
ECONET - Cluj ECONET Workshop

Behaviour Abstraction from Code

Test1 Case Study Analysis
UML Components vs Java code

P. André

COLOSS-LINA

september, 21-24 2008

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 1 / 71

Introduction Context and Objectives

Introduction

The Test1 example is a subset of the CoCoME case study.
CoCoME case study

pertinent application (45 packages, 121 classes or interfaces)

model + implementation

component model and UML diagrams

same example support for the whole project

allow comparison with other works

Test1 benchmark

one of the two selected subset of CoCoME (Nantes workshop)

small but representative (same example support for the whole project
experimentations)

vertical slice (model, code)

Test1 ⊂ Test2 ⊂ CoCoME

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 2 / 71

Introduction Where in the ECONET Project

Where in the ECONET Project

Kmelia

SOFA 2.0

STSLib

plain Java
code

EJB, Corba, .NET
Specific component framework

reverse

WFR (OCL)

Behaviours

Structures

Fractal

Fractal, SOFA, Spring...

Common
Component
Metamodel

Structural
Abstract Model
flat/hierarchical

Behavioural
Abstract Model

(eEBP)

Aannotation
definition

User
informations

*

annoted Java
code

Model
checking

Model/Type
checking

B JPF

UML
diagrams

patterns
analysers
extractors

Textual
informations

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 3 / 71

http://www.lina.sciences.univ-nantes.fr/coloss/

Introduction Where in the ECONET Project

Where in the process B

Annoted code
Fractal, SOFA,
Kml...

Structure
Abstraction
(process B)

annotation
definition

User
informations
(interactive)

UML
diagrams

Textual
informations

plain Java
code Structural

Abstract Model
flat

hierarchical

CCMM
definition

annoted Java
code

consistent

Figure: A general view of the process B

p. 40 of the report of Nantes’ workshop

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 4 / 71

Introduction This Talk

This Talk

Pretext for various discussions and investigations.

select model and code subset

explain it for those who did not have a look to it

(naively) investigate the relation between model and code (in
practice)

how did the implementors proceed ?
can we trace teh decisions ?

investigate the reverse relation between model and code (with UML)

what to look for ?
how to abstract ?

put the annotations

where ?
how ?

propose a benchmark for CCMM API testing

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 5 / 71

Introduction This Talk

Outline of the Talk

1 Previous experimentation

subset of Test1
model from/to java

2 Overview of Test1

The UML component model
The (plain) Java code
Comparison

3 Support for Analysis and Investigations

Implementation process and patterns
Annotation Processes
UML vs Java
Reverse Engineering

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 6 / 71

Previous Experimentation Outline of the part

Outline

1 Introduction

2 Previous Experimentation
Master Project
Model
CoCoME
Annotation
Instanciation

3 Component Model

4 Implementation Model

5 Finding and Writing the Annotations

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 7 / 71

Previous Experimentation Master Project

Previous Experimentation:MP

Process B (details in chapter 3 of Nantes’ workshop report)

Model management (CMM 1.0)

ATL / EMF
Instanciation

Annotations (v1.0, strings instead of arrays)

reading (APT)
writing from Model

Eclipse Plugin

CoCoME experimentation

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 8 / 71

Previous Experimentation Model

Previous Experimentation:Model

Figure: Master Project: CCM

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 9 / 71

Previous Experimentation CoCoME

Previous Experimentation:CoCoME

CoCoME subset

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

1 11

Figure: Master Project: CoCoME subset

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 10 / 71

Previous Experimentation Annotation

Previous Experimentation:annotation

Figure: Master Project: CoCoME code
P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 11 / 71

Previous Experimentation Instanciation

Previous Experimentation:Model instanciation

Figure: Master Project: CoCoME subset
P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 12 / 71

Component Model Outline of the part

Outline

1 Introduction

2 Previous Experimentation

3 Component Model
CoCoME Model
Structure
Behaviour

4 Implementation Model

5 Finding and Writing the Annotations

6 UML/Java

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 13 / 71

Component Model CoCoME Model

CoCoME (Component) Model

UML2 model

structure
component diagram (few details)

component instances
interfaces, ports, connections

class diagram

class, operations, interfaces
relations

behaviour

sequence diagrams (partial view, instance level)
no statecharts
writing from Model

functional : USE cases (processes) + text

non functional

Implementation frameworks (JMS, Hibernate...)

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 14 / 71

Component Model Structure

CoCoME Component Model:structure

Data Management + Bus + Application

«component»

TradingSystem

«component»

:CashDeskLine

«component»

:Inventory

Bank

StoreIf

1

*
*

1

Test2

Figure: cocome:gen
P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 15 / 71

Component Model Structure

CoCoME Component Model:structure:test1
CashDesk Application

«component»

TradingSystem::CashDeskLine::CashDesk

«component»

:CardReaderController

«component»

:CashDeskGUI

«component»

:LightDisplayController

«component»

:CashDeskApplication

1 1 1 1

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
ExpressModeDisabledEvent
ExpressModeEnabledEvent
InvalidCreditCardEvent
CreditCardScanFailedEvent

ExpressModeEnabledEvent

CreditCardScannedEvent
PINEnteredEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
SaleRegisteredEvent

