
ECONET Project
PRAGUE 2007 - WORKSHOPREPORT

Pascal ANDRE1 Dan CHIOREAN2 Frantisek PLASIL3 Jean-Claude ROYER4

2007, 3-7 September

supported by

1LINA - FRE CNRS 2729- 2, rue de la Houssinière, B.P.92208, F-44322 Nantes Cedex 3, France
2Computer Science Research Laboratory, Universitatea BABES-BOLYAI Mihail Kogalniceanu nr. 1 RO- 400084 Cluj-

Napoca, Romania
3Distributed Systems Research Group, Charles University, Malostranske nam.25, 11800 Prague 1, Czech Republic
4OBASCO - EMN/INRIA LINA FRE CNRS 2729, 4, rue Alfred Kastler F- 44307 Nantes cedex 3 France

./FIGURES/logoEgide.eps

2 ECONET Workshop 2007

Executive Summary

An Egide-sponsored workshop was held at the Department of Software Engineering of Charles University in
Prague. This workshop was the first one of the ECONET Project Nr 16293RG entitled, "Behaviour Abstraction
from Code,Filling the Gap between Component Specification and Implementation".

The workshop was convened in response to the objectives of the first year of the project plan which are
reminded here

• Determination of the field of application (boundaries of Java concepts and idioms).

• Settings of the major principles to abstract behaviours forsoftware components (Kmelia, SOFA and STS)
from Java code.

• Experimentations on existing code.

• Studying and proposing a pattern for annotating EJB components in order to better support Reverse Engi-
neering (behaviuor abstraction from code).

• Integration of the verification of guards using Object Constraint Language OCL (and the OCLE tool).

• Documentation, research report and workshop preparation.

More precisely, the aims of the workshop were (1) to improve the knowledge of the participants on each other
activity and background, and (2) to take concerted decisions on the project issues (concrete objectives, tasks,
organisation, responsabilities, deliveries, planning...).

On these points the workshop was a satisfactory step in the project, thanks to the motivation of the participants.
The following issues have been discussed: detailed competences of each participant on the project topics, compar-
ison of component models and development approaches, concrete objectives of the project, selection of the kind
of code to be abstracted, shared techniques and tools, common benchmark, etc. The working sessions enabled (1)
to establish a common and shared concrete vision of the project, (2) to delimit the project objectives and context
(nature of the Java code, benchmark, subset of the abstract models), (3) to divide the project into parts, which are
easier to handle, (4) the definition and repartition of individual tasks.

A project architecture was drawn after fruitful exchanges accompanied with the definition of tasks, with bal-
anced responsabilities and partnerships. This project includes three distinct but complementary parts:

• Structural abstraction from Java code.

• Behavioural abstraction from Java code.

• Metamodel definition and consistency verification.

Each part (subproject) constitutes a challenge since thereis ongoing research on it. Interfaces between the parts
have been roughly defined. A common benchmark has been proposed to avoid support mismatch.

A key recommendation from the workshop is that the participants should tackle the objectives in a limited
(but extensible) context in order to produce results in a 2-year project. Nevertheless a contribution on the related
research fields is expected. A secondary recommendation from the workshop is to pursue a cross fertilisation on
the abstract component models and metamodels.

The workshop concluded with some guidelines to the next workshop that should take place in Nantes 2008.

This report relates what happened in the Prague’s workshop (2007).

Acknowledgements The participants would like to thank Egide for its financial support of this workshop.

Contents

1 Introduction 5
1.1 The16293RG ECONET Project. 5

1.1.1 Motivations. 5
1.1.2 Partners. 7
1.1.3 Initial Plan . 7

1.2 The Workshop at Charles University of Prague. 7
1.2.1 Preparation. 8
1.2.2 Organisation. 8
1.2.3 Objectives. 9
1.2.4 Participants. 9
1.2.5 Program and Schedule. 10

1.3 Report Contents. 11

2 Workshop Sessions 12
2.1 Team and Technical Presentation Sessions. 12

2.1.1 Introduction. 12
2.1.2 Monday, September 3, 2007. 13
2.1.3 Tuesday, September 4, 2007. 16

2.2 Working Session . 23
2.2.1 Introduction. 23
2.2.2 Wednesday, September 5, 2007. 23
2.2.3 Thursday, September 6, 2007. 28
2.2.4 Friday, September 7, 2007. 37

3 Project Architecture 43
3.1 Structural Abstraction Subproject. 43

3.1.1 Objectives and Goals. 43
3.1.2 B transformations and tools. 45
3.1.3 Interface . 46
3.1.4 Organisation. 46

3.2 Behavioural Abstraction Subproject. 46
3.2.1 Goals . 46
3.2.2 Annotations. 47
3.2.3 Tools for Java source analysis. 49
3.2.4 Generic analysis tool (GAT). 49
3.2.5 Reverse engineering back-ends. 49
3.2.6 Organization. 50

3.3 Metamodel Abstraction Subproject. 50
3.3.1 Objectives and Goals. 50
3.3.2 Participants. 50
3.3.3 Means. 50
3.3.4 Tasks and Schedule. 51
3.3.5 Using assertions in modeling - an evaluation time view. 51

3.4 Common Tools . 56

3

4 ECONET Workshop 2007

3.4.1 Java/Annotation Tools. 56
3.4.2 Model Engineering Tools. 56

4 Conclusion 57

A More informations on... 58
A.1 Workshop Material . 58
A.2 Collaborative Tools. 58
A.3 Annotated Bibliography. 58

A.3.1 General Papers. 58
A.3.2 Java Reverse Engineering. 59
A.3.3 Patterns Reverse Engineering. 59
A.3.4 Code Model Checking, Source code Analysis. 59
A.3.5 Trace Exploration. 59
A.3.6 Verification of Software Components and Code. 59
A.3.7 Members publications on the subject. 59

Chapter 1

Introduction

In this part we remind the context of the workshop, its preparation, organization and the program.

1.1 The16293RG ECONET Project

The activity described in this report is supported by Egide in the context of ECONET Projects1. This section
gathers the main features of the16293RG ECONET project.

• Title: Behaviour Abstraction from Code

• Subtitle:Filling the Gap between Component Specification and Implementation

• Type:Research and Technology Development Project

• Duration:2 years

• Domain:Sciences and Information Technology

• Partners:COLOSS (French) - DSRG (Czech) - LCI (Romanian) - OBASCO (French)

1.1.1 Motivations

The project takes place in a specific domain of Information Technology, called Component Based Software En-
gineering whose goal is to provide languages, methods, techniques and tools for software developpers. The field
of component-based software engineering (CBSE) became increasingly important in software construction ap-
proaches because it promotes the (re)use of components, also called Components Off The Shelf (COTS), coming
from third party developers to build new large systems. Components are scalable software modules (bigger units
than objects in object-oriented programming) that can be used at the high levels of abstraction (software architec-
tures, design) and the low levels (programs, frameworks).

Component-based software engineering is still challenging in both industrial and academic research. Most of
the academic approaches focus on abstract models (sometimes close to architectural description languages) with
checkable properties such as safety and liveness; some of them deal with refinement and code generation. As a
counterpart, the industrial proposals such as CORBA, EJB, OSGI or .NET are merely implementation-oriented
and also object-oriented. They define flat components (without hierarchical structures) and the model is based
on an underlying infrastructure for component repositories and communication management. They often lack of
abstraction means to promote the reuse of components. Moreover, at the implementation level of a component
based development, some implementations have nothing to dowith the above industrial standards in the sense that
there are no components at all. The main reason is that there are no true component programming languages yet (a
language such as ComponentJ is a layer on Java). In other words, there are various component models that cover
the whole software development process but there is a gap between component specifications (the academic mod-
els) and component implementations (industrial infrastructure or object-oriented implementations). The above

1http://www.egide.asso.fr/fr/programmes/econet/

5

http://www.egide.asso.fr/fr/programmes/econet/

6 ECONET Workshop 2007

mentioned problem is due to the fact that, usually, component implementation is not based on a rigorous speci-
fication. In cases when the specification precedes the implementation, the conformance between implementation
and specification is seldom realized.

A major problem is then to fill this gap. One way is to define model transformation techniques in order to
generate a code for the component with respect to the component specifications. This way can be qualified as the
engineeringway and it is similar as MDA and MDE approaches. It is quite complex since we should, in theory,
prove the correctness of the translation and also because there are various target frameworks and languages. There
are ongoing works on that direction [PNPR05, PP99].
Another way is to focus on program code analysis in order to compare component’s actual code with its high-level
(abstract) description. This way can be qualified as thereverse engineeringway. It is quite an open issue in the
current research on CBSE [BHM06, PP07a]. This problem is even more complex than the one above, due tothe
following reasons :

• Often the source code of a component is not available after its deployment or even not physically available
in a remote service invocation or Web Service. However, for acomponent industry the unavailability of
source code is essential – services may even be offered on a pay-per-use basis.

• In case of OO implementations, the absence of component structures implies to find convenient and adequate
criteria to structure components.

• Many statements and message send are to be omitted for a relevant service identification.

• There are no common component model (or standard) for the component (abstract) specification – many
targets for reverse engineering.

Service clients have to properly intercat with the servicesand need to know at least the interface but in most
cases the dynamic behaviour or protocol attached to the services. From that some compatibility checking and
consistency controls may be performed to ensure a good interaction or to avoid wrong or illegal use of the services.
Both the engineering and reverse engineering approaches remain research open issues.

The goal of the project is to contribute to the reverse engineering way by developing techniques for extraction
of abstractions from code (including some component interface description) and for the verification of abstractions
against the code,e.g. to check an in-line bank service with no available code, to check that a client component is
compatible with an implemented component.

The core project is to establish a link between component codes and component specifications. The advantages
of abstraction are to check the conformance of component codes and component specifications, to statically check
various properties of the components such as safety and liveness. To be pragmatic we have to restrict this huge
mapping according to the partner’s experience.

1. The source model (implementation level) is limited to Java code. The problem of obtaining an abstract
specification of a component from its code, cannot be solved in a satisfactory manner if the code does not
contain appropriate comments, rather in well defined patterns, or if the code is not limited to a consistent
subset of concepts.

2. The target models (specification level) are abstract component models inspired from the ones of the partners.
Instead of studying only the structural features of the system, we plan to work onbehaviouralabstraction
from Java code. Behaviour [PV02, AAA06, PNPR05] is related to the dynamic and functional features of the
components and services. In particular, dynamic behaviours describe the dynamic evolution of components,
connectors or services (interactions). The mechanisms used for component specifications are grounded
on different formalisms: design by contract (implemented by assertions), algebraic specifications, state
machines, regular expressions and so on. Each above mentioned formalism offers a set of advantages
and has some drawbacks. Design by contract, a declarative specification only, supports an "incomplete"
behaviour specification. Algebraic specifications generally have sound semantics but are, in most cases,
difficult to understand by people working in the industry andnot all kind of components can be specified.
The state machines and regular expressions formalisms are suited for dynamic descriptions and have formal
semantics.

1.2. THE WORKSHOP AT CHARLES UNIVERSITY OF PRAGUE 7

1.1.2 Partners

The partners are four research teams which have competenceson the project topics.

• COLOSS: COmposants et LOgiciels SûrS
Reliable Component and Software Component System Specification and Verification
http://www.lina.sciences.univ-nantes.fr/coloss/

• DSRG: Distributed Systems Research Group
SOFA model previous work = basis for the project
http://dsrg.mff.cuni.cz/

• LCI : Laboratorul de Cercetare in Informatica
Computer Science Research Laboratory OCL, MDD, Tools
http://lci.cs.ubbcluj.ro/

• OBASCO: OBjects, ASpects and COmponents
Previous work on Java and Components
http://www.emn.fr/x-info/obasco/

The four teams have complementary knowledge and backgroundon the project domain. The goal is therefore
to compare and exchange the point of view, and to integrate the new ideas and techniques in the current proposal.

1.1.3 Initial Plan

The project is established for two years. The initial planning was organised as follow:
First year:

• Determination of the field of application (boundaries of Java concepts and idioms).

• Settings of the major principles to abstract behaviours forsoftware components (intoKmelia, SOFA and
STS) from Java code.

• Experimentations on existing code.

• Studying and proposing a pattern for annotating EJB components in order to better support RE (behavior
abstraction from code).

• Integration of the verification of guards using OCL (and OCLE).

• Documentation, research report and workshop preparation.

Second year:

• Refinement and classification of the principle and techniques.

• Study of the verification of assertions with OCL.

• Reverse engineering from EJB code to EJB specification realized in JML or OCL.

• Experimentation with larger case studies.

• Documentation, research report and workshop preparation.

Once the context has been introduced, we present now the workshop itself.

1.2 The Workshop at Charles University of Prague

The workshop is a major milestone for the first year of the project. This section presents the project evolution until
the workshop was held.

http://www.lina.sciences.univ-nantes.fr/coloss/
http://dsrg.mff.cuni.cz/
http://lci.cs.ubbcluj.ro/
http://www.emn.fr/x-info/obasco/

8 ECONET Workshop 2007

1.2.1 Preparation

Since the project has been accepted by Egide in march 2007, the exchanges between the partners became more
frequent and precise at this date. Some of the exchanges are stored in the Project Wiki.

This wiki was installed at LINA (University of Nantes) in april 2007. It includes discussions, a repository for
project and workshop material, etc.

Figure 1.1: Project Wiki

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start

The workshop was initially planned on the end of June, possibly joinly with the TOOLS conference. This was
not possible and it has been delayed to the first week of september.

A special group of pages have been written for the Workshop (figure1.2). The URL address is:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007

1.2.2 Organisation

The workshop organisation was handled by Pascal André and Ondrej Sery. The local organization committee
included Ondrej Sery, Frantisek Plasil, Petr Hnetynka and Jan Kofron.

Detailed information is given on the wiki site (figure1.3).
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

organization

./FIGURES/wikiStart.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
organization

1.2. THE WORKSHOP AT CHARLES UNIVERSITY OF PRAGUE 9

Figure 1.2: Workshop on the Wiki

1.2.3 Objectives

The following ’Workshop Objectives and Delivery’ statement was a first throw and kept many issues open.

• Objectives State of the art + clear application context

– build a reference bibliography of the reverse engineering domain
concepts, related work and comparison, mains issues, approaches, plateforms and tools (JPF, Bandera,...)

– set the source area
subset of Java concepts, libraries, components, examples

– set the target area(s)
SOFA, Kmelia, Vercors, ... - contracts, protocols, inheritance...

– initiate some directions to follow in order to process the reverse transformation
patterns, rule based system, combination of several existing tools

• Delivery
A report for the project first year evaluation + plan the second year with individual objectives

1.2.4 Participants

The detailed list is arranged according to the alphabeticalorder of first names.

./FIGURES/wikiWork.eps

10 ECONET Workshop 2007

Figure 1.3: Workshop Organisation on the Wiki

• Dan CHIOREAN - LCI

• Dragos PETRASCU - LCI

• František PLÁŠIL - DSRG

• Gilles ARDOUREL - COLOSS

• Jacques NOY E - OBASCO (excused)

• Jan KOFROŇ - DSRG

• Jean-Claude ROY ER - OBASCO

• Jiři ADÁMEK - DSRG

• Ondřej ŠERÝ - DSRG

• Pascal ANDRE - COLOSS

• Pavel PARÝ ZEK - DSRG

• Petr HNĚTY NKA - DSRG

• Tomáš POCH - DSRG

• V ladiela PETRASCU - LCI

1.2.5 Program and Schedule

We present here an overview of the workshop program. It was organised in two parts

• Day 1 and 2 are dedicated to workshop presentations. The durations and schedules leave time for numerous
discussions...

– Presentation of the teams (recent work, projects, tools, ...)

– Technical presentations

• Day 3, 4 and 5 are dedicated to the project work (context, goal, process, tools, practical organisation and
responsabilities)

./FIGURES/wikiOrga.eps

1.3. REPORT CONTENTS 11

• Social events

More details are given on the Workshop Wiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

1.3 Report Contents

In the remaining of the report, we provide more informationson the presentation sessions (section2.1of chapter
2) and the working sessions (section2.2 of chapter2). In chapter3 we present the project architecture which is
the main result of the workshop.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07

Chapter 2

Workshop Sessions

This chapter collects the main events and informations of the workshop sessions. We first begin by the presentation
sessions where the participants present themselves, theirteam and technical contributions (section2.1). Then we
summarise in section2.2the contributions of the working sessions where the participants discussed on the project
(issues, structure, tasks, technical aspects, tools...).

