ECONET Project
CoMMON COMPONENTMETAMODEL - SPECIFICATION

Version 1.1

Pascal ANDRE Vladiela PETRASCHY

June 9, 2008

EGIDE

1COLOSS - LINA - FRE CNRS 2729- 2, rue de la Houssiniére, B.2082 F-44322 Nantes Cedex 3, France
2LCI - Computer Science Research Laboratory, UniversitB®BES-BOLYAI Mihail Kogalniceanu nr. 1 RO- 400084
Cluj-Napoca, Romania

./FIGURES/logoEgide.eps

2 ECONET Project/CCMM Specification

Summary

This work is leaded in the context of the Egide-sponsored HED Project Nr16293RG entitled, 'Behaviour
Abstraction from CodeFilling the Gap between Component Specification and Impheatr'.
The executive roadmap for reengineering program is buil three part architecture:

e Process B: Structural abstraction from Java code.
e Process A: Behavioural abstraction from Java code.
e Metamodel definition and consistency verification.

The metamodel part is shared by the two processes and casdtite foundation API (Application Programming
Interface) for component model processing. A main issueaafimponent metamodel is to answer to the problem
of handling several component models to get a generic reeaging process. In order to provide a convenient
component model API, a metamodel specification is necessasgrve as reference guide.

A first sketch was drawn during the Econet Workshop of Pragu®07. Experimentations were leaded and
draft versions have been produced until the Econet Worksiidyantes in 2008 where a first release has been
validated after discussions. This document summarisesethdt of these works as @ommon Component
MataModel version 1.1.

The specification detailed in this document is structuredgugackages to separate concerns (basic elements,
component model, instances and model management...) niaolpackage is presented in a separate chapter and
the specification in based on UML diagrams, informal commant restrictions by means of Well-Formed-Rules
(WFR) written as OCL constraints.

A tool support for modeling, verification and code (API) geat®n is provided.

Acknowledgements The authors would like to thank Egide for its financial sugpdthis 16293RGECONET
project.

http://www.egide.asso.fr/fr/programmes/econet/

Contents

1 Introduction 5
1.1 MOtivationNS o 6
1.2 History and starting points 6

1.2.1 EconetWorkshop of Prague in 2007 6
1.2.2 ANNOLAtiONS 10
1.2.3 Concrete Metamodels 10
1.2.4 Abstract Metamodels. L 10
1.2.5 Normative or specificmodel 10
1.3 Versions. 10
1.4 Discussions and Validation e e e 15

2 Modelling principles and specification structure 16
2.1 Modelling Principles. e 16
2.2 Modelling ISSUES. 17
2.3 Conflicting CONCEPLS. o o o 18
2.4 ModellingConstraints. 19
2.5 Specification Structure 19

3 CCMM_Basic 21
3.1 OVEIVIEW . . o o o 21
3.2 TypesSubPackage 21
3.3 Elements SubPackage 21
3.4 Classifiers SubPackage. e 21
3.5 BasicBehaviour SubPackage. 21

4 CCMM_Core 22
4.1 OVEIVIEW e e 22
4.2 Components SubPackage 22
4.3 Architecture SubPackage. e 22
4.4 Annotations SubPackage. 22

5 CCMM_Behaviour 23
5.1 OVEIVIEW . . o o o 23
5.2 Behaviour_Basic SubPackage. 23

5,21 Diagrams. oo e 23
5.22 Definitions L 23
5.2.3 ConstraintS. e 24
5.24 Examples. e 24
525 CommeNnts. 24
5.3 Behaviour_RE SubPackage 25
5.4 Behaviour_LTS SubPackage. 25
541 Diagrams. o e 26
5.4.2 Definitions 26
543 Constraints. e 27

ECONET Project/CCMM Specification

10

544 Examples.
545 Comments.

CCMM_Instance

6.1 Overview
6.2 TypesSubPackage
6.3 Elements SubPackage
6.4 Classifiers SubPackage.

6.5 BasicBehaviour SubPackage

CCMM_ModelManagement

7.1 Diagram.
7.2 Definition oo L
7.3 Constraints. L.
74 Examples.
75 Comments
7.6 CCMM_ModelManagementOld SubPackage

CCMM_Others

8.1 AddinsPackage
8.1.1 Diagrams.
8.1.2 Definitions.
8.1.3 Constraints.
8.14 Examples
8.15 Comments.

8.2 CodeMappingPackage.
8.2.1 Diagrams.
8.2.2 Definitions.
8.23 Constraints.
8.24 Examples
8.25 Comments.

Tool Support and Experimentation

9.1 Model EngineeringTools

9.2 Experimentations
9.2.1 Experimentations with OCLE
9.2.2 ExperimentationswithEME
9.2.3 Experimentations with oAW
9.2.4 Experimentations with ATL.
9.2.5 Ongoing Experimentations.

Conclusion

Annotations

A.1 Java Annotations

........................ 35

Chapter 1

Introduction

In the context of the ECONET project Nr6293RG, the partners are involved in the contribution to reverse
engineering of component models fram Java code. One gantisvelop techniques for extraction of abstractions
from code (including some component interface descriptiord for the verification of abstractions against the
code.

The general project organisation has been drawn duringri@fbject workshop in prague in september 2007
[ACPRO7.

Structures

SOFA 2.0
Kmelia Common Behaviours
Component
STSLib Metamodel WFR (OCL)
Fractal / ~
7 N
Z g
Structural Behavioural
Model/Type Abstr_act Mo_del Abstract Model Model
checking flat/hierarchical (eEBP) checking

reverse

" Sotaion
| _definition_

User
informations

*

JPF

patterns
analysers
extractors

Textual
informations

plain Java annoted Java

UML code code

diagrams

EJB, Corba, .NET
Specific component framework
Fractal, SOFA, Spring...

Figure 1.1: Econet Architecture: final version

The executive roadmap for reengineering program is buili three part architecture:
e Process B: Structural abstraction from Java code.

e Process A: Behavioural abstraction from Java code.

e Metamodel definition and consistency verification.

The metamodel part is shared by the two processes and cesdtite foundation API (Application Programming
Interface) for component model processing. A main issue @draponent metamodel is to answer to the prob-
lem of handling several component models to get a generiwgieeering process. Moreover, in the context of

./FIGURES/archiEcoTask.eps

6 ECONET Project/CCMM Specification

reengineering the metamodel must handle tightened cdpnsdb the code that implements component applica-
tions. These connection points are represented by anmagdti the Java code. In order to provide a convenient
component model API, a metamodel specification is necessasgrve as reference guide.

A first sketch was drawn during the Econet Workshop of PragigdD7 ACPR07. Experimentations were
leaded and draft versions have been produced until the E¢dorkshop of Nantes in 2008 where a first release has
been validated after discussions. This document sumnsatisgesult of these works aCammon Component
MetaModel version 1.1.

