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2 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANIdistribution and fault-tolerance, as exempli�ed by the container concept in Enterprise JavaBeans (EJB), CORBA Component Model (CCM), or Microsoft .Net [36].Existing component-based frameworks and architecture description languages (see e.g. [27]for a recent survey of ADLs), however, provide only limited support for extension andadaptation, as witnessed by recent works on component aspectualization, e.g. [22, 30, 32].The paper [30] argues at length, for instance, about the lack of tailorability of EJB containers,meaning that there is no mechanism to con�gure an EJB container or its infrastructuralservices, nor is it possible to add new services to it.This limitation implies several important drawbacks: it prevents the easy and possiblydynamic introduction of di�erent control facilities for components such as non-functionalaspects; it prevents application designers and programmers from making important trade-o�s such as degree of con�gurability vs performance and space consumption; and it canmake di�cult the use of these frameworks and languages in di�erent environments, includingembedded systems. Even with re�ective component models such as OpenCOM [20], i.e. modelsof components endowed with an explicit meta-object protocol to control the execution ofcomponents and introduce support for di�erent non-functional aspects, we �nd it necessary tobe able to �nely tailor the re�ective capabilities endowed in components in order to supportthe di�erent trade-o�s which are critical in low-level software infrastructure design, e.g. inoperating system or middleware construction.We present in this paper a component model, called Fractal, that alleviates the aboveproblems by introducing a notion of component endowed with an open set of controlcapabilities. In other terms, components in Fractal are re�ective, in the sense that theirexecution and their internal structure can be made explicit and controlled through well-de�nedinterfaces. These re�ective capabilities, however, are not �xed in the model but can be extendedand adapted to �t the programmer's constraints and objectives.Importantly, we also present in this paper how such an open component model can bee�ciently supported in Java by an extensible run-time framework, called Julia. Juliaincorporates an innovative use of mixin classes to allow the de�nition and combinationof arbitrary component controllers. This provides a Julia programmer with e�ective andextensible means to deal with di�erent cross-cutting aspects in controlling components.The main contributions of the paper are as follows:
• We de�ne a hierarchical component model with sharing, that supports an extensible setof component control capabilities.
• We show how this model can be e�ectively supported in Java by means of an extensiblesoftware framework, that provides for both static and dynamic con�gurability.
• We show that our component model and run-time framework can be used e�ectively tobuild highly con�gurable, yet e�cient, distributed systems.The paper is organized as follows. Section 2 presents the main features of the Fractalmodel. Section 3 describes Julia, a Java framework that supports the Fractalmodel. Section4 evaluates the model and its supporting framework. Section 5 discusses related work. Section6 concludes the paper with some indications for future work.Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 32. The Fractal component modelThe Fractal component model (see [18] for a detailed speci�cation), is a general componentmodel which is intended to implement, deploy and manage (i.e. monitor, control anddynamically con�gure) complex software systems, including in particular operating systemsand middleware. This motivates the main features of the model:
• Composite components (components that contain sub-components), in order to have auniform view of applications at various levels of abstraction.
• Shared components (sub-components of multiple enclosing composite components),in order to model resources and resource sharing while maintaining componentencapsulation.
• Introspection capabilities, in order to monitor and control the execution of a runningsystem.
• Re-con�guration capabilities, in order to deploy and dynamically con�gure a system.To allow programmers to tune the control of re�ective features of components to therequirements of their applications, Fractal is de�ned as an extensible system. Controlfeatures of components are not predetermined in the model, rather the model allows for acontinuum of re�ective features or levels of control, ranging from no control (black-boxes,standard objects) to full-�edged introspection and intercession capabilities (including e.g.access and manipulation of component contents, control over components life-cycle andbehavior, etc).2.1. Components and bindingsA Fractal component is a run-time entity that is encapsulated, has a distinct identity,and that supports one or more interfaces. An interface is an access point to a component(similar to a �port� in other component models), that implements an interface type (i.e. a typespecifying the operations supported by the access point). Interfaces can be of two kinds: serverinterfaces, which correspond to access points accepting incoming operation invocations, andclient interfaces, which correspond to access points supporting outgoing operation invocations.A Fractal component (see Figure 1) can be understood generally as being composed ofa membrane, which supports interfaces to introspect and recon�gure its internal features,and a content, which consists in a �nite set of other components (called sub-components).The membrane of a component can have external and internal interfaces. External interfacesare accessible from outside the component, while internal interfaces are only accessible fromthe component's sub-components. The membrane of a component is typically composed ofseveral controllers. Typically, a membrane can provide an explicit and causally connectedrepresentation of the component's sub-components and superpose a control behavior tothe behavior of the component's sub-components, including suspending, checkpointing andresuming activities of these sub-components. Controllers can also play the role of interceptors.Interceptors are used to export the external interface of a subcomponent as an externalinterface of the parent component. They can intercept the oncoming and outgoing operationinvocations of an exported interface and they can add additional behavior to the handling ofCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls
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Figure 1. A Fractal componentsuch invocations (e.g. pre and post-handlers). Each component membrane can thus be seenas implementing a particular semantics of composition for the component's sub-components.Controller can be understood as meta-objects or meta-groups as they appear in re�ectivelanguages and systems.The Fractal model provides two mechanisms to de�ne the architecture of an application:component nesting we have just described and bindings. Communication between Fractalcomponents is only possible if their interfaces are bound. Fractal supports both primitivebindings and composite bindings. A primitive binding is a binding between one client interfaceand one server interface in the same address space (which can be modeled as a component),which means that operation invocations emitted by the client interface should be acceptedby the speci�ed server interface. A primitive binding is called that way for it can be readilyimplemented by pointers or direct language references (e.g. Java references). A compositebinding is a communication path between an arbitrary number of component interfaces.These bindings are built out of a set of primitive bindings and binding components (stubs,skeletons, adapters, etc). A binding is a normal Fractal component whose role is tomediate communication between other components. The binding concept corresponds to theconnector concept that is de�ned in other component models. Note that, except for primitivebindings, there is no prede�ned set of bindings in Fractal. In fact bindings can be builtexplicitly by composition, just as other components. Importantly, bindings can embody remotecommunication paths between interfaces, and span di�erent address spaces and di�erentmachines in a network. This allows the construction of distributed con�guration of Fractalcomponents.An original feature of the Fractal component model is that a given component canbe included in several other components. Such a component is said to be shared betweenthese components. Consider, for example, a menu and a toolbar components (see Figure 2),with an "undo" toolbar button corresponding to an "undo" menu item. It is natural torepresent the menu items and toolbar buttons as sub components, encapsulated in the menuand toolbar components, respectively. But, without sharing, this solution does not work forCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls
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Architecture without shared components Architecture with shared componentsFigure 2. Component sharing in Fractalthe "undo" button and menu item, which must have the same state (enabled or disabled):these components, or an associated state component, must be put outside the menu andtoolbar components. With component sharing, the state component can be shared betweenthe menu and toolbar components, in order to preserve component encapsulation. Sharedcomponents are also useful to faithfully model access to low-level system resources (which aretypically shared between applications), and to help separate "aspects" in component basedapplications (for instance it is possible to have components representing address spaces, i.e.a physical architecture, with sub components shared with other components representing alogical architecture)2.2. Levels of controlThe Fractal model does not enforce a �xed and pre-determined set of controllers incomponent membranes (hence the phrase �open component model�). It allows insteadarbitrary forms of membranes, with di�erent control and interception semantics. The Fractalspeci�ation, however, identi�es speci�c forms of membranes and controllers, corresponding todi�erent levels of control (or re�ection capabilities) on components.At the lowest level of control, a Fractal component is a black box, that does notprovide any introspection or intercession capability. Such components, called base components,Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



6 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANIare comparable to plain objects in an object-oriented programming language such as Java(although, even at the lowest level of control, the model allows components to have a varyingnumber of interfaces during their lifetime). Their explicit inclusion in the model facilitates theintegration of legacy software.At the next level of control, a Fractal component provides a Component interface, similarto the IUnknown in the COM model, that allows one to discover all its external (client andserver) interfaces. Each interface has a name that distinguishes it from other interfaces of thecomponent. At this level of control, components still do not provide any control function, butthe Component interface provides elementary means for introspecting the external structureof a component. Also at this level of control, component interfaces may additionally support,via multiple interface inheritance, operations that allow to retrieve the Component interface ofthe supporting component. Such operations are gathered in the Interface interface type.At upper levels of control, a Fractal component can expose elements of its internalstructure, and provide increased introspection and intercession capabilities. The Fractalspeci�cation provides several examples of useful forms of controllers, which can be combinedand extended to yield components with di�erent re�ective features:
• Attribute controller: An attribute is a con�gurable property of a component. Acomponent can provide an AttributeController interface to expose getter and setteroperations for its attributes.
