
ECONET Project

COMMON COMPONENTMETAMODEL - SPECIFICATION

Version 1.1

Pascal ANDRE1 Vladiela PETRASCU2

June 9, 2008

supported by

1COLOSS - LINA - FRE CNRS 2729- 2, rue de la Houssinière, B.P.92208, F-44322 Nantes Cedex 3, France
2LCI - Computer Science Research Laboratory, UniversitateaBABES-BOLYAI Mihail Kogalniceanu nr. 1 RO- 400084

Cluj-Napoca, Romania

./FIGURES/logoEgide.eps

2 ECONET Project/CCMM Specification

Summary

This work is leaded in the context of the Egide-sponsored ECONET Project Nr16293RG entitled, "Behaviour
Abstraction from Code,Filling the Gap between Component Specification and Implementation".

The executive roadmap for reengineering program is built ona three part architecture:

• Process B: Structural abstraction from Java code.

• Process A: Behavioural abstraction from Java code.

• Metamodel definition and consistency verification.

The metamodel part is shared by the two processes and constitues the foundation API (Application Programming
Interface) for component model processing. A main issue of acomponent metamodel is to answer to the problem
of handling several component models to get a generic reengineering process. In order to provide a convenient
component model API, a metamodel specification is necessaryto serve as reference guide.

A first sketch was drawn during the Econet Workshop of Prague in 2007. Experimentations were leaded and
draft versions have been produced until the Econet Workshopof Nantes in 2008 where a first release has been
validated after discussions. This document summarises theresult of these works as aCommon Component
MataModel version 1.1.

The specification detailed in this document is structured using packages to separate concerns (basic elements,
component model, instances and model management...). Eachmain package is presented in a separate chapter and
the specification in based on UML diagrams, informal comments and restrictions by means of Well-Formed-Rules
(WFR) written as OCL constraints.

A tool support for modeling, verification and code (API) generation is provided.

Acknowledgements The authors would like to thank Egide for its financial support of this16293RG ECONET
project1.

1http://www.egide.asso.fr/fr/programmes/econet/

http://www.egide.asso.fr/fr/programmes/econet/

Contents

1 Introduction 5
1.1 Motivations . 6
1.2 History and starting points. 6

1.2.1 Econet Workshop of Prague in 2007. 6
1.2.2 Annotations. 10
1.2.3 Concrete Metamodels. 10
1.2.4 Abstract Metamodels. 10
1.2.5 Normative or specific model. 10

1.3 Versions. 10
1.4 Discussions and Validation. 15

2 Modelling principles and specification structure 16
2.1 Modelling Principles . 16
2.2 Modelling Issues . 17
2.3 Conflicting concepts . 18
2.4 Modelling Constraints . 19
2.5 Specification Structure. 19

3 CCMM_Basic 21
3.1 Overview . 21
3.2 Types SubPackage. 21
3.3 Elements SubPackage. 21
3.4 Classifiers SubPackage. 21
3.5 BasicBehaviour SubPackage. 21

4 CCMM_Core 22
4.1 Overview . 22
4.2 Components SubPackage. 22
4.3 Architecture SubPackage. 22
4.4 Annotations SubPackage. 22

5 CCMM_Behaviour 23
5.1 Overview . 23
5.2 Behaviour_Basic SubPackage. 23

5.2.1 Diagrams. 23
5.2.2 Definitions . 23
5.2.3 Constraints. 24
5.2.4 Examples. 24
5.2.5 Comments . 24

5.3 Behaviour_RE SubPackage. 25
5.4 Behaviour_LTS SubPackage. 25

5.4.1 Diagrams. 26
5.4.2 Definitions . 26
5.4.3 Constraints. 27

3

4 ECONET Project/CCMM Specification

5.4.4 Examples. 27
5.4.5 Comments . 27

6 CCMM_Instance 29
6.1 Overview . 29
6.2 Types SubPackage. 29
6.3 Elements SubPackage. 29
6.4 Classifiers SubPackage. 29
6.5 BasicBehaviour SubPackage. 29

7 CCMM_ModelManagement 30
7.1 Diagram. 30
7.2 Definition . 30
7.3 Constraints . 30
7.4 Examples . 30
7.5 Comments. 30
7.6 CCMM_ModelManagementOld SubPackage. 30

8 CCMM_Others 31
8.1 Addins Package. 31

8.1.1 Diagrams. 31
8.1.2 Definitions . 31
8.1.3 Constraints. 32
8.1.4 Examples. 32
8.1.5 Comments . 32

8.2 CodeMapping Package. 32
8.2.1 Diagrams. 32
8.2.2 Definitions . 32
8.2.3 Constraints. 32
8.2.4 Examples. 32
8.2.5 Comments . 32

9 Tool Support and Experimentation 34
9.1 Model Engineering Tools. 34
9.2 Experimentations. 35

9.2.1 Experimentations with OCLE. 35
9.2.2 Experimentations with EMF. 35
9.2.3 Experimentations with oAW. 35
9.2.4 Experimentations with ATL. 35
9.2.5 Ongoing Experimentations. 35

10 Conclusion 36

A Annotations 38
A.1 Java Annotations. 38

Chapter 1

Introduction

In the context of the ECONET project Nr16293RG, the partners are involved in the contribution to reverse
engineering of component models fram Java code. One goal is to develop techniques for extraction of abstractions
from code (including some component interface description) and for the verification of abstractions against the
code.

The general project organisation has been drawn during the first project workshop in prague in september 2007
[ACPR07].

Kmelia

SOFA 2.0

STSLib

plain Java

code

EJB, Corba, .NET

Specific component framework

reverse

WFR (OCL)

Behaviours

Structures

Fractal

Fractal, SOFA, Spring...

Common

Component

Metamodel

Structural

Abstract Model

flat
/hierarchical

Behavioural

Abstract Model

(eEBP)

A
annotation

definition

User

informations

*

annoted Java

code

Model

checking

Model/Type

checking

B
 JPF

UML

diagrams

patterns

analysers

extractors

Textual

informations

Figure 1.1: Econet Architecture: final version

The executive roadmap for reengineering program is built ona three part architecture:

• Process B: Structural abstraction from Java code.

• Process A: Behavioural abstraction from Java code.

• Metamodel definition and consistency verification.

The metamodel part is shared by the two processes and constitues the foundation API (Application Programming
Interface) for component model processing. A main issue of acomponent metamodel is to answer to the prob-
lem of handling several component models to get a generic reengineering process. Moreover, in the context of

5

./FIGURES/archiEcoTask.eps

6 ECONET Project/CCMM Specification

reengineering the metamodel must handle tightened connections to the code that implements component applica-
tions. These connection points are represented by annotations in the Java code. In order to provide a convenient
component model API, a metamodel specification is necessaryto serve as reference guide.

A first sketch was drawn during the Econet Workshop of Prague in 2007 [ACPR07]. Experimentations were
leaded and draft versions have been produced until the Econet Workshop of Nantes in 2008 where a first release has
been validated after discussions. This document summarises the result of these works as aCommon Component
MetaModel version 1.1.

The document is organised as follow. In chapter2 we address methodological issues to specify the metamodel
(principles, structuration, asumptions).

The specification is structured using packages to separate concerns (basic elements, component model, in-
stances and model management...) (see chapter2) . Each main package is detailed in a separate chapter (from
chapter3 to chapter8) and the specification in based on UML diagrams, informal comments and restrictions by
means of Well-Formed-Rules (WFR) written as OCL constraints.