The detailed program is given on the wiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:

pragues2007:program07

The slides, pictures and discussions are stored on the wiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:

pragues2007:materials

2.1 Team and Technical Presentation Sessions

2.1.1 Introduction

During the development process of an information system several models are produced (manually or automati-
cally). A main objective of the ECONET partners are to contribute to improve both the models and the production.
In particular, all partners are concerned with the verification of models and programs.

To simplify, let consider at least two levels for the models produced during the development process: an
abstract model and a concrete model written in a programminglanguagei.e. in Java. From the verification point
of view, the goal is to assert properties (by proof or by modelchecking) on both the abstract and the concrete
models. One way (the formal method approach) is to assert properties on the abstract model, then to refine it into
a concrete model and prove the refinement. Another way is to assert properties on both levels.

In this workshop we are mainly interested in the model checking approach for property verification. Model
checking is the process of checking whether a given model satisfies a given property (e.g. a logical formula).
The concept is general and applies to all kinds of logics and their models. A simple model checking problem
is to test whether a given formula in the propositional logicis satisfied by a given model. In case of properties
to be checked, the most common way to express them is using a temporal logic (LTL, CTL) and in the form of
assertions. However, it is also possible to check for a predefined set of properties - deadlocks or properties specific
to a certain class of systems such as device drivers.

One can admit that model checking at the abstract level is well-known and there are techniques and tools for
model checking abstract models. But the model checking of concrete models is still to explore. Model checking
of software is a popular research topic nowadays, mainly because there are several issues that have to be solved
before the technique can be used for real-life applications.

How can we contribute? We can check the code itself with appropriate tool. This is not convenient because
the tools are not mature in this domain and the concepts at theconcrete level are quite different from those of
the abstract level, the informations are numerous and more detailed, model checking quickly faces the problem of
state explosion. Another approach is to filter the informations:

• by selecting informations of the code model checker (as explained in the presentation of Pavel Parisek)

12

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:
pragues2007:program07
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:
pragues2007:materials

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 13

• by abstracting informations from the code , this is the main issue of our Econet Project: extract abstraction
i.e. in order to apply model checking at the abstract level. Two cases are possible whether an abstract model
exists or not.

The talks given during the presentation sessions addressedcontributions on the above topics. Many of them
present an abstract model and model checking techniques (Petr Hnetynka, Jan Kofron, Jean-Claude Royer, Pascal
André). The talk of Pavel Parizek is more precisely about theproblem of model checking concrete models against
abstract ones). The talk of Dan Chiorean was more general because it works on models and metamodels, moreover
it assumes a quite different view of model checking, that is the verification of consistency and completion of
models.

Note that we summarize the main issues of the team presentation and forget among others, history and mem-
bers details.

2.1.2 Monday, September 3, 2007

Time Title Speaker

10:30 Welcome and Program Pascal André
| Participant presentation each participant
| Local Organisation Ondrej Sery, Petr Hnetynka

12:00 DSRG Team presentation and position Frantisek Plasil

13:30 SOFA overview Petr Hnetynka
| (Extended) behaviour protocols + demo (from CoCoME contest) Jan Kofron

17:00 Checking behaviour protocols against code using Java PathFinder Pavel Parizek

DSRG

Frantisek Plasil presented the Distributed Systems Research Group, one of the research groups of the Department
of Software Engineering of Charles University. Its areas ofinterest are:

• Software Performance (Regression benchmarking),

• Software Components (SOFA, Fractal)

– Architecture/Component models,

– Design (Use cases, behaviour specification of components - Model checking),

– Deployment (Connectors - Addressing environment heterogeneity)

DSRG focuses on research in distributed systems, particularly the construction of component and service
middleware and its software engineering aspects - system architecture, formal definition and verification of be-
havioural properties, performance evaluation. This focusis reflected in the long running SOFA project, which
deals with a distributed component model that provides advanced features such as formal verification of com-
ponent properties, and which is provided as an open source platform. Other major projects that DSRG recently
participated in include the ITEA PEPITA & OSMOSE & OSIRIS projects and industrial projects with partners
such as France Telecom, Borland and Iona.

The areas of contribution to ECONET are in general a cross fertilization and joint publications. More specif-
ically, they are providing SOFA, enhancing EBP by additional features from STS/eLTS (to enhance expressive
power of EBP), extracting protocols (EBP) from code (at least BP from code), defining well-formed rules for
SOFA components, providing a benchmark (the CoCoME example).

SOFA overview

As chief architect, Petr Hnetynka presented an overview of SOFA 2. SOFA 2 is the new version of the SOFA

component system. It focus on removing limitations of the current SOFA implementation (inconsistencies between
implementation and specifications e.g., protocols vs. connectors, architectures vs. dynamic reconfiguration, ...),
clear design and properly balanced support of advanced features. These are mainly:

• model-driven design

14 ECONET Workshop 2007

• hierarchical architectures

• support for dynamic architectures

• support for multiple communication styles

• formal modeling of both functional and non-functional parts of components

• transparent distribution

• behaviour validation

It is implemented in Java (as well as the previous SOFA). The implementation is freely available (LGPL license)1.
The presentation included detailed informations on

• Component model

– metamodel

– dynamic reconfiguration (dynamic architectures)

– connectors

– control parts (non-functional)

– versioning

– behaviour specification

• Implementation

– component lifecycle

– runtime environment

– usage, tools, current status

Questions

About consistency (Metamodel well-formedness rule) the project organization in two parts on the group (com-
ponents architecture / behaviour specifications) lead to some independent (and not compatible) evolutions. Well-
formedness rule are informal except for protocols.

The micro-components have a similar concept in Fractal (monitoring methods and repository).
The ’aspects’ are not really those of Aspect Oriented Programming.
About the link between specification and code, non-SOFA components can be encapsulated in wrappers, con-

nectors can be RMI, Corba, the implementation is java specific with SOFA knowledge and annotations (future).
Communication style in connectors can be any communicationstyle (method invocation, shared memory, ...).

Modeling and Verifying behaviour of Software Components inSOFA 2

Jan Kofron presented the (original) behaviour Protocols ofSOFA and the extensions of behaviour Protocols (EBP)
of SOFA 2. Each part was organised as follow (presentation, description, verification, experience, demo).

The problem of behaviour verification is undecidable in general. There are two ways to face it: (1) To use
behaviour description languages which describe behaviourof the software precisely and to put up with the fact
that the tools will never stop for some inputs (behaviour descriptions). (2) To use behaviour description languages,
which are not expressive enough to describe behaviour of software precisely, but the verification of the specifica-
tions is decidable. We have chosen the second approach. Therefore, a behaviour protocol should be seen rather as
an approximation of a component’s behaviour. The most important benefit of this approach is the existence of a
fully automatic behaviour verification procedure (implemented in our behaviour protocol checker).

The purpose of behaviour protocols is to specify the behaviour of software components, so that interesting
properties of their behaviour can be verified (not only the operation signatures) using model checking techniques
for example. Model checking is one of the approaches to formal verification of finite state hardware and software
systems. A model checker usually accepts a finite model of a target system and a property expressed in some

1http://sofa.objectweb.org/

http://sofa.objectweb.org/

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 15

property specification language, and checks whether the model satisfies the property via traversal of the state
space that is generated from the model.

behaviours are an abstraction of the component interactions and can be represented by LTS, use cases, se-
quence diagrams, process algebra expressions, etc. In SOFA, behaviours are described by processes (regular
expressions and communication primitives as in process algebra). Checking protocol compliance (both horizon-
tally and vertically) is similar to checking component behaviour compatibility. Compliance means: absence of
communication errors (bad activity, no activity, infinite activity) which can be found automatically and verified
separately for particular levels of nesting (hierarchy).

In SOFA two checkers were implemented: the behaviour Protocol Checker (BPC) (proprietary explicit state
model checker for BP, written in Java, uses Parse Tree automata for state space generation, able to verify state
spaces of the order10

7 states, may run several days) and the dChecker (again proprietary tool, distributed state
space traversal, significantly faster than BPC, state spaces of the order10

7 for each computer i.e., entire state
space of the order of10

8 state).
Several flaws of BP were identified during the specification: lack of synchronization mechanisms (impossible to
synchronize more than two components), lack of expressiveness (absence of macros caused parts repetition in the
specification which make it hard to fix the errors, absence of variables caused overspecification, absence of a way
to express common patterns, e.g. until loops, caused unreadable specification).

This led to extensions of BP on data (method parameters and local variables can be of enumerated types),
synchronization (special events: joining events for synchronization of more than two components) and until loops
(a syntactic abbreviation to enhance the readability). Performance issues were also a motivation, the new solution
is a transformation of EBP into Promela, the input language of the Spin model checker. The performance was
comparable on the same benchmak (CoCoME).

Questions

Guards are possible, they are branches on local state.
A visual representation of the protocols is possible via parse trees. The component picture is manually done

with Visio in a UML flavor.
Local checks are performed. Promela checkes both horizontal and vertical compliance. One to many is in the

metamodel.
About feedfack, there are solutions (...).

Checking behaviour protocols against code using Java PathFinder

Pavel Parizek addresses a topic that is close to the project concerns2: verification of conformance between be-
haviour specification and code. The work approaches the general problem of model checking programs and es-
pecially Java code. Remind that in the previous presentation, Jan Kofron talked about (abstract) model checking.
The problem addressed here is to do it at the implementation level.

A general problem of model checking is the necessity to create a model of the system to be checked. Manual
construction of the model is an error-prone process, and even if the model is automatically extracted from a
specification of the system or from the source code, it is an abstraction - therefore, a model checker may find errors
in the model that are not present in the original program and vice versa. A solution is to use a model checker that
does not need to have a model, but works directly with the implementation of a target system. There are several
difficulties encountered with such an approach: code model checker is needed, the models and properties handled
are low-level, there is a problem of state explosion since anabstract state collapse many concrete states, partial
models are to check and not only full programs. The talk of Pavel deals with these difficulties.

As to software model checking at the program source code level, a crucial problem is the size of state space
triggered by the model of a program (i.e. the problem of stateexplosion). Despite that, there exist such model
checkers. For Java programs, these are most notably the JavaPathFinder (JPF) and Bandera tools. (An advantage
of JPF over Bandera is that the most recent release of the latter is an alpha version, not being fully stable yet, and
that JPF is also more extensible). The properties checked are either predefined (e.g. absence of a deadlock) or
specified in LTL (Bandera) and via assertions related to the code (JPF). A typical feature of both Bandera and JPF
is the combination of static program analysis and model checking. The former is used to create a program model;
to decrease the state space size, abstraction techniques are applied - these include partial order reduction and data

2See the remarks in the introduction section

16 ECONET Workshop 2007

abstraction. State explosion can be also mitigated by the decomposition of a software system into small and well-
defined units, components. Typically, a software componentgenerates smaller state space than the whole system
and therefore can be checked with lesser requirements on both space and time. Nevertheless, model checking
of code of software components usually brings along the problem of missing environment, which means that it
is not possible to model check an isolated component, because it does not form a complete program with an
explicit starting point (e.g. the main method). In order to solve this obstacle, it is necessary to create a model
of the environment of the component subject to model checking, including the specification of possible values of
method parameters, and then check the whole program, composed of the environment and component. A specific
feature of software components is the existence of ADLs (Architecture Description Languages) used to specify
component interfaces, and first of all composition of components via bindings of their interfaces (i.e to specify
the architecture of a component-based application at a higher level of abstraction than code). Some ADLs even
include the option to specify behaviour of the components, typically in a LTS-based formalism. An obvious
challenge, not addressed yet to our knowledge, is to check the code of software components against a high-level
behaviour specification provided at the ADL component specification level.

In this work, it is assumed that each primitive component (Java code) is compliant with its frame protocol (we
thus have an abstract model). It has to accept/issue exactlythose method call related event sequences on its frame
that are specified by the frame protocol. The goal is to designan algorithm and a tool for checking compliance
between Java implementation of a primitive component and its frame protocol via Java source code or byte code
analysis.

The experimentation is done with JPF (Java PathFinder) a model checker for Java programs which is highly
customizable and extensible ; it is able to check only low-level properties (such as deadlocks, uncaught exceptions)
with non-deterministic value choice. It supports aPublisher/Listener pattern that can watch the course of
the state space traversal and check for specific properties.Checking by JPF is not directly possible because JPF is
able to check only low-level properties. So an extension of JPF is necessary to check the compliance between Java
code and frame protocol. It is a high-level property:a cooperation between JPF and the BP checker is defined
with a backtracking policy.

Moreover JPF accepts only complete Java programs:an automated generation of component environment is
proposed to solve the problem of missing environments(for components). The model should force the environment
to call a certain method of a particular provided interface at the moment the component expects it and to accept a
certain method call issued on a particular required interface at the moment the component "wishes" to do so. Two
options are possible:

• Inverted frame protocolwhich is constructed from the frame protocol by replacing all the accept events with
emit events and vice versa. This option models the most general valid environment

• Context protocolwhich specifies actual use of the target component by the other components in the particular
hierarchical architecture. This option models the simplest valid environment.

Context protocol is more suitable because the component application typically exploits a subset of functionality
provided by the target component and completeness and feasibility are taken into account at the same time. But
context protocol is time consuming and there are no Java construct for acceptance of a method call calling protocol.

Last, two techniques are proposed to reduction of environment’s complexity (state explosion problem) : re-
duction of level of parallelism (static code analysis, concurrent metrics) and reduction of repetition.

Questions

You used the base BP model checking for this experimentation, did you investigate it in the context of EBP
with Promela and SPIN. Not really, we should have the same problems probably.

Do you think JPF can be used for reverse engineering? Not exactly JPF provides execution abstractions
through the traversal of execution flows on objects and classes. It can be connected to other tools via its listeners.

2.1.3 Tuesday, September 4, 2007

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 17

Time Title Speaker
09:00 Introduction Pascal André
| LCI Team presentation and position Dan Chiorean

12:00 (UML) Model Checking - an OCL Based Approach Dan Chiorean

13:30 OBASCO Team presentation and position Jean-Claude Royer
| Introduction Illustrating The STSLIB Project: Jean-Claude Royer
| Towards a Formal Component Model Based on STS
| COLOSS Team presentation and position Gilles Ardourel

18:00 TheKmelia Component Model Hierarchical Service Description and Analysis Pascal André

Welcome

Pascal André introduced the program of this second day of presentations including three team presentations and
technical talks.

LCI

Dan Chiorean presented the Computer Science Research Laboratory (Laboratorul de Cercetare Ştiinţifică în Infor-
matic̆a - LCI). The Computer Science Research Laboratory was established in 1990, as an auxiliary department of
the Mathematics and Computer Science Faculty of Babeş-Bolyai University (Universitatea Babeş-Bolyai - UBB)
in Cluj-Napoca, Romania. The projects handled by the laboratory are included in contracts with the Ministry
for Research and Technology and certain academic institutes, its main purpose being the promotion of research
activity in a top field, that of object-oriented technology.

The main products designed and implemented in the lab so far were the mFOOPS environment, and the
ROCASE and OCLE tools. The UBB-LCI team participated in the EU Research Project IST 1999-20017 NEP-
TUNE. The LCI team obtained recognised results in the area ofmodel checking. Continuing the work begun in
the NEPTUNE IST project, and using some of the results obtained in that framework, the LCI team designed and
implemented OCLE, one of the most complete OCL tools existing today. The LCI group is very keen on contin-
uing its work in the above-mentioned domains, with special interest in MOF based repositories, OCL support for
all abstraction levels, use of OCL in transformation languages, OCL extension to support actions, improved code
generation, suggestive use of OCL in Model Driven Development (MDD) applications.

In the context of this ECONET project, the UBB-LCI team brings its experience in designing and implement-
ing a powerfull repository for the CoreComponent Metamodel. Namely, the LCI team will be involved in:

• specifying a complete set of Well Formedness Rules at the component metamodel level;

• specifying all the API metamodel’s observers;

• generating the Java code corresponding both to assertions and Additional Operations;

• injecting this code in the repository code produced using the EMF framework, the OCLE tool and, possible,
other state of the art tools;

• testing and refactoring the repository code.

(UML) Model Checking - an OCL Based Approach

Dan Chiorean exposed his point of view on model checking UML models. This research area is taken in the
context of the latest modeling approaches (MDA, MDE, LDD, DSL), which are characterized by the use of meta-
modeling and the use of modeling languages which are more specialized compared with UML. The OMG vision
promotes a uniform approach, all modeling languages being MOF instantiations. In this context, a robust and
thoroughly tested MOF model would be in the benefit of all modeling languages. Specifying a precise syntax
and semantics requires usage of rules. Taking into account that the standard formalism used in specifying rules
is OCL, an appropriate support for the constraint language is needed. (U)ML uses different formalisms for speci-
fying architectural and behavioural information, therefore checking (U)ML models is quite complex. The results
and conclusions obtained in UML model checking can be used inchecking models specified using other MOF
based modeling languages.