• Binding controller: A component can provide the BindingController interface to allowbinding and unbinding its client interfaces to server interfaces by means of primitivebindings.
• Content controller: A component can provide the ContentController interface to list,add and remove subcomponents in its contents.
• Life-cycle controller: A component can provide the LifeCycleController interfaceto allow explicit control over its main behavioral phases, in support for dynamicrecon�guration. Basic lifecycle methods supported by a LifeCycleController interfaceinclude methods to start and stop the execution of the component.2.3. Type systemThe Fractal model is endowed with an optional type system (some components such asbase components need not adhere to the type system). Interface types describe the operationssupported by an interface, the role of the interface (client or server), as well as its contingencyand its cardinality. The contingency of an interface indicates if the functionality correspondingto this interface is guaranteed to be available or not, while the component is running:
• The operations of a mandatory interface are guaranteed to be available when thecomponent is running. For a client interface, this means that the interface must be bound.As a consequence, a component with mandatory client interfaces cannot be started untilall these interfaces are bound.
• The operations of an optional interface are not guaranteed to be available. For aserver interface, this can happen e.g. when the complementary internal interface of theCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 7supporting component is not bound to a sub-component interface. For a client interface,this means that the component can execute without this interface being bound.The cardinality of an interface type T speci�es how many interfaces of type T a givencommponent may have. A singleton cardinality means that a given component must haveexactly one interface of type T . A collection cardinality means that a given component mayhave an arbitrary number of interfaces of type T . Such interfaces are typically created lazily,e.g. upon request of a bind operation through a BindingController interface.Component types are just sets of component interface types. The type system is equippedwith a subtyping relation which embodies constraints to ensure substitutability of components.2.4. InstantiationThe Fractal model also de�nes factory components, i.e. components that can createnew components. Again, the Fractal model does not constrain the form and nature offactory components, but the Fractal speci�cation provides useful forms of such factories.In particular, it distinguishes between generic component factories, which can create severalkinds of components, and standard factories, which can create only one kind of components,all with the same component type. A generic factory provides the GenericFactory interface,which allows a new component to be created, given its type, and an appropriate description ofits membrane (controllers) and content. A template is a special standard factory that createscomponents that have the same internal structure as the template. Thus, a template componentcan have several templates as sub-components (sub-templates). A component created by sucha template will have as many sub-components as sub-templates in the template, which will bebound together in the same way as the sub-templates are. Templates are useful to manifest atrun-time a particular con�guration.3. The Julia frameworkThe Julia framework supports the construction of software systems with Fractalcomponents written in Java. The main design goal for Julia was to implement a framework toprogram Fractal component membranes. In particular, we wanted to provide an extensibleset of control objects, from which the user can freely choose and assemble the controller andinterceptor objects he or she wants, in order to build the membrane of a Fractal component.The second design goal was to provide a continuum from static con�guration to dynamicrecon�guration, so that the user can make the speed/memory tradeo�s he or she wants. Thelast design goal was to implement a framework that can be used on any JVM and/or JDK,including very constrained ones such as the KVM, and the J2ME pro�le (where there is noClassLoader class, no re�ection API, no collection API, etc). In addition to the previous designgoals, we also made two hypotheses in order to simplify the implementation: we suppose thereis only one (re)con�guration thread at a given time, and we also suppose that the componentdata structures do not need to be protected against malicious components.Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls
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Figure 3. An abstract component and a possible implementation in Julia3.1. Main Data StructuresA Fractal component is generally represented by many Java objects, which can be separatedinto three groups (see Fig. 3):
• the objects that implement the component interfaces, in white in Fig. 3 (one objectper component interface; each object has an impl reference to an object that reallyimplements the Java interface, and to which all method calls are delegated; this referenceis null for client interfaces; for server interfaces it can reference an interceptor or an objectof the content part),
• the objects that implement the membrane of the component, in gray and light gray inthe �gure (a controller object can implement zero of more control interfaces),
• and the objects that implement the content part of the component (not shown in the�gure).The fact that each component interface is represented by its own Java object comes from thefact that component interfaces are typed (i.e., a component interface object implements bothInterface and the Java interface corresponding to this interface). It is not possible to do better,unless perhaps by using very complex bytecode manipulations that modify the signature of allthe methods of all classes.The objects that represent the membrane of a component can be separated into two groups:the objects that implement the control interfaces (in gray in Fig. 3), and (optional) interceptorobjects (in light gray) that intercept incoming and/or outgoing method calls on non-controlinterfaces. These objects implement respectively the Controller and the Interceptor interfaces.Each controller and interceptor object can contain references to other controller / interceptorobjects (since the control aspects are generally not independent - or �orthogonal� - they mustgenerally communicate between each other).Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 9InstantiationJulia components can be created manually or automatically. The manual method can beused to create any kind of components, while the automatic one is restricted to componentswhose type follows the basic type system de�ned in the Fractal speci�cation, which providea Component interface, and which provide interface introspection functions. In both methods,a component must be created as follows:
• creation of the component interface objects (if the component must provide interfaceintrospection), of the controller objects, of the interceptor objects, and of the component'scontent (for container components).
• initialization of the impl references between the component interfaces objects and thecontent, controller and interceptor objects.
• creation of an InitializationContext, and set up of this context, with references to theprevious objects.