A tool support for modeling, verification and code (API) generation is provided. Chapter9 describes the main
features of tools support and experimentation.

The remaining of this chapter overviews the motivations, the history, the different versions that have been
produced or referenced, and the current state of the metamodel.

1.1 Motivations

Roughly speaking the goal of the reengineering processes isto abstract component paradigms from plain or an-
notated Java code, assuming that the Java code is somewhere acomponent implementation. The component
paradigms are structured in a component model and several component models are targeted including SOFA,
Kmelia, KADL but also Fractal, Tracta, Corba... For the sakeof simplicity these will be qualified asconcrete
component metamodels.

Of course the above goal locates over these concrete component metamodels and focus onGeneric re-engineering
techniques and tools. This requirement lead to acommon component metamodel (CCMM)which is model inde-
pendent and gather a subset of models concepts, postponing specific concepts to concrete model mappings. It must
include the relation between component model and implementation code (java annotations). It must be specified
in such a way that specification properties can be checked anda Metamodel API can be refined or implemented.

1.2 History and starting points

Having the current version of a model is never sufficient to understand it correctly, we need the motivations,
reasons and explanation that lead to it. Therefore we present an historical point of view in this section.

The work on a common metamodel started during the Econet Workshop of Prague in september 2007. Several
versions have been produced until march 2008. They are the starting points for the validation process that occurded
in the Econet Workshop of Nantes in may 2008. We also recall here other sources of inspiration.

1.2.1 Econet Workshop of Prague in 2007

The participants were quickly convinced of the necessity ofhaving a common component metamodel to handle
multiple target models (each component system has its own means for specifying models but most of component
systems are similar (black-box component, provided/require services, nesting)...) and also code mapping. Here is
a summary of the discussions. ‘

1. Requirements ([ACPR07] p. 27)

(a) We need meta information somehow common to the models : a minimal structural component model
(component hierarchy, one or several interfaces by component). A proposed task is finding this mini-
mal meta information. We don’t need a Unified Component Language -just the minimal stuff to work
(remember the size of the project).

(b) Additional model-specific meta information (because wemight want to do something beyond this
project’s scope some day).

1.2. HISTORY AND STARTING POINTS 7

2. A simplified Sofa metamodel ([ACPR07] p. 31)
It should correspond to all our component models (with different names).

Frame
 Interface

InterfaceType

Instance
 Architecture

Binding

*

*

protocol : String

*

*

*

Figure 1.2: Sofa: short metamodel

3. Discussions on mapping concepts ([ACPR07] p. 37)

Entry point

Frame

Interface

Operation

Connections

Types

Abstract

concepts

Composites

(later)

Class

Interface

Methods

Statements

Inheritance

Types / classes

Java

concepts

3 sorts of classes:

x components

x types

x Java only

3 sorts of methods:

x business (services)

x non business (java)

Figure 1.3: Mapping concepts

4. fast comparison of the three abstract models (SOFA, KADL , Kmelia) ([ACPR07] p. 37) in order to grasp
the structural and behavioural models and therefore the annotations and some kind of metamodel.

Concept/Model SOFA EBPL K ADL Kmelia
Attachment Frame Component Service+ component
Operations atomic assignments atomic functions atomic action+
(computation) (constants?) (algebraic) service calls
Types Enums any ADT "complex but open"

means ad hoc
Guards logic + enum logic + ADT logic + ad hoc FL
Dynamic formalism reg. expr. state transition state transition +

"hierarchy"
I/O !? ? ! * ? !?? !!
Labels ?iface.notified [guard] event com/action [guard] action*

{!iface2.pre} (actions can be com or functions)

./FIGURES/sofaMeta.eps
./FIGURES/absMapping.eps

8 ECONET Project/CCMM Specification

Study of the corresponding Java constructs in an engineering/reverse-engineering points of view.

Concept/Model SOFA EBPL K ADL Kmelia
Attachment set of classes set of classes set of classes
Operations plain methods plain methods methods + behaviours
(computation) user Java statementsalgebraic translation generated code
Types Java types Java types Java types +

classes (ADT) classes
Guards boolean expr. boolean methods conditions
Dynamic formalism control flows control flows various statements

(RMI...) (LTS Library) (control structure, messages, methods)
I/O method calls method calls method calls

parameters parameters parameters
Labels assignments if-then-else statements

user Java statements patterns (Kml-lang)

5. Common component metamodel ([ACPR07] p. 39)
It will include only the common part in its first design, leaving some holes for specific features. The
structural concepts are quite similar in the target languages. The main features are those of the annotation
language. They differ mainly on the representation of behaviours.

Kmelia
SOFA 2.0
 KADL

plain Java

code

Fractal

Behavioural

Abstract Model

A
annotations

Additional

data

Figure 1.4: Common Component MetaModel

6. Annotations ([ACPR07] p. 40-41, p. 47-48)

7. Metamodel Abstraction Subproject ([ACPR07] p. 52-54) the CoreComponent Metamodel is a simple model
grouping the common features of most component-oriented modeling languages [BHP06]. Moreover, in
Figure1.5, only the elements referred in assertions are represented including some constraint definitions
for model verification especially to check model correctness and completeness (model compilability). In
case of the CoreComponent Metamodel, theXOR constraint between the unidirectional associations from
SubcomponentInstance towardFrame andArchitecture (graphically specified in Figure1.5),
can be expressed by means of the following invariant:

(1) c o n t e x t Subcomponen t Ins tance
inv F rameOrArch i t ec tu reAssoc :

s e l f . i n s t a n t i a t e A r c h i t e c t u r e . i s U n d e f i n e d xor
s e l f . i n s t a n t i a t e F r a m e . i s U n d e f i n e d

If the above invariant’s value isfalse, evaluating both itsXOR sub-expressions supports the developer in
identifying error’s rationale, enabling, this way, error fixing.

./FIGURES/ecoCCMM.eps

1.2. HISTORY AND STARTING POINTS 9

Figure 1.5: A part of the CoreComponent Metamodel

The constraint concerning the name uniqueness of required interfaces associated to an instance of the
Frame metaclass, specified by means of the following invariant:

(2) c o n t e x t Frame
inv r e q u i r e d I n t e r f a c e s N a m e :

s e l f . r e q u i r e d I n t e r f a c e . name−>i sUn ique (n | n)

does not support enough the user in identifying interfaces that caused this invariant’s violation. This is
because in case of many interfaces, a careful study of their names is time consuming, tedious and error
prone.

A more appropriate specification, aiding the user in identifying interfaces with the same name is:

(3) c o n t e x t Frame
inv r e q u i r e d I n t e r f a c e s N a m e :

l e t r i = s e l f . r e q u i r e d I n t e r f a c e i n
(r i −> r e j e c t (e | r i . name−>coun t (e . name)=1))−> isEmpty

If the uniqueness condition concerns both required and provided interfaces, the specification could be:

(4) c o n t e x t Frame
inv un ique In te r f ac e sN am e :

l e t i = s e l f . r e q u i r e d I n t e r f a c e−>union (s e l f . p r o v i d e d I n t e r f a c e) i n
(r i −> r e j e c t (e | r i . name−>coun t (e . name)=1))−> isEmpty

Comparing the specifications presented in (3) and (4) with the specification presented in (2), we can notice
that the price paid for an easier identification of interfaces violating theFrame invariant.