18 ECONET Workshop 2007

The objectives of (UML) model checking are: to ensure that the model conforms to different kinds of rules
((UML) Well Formedness Rules - WFR, Profile Rules - PR, Business Model Rules - BMR, Methodological Rules
- MR, Behavioral Constraints Rules - BCR), to use accepted and easy to understand standards in the modelers
community, to validate the standard specification on real models. The following results are expected: realised
applications comply with requirements, applications become more reliable, the time needed for developing them
is diminished, the application costs decrease, reuse is promoted to all model element levels (classes, components,
patterns, frameworks).

In the context of the new modeling approaches, model compilation has to become a mandatory requirement
(like source code compilation). In order to accomplish these objectives and to benefit from the expected results,
an incremental and iterative approach is proposed: rule specification, rule validation, identification of reasons for
rule failures, model updating - applied to different modeling layers.

Then, Dan described some features of UML models related to OCL and verification rules, and some exam-
ples of rules from each of the above mentioned categories (WFR, PR, BMR, MR, BCR). UML model checking
concerns the following properties: model completeness, model consistency, model correctness and model archi-
tecture accuracy. Model checking related activities must be supported by appropriate CASE tools. Some questions
are: What could be done in order to improve the state of facts?or, more specifically, Is the needed information
disposable? Is the textual formalism appropriate?

As UML is grounded on different formalisms - OCL, STD (ASM), graph theory (Petri nets) - UML model
checking requires different approaches. Dan discussed thefollowing aspects: multi-view models, lack of a com-
plete formal semantics for modeling languages and the management of inconsistencies (inherited cyclic composi-
tion inconsistency, dangling type reference, and connector specification missing).

The last part of the talk is dedicated to tool support.
First Dan sketched some UML/OCL tools (commercial and academic), stressing that working with medium

or large models is currently difficult. The following drawbacks restrict a widespread use of tools that support
OCL: the lack of coordination between UML services and OCL services, a weak support for interchanging UML
models, the proprietary architecture used for repositories, the lack of OCL support at M2 level, the lack of support
for reusing OCL specifications at M2 level, the weak support for updating UML models in an interactive manner.
Compiling UML models before transforming them is not yet an usual activity. Unfortunately, only a small part of
UML static semantics was tested. For some rules, the informal specification is ambiguous. Many specialists make
general statements about the UML specification drawbacks, but they haven’t tried either to identify the rationale
of these drawbacks or to precisely mention the drawbacks. Surprisingly, misconceptions and incorrect statements
about using OCL and about the language potential can be encountered in many papers.

Next, Dan presented the OCLE tool, developed at LCI, and madea demonstration of its functionalities. What
distinguishes OCLE from other similar tools is: it allows simultaneous access at both M2 and M1 level, it im-
plements OCL 2.0 specifications (ensuring compatibility with former OCL versions), it offers extended support
for the “def, let” mechanism, it supports simultaneous multiple views of the same information, it aids users in
correcting the errors identified by evaluating the rules specified at the M1/M2 level, it allows semantic checking of
XML documents, it ensures MDA support both by defining and checking profile rules, it proposes a friendly GUI,
it promotes reuse by means of OCLE projects, and it permits compiling and evaluating OCL specifications spread
in different files. In order to better accomplish the requirements related to the intuitiveness, rigor, usefulness, the
following functionalities were implemented in OCLE: transitive closure operation, neutral printing operations, ex-
plicit context specification, flexible specification for operations without parameters and the compatibility with the
syntax of previous OCL versions. Some benefits are: the possibility to specify simpler OCL expressions, extended
possibilities for debugging OCL specifications, and support for reusing earlier specifications without any changes.

Checking UML models against Well Formedness Rules using an appropriate UML/OCL tool is the natural
way to check UML models and to correct various errors. Many bugs found in the UML static semantic specifi-
cation v1.5 were fixed and the majority of the rules were tested. Using the OCLE code generator, the Java code
implementing the additional operations behaviour was generated completely and used in the OCLE repository.
The OCL 2.0 specification was extended with a set of practicalfeatures. The solution we proposed for checking
XML documents overcomes the drawbacks that all the “classical” solutions carry.

Remark

The definition of model checking is quite different from the one in SOFA, KADL , andKmelia approaches.
The main reason is that the vision considered by OCLE takes into account UML model’s conformance to WFR.
In fact, this represents the first check that all UML models have to pass.

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 19

Questions

A first question was about components in UML and verification tools. An approach is that described in
Cheesman and Daniels’ bookUML Components, published by Addison Wesley in 2001.

Another question was about a formal semantics of OCL 2.0. Danexplained that beginning with the OCL 2.0
version this is described using the OCL 2.0 metamodel, included in the standard.

OCLE (and ROCASE) have been used for both education and industry.
Other questions are summarised in a draft version extractedfrom PA notes.

• Completeness and consistency of WFR: this is a difficult problem.

• Extension of OCL to some reduced kind of Action Semantics to settle Functional Computation descriptions:
it can be done since there exists in fact a family of OCL languages.

• Standard evolutions (what happens when a new version is adopted): the metamodel is downloaded, the
crucial point is the MOF description.

• Import-export facilities by XMI files and visual representations by DI (Diagram Interchange): tools do not
fully comply XMI, and DI is not adopted yet. UML models differfrom MOF models. OCLE is not a
standalone tool but I have to show and navigate on class diagram, snapshots, use case

• Different problems : non-standard visual notations first tool Rocase (C++), OCLE code generation in MDE,
java code generation (model, assertions) parts of the repository have been produced by the tool.

• Java profile for code generation. We use our own policy - run the rules.

• Implementation aspects: the JGraph library was used for thegraphical editor, and the Velocity template was
used in order to generate the Java code. OCLE XMI parsers wereentirely implemented at LCI.

• A big problem concerns the tool’s maintenance: the people involved in realizing OCLE left the laboratory
due to the lack of financial resources.

OBASCO

Jean-Claude Royer presented the OBjects, ASpects, and COmponents (OBASCO) team. OBASCO is a joint
research group of (the CS Departement of) Ecole des Mines Nantes and INRIA’s research center in Rennes,
IRISA (see also OBASCO’s home page at IRISA). OBASCO is also ateam of Laboratoire Informatique de Nantes
Atlantique (LINA, FRE CNRS 2729). The LINA laboratory is mainly a cooperation between Ecole des Mines
de Nantes and the University of Nantes. It is specialized on two axes : distributed software architectures and
computer-aided decision systems.

The OBASCO (Objects, Aspects and Components) research group addresses the general problem of adapting
software to its uses by developing tools for building software architectures based on components and aspects. We
are (re)using techniques developed in the programming languages domain, and more precisely in object-oriented
programming.

The objectives are to solve scalability problems in software engineering and to improve software architectures
adaptation. Two main directions followed are the separation of concern (specific programs for specific problems)
and correct composition of existing programming artefacts.

The research domain covers topics of the Software Engineering:

• Software components and scalability

• Programming languages

• Post object-oriented programming

• Generative programming

– Sequential, concurrent and distributed

– Mechanism for separation and composition

20 ECONET Workshop 2007

– Objects versus aspects versus components

• Model driven engineering: transformation techniques

according to three swim lanes

• Aspect-oriented programming

– To explicit links between metaobject and aspect

– To formalize aspect-oriented models

– To design and implement a language

– Reverse engineering of legacy code with aspects

• Software component

– Explicit protocols for components

– Property verification for components and architectures

– Understand relations between aspects and components

• Domain specific language

– Domain specific language

– Expressiveness, extensibility and compilation

– Aspect languages, composition and DSL

OBASCO brings its experience to the ECONET project with an abstract model based on algebraic specifica-
tion and LTS, and its derivation to Java code (engineering process while in ECONET we work on the reverse-
engineering process). A first work was to verify some properties in component systems with data, we have some
results here, which make it possible to abstract component protocols with data. We have also shown how to gen-
erate Java code from protocol descriptions, such that components can communicate according to their declared
behaviour. Finally, we have investigated aspect languagesfor the modularization of crosscutting concerns defined
in terms and through modification of protocols. A question, which we did not study, was the compatibility between
some Java code and a protocol. OBASCO is also interested in extending the SOFA approach to introduce data,
parameters and guards. Furthermore, we intend to study the integration of these techniques with our on-going
effort on the static analysis of properties of protocol-modifying aspects.

Introduction Illustrating The STSLIB Project: Towards a Fo rmal Component Model Based on STS

Jean-Claude Royer presented an approach that covered the whole development models from abstract description
to Java implementation.

Component-based software engineering is becoming an important approach for system development. It is
assumed here that explicit protocols are integrated into component interfaces to describe their behaviour in a
formal way. In this case, explicit protocols are often dissociated from component code, it is not ensured that
component execution will respect protocols rules. A crucial issue is to fill the gap between high-level models,
needed for design and verification, and implementation.

This talk introduces first a component model with explicit protocols based on symbolic transition systems.
Some related models are quickly overviewed: Java/A, CADP, behaviour Protocol models (SOFA, PROCOL, CO-
OPN), FSP java, JCSP.
The model is presented through an example: The Cash-Point Case Study. The main concept is STS, for Symbolic
Transition System, that is a dynamic description coupled with a data type description. A Labelled Transition
System or LTS is an automaton with simple labels, states are sometimes called control states in this document.
STS add to LTS full data types, guards and input/output values. A transition is defined by[guard] event
communication / action. The communication can be an emission (simple or multiple) or a receipt. The
data types describe the operation semantics of the emitters, the guards, the generators and the actions. An algebraic
style with positive conditional axioms is used to describedthe data types.
An architecture is almost a UML communication diagram rather than a UML component diagram: a link between
ports denote event synchronization with communications. This was rather the KADL model which is dedicated to

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 21

analysis and verification purposes: the communication glueis simplified which is very expressive in KADL and
some other features are not taken into account: no inheritance between STS, ADT description are less general, no
component parameterization.

The cash point example is illustrated on two points: defininga STS, defining the architecture. The existing
elements or experimentations for tool support are explained.

• Defining an STS
One first implementation was implemented in Python (it has been rewriting in Java 1.5 under Eclipse) for
the STS: the user writes a.sts file (a parser exists for the dynamic part), an interface generator builds an
ADT skeleton.adt (the user has to fill the axioms), a Java translator generatesa Java class from the ADT
(experimental) but the user may also write a Java class or reuse an existing one.

• Defining an architecture
A grammar allow to express component types, local instances, bindings and exports. This is a bit more
complex since the parser and the loader have to be recursive.It also needs to call the STS parser and loader.
When loading an architecture we have also to specify where are the Java classes. The instantiation process
is also a bit more complex. It is not completely stable since some choices about bindings are pending.

The talk pursue by the level devoted to verification. In the past, an approach using PVS (Theorem prover) has
been experimented. The new approach rather close to model checking is based on the notion of Configuration
Graph (or CFG) which is a LTS but with a data value associated to each control state. This allows formal analysis
methods to analyze component and their interactions. Currently the verification process is to compute the syn-
chronous product and check it or to compute the configurationgraph and prove some properties. This tackle the
difficult problem of state explosion when model checking with data.

Then a Java implementation for it is presented (runtime interpreter) that relies on a rendez-vous mechanism
to synchronize events between component protocols. This talk showed how to get a correct implementation of a
complex rendez-vous in presence of full data types, guardedtransitions and, possibly, guarded receipts.

A tool support is made of a library with parsers and analysis tools STSLIB is a project devoted to the design
of sophisticated concurrent systems, their verification and code generation. Currently, this is rather a Java API and
the targeted runtime language is also Java. It may be used in the context of Eclipse or as a Java application.

Questions

One question was about the assistance for specification: only textual representations, the systematic usage
of a ’self’ parameter for data type operations, manual chainof specification processing. These points should be
improved with the future (planned) GUI (Graphical User Interface) on Eclipse.

Another was about functional (for specification) and imperative (for implementation) styles for ADT. Only a
restricted form of ADT is accepted.

A last question was about communication primitives and especially the multiple one. Only the multiple rendez-
vous is implemented.

Time aspects were also discussed.

COLOSS

Gilles Ardourel presented the Relaible Components and Softwares (COLOSS - COmposants et LOgiciels SûrS)
group, a team of the LINA (see the OBASCO presentation above).

The research activities of the COLOSS team range from fundamental aspects of software to applications. The
main goal is the elaboration of concepts, methods and techniques supported by tools for software designers and
developers. We explore formal approaches to assist software analysis and development:

• Multi-formalism specification and analysis of software systems,

• Specification, verification and validation of components and software architectures.
The goal is to ensure correctness of components used and their composition in complex software systems.

The motivations (fundamental challenges) are correct the software construction, the software quality and safety
and the support for specific development methods. The main research areas are

22 ECONET Workshop 2007

• Multi formalism specifications, multi-faceted analysis.
The mono formalism approaches are limited by a partial covering of problem and a partial analysis. COLOSS
studies the formal methods integration and faces some of itschallenges (decomposition, semantic interop-
erability, formal analysis). Multi-platforms experiments use B, PVS, Spin, Grafcet, Petri nets...

• Design and verification of model properties.
We investigate the use of formal methods and tools for modular modeling (component, objects) and prop-
erty verification (system and model properties). In the CBSEcontext, the motivation is to provide models
and practical tools to assist users in formal component-based development ; it covers the abstract definition
of components and composition (simple, flexible and expressive), the verification of properties (safety, con-
sistency, compatibility...) and the binding from components to code (refinement or code generation).
In the UML context, the motivation is to improve the confidence in large and multifacet (diagrams) spec-
ifications where a formal semantics does not exist and where properties are quite complexe.g. model
consistency is made of plenty (sub) properties. A single property can be decomposed into finer ones, can
concern several groups of model elements, can be verified at different levels of completeness, and can be
verified using several techniques with various costs and performances. We work on a generic verification
process composite verification processes (with ordering, filtering, results propagation and annotation of
faulty elements. . .) that supports the classification of verifications and properties (levels, diagrams...) and
the abstraction of the results of different tools and formalisms.

COLOSS contributes to ECONET by providing Kmelia (an abstract component model) and its associated
COSTO tool, its experience on formal methods and property verification, its experience on Java programming and
a first experimentation on reverse-engineering Java to UML.COLOSS also expects fruitful exchanges with KADL

and SOFA to gain mutual enrichments.

The Kmelia Component Model Hierarchical Service Description and Analysis

Pascal André presented theKmelia Component Model and the Property Formal Verification towards the COm-
ponent Study TOolbox (COSTO). The COSTO modules are being developed with JAVA. The modules have been
integrated into the Eclipse IDE as plug-ins. Both the specification and analysis were illustrated on a Bank Auto-
matic Teller Machine (ATM) case study and its withdrawal service.

The presentation begins by an overview of the model. TheKmelia model is a simple, formal and abstract
component model based on the description of complex services.

• The simplicity relies on the few number of concepts that are used to describe the components and their
assemblies. The main characteristics are: components, services, component assemblies, protocols, pre-post
conditions, specification of complex interaction between services.

• The components are abstract, independent from execution environments and therefore non-executable.
Kmelia can be used to model software architectures and their properties, these models being later refined
to execution platforms. It can also be used as a common model for studying component or service model
properties (abstraction, interoperability, composability).

• A formal model is defined for components and services, including syntax and type checking, pre-post con-
ditions and LTS. This is the basis for any automated processing support.

• The services are first class elements and not only messages, which means that (1) services may be defined
by a dynamic behaviour in addition to their signature and pre-post conditions and (2) services may be built
from other services. Each service has an enhanced service interface which includes a service dependency
composed of the provided services and the required serviceswhich are used in its context. The notion
of service is central toKmelia and a component interface describes mainly services. This means that the
components are connected via their services (functional connections). The interaction model is therefore
simple: required services are directly linked to provided services.

The model is extensible: it is possible to add new concepts from the kernele.g.protocols, adaptors, aspects...
A component is a structuring unit that encapsulates a state and services; it has an interface with usage con-

straints. A component has an interface made of provided services and required services. A service is an abstraction
of a functionality (signature, contract); it has a behaviour (dynamic evolution). The behaviour is defined by an
extended LTS where transitions accept functional actions or communications (message send or receipt, service

2.2. WORKING SESSION 23

call or return). A service also has an interface including provided services and required services that may lead
to a hierarchical structuration. Assembly links are a simple support for component connection and interaction.
Promotion links are a means for simplifying encapsulation.