SaleStartedEvent
ProductBarcodeScannedEvent
SaleFinishedEvent
CashAmountEnteredEvent
CashBoxClosedEvent
CreditCardPaymentEnabledEvent
CreditCardScannedEvent
PINEnteredEvent
ExpressModeEnabledEvent

ExpressModeEnabledEvent
ExpressModeDisabledEvent

SaleStartedEvent
SaleFinishedEvent
CreditCardPaymentEnabledEvent
CashBoxClosedEventChangeAmountCalculatedEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
SaleStartedEvent
SaleFinishedEvent

ProductBarcodeScannedEvent

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

1 11

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 16 / 71

Component Model Behaviour

CoCoME Component Model:behaviour:fct
CashDesk Application

Customer

Cashier

Manager

POSSystem (Test1)

ManageExpressCheckout(2)
«extend»

CardReader CashBox

LightDisplay

Condition:

extension point:

{50% of all sales during the last 60 minutes meet the
requirements of an express checkout
- up to 8 products per sale
- customer pays cash}

Open Express Checkout

ProcessSale(1)

ManageExpressCheckout

Printer

Figure: cocome:cashdeskuc

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 17 / 71

Component Model Behaviour

CoCoME Component Model:behaviour:seq

:Cashier

:TradingSystem::CashDeskLine::CashDesk::CashBoxController :TradingSystem::CashDeskLine::CashDesk::CashDeskGUI

:TradingSystem::CashDeskLine::CashDesk::CashDeskApplication

:TradingSystem::CashDeskLine::CashDesk::PrinterController

:TradingSystem::CashDeskLine::CashDesk::ScannerController

:BarcodeScanner

:TradingSystem::Inventory

ProcessSale

startSale()

SaleStartedEvent ()

SaleStartedEvent()

itemScanned()

ProductBarcodeScannedEvent(int barcode)

getProductWithStockItem(int barcode)

ProductWithStockItemTO

calculateRunningTotal()

RunningTotalChangedEvent(
String productName, double

productPrice, double

runningTotal)

RunningTotalChangedEvent(String productName, double productPrice, double runningTotal)

endSale()

SaleFinishedEvent ()

SaleFinishedEvent()

[Customer wants to pay by credit card]

[Customer wants to pay cash]

alt

ref

SeqBarPayment

ref

SeqCardPayment

[while no more items to scan]

loop

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 18 / 71

Component Model Behaviour

CoCoME Component Model:behaviour:seq

:Cashier

:TradingSystem::CashDeskLine::CashDesk::CashBoxController :TradingSystem::CashDeskLine::CashDesk::CashDeskGUI

:TradingSystem::CashDeskLine::CashDesk::CashDeskApplication

:TradingSystem::CashDeskLine::CashDesk::PrinterController

:TradingSystem::CashDeskLine::CashDesk::ScannerController

:BarcodeScanner

:TradingSystem::Inventory

Bar Payment

:TradingSystem::CashDeskLine::Coordinator

barPayment()

CashAmountEnteredEvent (dou
ble amount, boolean finalInput)

CashAmountEnteredEvent (double amount, boolean finalInput)

CashAmountEnteredEvent(double amount, boolean finalInput)

enterCashAmountDigit()

[until finalInput==true]

loop

ChangeAmountCalculatedEvent(double changeAmount)

ChangeAmountCalculatedEve
nt(double changeAmount)

ChangeAmountCalculatedEven
t(double changeAmount)

closeCashBox()

CashBoxClosedEvent ()

CashBoxClosedEvent()

BookSaleEvent(SaleTO)

SaleRegisteredEvent (int numberOfItems, PaymentMode paymentMode)

Figure: cocome:processSaleSCPDSp
P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 19 / 71

Component Model Behaviour

CoCoME Component Model:behaviour:seq

:TradingSystem::CashDeskLine::CashDesk::CardReader

Bank:Cashier

:TradingSystem::CashDeskLine::CashDesk::CashBoxController :TradingSystem::CashDeskLine::CashDesk::CashDeskGUI

:TradingSystem::CashDeskLine::CashDesk::CashDeskApplication

:TradingSystem::CashDeskLine::CashDesk::PrinterController

:TradingSystem::CashDeskLine::CashDesk::ScannerController

:BarcodeScanner

:TradingSystem::Inventory

Card Payment

:TradingSystem::CashDeskLine::Coordinator

cardPayment()

CreditCardPaymentEnabledEve
nt()

CreditCardScannedEvent(String creditCardInformation)

PINEnteredEvent(int pin)

validateCard(…)

transactionId (null if card not valid)

[transactionId!=null]

loop

[transactionId!=null] debitCard(transactionId, …)

[transactionId==null] InvalidCreditCardEvent()

BookSaleEvent(SaleTO)

SaleRegisteredEvent (int numberOfItems, PaymentMode paymentMode)

Figure: cocome:processSaleSCPDSp

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 20 / 71

Implementation Model Outline of the part

Outline

1 Introduction

2 Previous Experimentation

3 Component Model

4 Implementation Model
Java application
Implementation Decisions
Implementation Patterns

5 Finding and Writing the Annotations

6 UML/Java

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 21 / 71

Implementation Model Java application

CoCoME implementation:java

whole application

45 packages
121 classes or interfaces

organised similarly according to the model components

components
interfaces
data classes

Test1 (application oriented)

14 packages
24 classes or interfaces

organised around the Swing GUI and JMS middleware

user interaction events
software events (messages between components)

Implementation frameworks (JMS, Hibernate, JDBC...)