In case of constraints restraining the type of elements thatcan be associated asFrame annotations, we will
adopt a solution similar to the previous one:

./FIGURES/metaCCM.eps

10 ECONET Project/CCMM Specification

(5) c o n t e x t Frame
inv a n n o t a t i o n s _ T y p e :

s e l f . a n n o t a t i o n−> s e l e c t (e | no t e . oc l I sTypeOf (TopLevel))−> isEmpty

1.2.2 Annotations

The new definition of Java annotations if provided in appendix A.

1.2.3 Concrete Metamodels

TheSOFA metamodel and theKmelia metamodel can be found on the wiki od SVN repository.

1.2.4 Abstract Metamodels

This first attemps are detailed in section1.3.

1.2.5 Normative or specific model

We also looked at other and various sources covering two extreme solutions. The Object Management Group fam-
ilies of modeling languages (Meta Object FacilityMOF and Unified Modeling LanguageUML) define normative
models covering a wide range of concrete models, they include many concepts and many levels of generalisation
(abstraction) for modelling concepts. The Eclipse Modeling Framework Project proposes a restricted model called
EMF/Ecorewhich aims to be more manageable in practice by modelling casetools.

• Ecore from EMF project
http://eclipse.org/emf
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_
. Tutorial11final.pdf
http://www.research.ibm.com/journal/sj/453/leroux.html

• OMG UML 2.1 (UML 2.0, UML 1.5)
UML1.5 http://www.omg.org/docs/formal/05-04-01.pdf
UML2 infrastructurehttp://www.omg.org/docs/formal/07-02-06.pdf
UML2 superstructurehttp://www.omg.org/docs/formal/07-02-05.pdf
MOF2.0http://www.omg.org/docs/formal/06-01-01.pdf
OCL2.0http://www.omg.org/docs/formal/06-05-01.pdf

This is a inspiration source for finding the core element and relations and to name them. For example we could
define special profiles.

1.3 Versions

In this section we overview several versions of the Common Metamodel.

CMM metamodel PA - november 2007

This metamodel was proposed after the workshop of Prague. Strengths are:

+ There is a clear separation between the core (structure) and behaviour parts.

+ This is a simple model (few concepts).

+ It borrows a usual component terminology.

+ It was inspired by PragueŠs Workshop discussions.

+ It has been used in a prototype for Process B.

http://eclipse.org/emf
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_
Tutorial11final.pdf
http://www.research.ibm.com/journal/sj/453/leroux.html
http://www.omg.org/docs/formal/05-04-01.pdf
http://www.omg.org/docs/formal/07-02-06.pdf
http://www.omg.org/docs/formal/07-02-05.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf

1.3. VERSIONS 11

Weaknesses points are:

- It is largely inspired from Kmelia.

- Few constraints have been specified.

- No instances and mondel mangaement have been handled.

CMM_Core

CMM_Behaviour

Figure 1.6: Structure of the Component MetaModel 1.0

also called

Frame

the s_ prefix denote

the source targets

Composite

<<later>>

Constraint

ProvidedOperation
 RequiredOperation

Attribute

Component

name : String

s_Classes : HashMap
 0..*

0..*

+components

0..*

-composition

0..*

composite

0..*

1

0..*

1

0..*

1

0..*

+owner
 1

Interface

s_interface : String

<<Interface>>

0..*

0..*

-provided

0..*

0..*

0..*

0..*

-required

0..*

0..*

1..*

1

1..*

1

0..*
 0..*

+owner

0..*
 0..*

Type

s_Type : String

s_sort : Enum

Operation

name : String

s_method : String

0..*

1
-services

0..*
 -owner

1

0..*

0..*

+owner

0..*

0..*

1

+returnType

1

1

name : String

+parameters

1

name : String

Figure 1.7: Component package of the Component MetaModel 1.0

./FIGURES/cmm1.0.eps
./FIGURES/cmm1.0_cm.eps

12 ECONET Project/CCMM Specification

Connection

<<lost>>

RequiredOperation
ProvidedOperation

Binding

1
1

1
1

Composite

<<later>>

Architecture
1

0..1

1

-owner

0..1

0..*
0..*

Component

name : String

s_Classes : HashMap

0..*

0..*

-composition
 0..*

+components

0..*

/composite

1..*

+components

1..*

Operation

name : String

s_method : String

1

0..*

-owner

1

-services
0..*

EntryPoint

s_class : String

s-method : String
 1
1

1
1

Figure 1.8: Architecture package of the Component MetaModel 1.0

RegularExpression
 LTS

Interface

providesi : HashMap

requiresi : HashMap

s_interface : String

<<Interface>>

DynamicExpression

1
 0..*
1
 0..*

behaviour

{disjoint}

Figure 1.9: Behaviour package of the Component MetaModel 1.0

CCMM_1.0_ecore VP - march 2008

Strengths are:

+ This is a mixin model.

+ It is based on Ecore (instrumentalisable).

Weaknesses points are:

- It is too simple, there are no architectures.

- No constraints have been specified.

- No description is provided.

Another model was produced for the workshop in Nantes, that was inspired from CCMM_1.0 (section1.3).

./FIGURES/cmm1.0_am.eps
./FIGURES/cmm1.0_bm.eps

1.3. VERSIONS 13

Figure 1.10: Core Component MetaModel 1.0 - Ecore

CMM metamodel PH from another project - march 2008

Strengths are:

+ It is has been validated in an existing project

+ The model is quite simple and complete (minimal).

+ It handles instances and model management.

+ The model is inspired from Sofa and Fractal.

Weaknesses points are:

- It is too specialised.

- It uses a specific component terminology.

- No constraints have been specified.

- No separation of concerns is provided (melted).

CCMM_1.0 PA - march 2008

This is a new version of CMM 1.0 which is more compliant with the various sources of informations. It serves as
basis for the discussions and validation. Only its validated version will be presented here.

This new version of CMM 1.0 was initiated in april 2008. It is anew attempt for a common metamodel (from
the above sources) characterised by its originality (not published), widebroad (various source of inspiration),
customisable (from a generalised root). But it was a draft version that was to be discussed, updated, completed
and validated. Its main features are:

./FIGURES/cmm1.0_ecore.eps

14 ECONET Project/CCMM Specification

Figure 1.11: Component MetaModel

• Layered Model

– Abstract the commonalities

– Core and extensions

• Separation of concerns

– Core Component Model

– Behaviour Modelling

– Instance Management

– Model Management and Annotations

• Modelling Process

– Generalisation: various concepts, notations

– Constraints, comments, examples

Summary

Totals:
7/19 Logical Packages
79 Classes

./FIGURES/cmm.eps

1.4. DISCUSSIONS AND VALIDATION 15

CCMM_Basic
Types
Elements
Classifiers
BasicBehaviour

CCMM_Core
CCMM_Components
CCMM_Architecture
Annotations

CCMM_Behaviour
CCMM_Behaviour_LTS
CCMM_Behaviour_RE
CCMM_Behaviour_Basic

CCMM_Instance
CCMM_CodeMapping
CCMM_ModelManagement
CCMM_Addins

Questions remained

• Big model ?

• Implementation issues

– The core part

– Extend existing frameworks (UML, MOF, EcoreĚ)

– Reduced model

– Layered Implementation

That were debated during the workshop.

