
Econet project

-

Rules-based system

Analysis of the existing system and its

properties

Aurélia COUVRAND

March 12, 2009

Contents

1 Introduction 2

2 Extracting components structure rules 3

2.1 Elimination of implementation classes 4
2.2 Respect of encapsulation or communication integrity 5

2.2.1 Identify parameter types in methods 5
2.2.2 Identify parameter types in static methods 6
2.2.3 Getters and setters . 6
2.2.4 Study the attributes types 6
2.2.5 Regarding interfaces in Java meaning 6
2.2.6 Enumerations and implementation of data structures . 6
2.2.7 Public attributes . 7

2.3 Composite analysis . 7
2.4 Extraction of communications 7
2.5 Research of interfaces . 7

3 Properties of a rules-based system 9

3.1 Application order . 10
3.2 Consistency . 10
3.3 Completeness . 10

4 Conclusion 11

1

Chapter 1

Introduction

We have to study carefully the work that have been done before thinking
of new rules to implement or modifying the existing ones. Thus, we have
to understand the aim and conditions of each potential rule, and make sure
that the system is well-formed, regarding three properties that we will de�ne
later.

This report deals with the rules that allow us to extract a components-
based structure; we are going to explain each of them, detailing the code of
the ones which have already been implemented.

In the �rst section, we will explain each rule allowing the extraction of a
components structure. We will �nish up de�ning the properties the system
has to check in a second section.

This version is not the �nal one, the last section will be padded by Math-
ieu VÉNISSE.

2

Chapter 2

Extracting components structure

rules

We are going to explain the rules that have been suggested in the doc-
uments architecture-extraction.pdf and paper.pdf. Some hypotheses have
been established to extract such a structure :

• We consider only static architectures that are created when instanti-
ated;

• we have to respect the encapsulation;

• there is no use of component factory;

• no special implementation pattern, such as EJB, is used.

Other hypotheses have been made out regarding the Java code :

• The program is a source code;

• the code is contained in a unique project, whiwh can import other
projects or libraries;

• there is a unique type of interest per compilation unit;

• generic types are forgotten;

• a component type in Java can be an interface, a concrete class or an
abstract one, even if it must be instantiated;

• static methods are not considered.

We have now center our study, so we are able to propose some rules to
select the potential applicants for the role of component. Here are these
rules.

3

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:alma09

2.1 Elimination of implementation classes

This rule is the �rst step of our work; indeed, it allows us to extract what
we call the types of interest. We mean by this naming that we consider as
potential candidates only the main types de�ned in the project we study;
external and primitives data types are forgotten.

In TESTJDT3, the method getTypesOfInterest(), an ASTActionDelegate
's member, implements this rule. Let us explain its code.

Before detailing this method, we have to focus on getUnitsOfInterest()
that selects the compilation units of the analysed project to instantiate the
attribute units of the AST.

It has none parameter and returns a vector of ICompilationUnit (cf.
Eclipse documentation about the interface ICompilationUnit). It browses
each internal package fragment root of the AST (extracted by getAllPack-
ageFragmentRoots()) and selects their children. The compilation units of
each one that contains Java resources are added to the vector to return.

Here are now the details of getTypesOfInterest().
This method takes none parameter and returns a vector of IType (cf.

Eclipse documentation about the interface IType). Each compilation units
of the AST is parsed to extract, thanks to the method getTypes() of the in-
terface ICompilationUnit, its main type (regarding the hypotheses that have
been made, there is a unique type of this level per compilation unit). If the
type extracted is a class or an interface, it is added to the vector of IType
that will be returned.

4

http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/class-use/ICompilationUnit.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/class-use/IType.html

2.2 Respect of encapsulation or communication

integrity

A component is de�ned as a deployment autonomous entity, which en-
capsulates codes and describes, by interfaces, allowed interactions with other
components. That is why we expect to respect the encapsulation or the com-
munication integrity.

Now that we have collected the types of interest, we want to �ag some of
them as data types. Thence, subrules have been de�ned to locate this kind
of type.

2.2.1 Identify parameter types in methods

This rule considers methods which are not constructors neither static
methods. The type of each parameter that belongs to the set of types of
interest is marked as data type. This prevents from violating the encapsula-
tion and the communication integrity.

Each subtype of a type �agged as data type has to also been marked to
ensure it is not passed as a parameter. We state that a component type can
be passed as a parameter of a constructor. Furthermore, having decided to
use none component factory, a component type cannot be the return type of
a method.

The class ASTActionDelegate provides the implementation of this rule
with the method implementR1(IType it).

Its parameter it of type IType represents an element of typesOfInterest.
It has no return type.

All the methods of it are checked to analyse the type of their parameters
and the return one. The extraction of the provided services is done here;
we will explain the instructions in the paragraph dealing with the search of
interfaces. If the method considered is not a constructor or a main method,
its signature is parsed to get the type of its parameters and the one that is
returned in order to �agged them as data types.

The method propagateDATA() in the class TypesTable allows to mark the
subclasses of the data types. It is called in the method run(IAction action)
of the class ASTActionDelegate on its attribute table types as TypesTable
after implementR1(IType it) is executed.

5

2.2.2 Identify parameter types in static methods

This rule is, for the moment, only a potential one. As speci�ed in the
hypotheses concerning the Java code, we do not consider static methods yet;
indeed, none opinion have been established about the connection between the
use of such a method and a components-based structure. Nevertheless, we
will give the possibility to the user to check the parameters of these methods.