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 22 / 71

Implementation Model Java application

CoCoME implementation:java

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 23 / 71

Implementation Model Implementation Decisions

CoCoME implementation:decisions

Comparing design and implementation

model elements disappear

The main design decisions focus on the implementation of the
:EventBus composite which is based on the JMS API.
interfaces are merged, port do not exist
components

restructurations

Cash desk application is merged with cash desk and cash deskline
delegation is flatten through imports

new features

GUI framework classes
JMS framework classes
Hibernate/JDBC framework classes

non component model (data classes, sequences...)

The question is how far is the code from the model

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 24 / 71

Implementation Model Implementation Patterns

CoCoME implementation:patterns

Tracing the decisions

can we find patterns ?

manual or not
systematic or not
syntactic vs semantics

restructurations

Cash desk application is merged with cash desk and cash deskline
delegation is flatten through imports

new features

GUI framework classes
JMS framework classes
Hibernate/JDBC framework classes

non component model (data classes, sequences...)

The question is how far is the code from the model

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 25 / 71

Implementation Model Implementation Patterns

CoCoME implementation:patterns

An example

-cashBoxControllerEventHandler

CashBox

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()
+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

«interface»
CashBoxControllerEventHandlerIf

JPanel

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()
+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

-cashbox

CashBoxControllerEventHandlerImpl

«interface»
MessageListener

CashBoxClosedEvent

«interface»
Serializable

cashboxcontroller

cashboxcontroller.impl

« implements »

-cashBoxControllerEventHandler

*

-cashbox

*

²

²

« implements »

« implements »

Figure: CoCoME component: the CashBoxController implementation

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 26 / 71

Finding and Writing the Annotations Outline of the part

Outline

1 Introduction

2 Previous Experimentation

3 Component Model

4 Implementation Model

5 Finding and Writing the Annotations
Finding and Writing the Annotations
Annotating Process
Finding Mappings
Finding Structural Mappings
Finding Behavioural Mappings
Exploring the code
Writing annotations

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 27 / 71

Finding and Writing the Annotations Finding and Writing the Annotations

Finding and Writing the Annotations

Annotations

are a link between code elements and model elements (trace)
must conform the Econet (java) definitions
cannot be seen individually (consistent set/pattern of annotations)

Finding Annotations
1 study engineering =⇒ patterns
2 study reverse engineering =⇒ patterns
3 define Rule based system

Writing annotations
where

In the code
In the model

how

manually
automatic tool support

why : solve conflicts (existing, previous)

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 28 / 71

Finding and Writing the Annotations Finding and Writing the Annotations

Annotation Mappings

Entry point

Frame

Interface

Operation

Connections

Types

Abstract
concepts

Composites
(later)

Class

Interface

Methods

Statements

Inheritance

Types / classes

Java
concepts

3 sorts of classes:
x components
x types
x Java only

3 sorts of methods:
x business (services)
x non business (java)

Figure: Mapping concepts

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 29 / 71

Finding and Writing the Annotations Finding and Writing the Annotations

Finding and Writing the Annotations: Obstacles

Incompleteness: the model can be incomplete
the CoCoME UML model is ”some” view of the implementation, the full model is

the couple UML-Java

Holes: a model element may have no correspondence
composite components, sequences have not correspondence

Inconsistency: the model may be inconsistent
the proposed diagrams are clearly not defining an integrated component model,

but it is a collection of UML diagrams with an intuitive semantics.

Regularity: a transformation pattern can be sytematic or not
data/control patterns for components, application/controllers

Traceability: informations on the design and implementation process
no direct (model) transformation, no reference are given to the abstract model

Noise: informations of implementation model
how to distinguish technical packages from business packages without new
information ?
how to consider a Java class is a business type ? additionnal information (fields,
parameters) is to be removed before comparing with abstract concepts

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 30 / 71

Finding and Writing the Annotations Annotating Process

Annotating Process

1 Select the concepts in the model

individual concepts
related concepts

The useful UML (component or not) concepts are: component, composition, class

(e.g. parameters or parts of components), operations with signatures, types,

interfaces, ports, connectors, stereotypes, instances (objects can be interpreted

component instances), messages with parameters, ...

2 Finding Mappings
1 structural
2 behavioural

3 Exploring the code
1 define reverse rules
2 special cases

4 Writing annotations

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 31 / 71

Finding and Writing the Annotations Finding Mappings

2- Finding Mappings
«component»

:CashBoxController

1

SaleStartedEvent

SaleFinishedEvent

CreditCardPaymentEnabledEvent

CashBoxClosedEvent

ChangeAmountCalculatedEvent

-cashBoxControllerEventHandler

CashBox

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()

+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

«interface»

CashBoxControllerEventHandlerIf

JPanel

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()

+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

-cashbox

CashBoxControllerEventHandlerImpl

«interface»

MessageListener
CashBoxClosedEvent

«interface»
Serializable

cashboxcontroller

cashboxcontroller.impl

« implements »

-cashBoxControllerEventHandler

*

-cashbox

*

²

²

« implements »

« implements »

Figure: CoCoME component: the CashBoxController implementation mappingP. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 32 / 71

Finding and Writing the Annotations Finding Structural Mappings

2- Finding Structural Mappings

Component Pattern

A component C1 is implemented by a package C1 including

the C1EventHandlerIf interface

the C1.impl package including

the C1EventHandlerImpl class that implements the C1EventHandlerIf
interface,
the C1’ class that implements a GUI part.