1.4 Discussions and Validation

The discussions were based on the experimentations leaded and the draft versions produced before the Econet
Workshop of Nantes in 2008. Some tracks are:

• Modelling concepts and organisation

• Conflicting concepts

• Modelling issues

• Debugging

– General/specialised

– Incompleteness

– Inconsistency

• Fulfill the draft version

– Add Constraints

– API requirements

Several concepts have been qualified, refined or removed ; constraints have been added. A first version has
been validated after discussions which is specified in the remaining document.

Chapter 2

Modelling principles and specification
structure

In this chapter we address methodological issues to specifythe metamodel.

2.1 Modelling Principles

We followed some principles to build the new specification. Concepts are modelling elements.

Principle 2.1.1 (abstraction) We try to factorise the commonalities in shared concepts (use of the generalisa-
tion/specialisation relation).

We use abstraction when two concepts are different but sharesimilar commonalities, when a concept has
different concrete representations.

Principle 2.1.2 (separation of concerns)We prefer to organise the specification by packages instead of a flat
model. Packages can be replaced without changing the overall struture. The main drawback is the dispersal of
modelling elements in several views.

With packages, structural features are separated from behavioural ones, we also separate the core model from
model management, component implementation, annotation,optional features.... By abstraction, commonalities
are separated from specific features.

Principle 2.1.3 (generality/extensibility) Based on several sources we tried to be as general as possiblein order
to include other concrete component models. Moreover the root packages can be grafted in a wider metamodel.

The generality principle is tied to principles2.1.2and2.1.1. Because generality is obtained by abstraction and
extensibility is linked to some separation of concerns. We also usestereotypesto qualify concepts.

Principle 2.1.4 (minimality) We tried to limit the number of concepts.

The minimality principle should be a compromise with the above generality principle2.1.3because we try to
avoid unnecessary concepts but stay extensible to include others later.

Principle 2.1.5 (specification)We separate specification issues from implementation issues. In the latter we re-
duce the number of concepts, relations and constraints. This allow a general wider specification model and a
more restricted implemented metamodel.

Following these concepts, the CCMM Release 1.1 is as follow.

• A layered model that separate several concerns:

– Basic layer : common concepts that overlap components (to beconnected with usual core metamodels
(UML, EMF).

16

2.2. MODELLING ISSUES 17

– Common Component layer (an abstraction of what we find in general component models)

– Specific Component layer (for concrete models) Many WFR willapply to concrete model layers es-
pecially to restrict the element combinations.

• We try to make it complete and consistent.

• It should be original but generalisable and adaptable. We added some basic and core concepts (elements,
typešE) that we find in most of abstract and concrete models.

• It is enriched by WFR and constraints to enforce some definitions.

• API requirements are taken into account.

2.2 Modelling Issues

This is a short summary of discussion points and answers.

1. Represent Java concepts (like JMI model)
NO
Handling a Java model (such as JMI) would be time-cost expensive and should evolve with Java versions
(normative or not). Moreover the tool would be programming language dependent.In fact we modelled a
subset of Java concepts in the specialCCMM_CodeMapping package to illustrate one way to represent the
link between the component model and its simplified Java implementation.
Java mapping is thus represented by special attributes in the component model. A special prefix is given to
the mapping attributes that allow to fix and process them (forexample the sole component model is obtained
by a model transformation that remove these attributes).

2. Represent model management
Partial
Model management is required for model computation but it isnot a part of the component metamodel.
There is a special packageCCMM_Model_Management for it. A first detailed version was designed in
version 1.0. It has been simplified after the workshop of Nantes, based on the LCI proposal.

3. Represent component instances
Partial
There is a special packageCCMM_Instance for it. It is useful for the CoCoME case study description
and verification.

4. Represent annotations

YES
There are two way to represent annotations:

(a) Attributes added to the component concepts definition.
In order to distinguish the component feature attributes from annotation attributes we prefixed the
latter bys_ (source).

(b) Special Package, Code Modelling and Relations.
The special and optionalCCMM_CodeMapping package to illustrate that way.

For implementation reasons and sake of simplicity we decided to choose the first solution. One drawback is
that the Abstract Component Model ispollutedby these special attributes.

5. Represent non functional requirements
NO.

6. Represent Ecore
NOT EXACTLY
but inspired by Ecore and UML2.

18 ECONET Project/CCMM Specification

7. Comments and cleaning
This has been mainly done during the workshop.

• Remove UML qualified associations, aggregation relations

• Consider EMF composition relations (multiplicities)

• Check the names and informal semantics.

8. Constraints
YES. Mandatory to check automatically some properties of the component model using tools.

Additionally to those of UML we define stereotypes to specifymodelling elements or packages and introduce
concerns. Here is an unlimited list of them.

• «spec» indicates that the element is defined in specification step only.

• «lost» indicates that the element is not taken into account.

• «later» indicates that the element will be introduced later.

• «concrete» indicates that the element will be refined in a concrete component model.

• «primitive» indicates that the element is considered as primitive for a component model.

• etc.

2.3 Conflicting concepts

In order to solve the conflicts (except noun conflicts), we proposes to draw a specialisation hierarchy.

1. Interface
Can be a (restricted)Classifier, aNamedElement(Sofa, KADL) or simply anElement(Kmelia). They can
be separate between Provided/Required or not. We made a specialisation hierarchy.. In other approaches
we have also ports.

2. Operation
As a behavioural feature denoting some functional computation with or without dynamic features. Can be
simply anOperation(Sofa, KADL) or a complex entity (Kmelia) We tookNamedElement.

3. Protocol
Can be simply associated to a component (Sofa, KADL), an interface or a service (Kmelia)

4. Service
Can be simply anOperation(Sofa, KADL) or a complex entity (Kmelia) We tookOperation.

5. Constraints/Predicate/Properties
Can be used to write assertions, classify conceptsĚ They are set in a special and optional package.

6. Pre/post conditions
Set in operations as optional features.

7. Architecture/Assembly̋U Connectors-Bindings
We defined an architecture type that denotes patterns of assembling. Connectors are simply bindings. The
question is about what we bind : this can be interfaces or services. A CCMM should accept boths. I tried to
make it more abstract using EndPoints and specialised endpoints. An endpoint has a target which is either
an interface or an operation (service).

2.4. MODELLING CONSTRAINTS 19

2.4 Modelling Constraints

In order to check the metamodel with metamodelling tools, several constraints have been introduced:

• Remove qualified associations and aggregation relations.

• Avoid derived associations and attributes.

• Remove constraints on specialisation relations.

• Replace multiplicity0..1 by 1 for associations, if possible.

• Ensure reacheability of model elements by giving sufficientcomposotion relations.

• Avoid deep specialised concepts.

• Unique names.

2.5 Specification Structure

The specification is organised by packages and is described as so using the Rational Rose tool. Each package is de-
tailed by one chapter in the specification document except the (additional)CCMM_AddinsandCCMM_CodeMapping
packages, which are defined in the same chapter.

CCMM_Core

CCMM_

Behaviour

CCMM_Basic

CCMM_

Instance
CCMM_Code

Mapping

<<spec>>

CCMM_Addins

<<spec>>
Annotations are everywhere but

they can be grouped in the

implementation package.

