02, 2002.

N

—_
D WO~ Uk W

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7
Prepared using speauth.cls

THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 29

23.

24.

25.

26.

27.

28.

29.

30.

B. Dumant, F. Dang Tran, F. Horn, and J.B. Stefani. Jonathan: an open distributed platform in Java.
Distributed Systems Engineering Journal, vol.6, 1999.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W Griswold. An Overview of AspectlJ.
In ECOOP 2001, LNCS 2072, 2001.

G. Leavens and M. Sitaraman (eds). Foundations of Component-Based Systems. Cambridge University
Press, 2000.

S. McDirmid, . Flatt, and W.C. Hsieh. Jiazzi: New-age components for old-fashioned Java. In Proceedings
OOPSLA ‘01, ACM Press, 2001.

N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Software Architecture
Description Languages. IEEE Trans. on Soft. Eng., vol. 26, no. 1, 2000.

G. Outhred and J. Potter. A Model for Component Composition with Sharing. In Proceedings ECOOP
Workshop WCOP ‘98, 1998.

R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A Flexible Solution for Aspect-Oriented
Programming in Java. In Reflection 2001, LNCS 2192, 2001.

R. Pichler, K. Ostermann, and M. Mezini. On Aspectualizing Component Models. Software - Practice
and Experience, 2003.

31. A. Popovici, G. Alonso, and T. Gross. Just in time aspects: Efficient dynamic weaving for Java. In
AOSDO03, 2003.

32. A. Popovici, G. Alonso, and T. Gross. Spontaneous Container Services. In 17th ECOOP, 2003.

33. M. Prochazka. Jironde: A Flexible Framework for Making Components Transactional. In DAIS 2003,
LNCS 2893, 2003.

34. N. Rivierre and T. Coupaye. Observing component behaviors with temporal logic. In 8th ECOOP
Workshop on Correctness of Model-Based Software Composition (CMC ‘03), 2003.

35. Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan Miller, Bodhi Mukherjee, Daniel
Sturman, and Michael Ward. Gryphon: An Information Flow Based Approach to Message Brokering.
In International Symposium on Software Reliability Fngineering (ISSRE’98), fast abstract, Paderborn,
Germany, November 1998.

36. C. Szyperski. Component Software, 2nd edition. Addison-Wesley, 2002.

37. R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable technology for distributed
system monitoring, management, and data mining. ACM Transactions on Computer Systems, 21(2),
2003.

38. M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for Well-Conditioned, Scalable Internet
Services. In Proceedings of the 18th Symposium on Operating Systems Principles (SOSP’01), Banff,
Canada, 2001.

Copyright © 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1 7

Prepared using speauth.cls