These classes includes corresponding attributes that can be
represented by a UML bidirectional association.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 33 / 71

Finding and Writing the Annotations Finding Structural Mappings

2- Finding Structural Mappings

Interface Pattern
Provided and required interfaces are merged and the method name is an
indication of whether events are sent (provided interface) or received
(required interface).
The anonymous interfaces of component C1 are implemented by the
C1EventHandlerIf interface where

a required event REvt (operation ? service ?) is defined by a
onEvent(REvt rEvt); method.
Example: void onEvent(ChangeAmountCalculatedEvent

changeAmountCalculatedEvent);

a provided event PEvt (operation ? service ?) is defined by a
sendPEvt(PEvt pEvt); method. Example: void

sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent);

The C1EventHandlerIf interface is then implemented by the
C1EventHandlerImpl class.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 34 / 71

Finding and Writing the Annotations Finding Structural Mappings

2- Finding Structural Mappings

Service/operation Pattern

The implicit convention is to interpret events as services (operations) such
that emitting events is providing services and receiving events is requiring
services.

But this rule is not followed systematically. New events appear that issued
from the behavioural component model e.g. sendPaymentModeEvent,
sendExpressModeDisabledEvent. Some events are not implementd as
so e.g. CreditCardPaymentEnabledEvent.

Events are specified by classes in the cashdeskline.events package.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 35 / 71

Finding and Writing the Annotations Finding Structural Mappings

2- Finding Structural Mappings

Composition Patterns

From a scope (naming/lexical) point of view, component packages are
included in the composite package but except to this there are no true
representation of composition:

ports are not explicitely represented (no promotion: the
subcomponent are directly connected) because

interfaces are shared by the component and its composite,

there are no object composition e.g. by instance variable declaration.

In the CashDeskLine example, the CashDeskLine class is grouped with
the CashDesk class in the the cashdesk package. The EventBus is not
implemented as so but rather via the Java GUI. So there are no direct
mapping.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 36 / 71

Finding and Writing the Annotations Finding Structural Mappings

2- Finding Structural Mappings

Rule Set ?

The above mapping seems to be convenient for CashDeskLine
subcomponents.

These components are somewhat related to dynamic aspects of the
model.

But name inference is quite difficult because the rules are evolving.

For example the component CashDeskApplication is implemented by
the package application including the ApplicationEventHandlerIf

interface and the application.impl package C1 including the
ApplicationEventHandlerImpl and CashDeskStates classes.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 37 / 71

Finding and Writing the Annotations Finding Structural Mappings

2- Finding Structural Mappings

In the case of Inventory components, the rules look like different.

Each interface is implemented by a Java interface. A required
interface is in fact an exact matching of a provided one in another
component (it refers to a provided one). The package importations
solve the interface linking (this is an explicit promotion/delegation
that do not respect composition encapsulation).

A (primitive ?) component C1 is implemented by a class C1Impl class
of the C1.impl package, such that

C1Impl implements the (Java) provided interfaces,
C1Impl declares an instance variable (attribute) for each required
interface (it is initialised using a factory).

Here events are replaced by datatype (implemented by Java classes).

An application factory design pattern is used.

The component model includes ”business”data types modeled by
classes, implemented in the same package as the component.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 38 / 71

Finding and Writing the Annotations Finding Structural Mappings

TradingSystem::Inventory::Application component

«component»

TradingSystem::Inventory::Application

«component»

:Reporting

«component»

:Store
StoreIf

ReportingIf *

*

TradingEnterprise,
ProductSupplier,
Product

StoreQueryIf

OrderEntry,
ProductOrder,
StockItem,
Store

StoreIf

ReportingIf

Figure: CoCoME component: the TradingSystem::Inventory::Application

component

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 39 / 71

Finding and Writing the Annotations Finding Behavioural Mappings

2- Finding Behavioural Mappings

Message Patterns

Message names are built using some conventions. In the
CashDeskLine they all end by Event and some start with send

The idea is to project message send end receptions on each lifeline of
the sequence diagrams according to the naming convention given in
the above sections.

We find the same mismatches.

Unfortunately the sequence diagrams are not numerous to imagine a
systematic and automatic discovery process?

This applies for process oriented code, what about data ?

Nothing about dynamic behaviour, just basic (static) one.

Entry Points

no explicit in UML

look for constructors and main methods
P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 40 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

Annotations to put

InComponent the class belongs to a component

InitClass the class is a ”main”part of the component

InitMethod the method belongs to the main operations of the
component

Provided the field links to a provided interface

ProvidedIf the Java interface refers to a provided interface

ProvidedMethod a method implemnts a provided operation

Required the field links to a required interface

BusinessType the java type implements a component basic type

BusinessField the field refers to a component basic type

BusinessParameter the parameter refers to a component basic type

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 41 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

a) Java interfaces

Intuitively each Java interface should map to a component provided
interface but actually Java interfaces are used twofold

As a provided interface, it is then implemented by some class.