CCMM_Model

Management

<<meta>>

Figure 2.1: Structure of the Common Component Metamodel

• chapter3: packageCCMM_Basic - basic elements of a component model (model elements, types, values...),

• chapter4: packageCCMM_Core - components and architectures models and also annotations,

• chapter5: packageCCMM_Behaviour - dynamic behavioural features of components and architectures,

./FIGURES/ccmm_main.eps

20 ECONET Project/CCMM Specification

• chapter6: packageCCMM_Instance - component instance management,

• chapter7: packageCCMM_ModelManagement - model handling and repository,

• chapter8: secondary elements

– packageCCMM_CodeMapping - one way to link component (abstract) models and component im-
plementations,

– packageCCMM_Addins - additional concepts of the models.

For each package the specification schema is the following:

• Diagrams:overview of the model

• Definitions:definitions of concepts

• Constraints:natural language and OCL expressions

• Examples:illustrations

• Comments:comments on the specification document and process

Chapter 3

CCMM_Basic

In this chapter we specifiy theCCMM_Basic package.
+++ TODO: VP +++

3.1 Overview

3.2 Types SubPackage

3.3 Elements SubPackage

3.4 Classifiers SubPackage

3.5 BasicBehaviour SubPackage

21

Chapter 4

CCMM_Core

In this chapter we specifiy theCCMM_Core package.
+++ TODO: VP +++

4.1 Overview

4.2 Components SubPackage

4.3 Architecture SubPackage

4.4 Annotations SubPackage

22

Chapter 5

CCMM_Behaviour

In this chapter we specifiy theCCMM_Behaviour package.

5.1 Overview

TheCCMM_Behaviour package describes the model elements that have a behavioural part. Since there are sev-
eral approaches to represent behaviours (regular expressions, state machines, logics...) and also different models
in each approach we organise it with specialised packages. For instance we choosed theLabelled Transition Sys-
tem(LTS) and theregular expression(RE) formalisms used in the concrete component languages (SOFA, KADL ,
Kmelia).

Notes that theCCMM_Behaviour_RE andCCMM_Behaviour_LTS are«spec» packages, which means
that they are not implemented in the CCMM API.

CCMM_

Behaviour_LTS

<<spec>>

CCMM_

Behaviour_RE

<<spec>>

CCMM_Behaviour

_Basic

Figure 5.1: Structure of theCCMM_Behaviour package

5.2 Behaviour_Basic SubPackage

TheCCMM_Behaviour package describes the commonalities of behavioural elements.

5.2.1 Diagrams

The UML diagram for the basic behavioural elements is given in figure5.2.

5.2.2 Definitions

Every componentdynamic elementis associated to adynamic expression.

• A DynamicElement is a concept of the component model.

23

./FIGURES/ccmm_behaviour.eps

24 ECONET Project/CCMM Specification

DynamicElement

DynamicExpression

label : String

value : JavaType

1
 0..*
1
 0..*

behaviour

Component
 Interface
 Operation

Dynamic behaviours (kinds of protocoles) can be associated

to various level of component and service structuration.

NamedElement
Element

defined by

strings only at

first step

Figure 5.2:CCMM_Behaviour_Basic package

• DynamicExpression is given at first stage by a string (thelabel) which can be analysed later in a
concrete behavioural formalism.

5.2.3 Constraints

Constraint 5.2.1 (behaviouralUniformity) For a given component model, the dynamic expressions are described
in the same language.

It means that

• the subclasses ofDynamicExpression are disjoint specialisations ({disjoint} specialisation con-
straint).

• for each dynamic element of a component model, the dynamic expressions have the same type (subclasses
of DynamicExpression).

A component model is assumed to be an architecture defined in the repository.

c o n t e x t R e p o s i t o r y
i nv b e h a v i o u r a l U n i f o r m i t y :
s e l f . a r c h i t e c t u r e T y p e s . c o n t a i n s . a l lDynamicE lement . behav iou r . oclType−>s i z e () = 1

We assumed a navigationallDynamicElement on architectural elements that provides the dynamic ele-
ments. We also assumed that the subclasses of the abstract classDynamicExpression have only one deep-
height level.

5.2.4 Examples

The contents of the label is be processed to get any dynamic description. This is an "abstract" level it is refined in
the subpackages.

5.2.5 Comments

The subpackages are given only for information and the behavioural language is delegated to the concrete compo-
nent model formalism.

./FIGURES/ccmm_behaviour_basic.eps

5.3. BEHAVIOUR_RE SUBPACKAGE 25

5.3 Behaviour_RE SubPackage

In the category of regular expression formalism we retain only the SOFA BehaviorProtocol language. No
special metamodel is provided and the correctness of the string label if delegated to the BP analyser and type
checker.

BehaviorProtocol

DynamicExpression

label : String

value : JavaType

defined later

Figure 5.3:CCMM_Behaviour_RE package

5.4 Behaviour_LTS SubPackage

The core LTS concepts are common to all LTS languages. Here isan informal and simplified description.

• LTS is the container (graph) of state and transitions.

• State is a vertex in the graph defined by a name.

• Transition is an oriented edge in the graph defined by a source state, a target state and a label.

• Label is a textual description.

The LTS languages vary on the representation of these concepts and merely on the additional features:

• A label can be a simple name or an expresssion including

– a functional computation or an action (in some action language)

– a guarded expression,

– events or communications (messages for examples)

• A transition can be a simple transitions or complexe ones

– multiple sources or target

– defined by a subgraph (composition)

• A state can be a simple state or a complex entity with

– a functional computation or action (in some action language)

– ports or access,

– hierarchical nested subgraphs (one or more)...

• A LTS can

– distinguish classes of states (initial, final, error, hierarchical...),

– distinguish classes of transitions (initial, final, error,communications, hierarchical...),

./FIGURES/ccmm_behaviour_RE.eps

26 ECONET Project/CCMM Specification

– be associate to some context (e.g.qualifiers, states, transitions),

– handle time constraints,

– subtyping...

In this category of LTS expression formalism we mainly capture the concepts of theKmelia metamodel and
tried to define them in a general schema. This model has be restructured to capture the KADL language of
dynamics.

5.4.1 Diagrams

The UML diagrams for the LTS behavioural elements are given in figure5.4and figure5.5.

Channel

role

State
 Transition
 Label

guard

LTS

NamedElement

<<0..1>> name : String

Namespace

Figure 5.4:CCMM_Behaviour_LTS package 1/2

The parts specific toKmelia are dark red colored in the diagram of figure5.5).

5.4.2 Definitions

Every componentdynamic elementis associated to adynamic expression.

• A LTSExpression is defined by a LTS that provides itslabel expression and value.

• A LTS is aNamespace defined by an non-empty set of states (in this set there is one initial state and at
least one final state) and a set of transitions.

• States, transitions and labels and channels are named elements (NamedElement).

• Labels are guarded actions and can be defined by composition of other labels (e.g. sequential, parallele
composition).

• Actions can be elementatry (say functional computations) or communication actions.

• Communication actions use some channel to send or receive messages. Pairwise communication are be-
tween a sender and a receiver. Broadcast actions occur with one sender and multiple receiver.

• Channels are named elements (NamedElement) with some role for the communications (channels can be
process identifiers, ports, ...).

SomeKmelia specific concepts have been represented.

• A Service is a kind of operation whom dynamic is defined by a LTS.

• Kmelia states can be annoted by services (optional service calls).

• Kmelia transitions can be annoted by services (mandatory service calls).