The second part of the talk is dedicated to the verification ofproperties and its support with COSTO. The
verification principles are: a formal verification of properties, a reduced user interaction (automation), customis-
able verification process, interconnection with appropriate tools (open framework). For this last point, the specific
property analysis modules is realised by COSTO modules and the general property analysis are checked by con-
nection with existing tools (model checking or theorem-proving). This is illustrated on the ATM example for the
behavioural compatibility property. Its scope is the correctness of components assemblies and compositions, the
availability of components and services, the compatibility of linked interfaces, the service compatibility and a
diagnosis on mismatch. The service compatibility is definedat four levels of control: service signatures, enhanced
service interfaces, contracts (pre/post conditions), andthe behaviours (correct interactions between the caller ser-
vice and the called service via the required service). An illustration with MEC an existing powerful model-checker
for synchronised LTS. MEC has a compatible definition of STS that allows a systematic translation into input for-
malisms and feedback. A verification is done for each triple of services based on a first level assembly link. In the
ATM example, a deadlock is detected and visualized.

Questions

Questions were asked all along this talk on the hierarchicalaspects, the communication primitives, the be-
haviour specification, the external tools used, the link with B specifications, etc.

2.2 Working Session

2.2.1 Introduction

The goals of the working sessions are mainly to fix a roadmapfor the project. This means to clarify and delimit
the detailed objectives in a feasible manner, to define clearly the concrete and coordinated contribution of each
partner, to define task, products and results, to organise tasks (responsibilities, contributors, schedule...). One first
issue was to check that each partner has a compatible (or evenbetter the same) vision of the project. Another
one is to structure the work in several parts because a monolithic task cannot be realised by four geographically
separated entities.

These sessions are highly dynamic so that a strict program was not established. Thus the detailed program
given in the following subsections are post-workshop programs. Nevertheless, the initial program covering in-
cluded three aspects for the working session:

• decision on the source and target area boundaries,

• discussions on the way to get reverse transformations,

• find application examples.

In the following we will summarize the session contents day by day.

2.2.2 Wednesday, September 5, 2007

This is a half-day session.

Time Activity Speaker
09:00 Introduction to the working sessionsPascal André
| LCI Point of view Dan Chiorean
| DSRG Point of view Frantisek Plasil

12:00 Round tables and discussions all

24 ECONET Workshop 2007

Introduction to the working sessions

The slides of this (first plan) introduction are provided on the Workshop Wiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

Pascal introduced the working session by giving its view of the current project situation and provided some
tracks for the discussions. Consequently the Working Session Roadmap was organised around four points

1. Convergence on the objectives.

2. Convergence on the means.

3. Definition of the tasks.

4. Production

The three first points define an initial objective for each dayof the working session.

1- Convergence on the objectives

There is a clear agreement on the "abstract" context:

1. We have abstract component models (SOFA, Kmelia, KADL) and tools. Some have elements for Java code
generation (engineering).

2. We assume Java Code Specifications and Programs. This codecontains informations about structure and
behaviours (even if it was not designed in a CBSE).

3. We want to practice Reverse Engineering = from code to abstract models. There exist general techniques
and tools such as code analysers, patterns, extractors...

Kmelia
 SOFA 2.0
 STSLib

Java
 EJB

Special

component

framework

Intermediate

representation

reverse

??
 OCL

Behaviours

Structures

Fractal

Corba

patterns

analysers

extractors

Figure 2.1: ECONET Project: "abstract" context

There is a fuzzy vision of the "concrete" context.

• What sort of Java code nature do we want to process?

– Bytecode - the one that exists at run-time.

– Plain source - the one usable for an open source project.

– Annotated Source - a Java program (source or compiled) that includes informations usable for connect-
ing to an abstract model. This is the case when the program is (partially) generated from a component
abstract specification by some code generator.

• Assuming we have a Java program, to what extend should the code be structured?

– plain Java: there is no special structure.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
./FIGURES/archiEco1.eps

2.2. WORKING SESSION 25

– "componentised" Java (EJB, Corba, .NET, issued from a code generator - SOFA, Fractal...): the code
has a component flavour.

– "behavioural" Java (threads, communication primitives, issued from a code generator...): the code has
a behaviour flavour.

• What are the reengineering issues? It means toward what objective do we look for abstractions?

– legacy code recovery/discovery: the usual goal of reverse-engineering. You have an existing code but
it was not designed according to the same abstract concepts.

– compare code and specifications (conformance): we want to check whether a concrete representation
and an abstract representation (of the same system!) are consistent.

– roundtrip: the code is generated from a model and complete that model. The development process
includes engineering and reverse-engineering activities. This approach is frequent in MDA.

– ...

Goal of day 3 = Clear agreement on the "concrete" context

2- Convergence on the means

Once we agree on the right objectives, the question is how canwe reach them.

• Collaborative State of the Art Study.
The idea here is to share the individual experiences both on domains and tools in order to accelerate the
collaborative work. The state of the art covers works and tools related to: reverse engineering (in general,
for components), Java reverse engineering, Java code manipulation (analysis, annotation, extraction...).

• Re-engineering techniques.
The objective is to be up-to-date in techniques available inthe open source community.

– Java Compilers and Analysers to handle the Java code.

– Patterns, rule based systems for reverse-engineering issues.

– Used notations and Intermediate layers (models) for a step-by-step process.

– ...

• Separate modules (e.g. structural / behavioural / metamodels). Do we work on separate parts and levels with
different applications or shall we use one program only? Do we propose a framework for general purpose
or do we design a single purpose application?

• Benchmark example.
It is quite difficult to find Java code related to components. Acollaborative work implies that we work
together on the same Java program.

We also have experience on OCL and metamodels.
(optimistic) Goal of day 4 = organise the means tracks and findthe benchmark

3- Definition of the tasks

Once we agree on the right objectives and we have a somewhat clear idea of the means we provide, the question
is to organise the worki.e. the project management.

• What to do?
Define a list of tasks to do and the delivery.

• Contributions?
Define the actors and collaborations (who do what).

26 ECONET Workshop 2007

• Synchronisation points
Point out the bottlenecks of the process.

• Planning
Define who do what and when.

• ...

(optimistic) Goal of day 5 = each participant has a somewhat clear idea of what he will do

4- Production

Here are some guidelines for that part.

• Workshop Report

– Collect paper and slides

– Summary of the discussions

+ Bibliographical Notes

=⇒ project plan for year 2 andEvaluation

• Fix the participants objectives

• Documentation, research reports

• Intermediate results=⇒ Second Workshop

• Publications (?)

These are also part of the initial ’Second year objectives’

LCI Point of view

Dan talked about various aspects of reverse engineering andespecially those related to models (MDA). Reverse
engineering is about finding the concepts of the models by analysing the code and inject the model. There are
several models: the programming language (Java) model, thecomponent models. He stressed three aspects:

1. About reverse engineering (RE).
He expects a more clear definition of the context and goals. The domain is quite difficult and unexplored.
There are different programming languages (Eiffel, C++, Java...) and different tools. There are some
existing work on the subject, we should have a look at them. Heworried about the practical result of
Component RE (the value of RE, the mandatory results). Do SOFA applications have non-SOFA parts.

2. About Behaviour Checking.
Do we want to detect possible deadlocks in the code? What can we do if component instances relate to the
same component type.

3. About pre-post conditions.
This information is rarely present with a clear format in programs (even for Java assertions).

Dan also noticed that most tools work with the architecture of the application. He also remind that LCI had a
previous experience with reverse-engineering UML from C++programs.

2.2. WORKING SESSION 27

DSRG Point of view

The slides of this intervention are provided on the WorkshopWiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

Frantisek recalls that the ECONET project is a small project(budget, duration). He commented the initial
project definition (see section1.1). As a general remark he recalled that the pragmatic outputsof the project are a
cross fertilization and joint publications.

He distinguished four area of contribution by DSRG:

1. Providing SOFA.
This is one of the abstract models. Providing it covers the language definition, the tool support, examples,
the knowledge..

2. Enhancing EBP by additional features from STS/eLTS (to enhance expressive power of EBP).The idea is
to take concepts from other abstract models..

3. Extracting protocols (EBP) from code (at least BP from code). This is a part of the reverse engineering if
we consider that there are two complementary aspects in a program: the structure and the behaviour..

4. OCL: WFR (well-formed rules) for component diagrams, activity diagrams? WFR for SOFA components,
The idea is to improve the SOFA language definition using the LCI experience..

Note that point 2 and 4 are indirectly related to reverse-engineering but can participate to define a more general
framework.

Frantisek brings an answer to one of themeansissues: the benchmark. He proposes to take an exemple from
a previous work on a Dagstuhl Modelling Contest, theCoCoME (Common Component Modelling Example)
http://www.cocome.org/. The advantage is to benefit from a Java program that implements a component
application (this is rare enough to have both a specificationand a program) and two abstract models that have been
manually built on it. Two trivial examples are more fruitful.

Discussions

The discussions took place from the three above interventions.
Here are some Gilles’s random ideas:

1. We are interested in behavior models.

(a) Getting them from plain Java code without structural information about the component architecture is
far beyond the scope of this project.

(b) We at least need some kind of "boundaries".

2. There are two first steps :

(a) Our benchmarks shouldn’t be spaghetti code (while not sticking to a particular component model, the
application should have something that look like a component architecture). A proposed task is finding
fitting benchmarks.

(b) Then let’s pretend we already got most of the structural info about the component architecture (manu-
ally, automatically from specification or code...).

3. We are about to target different abstract models.

(a) We need meta information somehow common to the models : a minimal structural component model
(component hierarchy, one or several interfaces by component). A proposed task is finding this mini-
mal meta information. We don’t need a Unified Component Language -just the minimal stuff to work
(remember the size of the project).

(b) Additional model-specific meta information (because wemight want to do something beyond this
project’s scope some day).

Annotations examples

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
http://www.cocome.org/

28 ECONET Workshop 2007

code source part (class, package, method, whatever..) "is part of componet id #12344"
code source part (class, package, method, whatever..) "is part of interface id #12344"

Here is a short summary.

• Benchmark
The CoCoME benchmark is adopted. It has many interest: existing informations on requirements, on
component design, available Java program.

• Input
Of course the fine input would be a component program but it does not exist yet. A better input is an
object program with information (comments, annotations) on components. Again, it does not exist yet. We
decided that the input is a plain source Java with possible annotations or information (comments, separate
documentation files, UML models...). Having a source code allow to use parsers, extraction techniques,
comments and various informations that are not available for Java bytecode. These annotations and/or
informations should inform on some component abstractions. We are not sure to find such informations but
we assume that as soon as component design is be applied (later), it will help to inject annotations in the
plain Java code.
A practical question remains: which information or annotations do we need?

• Input Model
We do not want to have an instantiated model of the Java programsi.e. we carry only some informations of
the program not all of them (no model transformation for instance).

• Reverse engineering goal
The goal is to find abstractions than realise full reverse engineering. The abstraction help to analyse some
properties of the program, to get an abstract model, either to compare with an existing one (conformance)
or to document the application.

• Separation of concerns
We discussed about two main problem issues: structure/behaviour, one or more target.

– We distinguish the structural information from the behavioural. Both aspects are orthogonal and ex-
isting works mainly relate to one aspect only. Moreover finding the behavioural abstractions depends
on both the Java code and the structural model. The structural part is at first a delimitation of what are
the components in the Java code.

– We may want to target several abstract models. Shall we implement a tool for each of them or try
to share both procedure and knowledge. Note that some of these models can have only structural
features. One way to proceed is to use metamodels (pending issues to be studied on thursday).

This separation of concerns also make it easy to split the project realisation.

• Background
Other contributions of the project are recalled: cross LTS extensions, WFR definitions.

2.2.3 Thursday, September 6, 2007

Time Activity Speaker

09:00 Welcome Pascal André
| CoCoME Contest Jan Kofron
| "ECONET tasks" proposal Petr Hnetynka
| CoCoME in SOFA 2.0 Jan Kofron

12:00 Round tables and discussions -

13:30 Java Path Finder, Bandera Jiri Adamek
| Project modules and interfaces (discussions)-

17:00 Toward an annotation language (discussions)-

2.2. WORKING SESSION 29

Welcome

Pascal introduced the second day working session by giving an abstract of the discussions and the gainful decisions
of the first day. Since the goals of day 3 were roughly reached we can now fight the ones of day 4, which are
convergence of the means (see section2.2.2) and especially try to advance on the input format, the benchmark
and the available techniques. To this end a presentation of the benchmark has been planned in the morning and
another one on Java Path Finder (and Bandera) in the afternoon. The rest of the day (morning and afternoon) is
reserved for discussions.

The slides (second plan) are provided on the Workshop Wiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

CoCoME Contest

Jan Kofron presented Common Component Modeling Example contest.
CoCoMEhttp://agrausch.informatik.uni-kl.de/CoCoME is an international contest aiming

at comparison of different modeling approaches on a common assignment organized by Technische Universität
Clausthal, Universität Karlsruhe, Politecnico di Milano,Charles University in Prague. Sharing a common close-to-
real-life assignment should reveal strengths and weaknesses of the different modeling approaches and thoroughly
test their applicability in practice.

The assignment is a trading system, a business application for managing chain of stores with about 200 stores
and 8 cash desks per store. Participants had as input a partial specification via UML, informal specifications as
use-cases for the requirements, deployment diagrams for the distribution and a reference implementation (realised
by a teacher and students).

The workshop held at Dagstuhl in Germany. Eighteen teams were involved in that contest. The objective
was to model the application on various aspects (structure,deployment, behaviour modelling extends behaviour
protocols). Note that UML models were not fully consistent with the code and the components were given.

The slides of this intervention are provided on the WorkshopWiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

"ECONET tasks" proposal

Petr Hnetynka proposed some answers to pending questions onthe objectives and the means.
To the question "What is an input?" his answer is "plain Java".
For obtaining a behavior specification we need also a model (i.e. architecture). To the question "How to obtain

model?" his answer is "it is already given or we extract it from the plain Java sources.
We need a single concrete metamodel (for specifying models). The problem is that each component system

has its own means for specifying models but most of componentsystems are similar (black-box component,
provided/require services, nesting), thus we can use the core of the SOFA 2 metamodel as a concrete metamodel.

In addition to the objectives of the day he also proposed a first task assignment proposal: model extraction (-?)
and behavior specification extraction (DSRG).

The slides of this intervention are provided on the WorkshopWiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

CoCoME in SOFA 2

Back to the CoCoME, Jan Kofron overviewed a SOFA solution for the Common Component Modeling Example.
He skipped the SOFA 2 presentation to focus on the general design solution and the verification of a part of the
system.

The following summarizes modeling of the CoCoME assignmentusing SOFA 2.

• Architecture
First, the SOFA architecture of the TradingSystem (Fig.2.2) was created, forming basis for further work.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
http://agrausch.informatik.uni-kl.de/CoCoME
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07

30 ECONET Workshop 2007

• Behavior modeling
All CoCoME components were specified using EBP. Parts of the CoCoME assignment are ambiguous and
even contradictory; the behavior specification is mainly based on the reference implementation.

• Verification
Checking communication of components for errors (Bad-activity no-activity (deadlock) infinite-activity),
Compliance checking (Translation of EBP specification intoPromela using the SPIN model checker to
search the state space),
Code checking (Via combining Java PathFinder with BehaviorProtocol Checker).

• Performance

:TradingSystem

:Inventory

ReportingApplicationStoreApplication

:Data

:CashDeskLine

:CashDesk

:PrinterCtrl:ScannerCtlr:CashBoxCtrl:CashDeskGUI:CardReaderCtrl:LightDisplayCtrl

:CashdeskApl

CashDeskBus

CashDeskLineBus

:Coordinator

CashDeskConnectorIf

:StoreGUI :ReportingGUI

:StoreLogic :ReportingLogic

:Enterprise:Persistence:Store

StoreQueryIf PersistenceIf EnterpriseQueryIf

StoreIf ReportingIf

Bank

BankIf

*

*

*

AccountSaleEvent

:StoreServer

ReportingApplication

ProductDispatcher

:Data

:ReportingGUI

:ReportingLogic

:Enterprise :Persistence :Store

StoreQueryIfPersistenceIfEnterpriseQueryIf

ReportingIf

EnterpriseServer

MoveGoodsIf

ProductDispatcherIf

Figure 2.2: CoCoME: Sofa static architecture

Benefits : As SOFA 2 explicitly supports components throughout the entire software lifecycle, the architecture
erosion is mitigated. Moreover automatic connector generation provides seamless component distribution. Be-
havioral modeling via EBP and subsequent verification allows for reasoning about correctness of the design even
before actually having an implementation. Then with the implementation available, one can use code checking to
find out, whether the implementation obeys its EBP specification.