The document is organised as follow. In chajere address methodological issues to specify the metamodel
(principles, structuration, asumptions).

The specification is structured using packages to sepasatsems (basic elements, component model, in-
stances and model management...) (see cha@pteEach main package is detailed in a separate chapter (from
chapter3 to chaptei8) and the specification in based on UML diagrams, informal m@mts and restrictions by
means of Well-Formed-Rules (WFR) written as OCL constgaint

A tool support for modeling, verification and code (API) geat®n is provided. Chapté&describes the main
features of tools support and experimentation.

The remaining of this chapter overviews the motivations, hirstory, the different versions that have been
produced or referenced, and the current state of the me&lmod

1.1 Motivations

Roughly speaking the goal of the reengineering procesgesaisstract component paradigms from plain or an-
notated Java code, assuming that the Java code is somewherepanent implementation. The component
paradigms are structured in a component model and sevargdawent models are targeted including SOFA,
Kmelia, KADL but also Fractal, Tracta, Corba... For the saksimplicity these will be qualified asoncrete
component metamodels.

Of course the above goal locates over these concrete comjpunetamodels and focus @eneric re-engineering
techniques and toald his requirement lead to@mmon component metamodel (CCMM)which is model inde-
pendent and gather a subset of models concepts, postp@eicifjsconcepts to concrete model mappings. It must
include the relation between component model and impleatientcode (java annotations). It must be specified
in such a way that specification properties can be checked detamodel API can be refined or implemented.

1.2 History and starting points

Having the current version of a model is never sufficient tdemstand it correctly, we need the motivations,
reasons and explanation that lead to it. Therefore we presemistorical point of view in this section.

The work on a common metamodel started during the EconetdNogkof Prague in september 2007. Several
versions have been produced until march 2008. They aredhstpoints for the validation process that occurded
in the Econet Workshop of Nantes in may 2008. We also reced bther sources of inspiration.

1.2.1 Econet Workshop of Prague in 2007

The participants were quickly convinced of the necessithafing a common component metamodel to handle
multiple target models (each component system has its ovamsi®r specifying models but most of component
systems are similar (black-box component, provided/megervices, nesting)...) and also code mapping. Here is
a summary of the discussions.

1. Requirements CPRO7 p. 27)

(a) We need meta information somehow common to the modelsinianal structural component model
(component hierarchy, one or several interfaces by comppng proposed task is finding this mini-
mal meta information. We don’t need a Unified Component Laiggujust the minimal stuff to work
(remember the size of the project).

(b) Additional model-specific meta information (because might want to do something beyond this
project’s scope some day).

1.2. HISTORY AND STARTING POINTS 7

2. A simplified Sofa metamodelACPRO7 p. 31)
It should correspond to all our component models (with déffe names).

Frame Interface

protocol : String

Instance Architecture

InterfaceType

*

Binding

Figure 1.2: Sofa: short metamodel

3. Discussions on mapping concept®&PRO7 p. 37)

Entry point
- / CIaSS
Interface » Interface

3 sorts of methods:
Operation »Methods X business (services)
X non business (java)

Connections Statements
Types Inheritance 3 sorts of classes:
\ X components
Types / classes X types
Composites x Java only

(later)

Figure 1.3: Mapping concepts

4. fast comparison of the three abstract modesH§ KAbpL, Kmelia) (JACPRO7 p. 37) in order to grasp
the structural and behavioural models and therefore thetations and some kind of metamodel.

| Concept/Model | SoFAEBPL | K ADL | Kmelia |
Attachment Frame Component Service+ component
Operations atomic assignments atomic functions atomic action+
(computation) (constants?) (algebraic) service calls
Types Enums any ADT "complex but open”
means ad hoc
Guards logic + enum logic + ADT logic + ad hoc FL
Dynamic formalism reg. expr. state transition state transition +
"hierarchy"
110 1? 2% 2122 1
Labels ?iface.notified [guard] event com/action [guard] action*
{liface2.pre} (actions can be com or functions

./FIGURES/sofaMeta.eps
./FIGURES/absMapping.eps

ECONET Project/CCMM Specification

Study of the corresponding Java constructs in an engirgegirerse-engineering points of view.

|| Concept/Model | SoFAEBPL | K ADL | Kmelia |
Attachment set of classes set of classes set of classes
Operations plain methods plain methods methods + behaviours
(computation) user Java statementsalgebraic translation generated code
Types Java types Java types Java types +
classes (ADT) classes
Guards boolean expr. boolean methods conditions

Dynamic formalism

control flows

control flows

various statements

(RMI...) (LTS Library) (control structure, messages, methogs)
110 method calls method calls method calls
parameters parameters parameters
Labels assignments if-then-else statements
user Java statements patterns (Kml-lang)

5. Common component metamodeh(fPR0O7 p. 39)
It will include only the common part in its first design, leagi some holes for specific features. The
structural concepts are quite similar in the target langgad he main features are those of the annotation
language. They differ mainly on the representation of behas.

Fractal SOFA

2.0 Kmelia

KADL

| “Addionar 1 x |

[— data _|

annotations

./

<

X

Behavioural
Abstract Model

plain Java
code

Figure 1.4: Common Component MetaModel

6. Annotations (ARCPRO7 p. 40-41, p. 47-48)

7. Metamodel Abstraction SubprojecACPRO7 p. 52-54) the CoreComponent Metamodel is a simple model
grouping the common features of most component-orientedieting languagesg§HP0G. Moreover, in

Figurel1.5, only the elements referred in assertions are representiatling some constraint definitions
for model verification especially to check model correcgnasd completeness (model compilability). In
case of the CoreComponent Metamodel, XlaR constraint between the unidirectional associations from
Subcomponent | nst ance towardFr ame andAr chi t ect ur e (graphically specified in Figuré.5),

can be expressed by means of the following invariant:

(1) context Subcomponentinstance
inv FrameOrArchitectureAssoc:
self.instantiateArchitecture.isUndefined xor
self.instantiateFrame .isUndefined

If the above invariant’s value isal se, evaluating both itxOR sub-expressions supports the developer in
identifying error’s rationale, enabling, this way, errodiffig.

./FIGURES/ecoCCMM.eps

1.2. HISTORY AND STARTING POINTS 9

NamedEnkity
rame:String
VergionedEntity
Interface
Architecture SubcomponentInstance +requiredinterface r] - N
communicationStyle String
@ lacation:String @ SubcomponentInstancel argiFrame) @ connectionType: ConnectionType
Subcomponentinstancel arg: Architecture) 0. % iscallection: Boclean
% cotInctantisteFramer arg: Frame)
% cotInetantistearchitecturel srg: Architecture)
0.1 | +instantiatearchitecture L) +pravidedinterface | 0.
Frame
0.1 # pratocol:string
% wddbrnatation(aAnnatation " vt o
-
+instartiateFrams ¥ LddprovidedinterfacelargiInterface) - annatation
+annotation
XOR Arirokation
0.*
TopLevel Factory

Figure 1.5: A part of the CoreComponent Metamodel

The constraint concerning the name uniqueness of requitedfaces associated to an instance of the
Fr ame metaclass, specified by means of the following invariant:

(2) context Frame
inv requiredinterfacesName :
self.requiredinterface .nameisUnique(n | n)

does not support enough the user in identifying interfabas ¢aused this invariant’s violation. This is
because in case of many interfaces, a careful study of tlaeires is time consuming, tedious and error
prone.