As a required interface, it is then referenced in ”provided”fields.

Moreover the Java interface gathers incoming and outgoing events
(push/pull modes) so that it is not clear what is provided or required inside.
There no annotations envisaged for Java interface e.g to indicate which is
the owner component, whether it is provided or required. Indeed, a
required element (only interface are envisaged here) is attached to a class
field and a provided element is attached to a class via the ProvidedIf. The
missing link should be deduce later when exploring all required fields to get
implementors.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 42 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

a) Java interfaces (Reverse Rules)

RR-1 (Java Interface)
Java interfaces are not annoted.

RR-2 (Provided Java Interface)
When a Java interface is implemented by a class which is InComponent a
component C1 then it is a provided interface of C1. There are no special
annotation for that because it can be deduced in the class declarations via
the ProvidedIf annotation.

RR-3 (Required Java Interface)
A Java interface is a required interface of a component C1 if it is
referenced in a Required field of a class which is InComponent C1. There
are no special annotation for that because there can be many classes (and
components) requiring this interface.

RR-4 (Java Interface Qualification)
Java interfaces can be qualified as both provided or required.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 43 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

a) Java interfaces (Example)
package org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . ca shdesk . c a s h b o x c o n t r o l

import org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . e v en t s . CashAmountEnteredE
import org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . e v en t s . CashBoxClosedEvent
import org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . e v en t s . ChangeAmountCa lcu
import org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . e v en t s . Expre s sModeD i sab le
import org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . e v en t s . PaymentModeEvent ;
import org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . e v en t s . Sa l eF i n i s h e dEv e n t ;
import org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . e v en t s . Sa l eS t a r t edEv en t ;

pub l i c i n t e r f a c e Ca shBoxCon t r o l l e rEv en tHand l e r I f {
vo id onEvent (ChangeAmountCa lcu latedEvent changeAmountCa lcu latedEvent) ;
vo id s endSa l eS ta r t edEv en t (Sa l eS ta r t edEv en t s a l e S t a r t e dE v e n t) ;
vo id s endSa l eF i n i s h e dEv e n t (Sa l eF i n i s h e dEv e n t s a l e F i n i s h e d E v e n t) ;
vo id sendPaymentModeEvent (PaymentModeEvent paymentModeEvent) ;
vo id sendCashAmountEnteredEvent (
CashAmountEnteredEvent cashAmountEnteredEvent) ;
vo id sendCashBoxClosedEvent (CashBoxClosedEvent cashBoxClosedEvent) ;
vo id s endExpres sModeD i sab l edEvent (
Expre s sModeD i sab ledEvent expre s sModeD i sab l edEvent) ;
}

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 44 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

b) Class declaration (Reverse Rules)

RR-5 (Business Class)
In the class declaration we add the annotation (@InComponent) that link
the class to the component.

RR-6 (Business Class Interface)
If the class implements a ”business” interface we add the annotation
(@ProvideIf) that link the class to the component interface and the Java
interface.

RR-7 (Business Main Class)
If the class is the main entry point a component we add the annotation
(@InitClass).

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 45 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

b) Class declaration (Reverse Rules)

RR-8 (Anonymous Model Interface)
We assumed that every component should have only named interfaces. By
default a component unnamed interface will be named as
<ComponentName>If.

RR-9 (Business Type)
Some classes correspond to business datatypes and not components. We
found them in the data description.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 46 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

b) Class declaration (Example 1)

package org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e .
ca shdesk . c a s h b o x c o n t r o l l e r . imp l ;

import . . .
import econet . a nno ta t i on s . ∗ ;

@SuppressWarnings ("serial ")
@InComponent (anno ta t i onS r c = {"Pascal " } ,
componentName = {"CashBoxController" })
@ I n i t C l a s s (a nno ta t i onS r c = {"Pascal " } ,
componentName = {"CashBoxController" })
pub l i c c l a s s CashBox extends JPane l { . . .
}

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 47 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

b) Class declaration (Example 2)

package org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . ca shdesk .
c a s h b o x c o n t r o l l e r . imp l ;

import . . .

@InComponent (anno ta t i onS r c = {"Pascal " } ,
componentName = {"CashBoxController" })
@P rov i d ed I f (a nno ta t i onS r c={"Pascal " } ,
model I faceName={"CashBoxControllerIf" } ,
j a va I f a ceName={" CashBoxControllerEventHandlerIf " })
pub l i c c l a s s Ca shBoxCon t r o l l e rEven tHand l e r Imp l
implements MessageL i s tene r ,
Ca shBoxCon t r o l l e rEv en tHand l e r I f { . . .
}

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 48 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

b) Class declaration (Example 3 Type)

In cashbox example, all events and datatypes are defined by classes related
to business datatypes.

package org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . e v en t s ;

import j a v a . i o . S e r i a l i z a b l e ;
import org . cocome . t r a d i ng s y s t em . c a s h d e s k l i n e . da t a t y pe s . KeyStroke ;
import econet . a nno ta t i on s . Bus inessType ;

@Bus inessType (anno ta t i onS r c={"Pascal " })
pub l i c c l a s s CashAmountEnteredEvent implements S e r i a l i z a b l e {
p r i v a t e s t a t i c f i n a l long s e r i a l V e r s i o nU ID = −5441935251526952790L ;
p r i v a t e KeyStroke key s t r oke ;
pub l i c CashAmountEnteredEvent (KeyStroke key s t r oke) {
t h i s . k e y s t r oke = key s t r oke ;
}
pub l i c KeyStroke getKeySt roke () {
r e t u r n key s t r oke ;
}
}

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 49 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

c) Class structure

This section applys for the class that are InComponent classes only.