The solution involves (i) modeling architecture in SOFA metamodel, (ii) specification of component behavior
via extended behavior protocols, (iii) checking behavior compliance of components, (iv) verification of corre-
spondence between selected component Java code and behavior specification, (v) deployment to SOFA run-time

./FIGURES/cocomeSofa.eps

2.2. WORKING SESSION 31

environment (using connectors that support RMI and JMS), and (vi) modeling of performance and resource us-
age via layered queuing networks. We faced several issues during implementation of the CoCoME assignment
in SOFA 2. Most notably, the architecture was modified in order to improve clarity of the design. In particular,
the hierarchical bus was replaced by two separate buses and the Inventory component was restructured. Extended
behavior protocols for all the components are based on the provided plain-English use cases, the UML sequence
diagrams, and the reference Java implementation (the assignment does not include a complete UML behavior
specification e.g. via activity diagrams and state charts).

Jan showed the SOFA solution for CoCoME: static view, behavior view (BP [sofa, fractal], EBP [Sofa 2]),
deployment view, performance view (model performance), comparison with UML, flat / hierarchical models,
multiplicity, evaluation.

The slides of this intervention are provided on the WorkshopWiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

Morning Discussions

Here is a short summary of thursday discussions and decisions.
Petr drew a quick picture of a Sofa metamodel (Fig.2.3) which should correspond to all our component models

(with different names).

Frame
 Interface

InterfaceType

Instance
 Architecture

Binding

*

*

protocol : String

*

*

*

Figure 2.3: Sofa: short metamodel

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
./FIGURES/sofaMeta.eps

32 ECONET Workshop 2007

Then we discussed about the application design (Fig.2.4). The figure shows a three parts architecture with
a common metamodel and a dependency between structural and behavioural abstraction. The contribution is an
annotation definition, a first prototype (Java analyser, xDoclet) that must be incremental. See also Spring and
Fractal.

plain Java

code

reverse

Metamodel

Structural

Model

flat
/hierarchical

Behavioural

Model (BP, EBP,

eEBP)

Hand-made ->

automatic (goal)

Informations

annotations

Structural

Informations

Full

description

Q ?

Figure 2.4: Econet Architecture: draft 1

After, Tomas explained a short example of code generation from SOFA architecture. He took theLogDemo
example and illustrated different versions of the Java generator.

Logger
Caller

LogDemo

elog

ilog

elog
 ilog

(?ilog.log)*

(?elog.log

{!ilog.log})

(?elog.log)*

module logdemo {
interface LogInterface {

void log(in string number);
};
frame Caller {

requires:
LogInterface Log;

};
frame Logger {

provides:
LogInterface Log;

};
};

There are two primitive components -Caller (or Caller in his example) andLogger. Logger pro-
vides the interfaceLogInterface, Caller requires this interface, in the componentlogdemo these two
components are instantiated and their provision and requirement are bound together.

In the first translation, plain Java code is generated with a specific implementation of requirements (variable +
methods).

// LoggerImpl.java
package SOFA.demos.logdemo;

public class LoggerImpl implements LogInterface {
public void log(java.lang.String msg) {
System.out.println("**** LOG: "+msg);

}
}

// CallerImpl.java
package SOFA.demos.logdemo;

public class CallerImpl implements Runnable {
SOFA.Component.DCUP.DCUPComponentManagerImpl cm;

./FIGURES/archiEcoTaskV0.eps
./FIGURES/logdemo.eps

2.2. WORKING SESSION 33

LogInterface LogRequirement;
boolean end;
boolean stopped;
public CallerImpl(SOFA.Component.DCUP.DCUPComponentManagerImpl _cm) {
...

}
private void setRequirement() throws SOFA.Component.NamingException {
LogRequirement = (LogInterface) cm.getRequirement("Log");

}
public void run() {

...
}
public void setEnd() {
}
public boolean isStopped() {
}

}

In a second translation, the provisions and requirements are specified as annotations in Java for a post process-
ing.

// LoggerImpl.java
@provision(log)
public class LoggerImpl implements LogInterface {

...
}

// CallerImpl.java
@requirements(log)
public class CallerImpl {

boolean end;
boolean stopped;
public CallerImpl() {
...

}
public void run() {

...
}
public void setEnd() {
}
public boolean isStopped() {
}

}

The architecture is generated or predefined. There are templates for connectors.

Last, we discussed about flat component / hierarchical components and the composition operators. At first, we
cannot re-engineer the composite components from scratch.One can build hierarchies on performance criteria or
distribution criteria. But it is enough for instance to build the primitive components and then to build the structures
manually. Jiri proposed launching the code with introspection rather than parsing the code.

Java Path Finder, Bandera

The afternoon started with a short description of JPF (and Bandera) by Jiri Adamek. The slides of this intervention
are provided on the Workshop Wiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

Bandera

Jiri explained that Bandera was unstable at the time he studied it and the second version was not really public
on the web site3. Bandera is a 6-years old source transformer. Bandera allows to check in a semi-automatic way
different properties for different abstractions (Fig.2.5). Two years ago a model-checker for Java, called BOGOR4,
has been developped ; it can be a future source of informationand tool.

3http://bandera.projects.cis.ksu.edu/
4http://bogor.projects.cis.ksu.edu/

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
http://bandera.projects.cis.ksu.edu/
http://bogor.projects.cis.ksu.edu/

34 ECONET Workshop 2007

Figure 2.5: Bandera overview (from web source)

Java Path Finder

JPF is a Java model checker developped at NASA Ames Research Center5.

Figure 2.6: JPF model of operation (from web source)

In general, JPF is capable of checking every Java program that does not depend on unsupported native meth-
ods. The JPF VM cannot execute platform specific, native code. This especially imposes a restriction on what
standard libraries can be used from within the application under test. While it is possible to write these library
versions (especially by using the Model Java Interface - MJImechanism) there is currently no support for java.awt,
java.net, and only limited support for java.io and Java’s runtime reflection. Another restriction is given by JPF’s
state storage requirements, which effectively limits the size of checkable applications to 10kloc (depending on
their internal structure) if no application and property specific abstractions are used. Because of these library and
size limitations, JPF so far has been mainly used for applications that are models, but require a full procedural pro-
gramming language. JPF is especially useful to verify concurrent Java programs, due to its systematic exploration

5http://javapathfinder.sourceforge.net/

./FIGURES/bandera.eps
./FIGURES/jpf1.eps
http://javapathfinder.sourceforge.net/

2.2. WORKING SESSION 35

of scheduling sequences - an area which is particularly difficult for traditional testing.
One problem in a component view is that it accepts only closedjava programs. It explores the state space. Out

of the box, JPF can search for deadlocks and unhandled exceptions (e.g. NullPointerExceptions and Assertion-
Errors), but the user can provide own property classes, or write listener-extensions to implement other property
checks. A number of such extensions, like race condition andheap bounds checks are included in the JPF distribu-
tion. One advantage of JPF is that it acceptslistenersfor custom search algorithms and an access to a Model-Java
interface via its API (Fig.2.7).

Figure 2.7: JPF Java layers (from web source)

./FIGURES/jpfapi.eps

36 ECONET Workshop 2007

Project modules and interfaces (discussions)

In this part we discussed more precisely on the project architecture (Fig. 2.8), its modules and the minimal
information we need for behavioural abstraction.

Kmelia

SOFA 2.0

STSLib

plain Java

code

EJB, Corba, .NET

Specific component framework

reverse

WFR (OCL)

Behaviours

Structures

Fractal

Fractal, SOFA, Spring...

Common

Component

Metamodel

Structural

Abstract Model

flat
/hierarchical

Behavioural

Abstract Model

(eEBP)

A
annotation

definition

User

informations

*

annoted Java

code

Model

checking

Model/Type

checking

B
 JPF

UML

diagrams

patterns

analysers

extractors

Textual

informations

Figure 2.8: Econet Architecture: final version

The abstraction process ((Fig.2.9)) should infer components and structure for the behavioural abstraction.
The information are given directly by the source code via Java annotations. A main information for the latter is
the "entry point" information (intialisation). The entry point denotes the active component.

classes

Values, types

IPAddress

String

Integers

application

classes

components

Figure 2.9: Abstraction Process

The B process is more general than the A one since it can apply to non-behavioural abstract models.It
provides more complete results with less information. The borders delimit frontiers and component contexts
(separate business and management for example) and link classes to components. The goal is to extract interfaces
(one or more) using hierarchical graph analysis for example. The approach uses annotation based methods and
techniques coupled with user friendly graphical interfaceto get the missing informations from the user. Possible
starting points and resources are: Java only, UML models, component models, EJB program...

Toward an annotation language (discussions)

To define the required informations (and annotations) we tried to map the model concepts (Fig.2.10). We separate
business functionalities from non-business ones (relatedto Java computations or to management handling e.g.

./FIGURES/archiEcoTask.eps
./FIGURES/absProcess.eps

2.2. WORKING SESSION 37

setRequirements). We should find annotations about provided interfaces (which is absent or difficult to find in
plain Java). Provided interface are annotated on Java interfaces and methods. Required interfaces can be annotated
from Java attributes. All the classes belonging to a component should be annotated. One question is: how many
instances of a component do we accept, only one?

Entry point

Frame

Interface

Operation

Connections

Types

Abstract

concepts

Composites

(later)

Class

Interface

Methods

Statements

Inheritance

Types / classes

Java

concepts

3 sorts of classes:

x components

x types

x Java only

3 sorts of methods:

x business (services)

x non business (java)

Figure 2.10: Mapping concepts

Remark 1: there is one protocol per component (frame) and notper interface.
Remark 2: the annotations must be compliant with other Java annotations (metamodel).

2.2.4 Friday, September 7, 2007

Time Activity Speaker
09:00 Welcome Pascal André
| Comparison of Abstract Models (discussions) -
| Common MetaModels (discussions) -

12:00 Round tables and discussions -

13:30 Technical discussions (RE techniques and tools,-
| annotation Language, collaborative tools...) -

17:00 Closure Pascal André, Ondrej Sery, Petr Hnetynka

Welcome

Pascal introduced the third day working session by giving anabstract of the discussions and the gainful decisions
of the previous days. We significantly progressed on the project structure and module interfaces and reached
partially the convergence of the means (see section2.2.2). This can be summarised as follows

• DSRG experience -CoCoME, Behaviour Extraction, Tools (JPF, Bandera)

• Project Architecture (Fig.2.8) Three parts

1. Component Metamodelcross LTS extensions, WFR

2. Structure Abstractionuser interacted tool

3. Behavior AbstractionA-interface definition, annotations generation

• Problem Domain Restriction

– metamodel=⇒ components and behaviours

– A =⇒ no connections, no composition, no statement abstraction

./FIGURES/absMapping.eps

38 ECONET Workshop 2007

– B =⇒ no composition, no statement abstraction, user-interactions

• Benchmark =CoCoME

There remain things to do for this last day: the detailed tasks definition, the responsibility repartition and the
planning building. Moreover some discussions were mandatory on technical informations: models (abstract and
concrete models toward a common metamodel), techniques (control flow or parsing, detailed annotation language,
...). The (optimistic) goal of day 5 is that each participanthas a somewhat clear idea of what he will do later.

Here are some guidelines for the definition of the tasks:

• What to do?on the draft architecture

– Metamodel

– Process A

– Process B

• Contributions?a subset of

– Common Metamodel definition?

– Annotation language definition (input of process A)

– Tools Prototypes for Metamodel verification, Process A, Process B

• Synchronisation points =
A-interface, Metamodel def, B-Information def

• Planningdeadlines

– Evaluation (october 2007)

– Workshop Nantes (March 2008)

– Workshop Cluj (August 2008)

• ...

The slides (third plan) are provided on the Workshop Wiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:

program07

We started the day by a comparison of abstract models and after several discussions on the CMM (Common
MetaModel), the AL (Annotation Language), the tools and thetask repartition.

Comparison of Abstract Models (discussions)

The discussions continued with a fast comparison of the three abstract models (SOFA, KADL , Kmelia) in order to
grasp the structural and behavioural models and therefore the annotations and some kind of metamodel.

Concept/Model SOFA EBPL K ADL Kmelia
Attachment Frame Component Service+ component
Operations atomic assignments atomic functions atomic action+
(computation) (constants?) (algebraic) service calls
Types Enums any ADT "complex but open"

means ad hoc
Guards logic + enum logic + ADT logic + ad hoc FL
Dynamic formalism reg. expr. state transition state transition +

"hierarchy"
I/O !? ? ! * ? !?? !!
Labels ?iface.notified [guard] event com/action [guard] action*

{!iface2.pre} (actions can be com or functions)

We studied the corresponding Java constructs in an engineering/reverse-engineering points of view.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07

2.2. WORKING SESSION 39

Concept/Model SOFA EBPL K ADL Kmelia
Attachment set of classes set of classes set of classes
Operations plain methods plain methods methods + behaviours
(computation) user Java statementsalgebraic translation generated code
Types Java types Java types Java types +

classes (ADT) classes
Guards boolean expr. boolean methods conditions
Dynamic formalism control flows control flows various statements

(RMI...) (LTS Library) (control structure, messages, methods)
I/O method calls method calls method calls

parameters parameters parameters
Labels assignments if-then-else statements

user Java statements patterns (Kml-lang)

We started the day by a comparison of abstract models and after a discussions on the common metamodels
and the annotation language, and the task repartition.

Common MetaModel (discussions)

The common component metamodel will include only the commonpart in its first design, leaving some holes for
specific features. The structural concepts are quite similar in the target languages. The main features are those of
the annotation language. They differ mainly on the representation of behaviours (Fig.2.11).

Kmelia
SOFA 2.0
 KADL

plain Java

code

Fractal

Behavioural

Abstract Model

A
annotations

Additional

data

Figure 2.11: Common Component MetaModel

Technical discussions

First a debate opened on the behaviour abstraction RE techniques and tools. On one hand, the usual way to
proceed is to build the control graph: the states are the steps in the system evolution - its state space - and the
transitions are the events and actions performed (method call, statements, control structure). Then we can split the
system behaviour onto components or just model check it. Theproblem is that it contains low level information
and it should be abstract: group state and transitions. Thistechnique is well fitted to LTS base components. On
another hand, we can parse the java code and build parse trees(AST abstract syntax tree with terminal and non
terminal tokens). This provides modular trees that can be merged/collapsed/extended to a more general flow. This
technique seems to be interesting to build regular expressions for the SOFA model. It uses the SunAPI for Java
and tools likejavacc, antlr, JavaCup, etc. In any case, one has to cross the results with existing component
structures. The second solution is chosen.

Some issues remain open:

./FIGURES/ecoCCMM.eps

40 ECONET Workshop 2007

JAVA

PT

(parse tree)

CPT

(component PT)

CF

(control flow)

CCF

(component CF)
Kmelia

SOFA 2.0

KADL

Figure 2.12: Java Behaviour Abstraction

• Parse Tree

– Coloration used to collapse parts of the parse trees.

– Tools?

• Control Flow

– Coloration used to collapse parts of the control flows.

– Tools?

– Format? textual +API

• Find a good common format for both parse tree and control flow.

Then we exchanged views about the annotation language. Theconstructs in the component modelare
associated or derived from one or several annotations in thecode.

Frame/Component

• Corresponding Java construct: one or more classes

• Corresponding Java annotation:

– target class or interface@InComponent(annotation_source, name_of_the_component)

Interface

• Corresponding Java construct: one or more interfaces, or a set of methods from a class

• Corresponding Java annotation:

– target class@provided(annotation_source, name_of_the_model_interface, name_of_the_java_interface)

– target method@provided(annotation_source, name_of_the_model_interface)

– target attribute@required(annotation_source, name_of_the_model_interface)

things to think about later : (temp requirement passed as parameters)

./FIGURES/ecoJBA.eps

2.2. WORKING SESSION 41

"entry point"

• Corresponding Java construct: The main class of a component

• Corresponding Java annotation:

– target class@initclass(annotation_source, name_of_the_component)

– target method@initmethod(annotation_source, name_of_the_component)

Gilles: name_of_the_component seems redundant because the method or the class should already
belong to a component (see InComponent annotation)
things to think about later: (consistency rules needed? is having several initclasses, methods in a component
legal?)