• initialization of the controller and interceptor objects by calling their initFcControllermethod, with the previous InitializationContext object as parameter (this step allows thecontroller and interceptor objects to initialize themselves, i.e. to set up the referencesbetween all these objects).In the automatic method, i.e. when components are created through the GenericFactoryinterface, the operations that must be done at the previous steps are deduced from thecomponent's type, and from its membrane and content descriptor. Once these descriptorshave been analyzed and checked, and once the previous operations have been determined,a sub class of the InitilizationContext class that implements these operations is generated,directly in bytecode form, with the InitializationContextClassGenerator. Finally the componentis created by using this generated class (in other words, the controller and content descriptorsare compiled on the �y, once and for all, instead of being interpreted and checked each time acomponent must be created).3.2. Mixin classes3.2.1. MotivationsThe main design goal of Julia is to implement a reusable and extensible framework to programcomponent membranes. In particular, since everything in the Fractal speci�cation is optional,Julia must provide implementations of the Fractal API interfaces for any conformancelevel. For example, Julia must provide a basic Component implementation, as well as animplementation for components whose type follows the basic type system (in the �rst caseComponent behaves like a read only hash map; in the second case, because of collectioninterface types, the getFcInterface method can lazily create new component interfaces - seesection 2.3). Likewise, Julia must provide a basic BindingController implementation, as well asan implementation for cases where the basic type system is used, where a life cycle controlleris present, or where composite components are used (these implementations are needed tocheck type, life cycle or content related constraints on bindings). There must also be anCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



10 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANIimplementation for cases where both the basic type system and a life cycle controller are used,or where the basic type system, life cycle controllers, and composite components are used. Andthese implementations must be extensible, in order to take into account user de�ned controllerswhen needed.In order to provide all these implementations, a �rst solution would be to use classinheritance. But this solution is not feasible, because it leads to a combinatorial explosion,and to a lot of code duplication. Consider for example the BindingController interface, andthe "type system", "life cycle" and "composite" concerns. These three concerns give 23 = 8possible combinations. Therefore, in order to implement these three concerns, eight classes (andnot just three) must be provided. Moreover these eight classes can not be provided withoutduplicating code, if multiple inheritance is not available.Another solution to this problem would be to use an Aspect Oriented Programming (AOP)tool or language, such as Aspect/J [24], since the goal of these tools and languages is tosolve the �crosscutting� problems. Aspect/J, for example, could e�ectively be used to solvethe above problem: aspect classes could indeed be used instead of sub classes, which wouldsolve the combinatory problems (an aspect can be applied to multiple classes and aspects).But using Aspect/J would introduce a new problem, due to the fact that, in Aspect/J, 1)aspects must be applied at compile time, and 2) this process requires the source code of thebase classes∗. It would then be impossible to distribute Julia in compiled form, because thenusers would not be able to apply new aspects to the existing Julia classes (in order to addnew control aspects that crosscut existing ones).What is needed to really solve our modularity and extensibility problem is therefore a kindof AOP tool or language that can be used at load time or at runtime, without needing thesource code of the base classes, such as JAC [29]. The current Julia version does not useJAC or other similar systems: it uses instead some kind of mixin classes. A mixin class isa class whose super class is speci�ed in an abstract way, by specifying the minimum set of�elds and methods it should have. A mixin class can therefore be applied (i.e. override andadd methods) to any super class that de�nes at least these �elds and methods. This propertysolves the above combinatory problem. Moreover, mixin classes used in Julia can be mixedat load time, thanks to our bytecode generator ASM [1] (unlike in AspectJ and in most mixinbased inheritance languages, where mixed classes are declared at compile time).3.2.2. ImplementationInstead of using a Java extension to program the mixin classes, which would require anextended Java compiler or a pre processor, mixin classes in Julia are programmed by usingpatterns. For example the JAM [15] mixin class shown below (on the left) is written in pureJava as follows (on the right):
∗This is no longer true with version 1.1 of AspectJ, but this was the case in 2002 when Julia was developed.Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 11mixin A { abstract class A {inherited public void m (); abstract void _super_m ();public int count; public int count;public void m () { public void m () {++count; ++count;super.m(); _super_m();} }} }In other words, the _super_ pre�x is used to denote the inherited members in JAM, i.e.the members that are required in a base class, for the mixin class to be applicable to it. Moreprecisely, the _super_ pre�x is used to denote methods that are overridden by the mixin class.Members that are required but not overridden are denoted with _this_:abstract class M implements I {abstract void _super_m ();abstract void _this_n ();public int count;public void m () {++count;_this_n();_super_m();}}Mixin classes can be mixed, resulting in normal classes. More precisely, the result of mixingseveral mixin classes M1, ... Mn, in this order, is a normal class that is equivalent to a classMn extending the Mn−1 class, itself extending the Mn−2 class, ... itself extending the M1 class(constructors are ignored; an empty public constructor is generated for the mixed classes).Several mixin classes can be mixed only if each method and �eld required by a mixin class Miis provided by a mixin class Mj , with j < i (each required method and �eld may be providedby a di�erent mixin). For example, if N and O designate the following mixins:abstract class N implements I { abstract class O implements I {abstract void _super_m (); public void m () {System.out.println("m");public void m () { }System.out.println("m called"); public void n () {_super_m(); System.out.println("n");} }} }then the mixed class O N M is equivalent to the following class (note that this class implementsall the interfaces implemented by the mixin classes):Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



12 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANIpublic class C55d992cb_0 implements I, Generated {// from Oprivate void m$1 () {System.out.println("m");}public void n () {System.out.println("n");}// from Nprivate void m$0 () {System.out.println("m called");m$1();}// from Mpublic int count;public void m () {++count;n();m$0();}}The mixed classes are generated dynamically, directly in bytecode form with ASM [1], bythe MixinClassGenerator class. In order to ease debugging, the class generator keeps the linenumbers of the mixin classes in the mixed class. More precisely, a line number l of the mixinclass at index i (in the list of mixin classes, and starting from 1) is transformed into 1000∗ i+ l.For example, if a new Exception().printStackTrace() were added in the N.m method, the stacktrace would contain a line at C55d992cb_0.m$0(ONM:2005), meaning that the exception wascreated in method m$0 of the C55d992cb_0 class, whose source is the ONM mixed class, atline 5 of mixin 2, i.e. at line 5 of the N mixin class.3.3. InterceptorsSome control aspects, such as the control of bindings, can be completely implemented in ageneric way, in a single controller object. But most control aspects must be implemented intwo parts: a generic part, and a non generic �hook� part that must be weaved into the usercode. In Julia, this non generic �hook� part is made of the interceptor objects (see Section3.1), and the weaving is done by inserting these interceptor objects between user objects.The interceptor classes, since they are not generic (they must implement one or moreuser interfaces), cannot be written by hand, unlike controller classes, and must therefore begenerated automatically. As in some Meta Object Protocol (MOP) implementations, Juliagenerates these classes directly in compiled form, by using the ASM library. This is muchfaster than generating these classes in source code form, which allows Julia to generateCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 13them dynamically, during the application's execution (but Julia also o�ers the possibilityto generate them statically, before launching an application).However, unlike in most MOP implementations, the generator that generates the interceptorclasses is open and extensible. This �exibility was introduced for e�ciency reasons. Indeed thisopen generator can be used not only to generate interception code that rei�es all method calls,as in MOPs, but also to generate much more e�cient code, specialized for a given set of aspects.This open generator is described in the rest of this section.The interceptor class generator takes as parameters the name of a super class, the name(s)of one or more application speci�c interface(s), and one or more aspect code weaver(s). Itgenerates a sub class of the given super class that implements all the given applicationspeci�c interfaces and that, for each application speci�c method, implements all the aspectscorresponding to the given aspect code weavers.Each aspect code weaver is an object that can manipulate the bytecode of each applicationspeci�c method arbitrarily. For example, an aspect code weaver A can modify an emptyinterception method void m () { return delegate.m() } into:void m () {// pre code Atry {delegate.m();} finally {// post code A}}where the pre and post code blocks can be adapted to the precise arguments and return typesof m, while another aspect code generator B will modify this method into:void m () {// pre code Bdelegate.m();}When an interceptor class is generated by using several aspect code weavers, thetransformations performed by these weavers are automatically composed together. Forexample, if A and B are used to generate an interceptor class, the result for the previousm method is the following (depending on the order in which A and B are composed):void m () { void m () {// pre code A // pre code Btry { // pre code A// pre code B try {delegate.m(); delegate.m();} finally { } finally {// post code A // post code ACopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