• Kmelia communication actions include service calls or result. Service call can be synchronous.

./FIGURES/ccmm_behaviour_ltss.eps

5.4. BEHAVIOUR_LTS SUBPACKAGE 27

5.4.3 Constraints

Constraint 5.4.1 (mandatoryServiceCall)A transition is labelled with a mandatory service call or (exclusively)
with plain label.

c o n t e x t T r a n s i t i o n
i nv m a n d a t o r y S e r v i c e C a l l :
s e l f . mandatoryAnno ta t ion−>isEmpty () xor l a b e l s e l f .−>isEmpty ()

There are other constraints.
+++ to write +++

5.4.4 Examples

SeeKmelia [AAA06, AAA07] or KADL [PNPR05].

5.4.5 Comments

This is only a partial representation of the languages.

28 ECONET Project/CCMM Specification

ElementaryAction

MessageAction

rcv/send

ServiceAction

call/res

resul

sync

{xor}

{ordered}

see types and

functional computations

DynamicExpression

label : String

value : JavaType

Action

LabelAction

1

0..*

1

0..*

Channel

role

CommunicationAction

1..*
 0..*
1..*
 0..*

LabelBlock

operator

Service

Label

guard

0..*

1..*

0..*

+labels

1..*

State

0..*
+optionalAnnotation
 0..*

Transition

0..*
0..*

+output

0..*

+source

0..*

0..1

+mandatoryAnnotation

0..1

0..1
0..*
 0..1
0..*

LTS

1

1..*

1

1..*

1

1

+initial

1

1

1

1..*

1

+final

1..*

1

0..*

1

0..*

LTSExpression

0..1
 1..*
0..1
 1..*

specific to

Kmelia

Figure 5.5:CCMM_Behaviour_LTS package 2/2

./FIGURES/ccmm_behaviour_lts.eps

Chapter 6

CCMM_Instance

In this chapter we specifiy theCCMM_Instance package.
+++ TODO: VP +++

6.1 Overview

6.2 Types SubPackage

6.3 Elements SubPackage

6.4 Classifiers SubPackage

6.5 BasicBehaviour SubPackage

29

Chapter 7

CCMM_ModelManagement

In this chapter we specifiy theCCMM_ModelManagement package.
+++ TODO: VP +++

7.1 Diagram

7.2 Definition

7.3 Constraints

7.4 Examples

7.5 Comments

Shall we add atopLevel architecture(s) ?
for example to model some constraints on it.

7.6 CCMM_ModelManagementOld SubPackage

This is a«lost» package. It includes a more complete but too complex description of model management. Also
it has not been validated.

30

Chapter 8

CCMM_Others

In this chapter we specifiy theCCMM_Addins andCCMM_CodeMapping package.
These packages were included having in mind a possible evolution of the metamodel.

8.1 Addins Package

The CCMM_Addins package include special features. For instance these features are related to constraints,
assertions, properties and annotations.

8.1.1 Diagrams

NamedElement

predicates, OCL

expressions...

named elements are

easier to reference

Each kind of classifier may have

constraints.

By default a property can

be associated to each

namespace but not no

each named element.

Constraints on architecture

Type => via properties

Namespace

Expression

formula : String

language

Classifier

Property

0..*

+properties

0..*

Operation

s_method : String

Constraint

1

1..*

1

context

1..*

0..1
invariant
 0..1

0..*
 0..*
0..*
 0..*

0..1

*

preContext
0..1

precondition

*

0..1

*
 postContext

0..1
postcondition

*

Element

Annotation

0..*

0..*

0..*

0..*

Any kind of element can be

annotated.

invContext

Figure 8.1:CCMM_Addins package

8.1.2 Definitions

+++ to write +++

• Constraints are predicates or boolean expression.

31

./FIGURES/ccmm_addins.eps

32 ECONET Project/CCMM Specification

• Assertions are a special usage for constraints (invariants of classifiers and pre/post conditions of opera-
tions).

• Properties are a way to qualify model elements using some optional constraints.In some way a stereo-
type is a property but in the metamodel.

• Annotations are a way to enrich model elements.

8.1.3 Constraints

Only multiplicity constraints apply for instance.

8.1.4 Examples

Kmelia uses both assertions and properties. Assertions enforces the definition of functional properties for com-
ponents and architectures. Properties define special kind of concepts. For example aKmelia behaviourin is a
special kind ofKmelia service.

8.1.5 Comments

The assertions are defined for classifiers and operation in their usual meaning as in OCL, Eiffel, Z, VDM or B...

8.2 CodeMapping Package

TheCCMM_CodeMapping package specifies the mapping between a component model and acomponent imple-
mentation realised in Java.

8.2.1 Diagrams

A simplified Java metamodel is proposed (dark red colored in the diagram of figure8.2). The mapping is repre-
sented by (blue colored in the diagram of figure8.2) associations.

8.2.2 Definitions

The (abstract) component model is the one defined in the previous chapters.
The program model is a small subset of Java concepts including:

• structuring: Java packages

• types : Java types, classes and interfaces

• features: attributes, operations and signatures

• relations: extends and implements

with their usual meanings.

8.2.3 Constraints

No matter for instance.

8.2.4 Examples

The CoCoME benchmark establishes such a mapping of concepts.

8.2.5 Comments

The mapping is defined in its usual menaing in set theory (a setof couple elements) rather than a model transfor-
mation. This mapping is defined from the annotation definitions (appendixA).

A mapping to another programming language can be done in a similar way.

8.2. CODEMAPPING PACKAGE 33

Code mapping include annotation management and

component implementation

PrimitiveType
 ImplementationType

DataType

Only some Java

concepts are

modelled.

Namespace

TypedElement

JavaType

0..*

0..*

0..*

relation

0..*

inheritance,

implementation,...

assumed to be

implemented by one

principal java type def

JavaAttribute

JavaInterface

JavaMethodSignature

signature : String

1..*
1..*

Architecture

ArchitecturalElement

0..1

+implementedBy

0..1

Component

multiplicity : Enum

Composite

Interface

s_interface : String

0..1

+implementedBy

0..1

Type

JavaMethod

body : String

1
1

AnnotedType

JavaPackage

JavaFeature

static : Boolean

ArchitectureType

s_Classes : Set

0..*

1

owner

0..*

1

1

type

1

1..*

contains

1..*

ComponentType

s_Classes : Set

1
 type
1

0..*

0..*

component

0..*

0..*

/composite

1
1..*
 1
1..*

Operation

s_method : String

0..*

0..*

services

0..*

owner

0..*

0..*

1

0..*
resultType

1
 0..*

*

0..*

raisedException

*

0..1

+implementedBy

0..1

0..1

+returnType

0..1

0..*

+parameters

0..*

1

0..*

owner

1

services

0..*

JavaClass

abstract : Boolean

0..1

0..*

0..1

0..*

0..1

+implementedBy

0..1

0..1

+implementedBy

0..1

EntryPoint

1

mainComponent

1

/main

1

mainOperation

1

1

+main

1

Figure 8.2:CCMM_CodeMapping package

./FIGURES/ccmm_codemapping.eps

Chapter 9

Tool Support and Experimentation

+++ TODO: VP +++

Interface between subprojects can be text files or XML files but this quite poor and each group will need to
develop tools on Java and Models. In order to get a standard vision of the usable technologies, we need to agree
on the model and metamodel tools used in each subproject.