A more appropriate specification, aiding the user in idgimtg interfaces with the same name is:

(3) context Frame
inv requiredinterfacesName :
let ri = self.requiredinterface in
(ri—>reject(e | ri.name>count(e.name)=13 >isEmpty

If the uniqueness condition concerns both required andigeohvinterfaces, the specification could be:

(4) context Frame
inv uniquelnterfacesName :
let i = self.requiredIinterface>union(self.providedinterface) in
(ri—>reject(e | ri.name>count(e.name)=1)3 >isEmpty

Comparing the specifications presented in (3) and (4) witsiiecification presented in (2), we can notice
that the price paid for an easier identification of interfaemlating theFr ane invariant.

In case of constraints restraining the type of elementscdiabe associated &s are annotations, we will
adopt a solution similar to the previous one:

./FIGURES/metaCCM.eps

10 ECONET Project/CCMM Specification

(5) context Frame
inv annotations_Type:
self.annotation>select(e | not e.ocllsTypeOf(TopLevehpisEmpty

1.2.2 Annotations

The new definition of Java annotations if provided in apperdi

1.2.3 Concrete Metamodels

The SorFA metamodel and th€melia metamodel can be found on the wiki od SVN repository.

1.2.4 Abstract Metamodels

This first attemps are detailed in sectibs3.

1.2.5 Normative or specific model

We also looked at other and various sources covering twemdisolutions. The Object Management Group fam-
ilies of modeling languages (Meta Object FaciltyOF and Unified Modeling LanguadeML) define normative
models covering a wide range of concrete models, they ieaany concepts and many levels of generalisation
(abstraction) for modelling concepts. The Eclipse Modgknamework Project proposes a restricted model called
EMF/Ecorewhich aims to be more manageable in practice by modellingtoats.

e Ecore from EMF project

¢ OMG UML 2.1 (UML 2.0, UML 1.5)
UML1.5
UML?2 infrastructure
UML2 superstructuré
MOF2.0
OCL2.0

This is a inspiration source for finding the core element @hations and to name them. For example we could
define special profiles.

1.3 \ersions

In this section we overview several versions of the Commoiakedel.

CMM metamodel PA - november 2007
This metamodel was proposed after the workshop of Pragten@hs are:
+ There is a clear separation between the core (structude)@maviour parts.
+ This is a simple model (few concepts).
+ It borrows a usual component terminology.
+ It was inspired by PragueSs Workshop discussions.

+ It has been used in a prototype for Process B.

http://eclipse.org/emf
http://www.eclipsecon.org/2005/presentations/EclipseCon2005_
Tutorial11final.pdf
http://www.research.ibm.com/journal/sj/453/leroux.html
http://www.omg.org/docs/formal/05-04-01.pdf
http://www.omg.org/docs/formal/07-02-06.pdf
http://www.omg.org/docs/formal/07-02-05.pdf
http://www.omg.org/docs/formal/06-01-01.pdf
http://www.omg.org/docs/formal/06-05-01.pdf

1.3. VERSIONS 11

Weaknesses points are:
- Itis largely inspired from Kmelia.
- Few constraints have been specified.

- No instances and mondel mangaement have been handled.

CMM_Core

::

CMM_Behaviour

Figure 1.6: Structure of the Component MetaModel 1.0

the s_ prefix denote
the source targets

also called
Frame

<<Interface>>
0.* Interface +owner

Attribute
s_interface : String 0.%
o Constraint
+owner
0“*
0.x
Operation 1 Component 1
-owner
name : String 0.* name : String “+components
s_method : String _services 1 s_Classes : HashMap 0.*
/ name : String
comppsite
-provided
0.* -requir%d . +returnType
- <<later>> -composition
ProvidedOperation RequiredOperation Type Composite
*
+parameters_ [g 1yne - String 0
1 s_sort : Enum

Figure 1.7: Component package of the Component MetaMo@el 1.

./FIGURES/cmm1.0.eps
./FIGURES/cmm1.0_cm.eps

12 ECONET Project/CCMM Specification

<<later>>
Composite

<<lost>>
Connection

-owner

-composition | g * g 1

/composite
0. .*

+components

EntryPoint Component 1
s_class : String name : String ‘rcomponents Architecture Binding
s-method : String s_Classes : HashMap |, . 0.7

-owner

1
1

ProvidedOperation RequiredOperation

1 0. | services

Operation

name : String
s_method : String

Figure 1.8: Architecture package of the Component MetaMbde

<<Interface>>
- Int.erface behaviour - -
providesi : HashMap DynamicExpression
requiresi : HashMap 1 .
s_interface : String 0..
{disjoint}
RegularExpression LTS

Figure 1.9: Behaviour package of the Component MetaModel 1.

CCMM_1.0_ecore VP - march 2008

Strengths are:
+ This is a mixin model.
+ Itis based on Ecore (instrumentalisable).
Weaknesses points are:
- Itis too simple, there are no architectures.
- No constraints have been specified.
- No description is provided.

Another model was produced for the workshop in Nantes, tlaatinspired from CCMM_1.0 (sectidn3).

./FIGURES/cmm1.0_am.eps
./FIGURES/cmm1.0_bm.eps

1.3. VERSIONS 13

E MamedElement
= namea

prowidedintarfaces _
ComponantType E Intarface

a.*

= Companent

companentType
1.1

requiredinterfacas

0%

sErvices 1.F

E Paramater | Parametars E Operation
= kind
L.*
= Paramaterkind
1.1
typ= - in
= Type = out

= inout
= FEWMm

Figure 1.10: Core Component MetaModel 1.0 - Ecore

CMM metamodel PH from another project - march 2008
Strengths are:
+ Itis has been validated in an existing project
+ The model is quite simple and complete (minimal).
+ It handles instances and model management.
+ The modelis inspired from Sofa and Fractal.

Weaknesses points are:

It is too specialised.

It uses a specific component terminology.

No constraints have been specified.

No separation of concerns is provided (melted).

CCMM_1.0 PA - march 2008

This is a new version of CMM 1.0 which is more compliant witle trarious sources of informations. It serves as
basis for the discussions and validation. Only its validatersion will be presented here.