14 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANI} }} }Note that, thanks to this elementary automatic weaving, which is very similar to what canbe found in Aspect/J, several aspects can be managed by a single interceptor object: there isno need to have chains of interceptor objects, each object corresponding to an aspect.Like the controller objects, the aspects managed by the interceptor objects of a givencomponent can all be speci�ed by the user when the component is created. The user cantherefore not only choose the control interfaces he or she wants, but also the interceptorobjects he or she wants.Julia provides two speci�c aspect code weavers (to manage the life cycle and trace aspects),and two generic code weavers that reify method calls (one that just rei�es method names, andone that also rei�es the arguments). Users can of course provide their own code weavers, butwriting such a weaver requires a good knowledge of the Java bytecode instructions.3.4. Optimizations3.4.1. Intra component optimizationsIn order to save memory, Julia provides some optimization options to merge some or all theobjects that make up a component into a single Java object. These optimizations are basedon a tool provided by Julia, which uses the ASM library to merge several controller classesinto a single class. This tool is based on the following assumptions:
• each controller object can provide and require zero or more Java interfaces. Theprovided interfaces must be implemented by the object, and there must be one �eld perrequired interface, whose name must begin with weaveable for a mandatory interface, orweaveableOpt for an optional interface (see below). Each controller class that requires atleast one interface must also implement the Controller interface (see below).
• in a given con�guration, a given interface cannot be provided by more than one object(except for the Controller interface). Otherwise it would be impossible to merge theseobjects (an object cannot implement a given interface in several ways).
• the bindings between objects in a given con�guration are established automatically ina two steps process: a) each controller object of the con�guration is registered into a"naming service" (in practice, this naming service is the InitializationContext interface),and b) each controller object initializes itself by using the previous "naming service" toretrieve the interface it requires.To be more precise, lets suppose we have four control interfaces I, J, K and L, and threecontroller classes IImpl, JImpl and KImpl. These classes should look like this:public class IImpl implements Controller, I {public J weaveableJ; // = required interface of type Jpublic L weaveableOptL; // = optional required interface of type Lpublic int foo; // normal fieldCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 15// implementation of the Controller interfacepublic void initFcController (InitializationContext ic) {weaveableJ = (J)ic.getInterface("j");weaveableOptL = (L)ic.getOptionalInterface("l");}// other methodspublic void foo (String name) {weaveableJ.bar(weaveableOptL, foo, weaveableC.getFcInterface(name));}}public class JImpl implements Controller, J {public K weaveableK;public void initFcController (InitializationContext ic) {weaveableK = (K)ic.getInterface("k");}// other methods ...}public class KImpl implements Controller, K {// other methods ...}In the non optimized case, a component with these three controller objects is instantiatedin the following steps. First an instance of IImpl, JImpl and KImpl is created, then the resultingobjects are put in an InitializationContext object, and �nally the initFcController method iscalled on each controller object with this context as argument. In the optimized case, the classobtained by "merging" (see below) the IImpl, JImpl and KImpl is dynamically generated (orloaded from the classpath if it has been statically generated before launching the application,or just returned if it has already been generated or loaded) and then an instance of this classis created.The "merging" process is the following. Basically, all the methods and �elds of each classare copied into a new class (the resulting class does not depend on the order into which theclasses are copied). However the �elds whose name begins with weaveable are replaced withthis, and those whose name begins with weaveableOpt are replaced either with this, if a classthat implements the corresponding type is present in the list of the classes to be merged, ornull otherwise. Finally, the initFcController methods from the Controller interface are mergedinto a single initFcController method. The result is the following class:public class Cb234f2 implements Controller, I, J, K, ..., Generated {// fields and methods copied from IImpl:public int foo;public void foo (String name) {bar(null, foo, this.getFcInterface(name));}Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



16 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANIprivate void initFcController$0 (InitializationContext ic) {(J)ic.getInterface("j");(L)ic.getOptionalInterface("l");}// fields and methods copied from JImpl (not shown) ...// fields and methods copied from KImpl (not shown) ...// merged initFcController method:public void initFcController (InitializationContext ic) {initFcController$0(ic);initFcController$1(ic);initFcController$2(ic);}}As explained in section 3.1, the membrane of a component is made of controller objects andof interceptor objects. The above optimization only applies to controller objects. Therefore,even with this optimization, the membrane of a component is still made, in general, of severalJava objects. However, if the interceptor objects all delegate to the same object, and if they donot have con�icting interfaces, it is possible to really have only one Java object for the wholemembrane of the component. In this case, which happens for most primitive components, theinstantiation process is the following:
• a class that merges the controller classes is generated or loaded as before,
• a sub class of this class that implements the interception code for each method of eachfunctional interface is generated or loaded,
• this sub class is instantiated.Even if the controllers and interceptors are merged into a single object, the content of thecomponent is still made of a separate object. It is however possible to instantiate a wholecomponent (i.e. the controllers, the interceptors and the content part) as a single Java object.In order to do this, the user component class is used as a super class to generate the mergedcontroller class, which is itself used a super class to generate the interceptor class (as describedabove).3.4.2. Inter component optimisationsIn addition to the previous intra component optimizations, which are mainly used to savememory, Julia also provides an inter component optimization, namely an algorithm tocreate and update shortcut bindings between components, and whose role is to improve timeperformances. As explained in section 3.1, each interface of a component contains an implreference to an object that really implements the component interface. In the case of a serverinterface s, this �eld generally references an interceptor object, which itself references anotherserver interface.More precisely, this is the case with the CompositeBindingMixin. With the OptimizedCom-positeBindingMixin, the impl references are optimized when possible. For example, in Fig.Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls
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Figure 4. Shortcut bindings4, since I1 does not have an associated interceptor object, and since component interfaceobjects such as I2 just forward any incoming method calls to the object referenced bytheir impl �eld, I1 can, and e�ectively references directly the interceptor associated to I2.The OptimizedCompositeBindingMixin automatically manages these shortcuts. In particular,this mixin invalidates and recomputes the necessary shortcuts when a binding is modi�ed(indeed, modifying a binding somewhere may invalidate existing shortcuts, and/or create newshortcuts).3.5. Support for Constrained EnvironmentsOne of the goals of Julia is to be usable even with very constrained JVMs and JDKs, such asthe KVM and the J2ME libraries (CLDC pro�le). This goal is achieved thanks to the followingproperties.