Section9.1we overview the existing tool support for modeling, verification and code (API) generation. Section
9.2relates the exementations we led before the workshop and theongoing ones.

9.1 Model Engineering Tools

We need tools for model management, preferably on Eclipse. We already discussed on a modeling tool around
Eclipse technologies (Ecore, XML, EMF, MOF...) that allowsto

1. describe and check component metamodels CMM (with structural and behavioural features, with a model
that links to Java code)

2. describe and check component models CM

3. provide an API to navigate on and query models, to add operations and processing on models

4. ...

LCI should maintain this (CMM-CM) layer since it relates to metamodels.
At first sight OCLE can provide the main elements on points 1 and 2 but it doesn’t provide an API usable in

process A (structure) and B (behaviour).
Other tools exist that can help to use Ecore without handlingit directly:

• OCLEhttp://lci.cs.ubbcluj.ro/ocle/

• EMF http://www.eclipse.org/modeling/emf/

• oAW http://www.openarchitectureware.org/

• Kermeta (IRISA)http://www.kermeta.org/

• ATL (LINA) http://www.eclipse.org/m2m/atl/

• ArgoUML tool (OpenSource)http://argouml.tigris.org/

• others...

Information on this aspect can be found here:

• Generalities
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language

34

http://lci.cs.ubbcluj.ro/ocle/
http://www.eclipse.org/modeling/emf/
http://www.openarchitectureware.org/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://argouml.tigris.org/
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language

9.2. EXPERIMENTATIONS 35

• Eclipse Modeling Tools
http://www.eclipse.org/modeling/

• Kermeta (IRISA)
http://www.kermeta.org/

• ATL (LINA)
http://www.eclipse.org/m2m/atl/

• Tools
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47

It would be helpful to compare tools

9.2 Experimentations

+++ to write +++

9.2.1 Experimentations with OCLE

9.2.2 Experimentations with EMF

9.2.3 Experimentations with oAW

9.2.4 Experimentations with ATL

9.2.5 Ongoing Experimentations

http://www.eclipse.org/modeling/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47

Chapter 10

Conclusion

We report many informations of the workshop in this document. This work has also been intended to be the
technical part of the project first year report.

The workshop emphasis the (intuited) fact that the abstractmodels of the partners share a common basis on
components, services and behaviours. The differences can be seen merely as enrichment rather than concurrency.
A common metamodel can therefore be proposed, which can be augmented later to be a proposal for component
model interoperability. The cross fertilisation seems also possible at the tool level.

A plan is a sketch for a first step proposal in component abstraction from Java code. We fixed a limited context
and objectives to be achieved in one year and several months.The practical implementation will be led in the
second year.

36

Bibliography

[AAA06] Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking Component Composability. In5th
International Symposium on Software Composition, SC’06, volume 4089 ofLNCS. Springer, 2006.

[AAA07] P. André, G. Ardourel, and C. Attiogbé. Defining Component Protocols with Service Composition:
Illustration with the Kmelia Model. In6th International Symposium on Software Composition, SC’07,
volume 4829 ofLNCS. Springer, 2007.

[ACPR07] Pascal André, Dan Chiorean, Frantisek Plasil, andJean-Claude Royer. ECONET Project - Prague
Workshop Report, September 2007.

[BHM06] Tomas Barros, Ludovic Henrio, and Eric Madelaine. Model-checking distributed components: The
vercors platform. InInternational Workshop on Formal Aspects of Component Software (FACS’06),
Prague, September 2006. Electronic Notes in Theoretical Computer Science (ENTCS).

[BHP06] Tomáš Bureš, Petr Hnětynka, and František Plášil. SOFA 2.0: Balancing advancedfeatures in a hier-
archical component model. InFourth International Conference on Software Engineering,Research,
Management and Applications (SERA 2006), 9-11 August 2006,Seattle, Washington, USA, pages
40–48. IEEE Computer Society, 2006.

[BR02] Thomas Ball and Sriram K. Rajamani. The slam project:debugging system software via static anal-
ysis. InPOPL, pages 1–3, 2002.

[CCG+04] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular verification of
software components in c.IEEE Trans. Softw. Eng., 30(6):388–402, 2004.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, ShawnLaubach, Corina S. P̆as̆areanu, Robby,
and Hongjun Zheng. Bandera: extracting finite-state modelsfrom java source code. InICSE ’00:
Proceedings of the 22nd international conference on Software engineering, pages 439–448, New
York, NY, USA, 2000. ACM Press.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, andHelmut Veith. Counterexample-
guided abstraction refinement. InCAV ’00: Proceedings of the 12th International Conference on
Computer Aided Verification, pages 154–169, London, UK, 2000. Springer-Verlag.

[CKSY04] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate abstraction of
ansi-c programs using sat.Form. Methods Syst. Des., 25(2-3):105–127, 2004.

[Eis05] Cindy Eisner. Formal verification of software source code through semi-automatic modeling.Soft-
ware and System Modeling, 4(1):14–31, 2005.

[PNPR05] Sebastian Pavel, Jacques Noye, Pascal Poizat, andJean-Claude Royer. Java Implementation of a
Component Model with Explicit Symbolic Protocols. In4th International Symposium on Software
Composition, SC’05, volume 3628 ofLNCS. Springer, 2005.

[PP07] Pavel Parízek and František Plášil. Modeling environment for component model checking from hi-
erarchical architecture. InThird International Workshop on Formal Aspects of Component Software
(FACS 2006), volume 182 ofElectronic Notes in Theoretical Computer Science, pages 139–153. El-
sevier B.V., 2007.

37

Appendix A

Annotations

In this appendix chapter we provide the Java definition of theannotations.

A.1 Java Annotations

Component - Class Relation

/∗ ∗
∗ One or more Java c l a s s e s can be a s s i g n e d t o a s i n g l e component. Such an
∗ ass ignment i s s p e c i f i e d by t h i s a n n o t a t i o n .
∗ /

@Target (E lementType . TYPE)
p u b l i c @ i n t e r f a c e InComponent {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g component
∗ Names which t h e a n n o t a t e d c l a s s i s a s s i g n e d t o . I f a s i n g l e
∗ s o u r c e d e c l a r e s t h e c l a s s t o p a r t i c i p a t e i n s e v e r a l components ,
∗ i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f component name
∗ /

S t r i n g [] componentName () ;
}

Entry points

/∗ ∗
∗ This c l a s s i s t h e f i r s t i n s t a n t i a t e d and i s r e s p o n s i b l e (i t sc o n s t r u c t o r) f o r
∗ t h e i n s t a n t i a t i o n and i n i t i a l i z a t i o n of t h e component ’ s c on t e n t .
∗ /

@Target (E lementType . TYPE)
/ / Should be j u s t a c l a s s
p u b l i c @ i n t e r f a c e I n i t C l a s s {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗

38

A.1. JAVA ANNOTATIONS 39

∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g component
∗ Names f o r which t h e a n n o t a t e d c l a s s p r o v i d e s t h e i n i t i a l i z at i o n .
∗ I f a s i n g l e s o u r c e d e c l a r e s t h e c l a s s t o p a r t i c i p a t e i n s e v e ra l
∗ components , i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f
∗ component name
∗ /