This new version of CMM 1.0 was initiated in april 2008. It imew attempt for a common metamodel (from
the above sources) characterised by its originality (ndliphed), widebroad (various source of inspiration),
customisable (from a generalised root). But it was a draftiea that was to be discussed, updated, completed
and validated. Its main features are:

./FIGURES/cmm1.0_ecore.eps

14

ECONET Project/CCMM Specification

1

+ feature

[Feature

| Namedentity

H entity

5, name : String

| + entity
] starabieentity

+ required

=

N

=] componemType .
+ pravided

1
0.1

+ implements|y

+ instantiatesType

— =
] Primitivelmplementation | || componentimplementation

| [classes - String

a1

+ instantiatesimplem entation

= CompasiteComponentimplementation

" L+ connector
= Connector

=] Repository

L] signature

1
+ signature

1

nterface +type [l interfaceType
!
+ interface 1
+ interface

+ subcomponedi] subcomponent

1

+ subcamponent

1

| subcomponentEndpoint

+ endpoint] Engpoint

=] componemEndpoint

Figure 1.11: Component MetaModel

e Layered Model

— Abstract the commonalities
— Core and extensions

e Separation of concerns

— Core Component Model

— Behaviour Modelling

— Instance Management

— Model Management and Annotations

e Modelling Process

— Generalisation: various concepts, notations
— Constraints, comments, examples

Summary

Tot al s:
7/ 19 Logi cal
79 Cl asses

Packages

./FIGURES/cmm.eps

1.4. DISCUSSIONS AND VALIDATION 15

CCMM _Basi ¢ CCMWM _Behavi our
Types CCVMM _Behavi our\ _LTS
El ement s CCWMM _Behavi our\ _RE
Classifiers CCMM _Behavi our\ _Basi ¢
Basi cBehavi our CCMM _I nst ance

CCVWM _Cor e CCVM _CodeMappi ng
CCVMM _Component s CCVM _Mbdel Managenent
CCMM _Architecture CCMM _Addi ns
Annot at i ons

Questions remained
e Big model ?
e Implementation issues

— The core part

— Extend existing frameworks (UML, MOF, Ecdfg
— Reduced model

— Layered Implementation

That were debated during the workshop.

1.4 Discussions and Validation

The discussions were based on the experimentations leadethe draft versions produced before the Econet
Workshop of Nantes in 2008. Some tracks are:

e Modelling concepts and organisation

Conflicting concepts

Modelling issues

Debugging

— General/specialised
— Incompleteness
— Inconsistency

Fulfill the draft version

— Add Constraints
— API requirements

Several concepts have been qualified, refined or removedstregms have been added. A first version has
been validated after discussions which is specified in thr&neing document.

Chapter 2

Modelling principles and specification
structure

In this chapter we address methodological issues to spigfynetamodel.

2.1 Modelling Principles
We followed some principles to build the new specificatioon€epts are modelling elements.

Principle 2.1.1 (abstraction) We try to factorise the commonalities in shared concepts @igthe generalisa-
tion/specialisation relation).

We use abstraction when two concepts are different but stiaréar commonalities, when a concept has
different concrete representations.

Principle 2.1.2 (separation of concerns)We prefer to organise the specification by packages instéadflat
model. Packages can be replaced without changing the dwrature. The main drawback is the dispersal of
modelling elements in several views.

With packages, structural features are separated fronvimehal ones, we also separate the core model from
model management, component implementation, annotaijignal features.... By abstraction, commonalities
are separated from specific features.

Principle 2.1.3 (generality/extensibility) Based on several sources we tried to be as general as possitriger
to include other concrete component models. Moreover tbegackages can be grafted in a wider metamodel.

The generality principle is tied to principl@sl.2and2.1.1 Because generality is obtained by abstraction and
extensibility is linked to some separation of concerns. We asestereotypeso qualify concepts.

Principle 2.1.4 (minimality) We tried to limit the number of concepts.

The minimality principle should be a compromise with theabgenerality principl®.1.3because we try to
avoid unnecessary concepts but stay extensible to inclindelater.

Principle 2.1.5 (specification) We separate specification issues from implementationgsdnehe latter we re-
duce the number of concepts, relations and constraintss @low a general wider specification model and a
more restricted implemented metamodel.

Following these concepts, the CCMM Release 1.1 is as follow.

e A layered model that separate several concerns:

— Basic layer : common concepts that overlap components (¢oteected with usual core metamodels
(UML, EMF).

16

2.2. MODELLING ISSUES 17

2.2

— Common Component layer (an abstraction of what we find in igg¢ieemponent models)

— Specific Component layer (for concrete models) Many WFR aplbly to concrete model layers es-
pecially to restrict the element combinations.

We try to make it complete and consistent.

It should be original but generalisable and adaptable. Vde@dome basic and core concepts (elements,
type<) that we find in most of abstract and concrete models.

Itis enriched by WFR and constraints to enforce some dedimsti

API requirements are taken into account.

Modelling Issues

This is a short summary of discussion points and answers.

1.

Represent Java concepts (like IMI model)

NO

Handling a Java model (such as JMI) would be time-cost exypeasd should evolve with Java versions
(normative or not). Moreover the tool would be programmiagduage dependerin fact we modelled a
subset of Java concepts in the spe€i@M CodeMappi ng package to illustrate one way to represent the
link between the component model and its simplified Javaecimghtation.

Java mapping is thus represented by special attributeg iocdimponent model. A special prefix is given to
the mapping attributes that allow to fix and process themgfample the sole component model is obtained
by a model transformation that remove these attributes).

. Represent model management

Partial

Model management is required for model computation but itasa part of the component metamodel.
There is a special packa@MVl Mbdel _Managenent for it. A first detailed version was designed in
version 1.0. It has been simplified after the workshop of Rgnbased on the LCI proposal.

. Represent component instances

Partial
There is a special packag®MM | nst ance for it. It is useful for the CoCoME case study description
and verification.

. Represent annotations

YES
There are two way to represent annotations:

(a) Attributes added to the component concepts definition.
In order to distinguish the component feature attributesnfannotation attributes we prefixed the
latter bys__ (source).

(b) Special Package, Code Modelling and Relations.
The special and option&@ICMM_CodeMappi ng package to illustrate that way.

For implementation reasons and sake of simplicity we dedcidehoose the first solution. One drawback is
that the Abstract Component Modelgsllutedby these special attributes.

. Represent non functional requirements

NO.

. Represent Ecore

NOT EXACTLY
but inspired by Ecore and UML2.

18 ECONET Project/CCMM Specification

7. Comments and cleaning
This has been mainly done during the workshop.

e Remove UML qualified associations, aggregation relations
e Consider EMF composition relations (multiplicities)

e Check the names and informal semantics.