• The size of the Julia runtime (35kB, plus 10kB for the Fractal API), which is theonly part of Julia (175 kB as a whole) that is needed at runtime, is compatible withthe capabilities of most constrained environments.
• Julia can be used in environments that do not provide the Java Re�ection API orthe ClassLoader class, which are needed to dynamically generate the Julia applicationspeci�c classes, since these classes can also be generated statically, in a less constrainedenvironment.
• The Julia classes that are needed at runtime, or whose code can be copied intoapplication speci�c runtime classes, use only the J2ME, CLDC pro�le APIs, with onlytwo exceptions for collections and serialization. For collections a subset of the JDK 1.2collection API is used. This API is not available in the CLDC pro�le, but a bytecodemodi�cation tool is provided with Julia to convert classes that use this subset intoclasses that use the CLDC APIs instead. This tool also removes all serialization relatedcode in Julia. In other words the Julia jars cannot be used directly with CLDC, butcan be transformed automatically in new jars that are compatible with this API.Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



18 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANI4. EvaluationWe provide in this section an evaluation of our model and its implementation. We �rst providea qualitative assessment of our component framework. We then provide a more quantitativeevaluation with micro-benchmarks and with an application benchmark based on a reengineeredmessage-oriented middleware.4.1. Qualitative assessmentModularity Julia provides several mixins for the binding controller interface, twoimplementations of the life cycle controller interface, and one implementation of the contentcontroller interface. It also provides support to control component attributes, and toassociate names to components. All these aspect implementations, which make di�erent�exibility/performance tradeo�s, are well separated from each other thanks to mixins, andcan therefore be combined freely. Together with the optimization mechanisms used in Julia,this �exibility provides what we call a continuum from static to dynamic con�gurations, i.e.,from unrecon�gurable but very e�cient con�gurations, to fully dynamically recon�gurable butless e�cient con�gurations (it is even possible to use di�erent �exibility/performance tradeo�sfor di�erent parts of a single application).Extensibility Several users of Julia have extended it to implement new control aspects,such as transactions [33], auto-adaptability [21], or checking of the component's behavior,compared to a formal behavior, expressed for example with assertions (pre/post conditionsand invariants), or with more elaborate formalisms, such as temporal logic [34]. As discussedbelow, we have also built with Julia a component library, called Dream, for buildingmessage-oriented middleware (MOM) and reengineered an existing MOM using this library.Dream components exhibit speci�c control aspects, dealing with on-line deployment and re-con�guration. In all these experiences, the di�erent mechanisms in Julia have proved su�cientto build the required control aspects.Accessibility Besides Julia, several tools are available to easily implement, assemble, deployand manage Fractal components in Java: Fractlet provides annotations to generate severalartifacts from a single source �le (like XDoclet), Fractal ADL can be used to describe anddeploy Fractal architectures, Fractal GUI can be used to graphically edit Fractal ADL XML�les, and Fractal Explorer and Fractal JMX can be used to introspect and manage runningFractal applications.Limitations There are however some limitations to Julia's modularity and extensibility. Forexample, when we implemented Julia, it was sometimes necessary to refactor an existingmethod into two or more methods, so that one of this new methods could be overridden by anew mixin, without overriding the others. In other words, the mixin mechanism is not su�cientby itself: the classes must also provide the appropriate �hooks� to apply the mixins. And it isnot easy, if not impossible, to guess the hooks that will be necessary for future aspects (butthis problem is not speci�c to mixins, it also occurs in AspectJ, for example).Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 19options memory overhead (bytes) time overhead (µs)lifecycle, no optimization 592 0.110lifecycle, merge controllers 528 0.110lifecyle, merge all 504 0.092no lifecycle, no optimization 496 0.011no lifecycle, merge controllers 440 0.011no lifecycle, merge all 432 0.011Table I. Julia performances4.2. Quantitative evaluation I: Micro-benchmarksIn order to measure the memory and time overhead of components in Julia, compared toobjects, we measured the memory size of an object, and the duration of an empty methodcall on this object, and we compared these results to the memory size of a component †(with a binding controller and a life cycle controller) encapsulating this object, and to theduration of an empty method call on this component. The results are given in Table I, fordi�erent optimization options. The measurements were made on a Pentium III 1GHz, withthe JDK1.3, HotSpotVM, on top of Linux. In these conditions the size of an empty object is8 bytes, and an empty method call on an interface lasts 0.014 µs.As can be seen the class merging options can reduce the memory overhead of components(merging several objects into a single one saves many object headers, as well as �elds thatwere used for references between these objects). The time overhead without interceptor is ofthe order of one empty method call: it corresponds to the indirection through a componentinterface object. With a life cycle interceptor, this overhead is much greater: it is mainly dueto the execution time of two synchronized blocks, which are used to increment and decrementa counter before and after the method's execution. This overhead is reduced in the �merge all�case, because an indirection is saved in this case. In any cases, this overhead is much smallerthan the overhead that is measured when using a generic interceptor that completely rei�esall method calls (4.6 µs for an empty method, and 9 µs for an int inc (int i) method), whichshows the advantages of using an open and extensible interceptor code generator.The time needed to instantiate a component encapsulating an empty object is of the orderof 0.3 ms, without counting the dynamic class generation time, while the time to neededinstantiate an empty object is of the order of 0.3 µs (instantiating a component requires toinstantiate several objects, and many checks are performed before instantiating a component).