Operation Do we need it? We already know methods from the provided annotation

• Corresponding Java construct: Method

• Corresponding Java annotation:

– target method@

Business methods have to be singled out

Types Goal: identify parameters of business methods
Problem: String or Integer may be used as business object sometimes and sometimes not

• Corresponding Java construct: class or interface

• Corresponding Java annotation:

– target class or Interface@initclass(annotation_source, name_of_the_component)

– target method@businessparameter(annotation_source, parameter_name) (this one
takes precedence over the previous one)

things to think about later: another annotation could be forabstracting data : telling that an integer only has
a few cases...

Business types have to be annotated. In some cases (library without accessible source code) they can’t be, so
a textual configuration file will be used to list them or to listnon-business types. White list, black list, regular
expressions over full name?

Last we discussed about tasks, responsibilities and milestones. Every body participates to the common anno-
tated bibliography on the wiki. Here is a pictured summary ofthe responsibility and participant repartition on the
project structure (Fig.2.13).

As a collaborative tool, a versioning system (SVN) will be installed by DSRG, in addition to the wiki platform
installed by COLOSS. We want to share the tools (source and experience) used during the development.

Closure

Production

• Workshop Report

– Collect paper and slides.

– Summary of the discussions

• Bibliographical Notes

=⇒ project plan for year 2 andEvaluation

42 ECONET Workshop 2007

Kmelia

SOFA 2.0

STSLib

plain Java

code

EJB, Corba, .NET

Specific component framework

reverse

WFR (OCL)

Behaviours

Structures

Fractal

Fractal, SOFA, Spring...

Common

Component

Metamodel

Structural

Abstract Model

flat
/hierarchical

Behavioural

Abstract Model

(eEBP)

A
annotation

definition

User

informations

*

annoted Java

code

Model

checking

Model/Type

checking

B

JPF

UML

diagrams

patterns

analysers

extractors

Textual

informations

Leader: COLOSS, OBASCO

Participants: LCI

Leader: LCI

Participants: all

Leader: DSRG

Participants: COLOSS, OBASCO

Figure 2.13: Econet Architecture: responsabilities

• Fix the participants objectives

• Documentation, research reports

• Intermediate results=⇒ Second Workshop

• Publications (?)

see also the initial ’Second year objectives’
The organizers thanks the participants for their contributions and take a date for a next workshop at Nantes in

2008.

./FIGURES/archiEcoTaskR.eps

Chapter 3

Project Architecture

The contents of this chapter has been defined individually after the workshop. It presents a detailed vision of
the three subprojects, defined in the workshop. There remainsome coordination to process on the common parts
(especially on the interface formats and model tools) and also to share the experience on tools.

3.1 Structural Abstraction Subproject

Writer: Pascal André, Gilles Ardourel

This is currently a draft version.

3.1.1 Objectives and Goals

The objective of the process B (Fig.2.8) is to build a structural component model and a corresponding annotated
Java code. These two elements are inputs of the process A (seethe detailed process in section3.2). The model is
also an instance of the metamodel (see the detailed description in section3.3) that will control its consistency.

A general view of the process B is given in figure3.1; from plain Java code and user interaction, process B
should produce an annotated Java code and a corresponding component model (both results must be consistent).
Some restrictions apply to the first program release:

• Input

– Annotations are those related to the Common Component Meta Model (CCMM) but do not include
other component models yet (Fractal, Sofa, ...). The latterwill be calledextended annotation.

– UML models are not accepted as direct inputs but are read by the user.

• Output

– Only flat component models are targetted.

– Process B is not directly responsible of the consistency between a model and the corresponding Java
annotated code.

– The conformance of the produced component model is checked at the metamodel level.

The process B is in fact iterative because its source is variable (in the sense that it may include many infor-
mations from different nature) and target different goals.For instance one goal is to abstract structural elements
of a component model from a plain Java code and user informations. Another is to read and interpret existing
annotations. Another is to check the compatibility betweenone component model and an annoted Java code... On
each iteration, the process accepts a Java program (with or without annotation) and a component model (possibly
empty). It computes some information, sometimes using external tools and human interaction. This information
modifies the a Java program and the component model.

The idea is to combine primitive transformations and develop a customised (or human driven) process B. Here
are some of these primitive transformations:

43

44 ECONET Workshop 2007

Annoted code

Fractal, SOFA,

Kml...

Structure

Abstraction

(process B)

annotation

definition

User

informations

(interactive)

UML

diagrams

Textual

informations

plain Java

code
 Structural

Abstract Model

flat

hierarchical

CCMM

definition

annoted Java

code

consistent

Figure 3.1: A general view of the process B

Structure

Abstraction

(process B)

annotation

definition

User

informations

(interactive)

[annotated]

Java code

Structural

Abstract Model

CCMM

definition

consistent

External Tools

(parsers, graphs,

XMI…)

i
i

[annotated]

Java code

Structural

Abstract Model

consistent

i+1
i+1

Figure 3.2: An iterative view of the process B

1. Annotate a Java program from user information.

2. Build a component model from an annotated Java source.

3. Build a component model from a plain Java source.

4. Analyse a distributed program to detect components (deployment).

5. Extract cluster using graph tools (grouping class into components, or grouping components into composite).

6. Process model transformations such as fusion, selection... on the couple (code, model).

7. ...

Important remarks:

1. Note that combining transformation 1 and 2 provides a firstresult of process B which can be reusable in
process A.

2. Note also that input and outputs need format filters (reader, writer) which are common to all subprojects.

./FIGURES/processB.eps
./FIGURES/processBiter.eps

3.1. STRUCTURAL ABSTRACTION SUBPROJECT 45

3. Note also that some of these transformations ought to be used in the other subprojects.

Consequently, process B is rather a tool box or a sequence of subprocess applications.

annotation

definition

User

informations

(interactive)

[annotated]

Java code

Structural

Abstract Model

CCMM

definition

consistent

External Tools

(parsers, graphs,

XMI…)

i
i

[annotated]

Java code

Structural

Abstract Model

consistent

i+1
i+1

Model

from

annotat

ions

Annota

tion

writer

from

model

Cluster

ing tool

Distri-

bution

analy-

ser

Model

transfo

rmation

. . .

Input filter

Output filter

Sche-

duler

Figure 3.3: An architectural view of the process B

3.1.2 B transformations and tools

1. Annotate a Java program from user information.
This program needs input/output functions for annotating Java sources.
Some tools are

• Java parsers, analysers... see section3.2.3on page49.

• JDK 5.0 Java Annotation Processing ToolAPT1.

• A program that lead the interactions.

• XML reader/writer.

2. Build a component model from an annotated Java source.
Having an annotated Java program, one can build the corresponding model, providing we have the good
filters and formats (see the adapted transformations).

3. Build a component model from a plain Java source.
This can be obtained by combining other transformations. Since the input model is empty, the human must
provide many informations and can be helped by the cluster tool.

4. Analyse a distributed program to detect components (deployment).
One way to find components is to analyse the distribution framework. Components in this case are linked
to deployment nodes. We can use RMI analysis for example (or corba ?).

5. Extract clusters (grouping class into components, or grouping components into composite).
We need graph tools to analyse component architectures.

6. Process model transformations such as fusion, selection... on the couple (code, model).
In collaboration with the team working on the metamodel we have to develop transformations on models
and their pending Java annotation transformations.

7. Consistency checker.
In collaboration with the team working on the metamodel we have to develop tools that check the consis-
tency between models and their corresponding annotated Java programs.

1java.sun.com/j2se/1.5.0/docs/guide/apt/

./FIGURES/processBbox.eps
java.sun.com/j2se/1.5.0/docs/guide/apt/

46 ECONET Workshop 2007

8. Filters.
In collaboration with the other teams we have to define the formats and to develop utilitary programs to read
and write on the adopted format (XMI, MOF-XMI, Ecore, Java Model API, ...).

9. Scheduler.
This program will chain the transformation in order to buildinteractive B processes.

3.1.3 Interface

The annotation language and component metal model have beendiscussed but the full definition of interface need
an interoperable format. Especially we need a couple (format, tool) to support model and metamodel instanciation.

1. Metamodel format (XMI, ECore, MOF, model API...)

2. Model format (XMI, ECore, MOF, model API...)

3. File exchange vs. model repository.

It is not interesting to exchange text files ou XML files between the three subprojects because we should all
have to write readers and writers modules and manage our own representation of the models. Instead we have to
share this common part.

This part is a common part. It is discussed in section3.4.2

3.1.4 Organisation

This task is led by the COLOSS group; the OBASCO group also contribute significantly to the toolbox; the LCI
team will bring its experience on reverse-engineering tools.

The program is designed as a set of tools which can be developed independently provided the interfaces are
well defined (see section3.1.3). The list of tools is open and will be extended each time we need another tool.

We have to distribute the transformations on the participants and to define which transformations are to include
in each delivery. Transformations 1 and 2 are basic transformations and have to be implemented later with a core
abstractation process (transformation 8) in the beginningof February 2008. These transformations are mandatory
to test the model management module and the interface adequacy. Then the other modules will be added by team
members.

First results on the structural analysis tool are expected by the time of the second workshop (Nantes 2008).
Results on extraction back-ends are expected till the thirdworkshop (Cluj 2008).

3.2 Behavioural Abstraction Subproject

Writer: Tomas Poch

Reverse engineering general Java application into component application consists of two tasks. First, extrac-
tion of an architectural view (identification of components, their interconnections, etc.); second, extraction of a
dynamic behaviour specification of the components identified during the first task. Constituting an interface be-
tween the two tasks, the architectural information is to be stored in a form of Java annotation in the actual Java
sources of the application being reverse engineered.

This section presents goals, means and organization of the second task in the scope of the ECONET project,
and thus summarizing a part of the results of the Prague’2007Workshop working sessions.

3.2.1 Goals

Each group participating in the project has developed its own formalism for behaviour specification. Therefore,
the idea is to make the reverse engineering as general as possible in order to allow extraction of behaviour in any
formalism.

To be more specific, the formalisms considered are:

• Enhanced behaviour protocols(EBP) developed by DSRG,

3.2. BEHAVIOURAL ABSTRACTION SUBPROJECT 47

• eLTSdeveloped by COLOSS,

• STSdeveloped by OBASCO.

The individual behaviour specification formalisms differ alot. This makes creation of a general tool very diffi-
cult. However, steps common to extraction of any behaviour specifications (in particular behaviour protocols and
LTS-based formalisms eLTS and STS) might be identified. Thus, the general approach is to divide all necessary
steps of behaviour extraction into two parts: i) steps common to all formalisms, and ii) steps specific to a particular
formalism.

The first part will be implemented in a General analysis tool,while the second part will be performed by
back-ends specific to a particular formalism.

To prevent reinvention of the wheel, the analysis tool is to be implemented using existing libraries/tools/plat-
forms (for parsing Java sources and annotation extraction,etc.).

To sum it up, the goals of reverse engineering behaviour specification are as follows:

1. Find a suitable libraries/tools/platforms for analysisof Java sources.

2. Create a generic Java analysis tool which produces an intermediate representation of behaviour suitable for
subsequent creation of concrete behaviour specifications in a chosen formalism.

3. Create formalism-specific back-ends for extraction of behaviour specification from the intermediate speci-
fication.

3.2.2 Annotations

Reflecting the goals stated in the previous section, the process of reverse engineering behaviour specification
starts, where the first process (reverse engineering component architecture) ends—i.e. by extracting and using
architectural information provided in a form of Java annotations directly in the Java sources and, of course, the
Java sources themselves.

The necessary architectural information consists of:

1. assignment of Java classes to individual components,

2. identification of provided interfaces and their methods,

3. identification of required interfaces (as class attributes), and

4. demarkation of the components’ initialization code.

Moreover, in order to help extraction of behaviour specification, it might be helpful to have explicitly annotated
ValueTypeclasses. By a ValueType, we mean a class used for storing and passing data rather than providing a
specific functionality.

As the ValueTypes have to be reflected in the behaviour specification, hints about the abstraction may be
necessary. By abstraction we mean replacement of the actualValueType by a simpler abstract type (for example
integer type by enumeration). Although the abstract type has less states, it captures all information necessary
for the component behaviour. For example if the behaviour ofthe component depends on the sign of the integer
parameter, all information we need can be stored in the single bit of information. Thus, the boolean type suffices
for the parameter.

The information about ValueType abstraction could be specific to the target formalism and even more added
manually by a human user. More detailed description of the proposed set of annotations follows.

Component

One or more Java classes can be assigned to a single component. Such an assignment is specified by the following
annotation of a Java class:

@inComponent(annotation_src, component_name)

As in the rest of this section, theannotation_src specifies the origin of the annotation—i.e. a name of a tool
which inserted the annotation in the code or whether the annotation has been inserted manually.

48 ECONET Workshop 2007

Interfaces

Methods of Java classes may be assigned to component’sprovided interfacesin two different ways. First, as an
annotation of a Java class:

@provided(annotation_src, model_iface_name, java_iface_name)

This way, all methods of the specified Java interface (which the annotated class has to implement) are marked as
a part of the provided interface of the component. The secondpossibility is to mark individual methods of a Java
class by the annotation:

@provided(annotation_src, model_iface_name)

This is necessary in a case the component’s provided interfaces do not correspond with the Java interfaces.
In Java sources, a required interface is present in a form of aclass attribute. The attribute stores a reference

to another component, whose provided interface is bound to this required interfaces. Therefore, the target of the
annotation for required interface is an attribute of a Java class:

@required(annotation_src, model_iface_name)

Component’s initialization

In order to be able to derive the behaviour specification correctly, knowledge about a component initialization is
crucial. By initialization, we mean instantiation of classes, assigning references to the required interfaces (i.e. to
the class attributes), starting threads of active components, etc.

Typically, there are two ways of initialization. First, theinitialization is performed by a class. This class is
the first instantiated and is responsible (its constructor)for the instantiation and initialization of the component’s
content. To identify such a class, the following annotationis used:

@initclass(annotation_src, component_name)

The second possibility is that the component content is instantiated and initialized by a static method (an
equivalent of themainmethod).

@initmethod(annotation_src, name_of_the_component)

Data and method parameters abstraction

Some of the internal component data and method parameters might be of crucial importance for correct extraction
of the behaviour specification. Those should be also explicitly annotated, in order that the behaviour specification
extractor could take them into account and provide a necessary abstraction.

However, it is hard to predict the needs of behaviour extraction in advance and thus these annotations are yet
to be further elaborated. The initial proposal is to identify ValueTypes classes and interfaces, and therefore mark
all their instances as important for the component behaviour.

@businessparametertype(annotation_src)

As some types might be important only in a specific context (e.g. String), there is also possibility to mark
particular method parameters and Java class attributes as important for business logic.

@businessattribute(annotation_src)
@businessparameter(annotation_src, parameter_name)

For the actual behaviour specification extraction, hints onhow to perform a data abstraction from the concrete
values of these types have to be added by a human user. A particular format of these hints will be further analyzed.

External dependencies

Some architecture information cannot be introduced into the code as annotations. Mostly, these are the external
dependencies on the class libraries used by the component code. Classes from the libraries can be also important
for the behaviour extraction but in general, they cannot be directly annotated. Therefore, these dependencies
are listed in an extra file. The complete code of the componentis thus a set of classes annotated by both the
InComponent annotations and also the content of the dependencies file.

3.2. BEHAVIOURAL ABSTRACTION SUBPROJECT 49

3.2.3 Tools for Java source analysis

Having the Java sources properly annotated, the question ofhow to extract the annotations and analyze the sources
comes up. There is quite a choice of tools to be used for this purpose.

Possible options are:

• JavaC [2]—standard Java compiler from Sun—is a natural first option as it is standard part of the Java
development kit (JDK) and features a reasonable interface for either annotation processing alone or to
obtain the complete abstract syntax trees.

• JavaCC (Java Compiler Compiler) [1] is a generator of parsers. To create a parser, it uses a LL(n)grammar.

• ANTLR [3] is another parser generator which also uses LL(n) grammars.

• Java CUP [4] is also a parser generator, but in comparison to the previous ones it uses LALR(1) grammars.
It is quite similar to the standard YACC and Bison tools. In contrast, it is written in Java.

• SableCC [5] is another LALR(1) parser generator.

In a case, the chosen parser generator does not provide a lexical analyser, a usage of tools like JLex and JFlex
has to be considered.

Choosing the suitable tool will require deeper explorationand in-depth analysis of all features provided by the
tools. The preferred option is to use JavaC, as it always guarantees to parse the current (and also older) version of
the Java languages and also it does not introduce any third-party tool dependencies.