8. Constraints
YES. Mandatory to check automatically some properties of thepanent model using tools.

Additionally to those of UML we define stereotypes to speaifydelling elements or packages and introduce
concerns. Here is an unlimited list of them.

e «spec» indicates that the element is defined in specification stép on

e «| ost » indicates that the element is not taken into account.

e «| at er » indicates that the element will be introduced later.

e «concr et e» indicates that the element will be refined in a concrete carapbmodel.

e «primtive»indicates that the elementis considered as primitive f@mamonent model.

e etc.

2.3 Conflicting concepts

In order to solve the conflicts (except noun conflicts), wepps®es to draw a specialisation hierarchy.

1. Interface
Can be a (restricted}lassifier aNamedElemen(iSofa, KADL) or simply arElement(Kmelia). They can
be separate between Provided/Required or not. We made iligaion hierarchy.. In other approaches
we have also ports.

2. Operation
As a behavioural feature denoting some functional comutatith or without dynamic features. Can be
simply anOperation(Sofa, KADL) or a complex entity (Kmelia) We todkamedElement

3. Protocol
Can be simply associated to a component (Sofa, KADL), amfaxte or a service (Kmelia)

4. Service
Can be simply a®peration(Sofa, KADL) or a complex entity (Kmelia) We todRperation

5. Constraints/Predicate/Properties 5
Can be used to write assertions, classify conéeptsey are set in a special and optional package.

6. Pre/post conditions
Set in operations as optional features.

7. Architecture/Assembly) Connectors-Bindings
We defined an architecture type that denotes patterns ahasisg. Connectors are simply bindings. The
guestion is about what we bind : this can be interfaces olicesvA CCMM should accept boths. | tried to
make it more abstract using EndPoints and specialised @&mdpén endpoint has a target which is either
an interface or an operation (service).

2.4. MODELLING CONSTRAINTS 19

2.4 Modelling Constraints

In order to check the metamodel with metamodelling toolgesad constraints have been introduced:
e Remove qualified associations and aggregation relations.
e Avoid derived associations and attributes.
e Remove constraints on specialisation relations.

Replace multiplicity0. . 1 by 1 for associations, if possible.

Ensure reacheability of model elements by giving suffice@mposotion relations.

Avoid deep specialised concepts.

Unique names.

2.5 Specification Structure

The specification is organised by packages and is describemlising the Rational Rose tool. Each package is de-
tailed by one chapter in the specification document exceygitiditional]CCMM_Addi ns andCCVM_CodeMappi ng
packages, which are defined in the same chapter.

CCMM_Basic
I
I
1
I
_| I
CCMM_Core
N
TR N
s 1 \\
I/] N
s N
7 | \
/’ I \\
[] ’ [1 N
<<spec>> CCMM_ CCMM_
CCMM_Code Behaviour Instance
Mapping
]
I
I
I
I
I
. - —
Annotations are everywhere but <<meta>> <<spec>>
they can be grouped in the CCMM_Model CCMM Addins
implementation package. Management -

Figure 2.1: Structure of the Common Component Metamodel

e chapte: packageCCVM Basi c - basic elements of a component model (model elements, tyaless...),
e chapterd: packageCCMVI Cor e - components and architectures models and also annotations

e chapters: packageCCVM _Behavi our - dynamic behavioural features of components and architest

./FIGURES/ccmm_main.eps

20

ECONET Project/CCMM Specification

e chaptel6: packageCCMM | nst ance - component instance management,
e chapter7: packageCCMVI Model Managenent - model handling and repository,
e chaptei8: secondary elements

— packageCCMMVI CodeMappi ng - one way to link component (abstract) models and compoment i
plementations,

— packageCCVM_Addi ns - additional concepts of the models.
For each package the specification schema is the following:
e Diagrams:.overview of the model

e Definitions:definitions of concepts

Constraintsnatural language and OCL expressions

Examplesillustrations

Commentscomments on the specification document and process

Chapter 3

CCMM_Basic

In this chapter we specifiy tteCMV_Basi ¢ package.
+++ TODO VP +++

3.1 Overview

3.2 Types SubPackage

3.3 Elements SubPackage

3.4 Classifiers SubPackage

3.5 BasicBehaviour SubPackage

21

Chapter 4

CCMM_Core

In this chapter we specifiy theCMVI_Cor e package.

+++ TODO. VP +++

4.1 Overview
4.2 Components SubPackage
4.3 Architecture SubPackage

4.4 Annotations SubPackage

22

Chapter 5

CCMM_Behaviour

In this chapter we specifiy theCMM_Behavi our package.

5.1 Overview

TheCCMM _Behavi our package describes the model elements that have a behdyiarireSince there are sev-
eral approaches to represent behaviours (regular expnsssitate machines, logics...) and also different models
in each approach we organise it with specialised packagesngtance we choosed thebelled Transition Sys-
tem(LTS) and theregular expressio(RE) formalisms used in the concrete component languagesa KADL ,
Kmelia).

Notes that the€CMM _Behavi our _RE andCCVMM Behavi our _LTS are«spec» packages, which means
that they are not implemented in the CCMM API.

1

CCMM_Behaviour
_Basic

<<Spec>'> <<SpeC>>
CCMM_ CCMM_
Behaviour_LTS Behaviour_RE

Figure 5.1: Structure of theCMM_Behavi our package

5.2 Behaviour_Basic SubPackage

TheCCMM Behavi our package describes the commonalities of behavioural elesmen

5.2.1 Diagrams
The UML diagram for the basic behavioural elements is givefigiure5.2

5.2.2 Definitions

Every componendynamic elemeris associated to dynamic expression

e A Dynami cEl enent is a concept of the component model.

23

./FIGURES/ccmm_behaviour.eps

24 ECONET Project/CCMM Specification

Element NamedElement

defined by
strings only at
[first step

) DynamicExpression =
DynamicElement behaviour label : String
value : JavaType

A 1 0..*
Component Interface Operation
N T 7
AN \ r
\ \ ,l
\ ! /
\ \ /
\ 1 /
AN
\ /
AN]

to various level of component and service structuration.

Dynamic behaviours (kinds of protocoles) can be associated ﬁ

Figure 5.2:CCMM Behavi our _Basi ¢ package

e Dynam cExpressi on is given at first stage by a string (thebel) which can be analysed later in a
concrete behavioural formalism.

5.2.3 Constraints

Constraint 5.2.1 (behaviouralUniformity) For a given component model, the dynamic expressions aceided
in the same language.

It means that

e the subclasses d@ynamni cExpr essi on are disjoint specialisationg i sj oi nt} specialisation con-
straint).

e for each dynamic element of a component model, the dynanpiessions have the same type (subclasses
of Dynamni cExpr essi on).
A component model is assumed to be an architecture definbe irepository.

context Repository
inv behaviouralUniformity :
self.architectureTypes.contains .allDynamicElemenéhbviour .oclType>size () = 1

We assumed a navigati@i | Dynani cEl ement on architectural elements that provides the dynamic ele-
ments. We also assumed that the subclasses of the abstssiDgham cExpr essi on have only one deep-
height level.