†the size of the objects that represent the component's type, which is shared between all components of thesame type, is not taken into account here. This size is of the order of 1500 bytes for a component with 6interfaces.Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



20 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANI4.3. Quantitative evaluation II: the Dream communication frameworkIn this section we present Dream, a framework for the construction of asynchronousmiddleware, which relies on Julia. We �rst brie�y describe the framework. Then we showhow it has been used to re-engineer Joram [3], an open-source JMS-compliant middleware(Java Messaging Service [2]).4.3.1. A component-based framework for asynchronous middlewareMotivations The use of asynchronous middleware (MOM for Message-Oriented Middleware)is recognized as a means of achieving scalability in applications made of loosely coupledautonomous components that communicate on large-scale networks [16]. Several MOMs havebeen developed in the past ten years [3, 19, 35, 37]. The research work has primarily focusedon the support of various non functional properties like message ordering, reliability, security,etc. Less emphasis has been placed on the MOM con�gurability. Indeed, existing middlewareare not very con�gurable, both at the functional and non-functional level. From the functionalpoint of view, they implement a �xed programming interface (API), thus providing a �xedsubset of asynchronous communication models (publish/subscribe, event/reaction, messagequeues, etc.). From the non-functional point of view, existing middleware often provide thesame non-functional properties for all event disseminations. This reduces their performance andmakes them di�cult or impossible to use with devices having limited computational resources.To overcome these limitations, we have developed Dream (Dynamic RE�ectiveAsynchronous Middleware), a software framework dedicated to the construction ofasynchronous middleware. Dream provides a component library and a set of tools tobuild, con�gure and deploy middleware implementing various asynchronous communicationparadigms: message passing, event-reaction, publish-subscribe, etc.Architecture of a Dream component Dream components are standard Fractal componentswith two characteristic features: the presence of input/output interfaces and the ability tomanipulate Dream resources (messages and activities).Input/Output interfaces allow Dream components to exchange messages. Messages arealways sent from outputs to inputs (Figure 5 (a)). Output and input interfaces come in pairscorresponding to two kinds of connections, push and pull. As shown in Figure 5 (b) and (c),"input" and "output" are roles played by normal client and server interfaces (the input andoutput roles are played by server and client interfaces, respectively, for a push connection; andvice versa for a pull connection).Message managers Messages are managed by dedicated shared components, calledmessage manager. They allow Dream components to create, duplicate or delete messages.Messages are particular Fractal composites that encapsulate chunks. A chunk is a unit of dataallocation. Each chunk provides a server interface exported by the message it belongs to. Asan example, messages that need to be causally ordered have a chunk that provides a Causalserver interface. This interface de�nes methods to set and get a matrix clock. A message mayencapsulate other messages and is uniquely identi�ed by an interface called Message that givesaccess to the message's chunks and encapsulated messages.Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls
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Figure 6. Activity managementActivity management A Dream component can either be passive or active. An activecomponent has its own activities; a passive component doesn't, i.e. calls to other componentinterfaces can only be made in the activity of a calling component. An activity is a Java objectimplementing a method run. This method is executed as long as it returns a positive integer.Active components have three controllers depicted in Figure 6, which we now describe. Theactivity controller allows the component to register, unregister, start, and stop activities.Activities are wrapped by executors that are in charge of the lifecycle of the activities theywrap. In particular, when a component needs to be stopped, the executors guarantee a safeinterruption of the activies of the component. The number of executors wrapping a givenactivity is speci�ed as a parameter of the activity's registration. Executors are executed bythreads managed by a thread controller. Each thread is associated to a scheduling queue,where the scheduling controller places the next activities to be executed. This architectureallows �ne-grained control over threads executing in the system, which is a required featureto build scalable asynchronous middleware as illustrated by the SEDA framework [38].The Dream library and tools By lack of space we only describe the core components of theDream library, i.e. the components encapsulating functions and behaviors commonly found inan asynchronousmiddleware. Note that the library also contains speci�c components developedCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls
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Figure 7. Two interconnected agent serversfor particular middleware: for instance, components implementing event-reaction processing.Examples of such components are given with the example presented in the next section.Message queues are used to store messages. Queues di�er by the way messages are sorted(FIFO, LIFO, causal order, etc.), and the behavior of the queue when the capacity is exceeded(blocks vs. removes messages), when the queue is empty, etc.Transformers have one input to receive messages and one output to deliver transformedmessages. Typical transformers include stampers.Routers have one input and several outputs (also called �routes�), and route messagesreceived on their input to one or several routes.Filters have one input and one output. Messages received on the input are either deliveredon the output, or deleted.Aggregators have one or several inputs to receive the messages to be aggregated, and oneoutput to deliver the aggregated message.De-aggregators implement aggregators' reverse behavior, i.e. they take an aggregatedmessage and generate appropriate individual messages from it.Channels allow message exchanges between di�erent address spaces. Channels aredistributed composite components that encapsulate, at least, two components: a ChannelOut� which aims at sending messages to another address space �, and a ChannelIn � whichcan receive messages sent by the ChannelOut.4.3.2. Re-engineering JoramThis section presents how Dream has been used to re-engineer Joram. We �rst brie�ypresent Joram. Then we detail its implementation using Dream. Finally, we compare bothimplementations in terms of con�gurability and performance.A brief introduction to Joram Joram comprises two parts: the ScalAgent message-orientedmiddleware (MOM) [17], and a software layer on top of it to support the JMS API.The ScalAgent MOM is a fault-tolerant platform, written in Java, that combinesasynchronous message communication with a distributed programming model based onautonomous software entities called agents. Agents behave according to an �event → reaction�model. They are persistent and each reaction is instantiated as a transaction, allowing recoveryCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls
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Figure 8. Architecture of an agent serverin case of node failure. The ScalAgent MOM comprises a set of agent servers. Each agentserver is made up of three entities. The Engine is responsible for the creation and execution ofagents; it ensures their persistency and atomic reaction. The Conduit routes messages from theengine to the networks. The Networks ensure reliable message delivery and a causal orderingof messages between servers.Implementing Joram using Dream We have implemented the ScalAgent MOM usingDream (see Figure 8). Its main structures (networks, engine and conduit) have been preservedto facilitate the functional comparison between the ScalAgent MOM and its Dream re-implementation.The engine comprises two main components: the AtomicityProtocol composite thatensures the atomic execution of agents; the Repository composite, which is in charge ofcreating and executing agents. Two typical networks are depicted. Both are compositecomponents encapsulating a TCPChannelIn, a TCPChannelOut and a DestinationResolvercomponent. The latter is a transformer that adds the information required by theTCPChannelOut component (i.e. IP address, and port number). The Network 2 compositecontains two more components: the CausalSorter causally orders messages; the message queueCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