3.2.4 Generic analysis tool (GAT)

Behaviour specification extraction is divided into two steps. First step is to preprocess the annotated Java sources
and propagate information about architecture to the actualJava code, so that Java statements can be categorized as
either externaly visible events (method calls on required interfaces), visible actions (change of business attributes),
changes in control flow (if and cycle statements), or internal invisible actions (work with local variables). The
result of the process is an abstract syntax tree with nodes “colored” by the architecture information (obtained from
the annotations).

In the second step, the produced cAST (colored AST) is used tocreate a control flow graph (CFG) representing
the code. Again, nodes of the graph are "colored" by the architecture information (cCFG). Both cAST and cCFG
are available by the defined API (all details about the API have to be analyzed yet) and/or in a serialized textual
form.

A specific formalism back-end can choose whether cAST is sufficient for it or whether the usage of cCFG is
necessary.

Based on the preliminary analysis, for the EBP back-end cASTis sufficient while the LTS-based formalism
(eLTS and STS) requires an existence of cCFG.

The whole process is illustrated with Figure3.4.
There is a bigger set of transformations which can be performed among AST, cAST, cCFG. Some of them,

like coloring, are necessary part of the proposed process. Other transformations, like omiting actions on non-
ValueType data, can be used by some back-ends or even the single one. These transformations should be available
to the authors of the back-ends in order to prevent duplicatework.

3.2.5 Reverse engineering back-ends

Depending on the choice of the target behaviour specification formalism (BP, EBP, STS, eLTS, ...) a specific back-
end of GAT is used to extract the behaviour specification. Forexample, the back-end for extraction of behaviour
protocols abstracts from everything except externaly visible events and control flow (replacingif statements by
alternative and cycles by repetition).

50 ECONET Workshop 2007

General analysis tool

Formalism−specific back−ends

Colored
abstract syntax

treeannotations

Java sources
+

Colored
control flow

graph

BP
EBP

...

eLTS
STS
...

Figure 3.4: The two step process of reverse engineering behaviour specification

3.2.6 Organization

This task is led by the DSRG group; the OBASCO and COLOSS groups also participate. The first version of
the set of annotations was created by all groups during the Prague 2007 Workshop. However, the initial ver-
sion is expected to be further enhanced in order to allow automated (or at least semi-automated) abstraction of
ValueTypes.

More specifically, DSRG is responsible for creation of the general analysis tool. For this tool, each partici-
pating group (DSRG, OBASCO, COLOSS) is going to implement their own back-ends specific to the behaviour
specification formalisms they use.

First results on the generic analysis tool are expected by the time of the second workshop (Nantes 2008).
Results on extraction back-ends are expected till the thirdworkshop (Cluj 2008).

3.3 Metamodel Abstraction Subproject

Writer: Dan Chiorean

3.3.1 Objectives and Goals

Designing and coding a powerful repository that implementsthe Common Component Metamodel architecture
represents the main objective of the current sub-project. Accomplishing this objective will support modelers in
creating and validating models that instantiate the CommonComponent Metamodel in an efficient manner.

3.3.2 Participants

LCI will represent the main participant, responsible with metamodel’s design, implementation and testing.
DSRG, COLOSS and OBASCO teams will provide the requirements. All teams will be involved in testing the
repository, and, of course, in taking the final decision.

3.3.3 Means

The static semantics of the repository will be specified by means of OCL constraints. The repository’s (meta-
model’s) API will also be described in a formal manner, by means of observers, specified in OCL.

The OCLE tool will be used both in validating metamodel’s static semantics and API observers, and in gener-
ating the Java code corresponding to Additional Operationsand OCL assertions.

./FIGURES/general_analysis_tool.eps

3.3. METAMODEL ABSTRACTION SUBPROJECT 51

3.3.4 Tasks and Schedule

1. Investigating the existent Component Models in order to extract the common parts and produce the informal
specification of the Common Component Metamodel (CCM) architecture and metamodel assertions.
Responsibles: DSRG, COLOSS and OBASCO teams
Deadline: 15th of November 2007

2. Specifying metamodel assertions and API observers in OCL.
Responsible: LCI
Deadline: 1st of December 2007

3. Validating the OCL specifications on significant models.
Responsible: LCI
Deadline: 15th of December 2007

4. Analyzing state of the art approaches and generating the java code corresponding to the CCM repository,
including the code associated to assertions and AdditionalOperations. At least two repositories will be
created (one containing the code generated using the appropriates EMF tools and another one using OCLE).
Responsible: LCI
Deadline: 1st of February 2008

5. Testing and improving the above mentioned repositories using different models.
Participants: all teams
Deadline: 15th of March 2008

6. Choosing the ECONET repository.
Participants: all teams
Deadline: 1st of April 2008

3.3.5 Using assertions in modeling - an evaluation time view

Using assertions in modeling is incomplete if this is restrained just to better understand the problem and to
emphasize the conditions that have to be accomplished by theclients and the provider of a functionality. The true
benefits can be obtained only if assertions are used at runtime, assisting the user in preventing software runtime
crashes or obtaining inaccurate results. Our interest is not limited to validation. In case of constraint violation, we
are interested in identifying rationales and even more, in fixing bugs and errors. The price that needs to be paid
for obtaining the maximum benefits from using assertions in modeling is to take into account the moment when
constraints are evaluated. The main target of this paper is to highlight the manner in which the moment when
assertions are evaluated influences their specification.

In order to support an easier understanding of our statements, we will consider the CoreComponent Meta-
model - a simple model grouping the common features of most component-oriented modeling languages [BHP06].
Moreover, in Figure3.5, only the elements referred in assertions are represented.

Model validation (model checking) can be regarded from two perspectives (views): static checking and dy-
namic checking. As we will see in the following, these views influence assertions’ specification.

Static checking - The constraints aid in correcting and validating a previously constructed model

Models are metamodel instances - our objective is to check ifthe analyzed models comply with all the con-
straints associated to different metamodel elements. The problem is entirely similar with that of an UML model
validated against WFR specified at the UML metamodel level. In this case, constraints are specified by means of
invariants.

As mentioned in [Moo00], during its construction, the model is incomplete and sometimes it is incorrect
against the constraints associated to the modeling language. Therefore, before doing model transformation, it is
important to check model correctness and completeness (model compilability).

In case of the CoreComponent Metamodel, theXOR constraint between the unidirectional associations from
SubcomponentInstance towardFrame andArchitecture (graphically specified in Figure3.5), can be
expressed by means of the following invariant:

52 ECONET Workshop 2007

Figure 3.5: A part of the CoreComponent Metamodel

(1) context SubcomponentInstance
inv FrameOrArchitectureAssoc:

self.instantiateArchitecture.isUndefined xor
self.instantiateFrame.isUndefined

If the above invariant’s value isfalse, evaluating both itsXOR sub-expressions supports the developer in
identifying error’s rationale, enabling, this way, error fixing.

The constraint concerning the name uniqueness of required interfaces associated to an instance of theFrame
metaclass, specified by means of the following invariant:

(2) context Frame
inv requiredInterfacesName:

self.requiredInterface.name->isUnique(n | n)

does not support enough the user in identifying interfaces that caused this invariant’s violation. This is because in
case of many interfaces, a careful study of their names is time consuming, tedious and error prone.

A more appropriate specification, aiding the user in identifying interfaces with the same name is:

(3) context Frame
inv requiredInterfacesName:

let ri = self.requiredInterface in
(ri->reject(e | ri.name->count(e.name)=1))->isEmpty

In case of an invariant violation, simply evaluating the collection of interfaces having identical names helps
the user in navigating the above mentioned interfaces and inmodel updating (correction), in order to comply with
this invariant (see Figure3.6).

If the uniqueness condition concerns both required and provided interfaces, the specification could be:

./FIGURES/metaCCM.eps

3.3. METAMODEL ABSTRACTION SUBPROJECT 53

Figure 3.6: Identifying Interfaces that violated the Frameinvariant requiredInterfacesName using OCLE

(4) context Frame
inv uniqueInterfacesName:

let i = self.requiredInterface->union(self.providedInterface) in
(ri->reject(e | ri.name->count(e.name)=1))->isEmpty

Comparing the specifications presented in (3) and (4) with the specification presented in (2), we can notice
that the price paid for an easier identification of interfaces violating theFrame invariant
requiredInterfacesName (Figure3.6) is a more detailed OCL specification.

In case of constraints restraining the type of elements thatcan be associated asFrame annotations, we will
adopt a solution similar to the previous one:

(5) context Frame
inv annotations_Type:

self.annotation->select(e | not e.oclIsTypeOf(TopLevel))->isEmpty

Like for specifications presented in (3) and (4), the objective is not restricted to catch invariant violation. We
are interested in identifying the rationale of this failure. Evaluating the collection returned by the select operation
(5) supports users in identifying the annotations violating this constraint.

Dynamic checking - The constraints aid in preserving the model valid after each operation

This situation is similar to that of an object-oriented application, in which objects are created, destroyed
or change their state. The universe of these objects has to bepermanently valid. Therefore, we have to take
appropriate decisions, enabling us to keep the system in a valid state after each call of a constructor or of a modifier.
The strategy adopted will comply with the philosophy "better prevent than cure", therefore, the constraints will be
specified mainly by means of pre and postconditions.

As in the static checking case, we will first analyze the constraint between the two unidirectional associations
starting from theSubcomponentInstance class towardFrame andArchitecture. TheXOR constraint
(graphically specified on the class diagram) states that starting fromSubcomponentInstancewe will always
have a single association, either toward theFrame class, or toward theArchitecture class.

According to the "design by contract" principle [Mey97], the invariant specified for the
SubcomponentInstance class has to be satisfied by all its instances during their entire life, excepting the time
when modifiers are applied on those instances. A first consequence is thatSubcomponentInstance objects

./FIGURES/sofaOcle.eps

54 ECONET Workshop 2007

must be created always using explicit constructors. In caseof a single explicit constructor, among its parameters
we should have a valid reference toward one of theFrame or Architecture classes and only one. Therefore,
the other reference has to be null (undefined). An alternative for the invariant will be:

(6) context SubcomponentInstance::SubcomponentInstance(a:Architecture,
f:Frame):SubcomponentInstance

pre subcomponentInstance_connection:
(a.isUndefined and f.oclIsTypeOf(Frame)) or
(f.isUndefined and a.oclIsTypeOf(Architecture))

post subcomponentInstance_connection_:
(result.instantiateFrame = f) and
(result.instantiateArchitecture = a)

The OOP philosophy requires the methodssetInstantiateFrame(f:Frame) and
setInstantiateArchitecture(a:Architecture) to update only the value of theassociationEnd
transmitted as a parameter. Therefore, in case of these modifiers, the pre and postconditions could be:

(7) context SubcomponentInstance::setInstantiateFrame(f:Frame)
pre instantiate_Frame:

self.instantiateArchitecture.isUndefined and f.oclIsTypeOf(Frame)
post instantiate_Frame:

self.instantiateFrame = f

(8) context SubcomponentInstance::setInstantiateArchitecture (a:
Architecture)

pre instantiate_Architecture:
self.instantiateFrame.isUndefined and a.oclIsTypeOf(Architecture)

post instantiate_Architecture_:
self.instantiate Architecture = a

If the requirements explicitly mention that in case of aSubcomponentInstance object it is possible to
remove its association toward aFrame instance and to add a new association toward anArchitecture instance
(to switch from aFrame to anArchitecture) or vice versa, the operation supporting this requirement must
comply with a precondition similar to that above specified for the explicit constructor. In the body of that method,
an appropriatesetInstantiatemethod will be called just after setting the other possible reference to null.

Regarding the constraints ensuring the uniqueness of the names ofrequiredInterfaces attached to a
Frame, we will take into account the fact that this constraint can be broken only when a new interface is added.
Therefore, the assertions attached to the operationaddRequiredInterface(i:Interface)would be:

(9) context Frame::addRequiredInterface(i:Interface)
pre uniqueName:

i.name.size > 0 and self.requiredInterface.name->excludes(i.name)
post uniqueName_:

self.requiredInterface->size = self.requiredInterface@pre->size + 1
and self.requiredInterface.name->includes(i.name)

If changing the interface name after attaching the interface to a Frame is required, then, an appropriate pre-
condition has to be specified for the methodInterface::setName(n:String). Also, if explicit construc-
tors initializing the value of the requiredInterface role (towardInterface objects) were specified for the class
Frame, then, appropriate preconditions have to be specified for those above mentioned constructors.

The last constraint concerns the type of instances that can be attached to a Frame as annotations. In this case,
the assertion will also be specified by means of a precondition.

(10) context Frame::addAnnotation(a:Annotation)
pre param_s_type:

a.oclIsKindOf(TopLevel)

3.3. METAMODEL ABSTRACTION SUBPROJECT 55

Conclusion

When specifying assertions, the evaluation time must be taken into account. In case of static evaluation,
the assertions are mainly specified by means of invariants. The invariant specification has to help designers in
identifying the rationales of invariant failure. The priceto be paid is a detailed OCL specification. In case of
dynamic evaluation, the assertions are mainly specified by using pre and postconditions. At runtime, assertions
specified in OCL are translated in the target programming language. Therefore managing assertions failure must
consider both the support of the programming language and the functionalities offered by the IDE used.

56 ECONET Workshop 2007

3.4 Common Tools

Interface between subprojects can be text files or XML files but this quite poor and each group will need to develop
tools on Java and Models. In order to get a standard vision of the usqble technologiesm we need to agree on the
model and metamodel tools used in each subproject.

3.4.1 Java/Annotation Tools

Several tools will be used in more than one subproject.

1. JavaCC,https://javacc.dev.java.net/

2. Java Development Kit,http://java.sun.com/

3. ANTLR, http://www.antlr.org/

4. Java CUP,http://www2.cs.tum.edu/projects/cup/

5. SableCC,http://sablecc.org/

3.4.2 Model Engineering Tools

We need tools for model management, preferably on Eclipse. We already discussed on a modeling tool around
Eclipse technologies (Ecore, XML, EMF, MOF...) that allowsto

1. describe and check component metamodels CMM (with structural and behavioural features, with a model
that links to Java code)

2. describe and check component models CM

3. provide an API to navigate on and query models, to add operations and processing on models

4. ...

LCI should maintain this (CMM-CM) layer since it relates to metamodels.
At first sight OCLE can provide the main elements on points 1 and 2 but it doesn’t provide an API usable in

process A (structure) and B (behaviour).
Other tools exist that can help to use Ecore without handlingit directly:

• Kermeta (IRISA)http://www.kermeta.org/

• ATL (LINA) http://www.eclipse.org/m2m/atl/

• ArgoUML tool (OpenSource)http://argouml.tigris.org/

• others...

Information on this aspect can be found here:

• Generalities
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language

• Eclipse Modeling Tools
http://www.eclipse.org/modeling/

• Kermeta (IRISA)
http://www.kermeta.org/

• ATL (LINA)
http://www.eclipse.org/m2m/atl/

• Tools
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47

It would be helpful to compare tools

https://javacc.dev.java.net/
http://java.sun.com/
http://www.antlr.org/
http://www2.cs.tum.edu/projects/cup/
http://sablecc.org/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://argouml.tigris.org/
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language
http://www.eclipse.org/modeling/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47

Chapter 4

Conclusion

We report many informations of the workshop in this document. This work has also been intended to be the
technical part of the project first year report.

The workshop emphasis the (intuited) fact that the abstractmodels of the partners share a common basis on
components, services and behaviours. The differences can be seen merely as enrichment rather than concurrency.
A common metamodel can therefore be proposed, which can be augmented later to be a proposal for component
model interoperability. The cross fertilisation seems also possible at the tool level.

A plan is a sketch for a first step proposal in component abstraction from Java code. We fixed a limited context
and objectives to be achieved in one year and several months.The practical implementation will be led in the
second year.

57

Appendix A

More informations on...

see the Project Wiki.

A.1 Workshop Material

Most of the elements are on the project and workshop Wiki.

A.2 Collaborative Tools

Some collaborative tools have been installed to exchange documents.

• Wiki
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start
For storing documents, discussions...

• Version Management. A SVN repository for the project is running at
svn://aiya.ms.mff.cuni.cz/econet

• CoCoME
http://agrausch.informatik.uni-kl.de/CoCoME
http://www.cocome.org/

A.3 Annotated Bibliography

We summarise some useful papers on the subject. These paperscan be downloaded on the wiki, project material.