5.2.4 Examples

The contents of the label is be processed to get any dynarséciggon. This is an "abstract” level it is refined in
the subpackages.

5.2.5 Comments

The subpackages are given only for information and the hebieal language is delegated to the concrete compo-
nent model formalism.

./FIGURES/ccmm_behaviour_basic.eps

5.3. BEHAVIOUR_RE SUBPACKAGE 25

5.3 Behaviour RE SubPackage

In the category of regular expression formalism we retaily the SOFA Behavi or Pr ot ocol language. No
special metamodel is provided and the correctness of tigystabel if delegated to the BP analyser and type

checker.
defined later ﬁ

DynamicExpression

label : String
value : JavaType

BehaviorProtocol

Figure 5.3:CCVMM Behavi our _RE package

5.4 Behaviour_ LTS SubPackage

The core LTS concepts are common to all LTS languages. Hareiigformal and simplified description.

e LTSis the container (graph) of state and transitions.
e St at e is a vertex in the graph defined by a name.
e Transi tionis an oriented edge in the graph defined by a source statejet taate and a label.

e Label is atextual description.
The LTS languages vary on the representation of these ctsmaeg@ merely on the additional features:

e Alabel can be a simple name or an expresssion including

— a functional computation or an action (in some action laggja
— aguarded expression,
— events or communications (messages for examples)

A transition can be a simple transitions or complexe ones

— multiple sources or target
— defined by a subgraph (composition)

A state can be a simple state or a complex entity with

— a functional computation or action (in some action langllage
— ports or access,
— hierarchical nested subgraphs (one or more)...

A LTS can

— distinguish classes of states (initial, final, error, hiehécal...),
— distinguish classes of transitions (initial, final, erm@mmunications, hierarchical...),

./FIGURES/ccmm_behaviour_RE.eps

26 ECONET Project/CCMM Specification

— be associate to some conteatd. qualifiers, states, transitions),
— handle time constraints,
— subtyping...

In this category of LTS expression formalism we mainly captilne concepts of thikmelia metamodel and
tried to define them in a general schema. This model has beicasted to capture the AL language of
dynamics.

5.4.1 Diagrams
The UML diagrams for the LTS behavioural elements are gindigure5.4and figures.5.

NamedElement

Namespace

N

<<0..1>> name : String

State Transition Label Channel LTS
guard role

Figure 5.4:CCMM _Behavi our _LTS package 1/2

The parts specific tkmelia are dark red colored in the diagram of fig.&).

5.4.2 Definitions
Every componendynamic elemeris associated to dynamic expression
e A LTSExpr essi onis defined by a LTS that provides it&ibel expression and value.

e A LTSis aNanespace defined by an non-empty set of states (in this set there isrotial istate and at
least one final state) and a set of transitions.

e States, transitions and labels and channels are namedrate(hNanedEl enment).

e Labels are guarded actions and can be defined by composftiother labels €.g. sequential, parallele
composition).

e Actions can be elementatry (say functional computationspaamunication actions.

e Communication actions use some channel to send or receissages. Pairwise communication are be-
tween a sender and a receiver. Broadcast actions occur métkender and multiple receiver.

e Channels are named elemeniapredEl enment) with some role for the communications (channels can be
process identifiers, ports, ...).

SomeKmelia specific concepts have been represented.

e A Servi ce is a kind of operation whom dynamic is defined by a LTS.
e Kmelia states can be annoted by services (optional service calls).

e Kmelia transitions can be annoted by services (mandatory seralts).c

e Kmelia communication actions include service calls or resultvigercall can be synchronous.

./FIGURES/ccmm_behaviour_ltss.eps

5.4. BEHAVIOUR_LTS SUBPACKAGE 27

5.4.3 Constraints

Constraint 5.4.1 (mandatoryServiceCall) A transition is labelled with a mandatory service call or ¢kisively)
with plain label.

context Transition
inv mandatoryServiceCall:
self.mandatoryAnnotatior>isEmpty () xor label self.—>isEmpty ()

There are other constraints.
+++ to wite +++

5.4.4 Examples
SeeKmelia [AAA06, AAAQO7] or KADL [PNPRO0%.

545 Comments

This is only a partial representation of the languages.

/

MessageAction

rcv/send

\

ServiceAction

call/res
resul
sync

28 ECONET Project/CCMM Specification
DynamicExpression
label : String
value : JavaType
LTS
LTSExpression
1 0.1 1.*
1
+final
1% 1.*
+initial 0.*
Label
State Transition +labels
7 guard
0.* 0.* 1.*
, 0.1
+source +output ,
7
7
7
7 {xor}
+optionalAnnotation | g = //‘ LabelAction 0.*
+mandatoryAnnotation s
Service Y = LabelBlock
" operator
0.1
e
b d
7 1
speuﬁc to Action
Kmelia
Channel {ordered} — - -
I CommunicationAction ElementaryAction
role
1.*

see types and
functional computations

Figure 5.5:CCMM Behavi our _LTS package 2/2

./FIGURES/ccmm_behaviour_lts.eps

Chapter 6

CCMM _Instance

In this chapter we specifiy t/eCMVL_| nst ance package.
+++ TODO VP +++

6.1 Overview

6.2 Types SubPackage

6.3 Elements SubPackage

6.4 Classifiers SubPackage

6.5 BasicBehaviour SubPackage

29

Chapter 7

CCMM_ModelManagement

In this chapter we specifiy theCVM_Model Managenent package.
+++ TODO VP +++

7.1 Diagram

7.2 Definition

7.3 Constraints

7.4 Examples

7.5 Comments

Shall we add @4 opLevel architecture(s) ?
for example to model some constraints on it.

7.6 CCMM_ModelManagementOIld SubPackage

This is a«l ost » package. Itincludes a more complete but too complex degmmipf model management. Also
it has not been validated.

30

Chapter 8

CCMM_Others

In this chapter we specifiy theCMV_Addi ns andCCVMM_CodeMappi ng package.
These packages were included having in mind a possible tamolof the metamodel.

8.1 Addins Package

The CCMM_Addi ns package include special features. For instance theserésatue related to constraints,
assertions, properties and annotations.

8.1.1 Diagrams

By default a property can
be associated to each
namespace but not no
each named element.

named elements are 0 predicatgs, ocCL
easier to reference expressions...
4 \
4 \

7 /
/ N /
\ i \ /
\ / \ -
H s \\ Expression
‘l : | formula : String
|
Element | Namespace ||l : \ language
I 1 I 1)
: : ' 1y H \ "
0.* A Q) ! :
‘l ! 1 precondition
! 1
| H 0.1
- preContext
= ’ : m*t * 1.
Annotation H -
E [constraint | postcondition 0.1 Operation

s_method : String

0.* 0.* :I * postContext

invariant | 9.1 "\

AN
N,
AN
o invContext N
Classifier PR . o
—] ~

[} \\

) ~

| N

N

[} N

1 AN
Any kind of element can be Each kind of classifier may have Constraints on architecture
annotated. constraints. Type => via properties

Figure 8.1:CCMM_Addi ns package

8.1.2 Definitions

+++ to wite +++

e Constrai nts are predicates or boolean expression.