24 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANIdecouples the work�ows of the engine and the network. The conduit is implemented by arouter.4.3.3. Con�gurability assessmentA �rst bene�t of the Dream implementation comes from the ability to easily change providednon-functional properties. For instance, it is straightforward to remove causal ordering, or toremove the atomic protocol ensuring transactional execution of agents. Both modi�cationscan be programmatically done at runtime. On the other hand, removing these propertiesfrom the ScalAgent MOM requires modifying and recompiling its source code. Moreover, byimplementing the conduit as a router, an agent server can have multiple engines, which is notthe case in the ScalAgent implementation. This is interesting for two reasons: it allows theparallelization of agent executions (within an agent server, agent executions are serialized [17])and di�erent non-functional properties can be simultaneously enforced (persistency, atomicity).Another bene�t brought by implementing the MOM with Dream is that it is easy to changethe number of active components encapsulated within the agent server. The architecture wehave presented in Figure 8 involves three active components for an agent server with onenetwork. A mono-threaded architecture can be obtained by removing the message queuesencapsulated within the engine and the network.A last experiment we have done, is to build an agent server for mobile equipments. Theseequipments may be temporarily disconnected from the network and have limited storagecapacity. To overcome these limitations, we have built an engine whose message queue isreplaced by a TCPChannelIn component, and which encapsulates a TCPChannelOut componentto send messages. Another device acts as a proxy and message storage unit for this engine. Thisarchitecture preserves the MOM functionnality, while saving memory: it is mono-threaded;messages are pulled instead of pushed; it has no CausalSorter and DestinationResolvercomponents.4.3.4. Performance comparisonsMeasurements have been performed to compare the e�ciency of the same application runningon the ScalAgent MOM and on itsDream implementation. The application involves four agentservers; each one hosts one agent. Agents in the application are organized in a virtual ring.One agent is an initiator of rounds. Each round consists in forwarding the message originatedby the initiator around the ring. We did two series of tests: messages without payload andmessages embedding a 1kB payload. Experiments have been done on four PC Bi-Xeon 1,8GHz with 1Go, connected by a Gigabit Ethernet adapter, running Linux kernel 2.4.20.Table II shows the average number of rounds per second, and the memory footprint. We havecompared two implementations using Dream with the ScalAgent implementation. The �rstimplementation using Dream is not dynamically recon�gurable. As we can see, the number ofrounds is slightly better (≈ 1,2 to 2%) than in the ScalAgent implementation. Concerningthe memory footprint, the Dream implementation requires 9% more memory, which canbe explained by some of the structure needed by Fractal (≈ 70kB) and the fact that eachcomponent has several controller objects. This memory overhead is not signi�cant for standardCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 25Number of rounds Memory footprintMOM 0 KB 1 KB (KB)ScalAgent 325 255 4 × 1447Dream (non-reconf.) 329 260 4 × 1580Dream (reconf.) 318 250 4 × 1587Table II. Performance of Dream implementations vs ScalAgent implementationNumber of rounds Memory footprintMOM 0 kB 1 kB (kB)Dream (3 threads) 329 260 4 × 1580Dream (2 threads) 346 268 4 × 1516Dream (1 thread) 370 279 4 × 1452Table III. Impact of the concurrency levelNumber of rounds Memory footprintMOM 0 kB 1 kB (kB)ScalAgent 182 150 4 × 1447Dream (4 agent servers) 188 153 4 × 1580Dream (2 agent servers) 222 181 2 × 1687Dream (1 agent server) 6597 6445 1 × 1900Table IV. Impact of the number of engines by agent serverPC. The second implementation is dynamically recon�gurable (in particular, each compositecomponent supports a life-cycle controller and a content controller). This implementation isslower than the ScalAgent one (≈ 2,2 to 2%) and only requires 7kB more than the non-recon�gurable implementation made using Dream.Table III reports on experiments we have done to assess the impact of the concurrencylevel on the performances of the ScalAgent MOM. We compare three architectures builtusing Dream that di�er by the number of active components they involve. In the 2-threadarchitecture the message queue encapsulated in the network has been removed. In the mono-threaded architecture, both active message queues have been removed (Engine and Network).We see that, in this particular case, reducing the number of active components improves thenumber of rounds (+ 5 to 3% for the 2-thread architecture, and + 12 to 7% for the mono-threaded architecture). This can be explained by the fact that agents are organized in a virtualring, thus each agent server only processes one message at a time. As a consequence, only onethread is necessary.We have also evaluated the gain brought by changing the con�guration in a multi-engineagent server. We have compared four di�erent architectures: the ScalAgent one, an equivalentCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



26 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANIDream con�guration with four mono-engine agent servers, a Dream con�guration with two2-engine agent servers, and aDream con�guration with one 4-engine agent server. Contrary tothe previous experiment, agent servers are hosted by the same PC. Moreover, in the latter case,agents are placed so that two consecutive agents in the virtual ring are hosted by di�erent agentservers. Table IV shows that using two 2-engine agent servers improves the number of roundsby 18% and reduces the memory footprint by 47%. The increase of the number of rounds canbe explained by the fact that matrix clocks used by the causal sorter have a n2 size, n beingthe number of agent servers. Thus, limiting the number of agent servers reduces the size ofthe matrix to be sent with messages, and tested before delivering them. Table IV also showsthat using a 4-engine agent servers is 29 (35 for 1kB messages) times faster than using fourmono-engine agent servers. This result may seem surprising, but can be easily explained bythe fact that inter agent communication do not transit via the network components. Instead,the router directly sends the message to the appropriate engine.5. Related workComponent models The Fractal model occupies an original position in the vast amountof work dealing with component-based programming and software architecture [36, 27, 25],because of its combination of features: hierarchical components with sharing, support forarbitrary binding semantics between components, components with selective re�ection. Asidefrom the fact that sharing is rarely present in component models (an exception is [28]), mostcomponent models provide little support for re�ection (apart from elementary introspection,as exempli�ed by the second level of control in the Fractal model discussed in Section 2).A component model that provides extensive re�ection capabilities is OpenCOM [20]. UnlikeFractal, however, OpenCOM de�nes a �xed meta-object protocol for components (inFractal terms, each OpenCOM component comes equipped with a �xed and predeterminedset of controller objects). With respect to industrial standards such as EJB and CCM, Fractalconstitutes a more �exible and open component model (with hierarchical composites andsharing) which does not embed predetermined non functional services. It is however perfectlypossible to implement such services in Fractal, as demonstrated e.g. by the development oftransactional controllers in [33]. Note also that Fractal is targeted at system engineering,for which EJB or CCM would be inadequate.Software architecture in Java Several component models for Java have been devised inthe last ten years. Apart from "standardized" models such as Java Beans, Enterprise JavaBeans (EJB) or OSGI [4], we �nd open source initiatives such as Avalon [5] which is ageneral component model, Kilim [9], Pico [10] and Hivemind [7] which are targeted towardssoftware con�guration, Spring [12], Carbon [6], and Plexus [11] which are targeted towardscomponent containers (in the line of EJB). These models su�er generally from the lack ofextensibility and tailorability mentioned in the introduction. Carbon is probably the closestfrom Fractal as it provides extensibility and dynamicity through a mechanism based ondecorators and interceptors and a JMX-based supervision. Two recent proposals for Java-based component programming include Jiazzi [26] and ArchJava [13]. Unlike these works, ourCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 27approach to component-based programming in Java does not rely on language extensions forcon�guration purpose: Julia is a small run-time library, complemented with simple byte-codegenerators. This, coupled with the re�ective character of the Fractal model, provides for amore dynamic and extensible basis for component-based programming than Jiazzi, ArchJava,works cited above and most