The instance variables (fields) can implement a link to a required
interface, a business field, or an internal coupling (for example the
CashBoxController component is implemented by the (main) class
CashBox and the CashBoxController where each class declares a
field to the other class).

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 50 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

c) Class structure (Reverse Rules)

RR-10 (Required field)
Based on the types, one can find the field that correspond to a required
interface (even if it was not declared as so in the UML component model).

RR-11 (Business field)
Based on business types, one can find the business field an annotate them.

RR-12 (Internal coupling)
Internal coupling is represented as a special @Required annotation with an
interface name set by a reserved keyword internal. Its information would
be useful for further investigations. This is not a business field.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 51 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

c) Class structure (Reverse Rules)

RR-13 (Implementation Required field)
Sometimes the requirements refer to some implementation rather than the
component concepts. To keep that information we propose to define a
special keyword implementation to denote that the required interface is
not present at the implementation level but obtained from various sources.
If possible we also provide another a source and interface entry to the
component model.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 52 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

c) Class structure (Example 1)

Nothing in the CashBox class, there’s only an internal coupling toward
CashBoxController EventHandlerImpl.

In the CashBoxControllerEventHandlerImpl class, there’s an internal
coupling toward CashBox and also implementation required fields related
to the implementation of the :EventBus. The difficulty here is that
component concepts disappear at the implementation level we note it
using the special keyword implementation.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 53 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

c) Class structure (Example 1 (contd.))

pub l i c c l a s s Ca shBoxCon t r o l l e rEven tHand l e r Imp l implements MessageL i s te
Ca shBoxCon t r o l l e rEv en tHand l e r I f {
f i n a l S t r i n g CHANNEL CONNECTION FACTORY = " ChannelConnectionFactory " ;
p r i v a t e S t r i n g topicName ;
/ imp l ementa t i on r e f e r e n c e s
@Requi red (anno ta t i onS r c = {"Pascal " , "Model" } , model I faceName = { " impl

p r i v a t e Context j nd iCon t e x t ;
@Requi red (anno ta t i onS r c = {"Pascal " , "Model" } , model I faceName = { " impl

p r i v a t e Top i cPub l i s h e r c a s hBoxPub l i s h e r ;
@Requi red (anno ta t i onS r c = {"Pascal " , "Model" } , model I faceName = { " impl

p r i v a t e Top i cSe s s i on t o p i c S e s s i o n ;
@Requi red (anno ta t i onS r c = {"Pascal " , "Model" } , model I faceName = { " impl

p r i v a t e Logger l o g = Logger
. ge tLogge r (Ca shBoxCon t r o l l e rEven tHand l e r Imp l . c l a s s) ;
/ i n t e r n a l r e f e r e n c e s
@Requi red (anno ta t i onS r c = {"Pascal " } , model I faceName = { "internal " }
p r i v a t e CashBox cashbox ;

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 54 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

d) Class behaviour

This section applys for the class that are in component classes only.

The main goal is to find so-called business methods and main (init)
methods.

The methods refer to service (component operation, business
method) specification.

We manually decide whether a method is a service (component
operation, business method) or not.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 55 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

d) Class behaviour (Reverse Rules)

RR-14 (InitMethod)
The InitMethod is chosen among the constructor or initialization methods.

RR-15 (ProvidedMethod)
The ”business”methods signature refer to service or operations. The
business qualification is decided manually.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 56 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

d) Class behaviour (Example 1)

The component service description is quite absent of the UML model.
Only the sequence charts provide some valuable but information.
The InitMethod were not present in the component model.

@Ini tMethod (anno ta t i onS r c = {"Pascal " } , componentName = {"CashBoxContr
pub l i c CashBox (S t r i n g ev en t channe l) {
super () ;
. . . }

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 57 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

d) Class behaviour (Example 2)

The Service were partially present in the component model. Their shape
changed during the implementation pattern of JMS.