31

./FIGURES/ccmm_addins.eps

32 ECONET Project/CCMM Specification

e Asserti ons are a special usage for constraints (invariants of classé#ied pre/post conditions of opera-
tions).

e Properti es are away to qualify model elements using some optional cainss.In some way a stereo-
type is a property but in the metamodel.

e Annot at i ons are a way to enrich model elements.

8.1.3 Constraints

Only multiplicity constraints apply for instance.

8.1.4 Examples

Kmelia uses both assertions and properties. Assertions enfdreaefinition of functional properties for com-
ponents and architectures. Properties define special Kindrwepts. For example limelia behaviourin is a
special kind olKmelia service

8.1.5 Comments

The assertions are defined for classifiers and operatiorinulual meaning as in OCL, Eiffel, Z, VDM or B...

8.2 CodeMapping Package

TheCCMM_CodeMappi ng package specifies the mapping between a component modekand@mnent imple-
mentation realised in Java.

8.2.1 Diagrams

A simplified Java metamodel is proposed (dark red coloretiéndiagram of figur@®.2). The mapping is repre-
sented by (blue colored in the diagram of fig8t8) associations.

8.2.2 Definitions

The (abstract) component model is the one defined in thequewhapters.
The program model is a small subset of Java concepts indudin

e structuring: Java packages
e types: Java types, classes and interfaces
o features: attributes, operations and signatures

e relations: extends and implements
with their usual meanings.

8.2.3 Constraints

No matter for instance.

8.2.4 Examples

The CoCoME benchmark establishes such a mapping of concepts

8.2.5 Comments

The mapping is defined in its usual menaing in set theory (afsgiuple elements) rather than a model transfor-
mation. This mapping is defined from the annotation defingitappendipA).
A mapping to another programming language can be done ini@sivay.

8.2. CODEMAPPING PACKAGE 33

Code mapping include annotation management and
component implementation

contains
ArchitecturalElement
1>
Component
multiplicity : Enum -
Architecture
1 type tyjpe
T
: Interface : ComponentType ArchitectureType
s_interface : String . s_Classes : Set s Classes : Set
0.* h
ne 1
pynel
/ipain
raisedException 0.* ; 0.*
N services \, On*sennces Jcompgsit owner
- Composite
1 Operation
Type

s_method : String

resultType

mainOperatio

+parameters
0.%

AnnotedType +returnType

’
4
4
7/
7/
/s
— 4
PrimitiveType 7
I
E——. I
1
-
R

Namespace

assumed to be
implemented by one

Type

o mplementedBy
* principal java type def)
* +implementedgy JavaPackage
relafion 0.1
0.1 I
7 .
/s JavaClass B TypedElement
4

abstract : Boolean I

inheritance,
implementation,...

JavaFeature

static : Boolean

+implemen

0.1

dBy

+implementedBy

Only some Java
concepts are
modelled.

0.1

JavaMethodSignature JavaMethod

signature : String body : String JavaAttribute

Figure 8.2:CCVMM_CodeMappi ng package

./FIGURES/ccmm_codemapping.eps

Chapter 9

Tool Support and Experimentation

+++ TODO. VP +++

Interface between subprojects can be text files or XML filestiis quite poor and each group will need to
develop tools on Java and Models. In order to get a standaiaivof the usable technologies, we need to agree
on the model and metamodel tools used in each subproject.

Sectior®.1we overview the existing tool support for modeling, verifioa and code (API) generation. Section
9.2relates the exementations we led before the workshop ar@htieing ones.

9.1 Model Engineering Tools

We need tools for model management, preferably on Eclipse.aWéady discussed on a modeling tool around
Eclipse technologies (Ecore, XML, EMF, MOF...) that alloiws

1. describe and check component metamodels CMM (with straichnd behavioural features, with a model
that links to Java code)

2. describe and check component models CM
3. provide an API to navigate on and query models, to add tipessand processing on models
4. ..

LCI should maintain this (CMM-CM) layer since it relates t@tamodels.

At first sight OCLE can provide the main elements on pointsd Zbut it doesn’t provide an API usable in
process A (structure) and B (behaviour).

Other tools exist that can help to use Ecore without handlidgectly:

e OCLE
e EMF
e OAW

Kermeta (IRISA)

ATL (LINA)

ArgoUML tool (OpenSource)
e others...

Information on this aspect can be found here:

o Generalities

34

http://lci.cs.ubbcluj.ro/ocle/
http://www.eclipse.org/modeling/emf/
http://www.openarchitectureware.org/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://argouml.tigris.org/
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language

9.2. EXPERIMENTATIONS

35

Eclipse Modeling Tools

Kermeta (IRISA)

ATL (LINA)

e Tools
It would be helpful to compare tools

9.2 Experimentations

+++ to wite +++

9.2.1 Experimentations with OCLE
9.2.2 Experimentations with EMF
9.2.3 Experimentations with 0AW
9.2.4 Experimentations with ATL

9.2.5 Ongoing Experimentations

http://www.eclipse.org/modeling/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47

Chapter 10

Conclusion

We report many informations of the workshop in this documertis work has also been intended to be the
technical part of the project first year report.

The workshop emphasis the (intuited) fact that the absimactels of the partners share a common basis on
components, services and behaviours. The differencesecaedn merely as enrichment rather than concurrency.
A common metamodel can therefore be proposed, which candraented later to be a proposal for component
model interoperability. The cross fertilisation seem® algssible at the tool level.

A plan is a sketch for a first step proposal in component attstrafrom Java code. We fixed a limited context
and objectives to be achieved in one year and several moiities practical implementation will be led in the
second year.

36

Bibliography

[AAAOD6]

[AAAO7]

[ACPRO7]

[BHMO6]

[BHPOB]

[BRO2]

[CCG+04]

[CDH*00]

[CGJ00]

[CKSY04]

[Eis05]

[PNPRO5]

[PPO7]

Christian Attiogbé, Pascal André, and Gilles Ardeu Checking Component Composability. Sth
International Symposium on Software Composition, SG/0kime 4089 of NCS Springer, 2006.

P. André, G. Ardourel, and C. Attiogbé. Defining Cooment Protocols with Service Composition:
lllustration with the Kmelia Model. li6th International Symposium on Software Composition, 3C'0
volume 4829 oL NCS Springer, 2007.