2.2.3 Getters and setters

We estimate that a class disposing of several getters and setters has to be
marked as data type; indeed, to handle or modify an attribute of a component
breaks the encapsulation. However, it can be useful in order to add a binding.
That is why a ceiling percentage could be inserted : if the ratio between
attributes having getter(s) and/or setter(s) and those without any is over
this percentage, the type is �agged as data type; under, it is a component.

2.2.4 Study the attributes types

A class is �agged as data type if its attributes refer only data types and
types that are not types of interest. This rule will be study to ensure none
serious applicant for the role of component is marked as data type; the pre-
ceding work that has been made advises us to analyse all the communications
of a system to verify if this rule is valid.

2.2.5 Regarding interfaces in Java meaning

A type that implements or includes �elds referring to a Java interface
can be considered as a component. This means that such types that have
been marked as data types may target not interesting interfaces regarding a
components approach.

Experiences on components-oriented projects have to be done to check
this rule.

2.2.6 Enumerations and implementation of data struc-

tures

Enumerations and classes implementing data structures are data types.

6

2.2.7 Public attributes

If a class's attributes are public, it violates the encapsulation, so the class
cannot be a component.

2.3 Composite analysis

At this stage, some data types may have not been �agged. Thus, we will
have to test by experiences if our rules and conditions are strong enough, in
order to be sure that only components are browsed to �nd their structures.

The potential composite structures will be extracted thanks to the anal-
ysis of the �elds. Each type of interest is parsed to collect recursively its
structure. The inherited �elds have to be collected too.

Another way to extract the structure of a component type consists in
analysing the instantiation of the components, from the main program, and
following the constructors calls of the components.

The extraction of these structures is implemented in the class ASTAc-
tionDelegate by the method implementP3().

It takes no parameter and does not have a return type. The types of
interest are browsed to collect the main method in order to set the root of
the AST associated with the analysed project. Then, each type which is not
�agged as data type, is parsed to extract its structure.

2.4 Extraction of communications

This rule consists in extracting the communications from the code of the
methods. We estimate that a communication exists from a type A to a type
B by the method m, if and only if m appears in the code of a method of A
and B provides the method m.

In the class ASTActionDelegate, the method implementP4 allows to iden-
tify the communications.

It takes neither parameters nor a return type. An AST parser is created
to browse the code of the methods of each type of interest.

7

2.5 Research of interfaces

Considering the components types have been identi�ed, we have to specify
the required and provided interfaces of each component.

The extraction of the required ones follows from the preceding analyse; the
methods such as the method m are collected as required services.

To identify the provided ones, each type of interest has to be parsed to
extract the public and default package methods.

Regarding a communication from A to B by m, we will have to check if
a required service m for A is really a provided one for B.

The extraction of the provided services is done in the method imple-
mentR1(IType it) : the methods of it are collected; those which are public
or default package are added to the set of provided services.

The required ones would have had to be collected in the method imple-
mentP5required(); �nally, we just have to look to the extracted methods for
each type by implementP4().

8

Chapter 3

Properties of a rules-based system

Such a system cannot be functional without de�ning an order in the
application of its rules. Once de�ned, two predicates have to be checked :

• is the system consistent?

• is the completeness ensured?

Let us discuss about these properties.

9

3.1 Application order

A process will be set up to allow the user de�ning his own order. How-
ever, we have to guide him, establishing a logical order that ensures the two
next properties.

• It seems obvious that the study of a project begins with the selection
of the types of interest.

• In order to centrer the rest of the extraction on the more serious appli-
cants for the role of component, the next step that emerges is to �ag
the data types.

• Since we do not want to analyse the structure of a data type, now that
they are marked, the extraction of potential composite structures can
be launched.

• The communications between the types of interest can be extracted
now.

• The interfaces of the components can be searched and divided into the
required and provided ones.

Because the user could want to analyse only a part of a project (de�ned in a
process), such an order could be not essential; indeed, two rules can work on
di�erent subsets, so the result of one would not have any e�ect on the other.

3.2 Consistency

We mean by this term that the application of a rule does not inhibit a
preceding one. Let us discuss about the coherence of a system regarding the
de�ned rules.

After the study of the code of TESTJDT3, we notice that none of the
rules erases the e�ect of another. Thus, the consistency of the system is
ensured, regardless of the order de�ned to apply the rules.

3.3 Completeness

This property means that the de�ned rules have to consider all the possi-
bilities they could meet. Nowadays, we do not have given a ruling concerning
this predicate yet.

10

Chapter 4

Conclusion

As a conclusion, we �rst emphasize on the di�culty to understand an
existing study; the �rst thought of the problem has led to constraints, ques-
tions, hypotheses, etc. that we have not consider. Thus, the existing rules
are sometimes complex to interpret. Moreover, we have to apprehend the
drawn up architecture to be able to understand the code of the methods.

That is why experiences are indispensable. Indeed, some rules have still
to be validated or have to be strengthen. Thus, one of the next steps in the
analyse of our rules-based system consists in comparing a manual study of a
project with one resulting of the execution of TESTJDT3.

Our study is now in the conception phase. We will have to think about
the architecture of the plugin again, to allow an evolution in a hierarchical
system.

11

	Introduction
	Extracting components structure rules
	Elimination of implementation classes
	Respect of encapsulation or communication integrity
	Identify parameter types in methods
	Identify parameter types in static methods
	Getters and setters
	Study the attributes types
	Regarding interfaces in Java meaning
	Enumerations and implementation of data structures
	Public attributes

	Composite analysis
	Extraction of communications
	Research of interfaces

	Properties of a rules-based system
	Application order
	Consistency
	Completeness

	Conclusion