/ shou ld be a r e q u i r e d method a cco r d i ng to the UML model
@ProvidedMethod (anno ta t i onS r c = {"Manual " } , model I faceName = {" CashBox
pub l i c vo id onEvent (ChangeAmountCa lcu latedEvent changeAmountCa lcu lated
l og . i n f o (" ChangeAmountCalculatedEvent received ") ;
cashbox . openCashBox () ;
}

@ProvidedMethod (anno ta t i onS r c = {"Manual " } , model I faceName = {" CashBox
pub l i c vo id s endSa l eS ta r t edEv en t (Sa l eS ta r t edEv en t s a l e S t a r t e dE v e n t) {
t r y {
ca s hBoxPub l i s h e r . p u b l i s h (t o p i c S e s s i o n
. c r ea teObj ec tMes sage (s a l e S t a r t e dE v e n t)) ;
} catch (JMSException e) {
l o g . e r r o r (e) ;
e . p r i n tS t a ckT ra c e () ;
}
}

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 58 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

e) Methods (Reverse Rules)

RR-15 (BusinessParameter)
The business parameters are found in the ”business”methods signature.
Among the method signature some refer to service (operations)
parameters others are implementation ones. The business qualification is
decided manually.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 59 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

e) Methods (Example)

/ shou ld be e r e q u i r e d method a cco r d i ng to the UML model
@ProvidedMethod (anno ta t i onS r c = {"Manual " } , model I faceName = {" CashBox
pub l i c vo id onEvent (
@Bus inessParamete r (a nno ta t i onS r c = {"Pascal " }) ChangeAmountCa lcu latedE
l og . i n f o (" ChangeAmountCalculatedEvent received ") ;
cashbox . openCashBox () ;
}

@ProvidedMethod (anno ta t i onS r c = {"Manual " } , model I faceName = {" CashBox
pub l i c vo id s endSa l eS ta r t edEv en t (
@Bus inessParamete r (a nno ta t i onS r c = {"Pascal " }) Sa l eS ta r t edEv en t s a l e S t
t r y {
ca s hBoxPub l i s h e r . p u b l i s h (t o p i c S e s s i o n
. c r ea teObj ec tMes sage (s a l e S t a r t e dE v e n t)) ;
} catch (JMSException e) {
l o g . e r r o r (e) ;
e . p r i n tS t a ckT ra c e () ;
}
}

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 60 / 71

Finding and Writing the Annotations Exploring the code

3- Exploring the code

f) Composition (composite)

No annotations are defined for the composition.

Moreover, encapsulation and promotion is not preserved in Java
except on the package naming.

The distinction between CashDesk and CashDeskLine is not clear in
the Java code.

We only annotated the CashDesk. There are two InitMethods: a
constructor and a main.

This is not clear what should be all the interfaces because there are
no encapsulation, it is directly handled by (sub) components.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 61 / 71

Finding and Writing the Annotations Writing annotations

4- Writing annotations: Annotated classes

Here is the list of annoted primitive components of the Test1 benchmark.
Java interfaces are not annotated but appear in the ProvidedIf annotation.

Component CashBoxController with its implicit interface CashBoxControllerIf.
Classes CashBox and CashBoxControllerEventHandlerImpl.

Component ScannerController with its implicit interface ScannerControllerIf.
Classes ScannerController and ScannerControllerEventHandlerImpl.
The ScannerController creates a ScannerControllerEventHandlerImpl but
there is a unidirectional internal link from the scanner to the controller.

Component PrinterController with its implicit interface PrinterControllerIf.
Classes PrinterController and PrinterControllerEventHandlerImpl.
The printer state is internal to the component here and we assume it could be
considered as a business type.
The PrinterController creates a PrinterControllerEventHandlerImpl but
there is a unidirectional internal link from controller to printer.

Component LightDisplayController with its implicit interface
LightDisplayControllerIf.
Classes LightDisplayController and ControllerEventHandlerImpl.
The LightDisplayController creates a LightDisplayControllerEvent

HandlerImpl but there is a unidirectional internal link from controller to display.
P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 62 / 71

Finding and Writing the Annotations Writing annotations

4- Writing annotations: Annotated classes (contd.)

Component CardReaderController with its implicit interface
CardReaderControllerIf.
Classes CardReader and CardReaderControllerEventHandlerImpl.
The CardReader creates a CardReaderControllerEventHandlerImpl but there
is a unidirectional internal link from reader to the controller.

Component CashDeskGUI with its implicit interface CashDeskGUIIf.
Classes CashDeskGUI and GUIEventHandlerImpl.
The CashDeskGUI creates a GUIEventHandlerImpl but there is a unidirectional
internal link from controller to gui.

Component CashDeskApplication with its implicit interface
CashDeskApplicationIf is not really implemented as usual.
Classe ApplicationEventHandlerImpl represent the controller but part of the
applicat belong to the composite CashDesk or CashDeskLine.
The cash desk state CashDeskStates is internal to the component here and we
assume it could be considered as a business type.
The composite CashDesk (or CashDeskLine) creates a
ApplicationEventHandlerImpl but there is no link from controller to
application, they may communicate via the buses.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 63 / 71

UML/Java Outline of the part

Outline

1 Introduction

2 Previous Experimentation

3 Component Model

4 Implementation Model

5 Finding and Writing the Annotations

6 UML/Java
Introduction
Mapping UML Components to Java Classes

7 Conclusion and PerspectivesP. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 64 / 71

UML/Java Introduction

UML/Java:Introduction

In the context of reverse engineering Java code, there are several
approaches

1 compose two transformations Java to UML ◦ UML to components

+ get a more abstract object oriented representation
+ reuse existing attemps
+ useful for data types modelling
- loose pertinent information ? behaviour
- similar heuristic problems on the ”business”part
- still a problem to get a component model

2 compare an existing UML component model with Java to set
annotations (e.g. the Test1 experimentation)