Pascal André, Dan Chiorean, Frantisek Plasil, Jah-Claude Royer. ECONET Project - Prague
Workshop Report, September 2007.

Tomas Barros, Ludovic Henrio, and Eric Madelaine odél-checking distributed components: The
vercors platform. Irinternational Workshop on Formal Aspects of Componenigoét (FACS'06)
Prague, September 2006. Electronic Notes in Theoreticalpgiber Science (ENTCS).

Tomas Bures§, Petr ktynka, and FrantiSek PIasil. SOFA 2.0: Balancing advafeaires in a hier-
archical component model. Fourth International Conference on Software EngineeriRgsearch,
Management and Applications (SERA 2006), 9-11 August 2868&ttle, Washington, USfages
40-48. IEEE Computer Society, 2006.

Thomas Ball and Sriram K. Rajamani. The slam projdetugging system software via static anal-
ysis. INPOPL, pages 1-3, 2002.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, ahd Veith. Modular verification of
software components in ¢EEE Trans. Softw. Eng30(6):388-402, 2004.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawnbach, Corina S.&%areanu, Robby,
and Hongjun Zheng. Bandera: extracting finite-state mofleia java source code. IICSE '00:
Proceedings of the 22nd international conference on Sofvweagineering pages 439-448, New
York, NY, USA, 2000. ACM Press.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,Helchut Veith. Counterexample-
guided abstraction refinement. @AV '00: Proceedings of the 12th International Conference o
Computer Aided Verificatigrpages 154—169, London, UK, 2000. Springer-Verlag.

Edmund Clarke, Daniel Kroening, Natasha Sharggiand Karen Yorav. Predicate abstraction of
ansi-c programs using sdorm. Methods Syst. De25(2-3):105-127, 2004.

Cindy Eisner. Formal verification of software sceiede through semi-automatic modelirfgoft-
ware and System Modeling(1):14-31, 2005.

Sebastian Pavel, Jacques Noye, Pascal PoizafeandClaude Royer. Java Implementation of a
Component Model with Explicit Symbolic Protocols. 4th International Symposium on Software
Composition, SC’05volume 3628 ot NCS Springer, 2005.

Pavel Parizek and FrantiSek PI&Sil. Modeling emvitent for component model checking from hi-
erarchical architecture. Ihhird International Workshop on Formal Aspects of CompaoiBaitware
(FACS 2006)volume 182 ofElectronic Notes in Theoretical Computer Scienuages 139-153. El-
sevier B.V., 2007.

37

Appendix A

Annotations

In this appendix chapter we provide the Java definition oftingotations.

A.1 Java Annotations

Component - Class Relation

@Target (ElementType . TYPE)
public @interface InComponent {

String [] annotationSrc ();

String [] componentName ();

}

Entry points

@Target (ElementType . TYPE)

public @interface InitClass {

String [] annotationSrc ();

38

A.1. JAVA ANNOTATIONS 39

String [] componentName ();

}

@Target({ ElementType.CONSTRUCTOR, ElementType.METHOPD
public @interface InitMethod {

String [] annotationSrc ();

String [] componentName ();

}

Interfaces

Provided

@Target (ElementType .FIELD)
public @interface Provided {

String [] annotationSrc ();

String [] modellfaceName ();

}

40

ECONET Project/CCMM Specification

@Target (ElementType . TYPE)
public @interface ProvidedIf {

String [] annotationSrc ();

String [] modellfaceName();

String [] javalfaceName ()default { "" };
}

@Target (ElementType .METHOD)
public @interface ProvidedMethod {

String [] annotationSrc ();

String [] modellfaceName ();

}

Required

@Target (ElementType .FIELD)
public @interface Required {

A.1. JAVA ANNOTATIONS

41

String [] annotationSrc ();

String [] modellfaceName ();

}

Business elements

@Target (ElementType . TYPE)
public @interface BusinessType ({

String [] annotationSrc ();

}

@Target(ElementType.FIELD)
public @interface BusinessField {

String [] annotationSrc ();

}

@Target (ElementType . PARAMETER)
public @interface BusinessParameter {

String [] annotationSrc ();

}

List of Figures

11
1.2
1.3
1.4
15
1.6
1.7
1.8
1.9
1.10
1.11

2.1

51
5.2
5.3
5.4
5.5

8.1
8.2

Econet Architecture: finalversion 5
Sofa: shortmetamodel 7
Mapping CONCEPLS o o e e 7
Common Component MetaModel 8
A part of the CoreComponentMetamodel. 9
Structure of the ComponentMetaModel 1.Q 11
Component package of the Component MetaModel.1.0. 11
Architecture package of the Component MetaModel1.Q 12
Behaviour package of the Component MetaModel.1.0. 12
Core Component MetaModel 1.0-Ecore. i i 13
ComponentMetaModel. 14
Structure of the Common Component Metamodel. 19
Structure of th€CMM _Behavi our package. o 23
CCWM Behavi our _Basicpackage. e 24
CCWM Behavi our _REpackage. e 25
CCMM Behavi our _LTSpackage 1/2. 26
CCMM Behavi our _LTSpackage2/2. 28
CCMM Addi ns package. 31
CCWM CodeMappi ngpackage. 33

42

	Introduction
	Motivations
	History and starting points
	Econet Workshop of Prague in 2007
	Annotations
	Concrete Metamodels
	Abstract Metamodels
	Normative or specific model

	Versions
	Discussions and Validation

	Modelling principles and specification structure
	Modelling Principles
	Modelling Issues
	Conflicting concepts
	Modelling Constraints
	Specification Structure

	CCMM_Basic
	Overview
	Types SubPackage
	Elements SubPackage
	Classifiers SubPackage
	BasicBehaviour SubPackage

	CCMM_Core
	Overview
	Components SubPackage
	Architecture SubPackage
	Annotations SubPackage

	CCMM_Behaviour
	Overview
	Behaviour_Basic SubPackage
	Diagrams
	Definitions
	Constraints
	Examples
	Comments

	Behaviour_RE SubPackage
	Behaviour_LTS SubPackage
	Diagrams
	Definitions
	Constraints
	Examples
	Comments

	CCMM_Instance
	Overview
	Types SubPackage
	Elements SubPackage
	Classifiers SubPackage
	BasicBehaviour SubPackage

	CCMM_ModelManagement
	Diagram
	Definition
	Constraints
	Examples
	Comments
	CCMM_ModelManagementOld SubPackage

	CCMM_Others
	Addins Package
	Diagrams
	Definitions
	Constraints
	Examples
	Comments

	CodeMapping Package
	Diagrams
	Definitions
	Constraints
	Examples
	Comments

	Tool Support and Experimentation
	Model Engineering Tools
	Experimentations
	Experimentations with OCLE
	Experimentations with EMF
	Experimentations with oAW
	Experimentations with ATL
	Ongoing Experimentations

	Conclusion
	Annotations
	Java Annotations