S t r i n g [] componentName () ;
}

/∗ ∗
∗ The component c o n t e n t i s i n s t a n t i a t e d and i n i t i a l i z e d by a method (i t can be
∗ a c o n s t r u c t o r , a s t a t i c method or an i n i t i a l i z a t i o n method to be c a l l e d a f t e r
∗ t h e d e f a u l t c o n s t r u c t o r) .
∗ /

@Target ({ E lementType .CONSTRUCTOR, ElementType .METHOD})
p u b l i c @ i n t e r f a c e In i tMe thod {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g component
∗ Names f o r which t h e a n n o t a t e d method p r o v i d e s t h e i n i t i a l i za t i o n .
∗

∗ /
S t r i n g [] componentName () ;

}

Interfaces

Provided

/∗ ∗
∗ In Java sources , a p rov ided i n t e r f a c e might be i n a form of a c la s s
∗ a t t r i b u t e . The a t t r i b u t e s t o r e s a r e f e r e n c e t o a c l a s s implement ing t h e
∗ prov ided i n t e r f a c e .
∗

∗ /
@Target (E lementType . FIELD)
p u b l i c @ i n t e r f a c e P rov ided {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e i n t e r f a c e r e p r e s e n t e d by t h i s f i e l d
∗ /

S t r i n g [] model I faceName () ;
}

/∗ ∗
∗ A l l methods of t h e s p e c i f i e d Java i n t e r f a c e (which t h e a n n o ta t e d c l a s s has t o
∗ implement) a r e marked as a p a r t o f t h e prov ided i n t e r f a c e of th e component
∗

40 ECONET Project/CCMM Specification

∗ /
@Target (E lementType . TYPE)
p u b l i c @ i n t e r f a c e P r o v i d e d I f {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e component i n t e r f a c e r e p r e s e n t e d by t h i s t ype
∗ /

S t r i n g [] model I faceName () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e j a v a i n t e r f a c e which i s d e f i n i n g one component I n t e r fa c e
∗ I f a s i n g l e s o u r c e d e c l a r e s t o p a r t i c i p a t e i n s e v e r a l components ,
∗ i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f j a v a i n t e r f a c e
∗ names (f o r i n s t a n c e {" A c t i o n L i s t e n e r , WindowListener "}
∗ /

S t r i n g [] java I faceName () d e f a u l t { " " } ;
}

/∗ ∗
∗ The method i s a p a r t o f t h e p rov ided i n t e r f a c e of t h e component
∗

∗ /
@Target (E lementType .METHOD)
p u b l i c @ i n t e r f a c e ProvidedMethod {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e component i n t e r f a c e which t h e a n n o t a t e d method i s p a rt o f .
∗ I f a s i n g l e s o u r c e d e c l a r e s t o t h e method p a r t i c i p a t e i n s e v er a l
∗ i n t e r f a c e s , i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f
∗ i n t e r f a c e names
∗ /

S t r i n g [] model I faceName () ;
}

Required

/∗ ∗
∗ In Java sources , a r e q u i r e d i n t e r f a c e i s p r e s e n t i n a form of ac l a s s
∗ a t t r i b u t e . The a t t r i b u t e s t o r e s a r e f e r e n c e t o a n o t h e r component , whose
∗ prov ided i n t e r f a c e i s bound t o t h i s r e q u i r e d i n t e r f a c e s . The re fo re , t h e
∗ t a r g e t o f t h e a n n o t a t i o n f o r r e q u i r e d i n t e r f a c e i s an a t t r i bu t e of a Java
∗ c l a s s
∗ /

@Target (E lementType . FIELD)
p u b l i c @ i n t e r f a c e Requi red {

/∗ ∗

A.1. JAVA ANNOTATIONS 41

∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e i n t e r f a c e r e p r e s e n t e d by t h i s f i e l d
∗ /

S t r i n g [] model I faceName () ;
}

Business elements

/∗ ∗
∗ a l l t h e i n s t a n c e s of such t ype a r e i m p o r t a n t f o r a component behav iou r .
∗ /

@Target (E lementType . TYPE)
p u b l i c @ i n t e r f a c e Bus inessType {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

/∗ ∗
∗ Marks p a r t i c u l a r Java c l a s s a t t r i b u t e s as i m p o r t a n t f o r b u si n e s s l o g i c .
∗ /

@Target (E lementType . FIELD)
p u b l i c @ i n t e r f a c e B u s i n e s s F i e l d {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

/∗ ∗
∗ Marks p a r t i c u l a r method paramete r as i m p o r t a n t f o r b u s i n e ss l o g i c .
∗

∗ /
@Target (E lementType .PARAMETER)
p u b l i c @ i n t e r f a c e B u s i n e s s P a r a m e t e r {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

List of Figures

1.1 Econet Architecture: final version. 5
1.2 Sofa: short metamodel. 7
1.3 Mapping concepts. 7
1.4 Common Component MetaModel. 8
1.5 A part of the CoreComponent Metamodel. 9
1.6 Structure of the Component MetaModel 1.0. 11
1.7 Component package of the Component MetaModel 1.0. 11
1.8 Architecture package of the Component MetaModel 1.0. 12
1.9 Behaviour package of the Component MetaModel 1.0. 12
1.10 Core Component MetaModel 1.0 - Ecore. 13
1.11 Component MetaModel. 14

2.1 Structure of the Common Component Metamodel. 19

5.1 Structure of theCCMM_Behaviour package. 23
5.2 CCMM_Behaviour_Basic package. 24
5.3 CCMM_Behaviour_RE package . 25
5.4 CCMM_Behaviour_LTS package 1/2 . 26
5.5 CCMM_Behaviour_LTS package 2/2 . 28

8.1 CCMM_Addins package. 31
8.2 CCMM_CodeMapping package. 33

42

	Introduction
	Motivations
	History and starting points
	Econet Workshop of Prague in 2007
	Annotations
	Concrete Metamodels
	Abstract Metamodels
	Normative or specific model

	Versions
	Discussions and Validation

	Modelling principles and specification structure
	Modelling Principles
	Modelling Issues
	Conflicting concepts
	Modelling Constraints
	Specification Structure

	CCMM_Basic
	Overview
	Types SubPackage
	Elements SubPackage
	Classifiers SubPackage
	BasicBehaviour SubPackage

	CCMM_Core
	Overview
	Components SubPackage
	Architecture SubPackage
	Annotations SubPackage

	CCMM_Behaviour
	Overview
	Behaviour_Basic SubPackage
	Diagrams
	Definitions
	Constraints
	Examples
	Comments

	Behaviour_RE SubPackage
	Behaviour_LTS SubPackage
	Diagrams
	Definitions
	Constraints
	Examples
	Comments

	CCMM_Instance
	Overview
	Types SubPackage
	Elements SubPackage
	Classifiers SubPackage
	BasicBehaviour SubPackage

	CCMM_ModelManagement
	Diagram
	Definition
	Constraints
	Examples
	Comments
	CCMM_ModelManagementOld SubPackage

	CCMM_Others
	Addins Package
	Diagrams
	Definitions
	Constraints
	Examples
	Comments

	CodeMapping Package
	Diagrams
	Definitions
	Constraints
	Examples
	Comments

	Tool Support and Experimentation
	Model Engineering Tools
	Experimentations
	Experimentations with OCLE
	Experimentations with EMF
	Experimentations with oAW
	Experimentations with ATL
	Ongoing Experimentations

	Conclusion
	Annotations
	Java Annotations