existing architecture description languages (ADLs). Note thatFractal and Julia directly support arbitrary connector abstractions, through the notionof bindings. We have, for instance, implemented synchronous distributed bindings with anRMI-like semantics just by wrapping the communication subsystem of the Jonathan JavaORB [23], and asynchronous distributed bindings with message queuing and publish/subscribesemantics by similarly wrapping message channels from the Dream library introduced in theprevious section. ArchJava also supports arbitrary connector abstractions [14], but provideslittle support for component re�ection as in Fractal and Julia. Unlike Julia, however,ArchJava supports sophisticated type checking that guarantees communication integrity (i.e.that components only communicate along declared connections between ports - in Fractal,that components only communicate along established bindings between interfaces).Combining aspects and components The techniques used in Julia to support theprogramming of controller and interceptor objects in a Fractal component membrane arerelated to several recent works on the aspectualization of components or component containers,such as e.g. [22, 30, 32, 8, 12]. The mixin and aspect code generators in Julia provide alightweight, �exible yet e�cient means to aspectualize components. In line with its designgoals, Julia does not seek to provide extensive language support as AOP tools such asAspectJ or JAC provide. However such language support can certainly be build on top ofJulia. Prose [31] provides dynamic aspect weaving (whereas Julia currently supports onlyload-time controller generation), with performance which appears to be comparable to that ofJulia. Prose, however, relies on a modi�ed JVM, which makes it impractical for productionuse. In contrast, Julia can make use of standard JVMs, including JVMs for constrainedenvironments.6. ConclusionWe have presented the Fractal component model and its Java implementation, Julia.Fractal is open in the sense that Fractal components are endowed with an extensibleset of re�ective capabilities (controller and interceptor objects), ranging from no re�ectivefeature at all (black boxes or plain objects) to user-de�ned controllers and interceptors, witharbitrary introspection and intercession capabilities. Julia consists in a small run-time library,together with bytecode generators, that relies on mixins and load time aspect weaving toallow the creation and combination of controller and interceptor classes. We have evaluatedthe e�ectiveness of the model and its Java implementation, in particular through the re-engineering of an existing open source message-oriented middleware. The simple applicationbenchmark we have used indicates that the performance of complex component-based systemsbuilt with Julia compares favorably with standard Java implementations of functionallyequivalent systems. In fact, as our performance evaluation shows, the gains in static andCopyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



28 E. BRUNETON, T. COUPAYE, M. LECLERCQ, V. QUÉMA, J-B. STEFANIdynamic con�gurability can also provide signi�cant gains in performance by adapting systemcon�gurations to the application context.Fractal and Julia have already been, and are being used for several developments, bythe authors and others. We hope to bene�t from these developments to further develop theFractal component technology. Among the ongoing and future work we can mention: thedevelopment of a dynamic ADL, the exploitation of containment types and related type systemsto enforce architectural integrity constraints such as communication integrity, the investigationof dynamic aspect weaving techniques to augment or complement the Julia toolset, and theformal speci�cation of the Fractal model with a view to assess its correctness and to connectit with formal veri�cation tools.Availability Julia is freely available under an LGPL license at the following URL:http://fractal.objectweb.org.REFERENCES1. ASM: A Java Byte-Code Manipulation Framework, 2002. Objectweb, http://www.objectweb.org/asm/.2. Java Message Service Speci�cation Final Release 1.1, Mars 2002. Sun Microsystems,http://java.sun.com/products/jms/docs.html.3. JORAM: Java Open Reliable Asynchronous Messaging, 2002. Objectweb, http://joram.objectweb.org/.4. OSGi Service Platform, Release 3, 2003. http://www.osgi.org/.5. The Apache Avalon project, 2004. http://avalon.apache.org/.6. The Carbon project, 2004. http://carbon.sourceforge.net/.7. The Hivemind project, 2004. http://jakarta.apache.org/hivemind.8. The JBoss Aspect Oriented Programming project, 2004. http://www.jboss.org/.9. The Kilim project, 2004. Objectweb, http://kilim.objectweb.org/.10. The PicoContainer project, 2004. http://www.picocontainer.org/.11. The Plexus project, 2004. http://plexus.codehaus.org/.12. The Spring framework, 2004. http://www.springframework.org/.13. J. Aldrich, C. Chambers, and D. Notkin. Architectural Reasoning in ArchJava. In Proceedings 16thECOOP, 2002.14. J. Aldrich, V. Sazawal, C. Chambers, and David Notkin. Language Support for Connector Abstractions.In Proceedings 17th ECOOP, 2003.15. D. Ancona, G. Lagorio, and E. Zucca. A Smooth Extension of Java with Mixins. In ECOOP'00, LNCS1850, 2000.16. G. Banavar, T. Chandra, R. Strom, and D. Sturman. A Case for Message Oriented Middleware. InLecture Notes in Computer Science, volume 1693, pages 1�18, Bratislava, Slovak Republic, September1999. 13th International Symposium on Distributed Computing. ISBN 3-540-66531-5.17. L. Bellissard, N. de Palma, A. Freyssinet, M. Herrmann, and S. Lacourte. An Agent Plateform for ReliableAsynchronous Distributed Programming. In Symposium on Reliable Distributed Systems (SRDS'99),Lausanne, Switzerland, October 1999.18. E. Bruneton, T. Coupaye, and J.B. Stefani. The Fractal Component Model. Technical report, Speci�cationv2, ObjectWeb Consortium, 2003.19. A. Carzaniga, D. Rosenblum, and A. Wolf. Design and Evaluation of a Wide-Area Event Noti�cationService. ACM Transactions on Computer Systems, 19(3):332�383, 2001.20. M. Clarke, G. Blair, G. Coulson, and N. Parlavantzas. An E�cient Component Model for the Constructionof Adaptive Middleware. In Proceedings of the IFIP/ACM Middleware Conference, 2001.21. P. David and T. Ledoux. Towards a Framework for Self-adaptive Component-Based Applications. InDAIS 2003, LNCS 2893, 2003.22. F. Duclos, J. Estublier, and P. Morat. Describing and Using Non Functional Aspects in Component BasedApplications. In AOSD02, 2002.Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls



THE FRACTAL COMPONENT MODEL AND ITS SUPPORT IN JAVA 2923. B. Dumant, F. Dang Tran, F. Horn, and J.B. Stefani. Jonathan: an open distributed platform in Java.Distributed Systems Engineering Journal, vol.6, 1999.24. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W Griswold. An Overview of AspectJ.In ECOOP 2001, LNCS 2072, 2001.25. G. Leavens and M. Sitaraman (eds). Foundations of Component-Based Systems. Cambridge UniversityPress, 2000.26. S. McDirmid, . Flatt, and W.C. Hsieh. Jiazzi: New-age components for old-fashioned Java. In ProceedingsOOPSLA `01, ACM Press, 2001.27. N. Medvidovic and R. N. Taylor. A Classi�cation and Comparison Framework for Software ArchitectureDescription Languages. IEEE Trans. on Soft. Eng., vol. 26, no. 1, 2000.28. G. Outhred and J. Potter. A Model for Component Composition with Sharing. In Proceedings ECOOPWorkshop WCOP `98, 1998.29. R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A Flexible Solution for Aspect-OrientedProgramming in Java. In Re�ection 2001, LNCS 2192, 2001.30. R. Pichler, K. Ostermann, and M. Mezini. On Aspectualizing Component Models. Software � Practiceand Experience, 2003.31. A. Popovici, G. Alonso, and T. Gross. Just in time aspects: E�cient dynamic weaving for Java. InAOSD03, 2003.32. A. Popovici, G. Alonso, and T. Gross. Spontaneous Container Services. In 17th ECOOP, 2003.33. M. Prochazka. Jironde: A Flexible Framework for Making Components Transactional. In DAIS 2003,LNCS 2893, 2003.34. N. Rivierre and T. Coupaye. Observing component behaviors with temporal logic. In 8th ECOOPWorkshop on Correctness of Model-Based Software Composition (CMC `03), 2003.35. Robert Strom, Guruduth Banavar, Tushar Chandra, Marc Kaplan, Kevan Miller, Bodhi Mukherjee, DanielSturman, and Michael Ward. Gryphon: An Information Flow Based Approach to Message Brokering.In International Symposium on Software Reliability Engineering (ISSRE'98), fast abstract, Paderborn,Germany, November 1998.36. C. Szyperski. Component Software, 2nd edition. Addison-Wesley, 2002.37. R. van Renesse, K. Birman, and W. Vogels. Astrolabe: A robust and scalable technology for distributedsystem monitoring, management, and data mining. ACM Transactions on Computer Systems, 21(2),2003.38. M. Welsh, D. Culler, and E. Brewer. SEDA: An Architecture for Well-Conditioned, Scalable InternetServices. In Proceedings of the 18th Symposium on Operating Systems Principles (SOSP'01), Ban�,Canada, 2001.

Copyright c© 2003 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2003; 00:1�7Prepared using speauth.cls