A.3.1 General Papers

• Reverse Engineering: A Roadmap by Hausi Müller at al. [MJS+00]

• The Vienna Component Framework Enabling Composition Across Component Models by Johann Oberleit-
ner et al. [OGJ03]

• A technique for automatic component extraction from object-oriented programs by refactoring by Hironori
Washizakia et al. [WF05]

• Program and interface slicing for reverse engineering by Jon Beck et al. [BE93]

• A Simple Method for Extracting Models from Protocol Code by David Lie et al.[LCED01]

• An Intermediate Representation for Integrating Reverse Engineering Analyses by Rainer Koschke et al.
[KGW98]

58

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start
svn://aiya.ms.mff.cuni.cz/econet
http://agrausch.informatik.uni-kl.de/CoCoME
http://www.cocome.org/

A.3. ANNOTATED BIBLIOGRAPHY 59

A.3.2 Java Reverse Engineering

• Experiences with the Development of a Reverse Engineering Tool for UML Sequence Diagrams: A Case
Study in Modern Java Development Matthias Merdes et al. [MD06]

• Reverse Engineering a Large Component-based Software Product by JM Favre and al. [FED+01]

A.3.3 Patterns Reverse Engineering

• Pattern-Based Reverse-Engineering of Design Components by Rudolf K. Keller et al. [KSRP99]

• An approach for reverse engineering of design patterns by Ilka Philippow et al. [PSRN05]

• Reverse Engineering of Design Patterns from Java Source Code by Nija Shi et al. [SO06]

• A Comparison of Reverse Engineering Tools Based on Design Pattern Decomposition by Francesca Arcelli
et al. [AMRT05]

• Automatic Detection of Design Pattern for Reverse Engineering by Hakjin Lee et al. [LYL07]

• Experiments on Design Pattern Discovery by Jing Dong et al. [DZ07]

A.3.4 Code Model Checking, Source code Analysis

• Model-checking Distributed Components: The Vercors Platform by Tomas Barros at al. [BCMR07]

• Source Code Analysis: A Road Map by David Binkley [Bin07]

• Formal verification of software source code through semi-automatic modeling by Cindy Eisner [Eis05]

• Counterexample-Guided Abstraction Refinement by Edmund M.Clarke et al. [CGJ+00]

• The SLAM Project: Debugging System Software via Static Analysis by Thomas Ball et al. [BR02]

A.3.5 Trace Exploration

• A Survey of Trace Exploration Tools and Techniques by Abdelwahab Hamou-Lhadj et al. [HLL04]

• Bandera: extracting finite-state models from Java source code by J.C. Corbett et al. [CDH+00]

• Tool-supported program abstraction for finite-state verification by M.B. Dwyer et al. [DHJ+01]

• Component Recovery, Protocol Recovery and Validation in Bauhaus by Thomas Eisenbarth et al. [EKV05]

A.3.6 Verification of Software Components and Code

• Roadmap for enhanced languages and methods to aid verification by Gary T. Leavens et al. [LAB+06]

• Modular Verification of Software Components in C by Sagar Chaki et al. [CCG+04]

• Predicate Abstraction of ANSI-C Programs Using SAT by Edmund Clarke at al. [CKSY04]

A.3.7 Members publications on the subject

DSRG

• Runtime Support for Advanced Component Concepts by Tomas Bures et al. [BHP+07]

• Modeling Environment for Component Model Checking from Hierarchical Architecture by Pavel Parizeka
et al. [PP07a]

• Specification and Generation of Environment for Model Checking of Software Components by Pavel Parizek
et al. [PP07b]

60 ECONET Workshop 2007

• Model Checking of Component Behavior Specification: A Real Life Experience by Pavel Jezek et al.
[JKP06]

• Model Checking of Software Components: Combining Java PathFinder and Behavior Protocol Model
Checker by Parízek Pavel, et al. [PPK07]

• Model Checking of Software Components: Making Java PathFinder Cooperate with Behavior Protocol
Checker by Parízek Pavel, et al. [PPK06]

OBASCO

• Java Implementation of a Component Model with Explicit Symbolic Protocols by Sebastian Pavel et al.
[PNPR05]

Bibliography

[AAA06] Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking Component Composability. In
5th International Symposium on Software Composition, volume 4089 ofLecture Notes in Computer
Science. Springer Verlag, 2006.

[AMRT05] Francesca Arcelli, Stefano Masiero, Claudia Raibulet, and Francesco Tisato. A Comparison of Re-
verse Engineering Tools Based on Design Pattern Decomposition. InASWEC ’05: Proceedings of the
2005 Australian conference on Software Engineering, pages 262–269, Washington, DC, USA, 2005.
IEEE Computer Society.

[BCMR07] Tomás Barros, Antonio Cansado, Eric Madelaine, and Marcela Rivera. Model-checking distributed
components: The vercors platform.Electron. Notes Theor. Comput. Sci., 182:3–16, 2007.

[BE93] Jon Beck and David Eichmann. Program and interface slicing for reverse engineering. InICSE
’93: Proceedings of the 15th international conference on Software Engineering, pages 509–518, Los
Alamitos, CA, USA, 1993. IEEE Computer Society Press.

[BHM06] Tomas Barros, Ludovic Henrio, and Eric Madelaine. Model-checking distributed components: The
vercors platform. InInternational Workshop on Formal Aspects of Component Software (FACS’06),
Prague, September 2006. Electronic Notes in Theoretical Computer Science (ENTCS).

[BHP06] Tomáš Bureš, Petr Hnětynka, and František Plášil. SOFA 2.0: Balancing advancedfeatures in a hier-
archical component model. InFourth International Conference on Software Engineering,Research,
Management and Applications (SERA 2006), 9-11 August 2006,Seattle, Washington, USA, pages
40–48. IEEE Computer Society, 2006.

[BHP+07] Tomáš Bureš, Petr Hnětynka, František Plášil, Jan Klesnil, Ondrej Kmoch, and Tomas Kohan and-
Pavel Kotrc. Runtime support for advanced component concepts. In5th ACIS International Confer-
ence on Software Engineering Research, Management & Applications (SERA 2007), pages 337–345.
IEEE Computer Society, 2007.

[Bin07] David Binkley. Source code analysis: A road map. InFOSE ’07: 2007 Future of Software Engineer-
ing, pages 104–119, Washington, DC, USA, 2007. IEEE Computer Society.

[BR02] Thomas Ball and Sriram K. Rajamani. The slam project:debugging system software via static anal-
ysis. InPOPL, pages 1–3, 2002.

[CCG+04] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular verification of
software components in c.IEEE Trans. Softw. Eng., 30(6):388–402, 2004.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, ShawnLaubach, Corina S. P̆as̆areanu, Robby,
and Hongjun Zheng. Bandera: extracting finite-state modelsfrom java source code. InICSE ’00:
Proceedings of the 22nd international conference on Software engineering, pages 439–448, New
York, NY, USA, 2000. ACM Press.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, andHelmut Veith. Counterexample-
guided abstraction refinement. InCAV ’00: Proceedings of the 12th International Conference on
Computer Aided Verification, pages 154–169, London, UK, 2000. Springer-Verlag.

61

62 ECONET Workshop 2007

[CKSY04] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate abstraction of
ansi-c programs using sat.Form. Methods Syst. Des., 25(2-3):105–127, 2004.

[DHJ+01] Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawn Laubach, Corina S. P̆as̆areanu, Hongjun
Zheng, and Willem Visser. Tool-supported program abstraction for finite-state verification. InICSE
’01: Proceedings of the 23rd International Conference on Software Engineering, pages 177–187,
Washington, DC, USA, 2001. IEEE Computer Society.

[DZ07] Jing Dong and Yajing Zhao. Experiments on design pattern discovery. InPROMISE ’07: Proceed-
ings of the Third International Workshop on Predictor Models in Software Engineering, page 12,
Washington, DC, USA, 2007. IEEE Computer Society.

[Eis05] Cindy Eisner. Formal verification of software source code through semi-automatic modeling.Soft-
ware and System Modeling, 4(1):14–31, 2005.

[EKV05] Thomas Eisenbarth, Rainer Koschke, and Gunther Vogel. Static object trace extraction for programs
with pointers.J. Syst. Softw., 77(3):263–284, 2005.

[FED+01] Jean-Marie Favre, Jacky Estublier, Frédéric Duclos, Remy Sanlaville, and Jean-Jacques Auffret. Re-
verse engineering a large component-based software product. In CSMR ’01: Proceedings of the Fifth
European Conference on Software Maintenance and Reengineering, page 95, Washington, DC, USA,
2001. IEEE Computer Society.

[HLL04] Abdelwahab Hamou-Lhadj and Timothy C. Lethbridge.A survey of trace exploration tools and
techniques. InCASCON ’04: Proceedings of the 2004 conference of the Centrefor Advanced Studies
on Collaborative research, pages 42–55. IBM Press, 2004.

[JKP06] Pavel Ježek, Jan Kofroň, and František Plášil. Model checking of component behavior specification:
A real life experience. In Luis Barbosa and Zhiming Liu, editors, International Workshop on For-
mal Aspects of Component Software (FACS 2005), volume 160 ofElectronic Notes in Theoretical
Computer Science, pages 197–210, Macao, Macao, 2006.

[KGW98] R. Koschke, J.-F. Girard, and M. Würthner. An intermediate representation for reverse engineering
analyses. InWCRE ’98: Proceedings of the Working Conference on Reverse Engineering (WCRE’98),
page 241, Washington, DC, USA, 1998. IEEE Computer Society.

[KSRP99] Rudolf K. Keller, Reinhard Schauer, Sébastien Robitaille, and Patrick Pagé. Pattern-based reverse-
engineering of design components. InICSE ’99: Proceedings of the 21st international conferenceon
Software engineering, pages 226–235, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[LAB +06] Gary T. Leavens, Jean-Raymond Abrial, Don Batory, Michael Butler, Alessandro Coglio, Kathi Fisler,
Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-Jones,Murali Sitaraman, Douglas R. Smith,
and Aaron Stump. Roadmap for enhanced languages and methodsto aid verification. InGPCE
’06: Proceedings of the 5th international conference on Generative programming and component
engineering, pages 221–236, New York, NY, USA, 2006. ACM Press.

[LCED01] David Lie, Andy Chou, Dawson Engler, and David L. Dill. A simple method for extracting models for
protocol code. InISCA ’01: Proceedings of the 28th annual international symposium on Computer
architecture, pages 192–203, New York, NY, USA, 2001. ACM Press.

[LYL07] Hakjin Lee, Hyunsang Youn, and Eunseok Lee. Automatic Detection of Design Pattern for Reverse
Engineering. InProceedings of the 5th ACIS International Conference on Software Engineering
Research, Management & Applications (SERA 2007), pages 577–583, Washington, DC, USA, 2007.
IEEE Computer Society.

[MD06] Matthias Merdes and Dirk Dorsch. Experiences with the development of a reverse engineering tool
for uml sequence diagrams: a case study in modern java development. InPPPJ ’06: Proceedings of
the 4th international symposium on Principles and practiceof programming in Java, pages 125–134,
New York, NY, USA, 2006. ACM Press.

BIBLIOGRAPHY 63

[Mey97] Bertrand Meyer.Object-oriented Software Construction. International Series in Computer Science.
Prentice Hall, 2 edition, 1997. ISBN 0-13-629155-4.

[MJS+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R. Tilley, and Kenny
Wong. Reverse engineering: a roadmap. InICSE ’00: Proceedings of the Conference on The Future
of Software Engineering, pages 47–60, New York, NY, USA, 2000. ACM Press.

[Moo00] Michael Moors. Consistency checking, rose architect, spring issue. Technical report, Rational, April
2000.

[OGJ03] Johann Oberleitner, Thomas Gschwind, and Mehdi Jazayeri. The vienna component framework en-
abling composition across component models. InICSE ’03: Proceedings of the 25th International
Conference on Software Engineering, pages 25–35, Washington, DC, USA, 2003. IEEE Computer
Society.

[PNPR05] Sebastian Pavel, Jacques Noyé, Pascal Poizat, andJean-Claude Royer. A java implementation of a
component model with explicit symbolic protocols. InProceedings of the 4th International Workshop
on Software Composition (SC’05), volume 3628 ofLecture Notes in Computer Science, pages 115–
125. Springer-Verlag, 2005.

[PP99] Radek Pospisil and Frantisek Plasil. Describing theFunctionality of EJB using the Behavior Proto-
cols, 1999.

[PP07a] Pavel Parízek and František Plášil. Modeling environment for component model checking from hi-
erarchical architecture. InThird International Workshop on Formal Aspects of Component Software
(FACS 2006), volume 182 ofElectronic Notes in Theoretical Computer Science, pages 139–153. El-
sevier B.V., 2007.

[PP07b] Pavel Parízek and František Plášil. Specification and generation of environment for model checking of
software components. InFormal Foundations of Embedded Software and Component-Based Software
Architectures, FESCA 2006, volume 176 ofElectronic Notes in Theoretical Computer Science, pages
143–154. Elsevier B.V., 2007.

[PPK06] Pavel Parízek, František Plášil, and Jan Kofroň. Model checking of software components: Making
java pathfinder cooperate with behavior protocol checker. Technical Report 2, KSI MFF UK, 2006.

[PPK07] Pavel Parízek, František Plášil, and Jan Kofroň. Model checking of software components: Combining
java pathfinder and behavior protocol model checker. In30th IEEE/NASA Software Engineering
Workshop (SEW-30), pages 133–141. IEEE Computer Society, 2007.

[PSRN05] Ilka Philippow, Detlef Streitferdt, Matthias Riebisch, and Sebastian Naumann. An approach for
reverse engineering of design patterns.Software and System Modeling, 4(1):55–70, 2005.

[PV02] F. Plasil and S. Visnovsky. Behavior protocols for software components, 2002. IEEE Transactions on
SW Engineering, 28 (9), 2002.

[SO06] Nija Shi and Ronald A. Olsson. Reverse engineering ofdesign patterns from java source code. In
ASE ’06: Proceedings of the 21st IEEE/ACM International Conference on Automated Software Engi-
neering, pages 123–134, Washington, DC, USA, 2006. IEEE Computer Society.

[WF05] Hironori Washizaki and Yoshiaki Fukazawa. A technique for automatic component extraction from
object-oriented programs by refactoring.Sci. Comput. Program., 56(1-2):99–116, 2005.

List of Figures

1.1 Project Wiki . 8
1.2 Workshop on the Wiki . 9
1.3 Workshop Organisation on the Wiki. 10

2.1 ECONET Project: "abstract" context. 24
2.2 CoCoME: Sofa static architecture. 30
2.3 Sofa: short metamodel. 31
2.4 Econet Architecture: draft 1. 32
2.5 Bandera overview (from web source). 34
2.6 JPF model of operation (from web source). 34
2.7 JPF Java layers (from web source). 35
2.8 Econet Architecture: final version. 36
2.9 Abstraction Process. 36
2.10 Mapping concepts. 37
2.11 Common Component MetaModel. 39
2.12 Java Behaviour Abstraction. 40
2.13 Econet Architecture: responsabilities. 42

3.1 A general view of the process B. 44
3.2 An iterative view of the process B. 44
3.3 An architectural view of the process B. 45
3.4 The two step process of reverse engineering behaviour specification 50
3.5 A part of the CoreComponent Metamodel. 52
3.6 Identifying Interfaces that violated the Frame invariant requiredInterfacesName using OCLE. . . 53

64

	Introduction
	The 16293RG ECONET Project
	Motivations
	Partners
	Initial Plan

	The Workshop at Charles University of Prague
	Preparation
	Organisation
	Objectives
	Participants
	Program and Schedule

	Report Contents

	Workshop Sessions
	Team and Technical Presentation Sessions
	Introduction
	Monday, September 3, 2007
	Tuesday, September 4, 2007

	Working Session
	Introduction
	Wednesday, September 5, 2007
	Thursday, September 6, 2007
	Friday, September 7, 2007

	Project Architecture
	Structural Abstraction Subproject
	Objectives and Goals
	B transformations and tools
	Interface
	Organisation

	Behavioural Abstraction Subproject
	Goals
	Annotations
	Tools for Java source analysis
	Generic analysis tool (GAT)
	Reverse engineering back-ends
	Organization

	Metamodel Abstraction Subproject
	Objectives and Goals
	Participants
	Means
	Tasks and Schedule
	Using assertions in modeling - an evaluation time view

	Common Tools
	Java/Annotation Tools
	Model Engineering Tools

	Conclusion
	More informations on...
	Workshop Material
	Collaborative Tools
	Annotated Bibliography
	General Papers
	Java Reverse Engineering
	Patterns Reverse Engineering
	Code Model Checking, Source code Analysis
	Trace Exploration
	Verification of Software Components and Code
	Members publications on the subject