3 Find a mapping Component UML - Java

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 65 / 71

UML/Java Introduction

UML/Java:Introduction

In the context of reverse engineering Java code, there are several
approaches

1 compose two transformations Java to UML ◦ UML to components

2 compare an existing UML component model with Java to set
annotations (e.g. the Test1 experimentation)

+ components are known
+ identify similarities is easier and more sure than finding from scratch
+ useful for data types modelling
- partial component model informations
- defining what is a UML component model from UML diagrams
- noun comparisons is still difficult
- instanciate an XML ou XMI model (API)

3 Find a mapping Component UML - Java

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 65 / 71

UML/Java Introduction

UML/Java:Introduction

In the context of reverse engineering Java code, there are several
approaches

1 compose two transformations Java to UML ◦ UML to components

2 compare an existing UML component model with Java to set
annotations (e.g. the Test1 experimentation)

3 Find a mapping Component UML - Java

+ simple, applicable to plain Java and annotations
+ quite close to the CCMM
+ define reverse patterns
- code information is still needed for behaviour
- strict code arrangement
- no tools (?)

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 65 / 71

UML/Java Introduction

UML/Java:Introduction

In the context of reverse engineering Java code, there are several
approaches

1 compose two transformations Java to UML ◦ UML to components

2 compare an existing UML component model with Java to set
annotations (e.g. the Test1 experimentation)

3 Find a mapping Component UML - Java

Solution 1 is not yet feasible without powerfull UML RE tools
including statecharts.

Solution 2 was experienced manually, implementation requires 3 tool
(UML models, Java code, a bridge)

Solution 3 may run on a limited set of programs.
=⇒ set of recognition patterns.

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 65 / 71

UML/Java Mapping UML Components to Java Classes

Mapping UML Components to (Java) Classes

Some Assumptions

Components are distingued from classes (even if the metamodel sets
that it it a class)

UML interface are restricted to Java interface

Ports and port connections are ignored but not binding of interfaces.

Connectors are simply bindings.

Protocol state machines are associated to components, ports and
interfaces.

Lightened UML model (events, actions...)

Properties and constraints

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 66 / 71

UML/Java Mapping UML Components to Java Classes

Mapping UML Components to (Java) Classes

Basic Component Pattern

component Co → a class Cl of a package Co

provided interface pi → inherited interface pi of a package Co
requided interface ri → field of type an interface ri of a package Co
(may vary here)
ports are omitted → traceable comments to the interfaces

Features → methods

Attributes → fields to Datatype classes
Operations → methods

Dynamic Behaviour (protocol) → implementation pattern

communications → message send or some communication support
state/transitions → some automaton pattern

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 67 / 71

UML/Java Mapping UML Components to Java Classes

Mapping UML Components to (Java) Classes

Composition Component Pattern

architecture A → a class A of a package A
components and interfaces (as above) component packages can be
included in package A (but it can also be classify in some ”reusable”
library of types.
terface rconnectorsrightarrow fieither an exact matching or inheritance
of interface (somewhat disturbing to imply the same name)
ports are omitted → traceable comments to the interfaces

Composite (UML composite structure, UML composition relation)
Logicalfifield in the composite class of type the component class
(according to multiplicity) + some marking or annotation
Name: package inclusion (disturbing for reusing the types)

Connections
type level = interface link
instance level = object value with a consistent type

reverse = find the pattern
P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 68 / 71

Conclusion and Perspectives Cluj 2007 - Nantes

Outline of the Talk

1 Introduction

2 Previous Experimentation

3 Component Model

4 Implementation Model

5 Finding and Writing the Annotations

6 UML/Java

7 Conclusion and Perspectives

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 69 / 71

Conclusion and Perspectives Cluj 2007 - Nantes

Conclusion

Finding business elements in the Java code is mainly an intellectual
process in the case of CoCoME. Some guidelines or templates can apply
but there are many exceptions.

Mapping models = trace the concepts and decisions

Reverse engineering should work on patterns

Manual implementation lead to exceptions

Incomplete models prevent nouns comparison

Syntactic is not sufficient

Problem of inheritance

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 70 / 71

Conclusion and Perspectives Cluj 2007 - Nantes

Perspectives

Ongoing Work

Define a CCMM-UML mapping (or transformation)

Explore further the UML-Java (engineering, reverse-engineering)

Classify patterns

Rule based-system investigation

... open issue

P. André (COLOSS-LINA) ECONET Project/Test1 Case Study Analysis september, 21-24 2008 71 / 71

	ECONET - Cluj
	

	Introduction
	Context and Objectives
	Where in the ECONET Project
	This Talk

	Previous Experimentation
	
	Master Project
	Model
	CoCoME
	Annotation
	Instanciation

	Component Model
	
	CoCoME Model
	Structure
	Behaviour

	Implementation Model
	
	Java application
	Implementation Decisions
	Implementation Patterns

	Finding and Writing the Annotations
	
	Finding and Writing the Annotations
	Annotating Process
	Finding Mappings
	Finding Structural Mappings
	Finding Behavioural Mappings
	Exploring the code
	Writing annotations

	UML/Java
	
	Introduction
	Mapping UML Components to Java Classes

	Conclusion and Perspectives
	

