ECONET Project
PRAGUE 2007 - WORKSHOPREPORT

Pascal ANDRE Dan CHIOREAN Frantisek PLASIE Jean-Claude ROYER

2007, 3-7 September

EGIDE

ILINA - FRE CNRS 2729- 2, rue de la Houssiniére, B.P.922084B22 Nantes Cedex 3, France

2Computer Science Research Laboratory, Universitatea BB\BBLYAI Mihail Kogalniceanu nr. 1 RO- 400084 Cluj-
Napoca, Romania

3Distributed Systems Research Group, Charles Universi@ypMranske nam.25, 11800 Prague 1, Czech Republic

4OBASCO - EMN/INRIA LINA FRE CNRS 2729, 4, rue Alfred Kastler-”4307 Nantes cedex 3 France

./FIGURES/logoEgide.eps

2 ECONET Workshop 2007

Executive Summary

An Egide-sponsored workshop was held at the Department fiv&®@ Engineering of Charles University in
Prague. This workshop was the first one of the ECONET Projedt@293RGentitled, '‘Behaviour Abstraction
from Code Filling the Gap between Component Specification and Impteatir',

The workshop was convened in response to the objectiveseofirst year of the project plan which are
reminded here

e Determination of the field of application (boundaries ofalasncepts and idioms).

e Settings of the major principles to abstract behavioursédtware component&Mmelia, SOFA and STS)
from Java code.

Experimentations on existing code.

Studying and proposing a pattern for annotating EJB commisrie order to better support Reverse Engi-
neering (behaviuor abstraction from code).

¢ Integration of the verification of guards using Object Coaist Language OCL (and the OCLE tool).
e Documentation, research report and workshop preparation.

More precisely, the aims of the workshop were (1) to imprdweknowledge of the participants on each other
activity and background, and (2) to take concerted decis@mmthe project issues (concrete objectives, tasks,
organisation, responsabilities, deliveries, plannihg..

On these points the workshop was a satisfactory step in tijeqty thanks to the motivation of the participants.
The following issues have been discussed: detailed competef each participant on the project topics, compar-
ison of component models and development approaches,aterairjectives of the project, selection of the kind
of code to be abstracted, shared techniques and tools, cotnemzhmark, etc. The working sessions enabled (1)
to establish a common and shared concrete vision of theqty@®) to delimit the project objectives and context
(nature of the Java code, benchmark, subset of the absteaalgls), (3) to divide the project into parts, which are
easier to handle, (4) the definition and repartition of indlinal tasks.

A project architecture was drawn after fruitful exchangesoanpanied with the definition of tasks, with bal-
anced responsabilities and partnerships. This projektdes three distinct but complementary parts:

e Structural abstraction from Java code.
e Behavioural abstraction from Java code.
e Metamodel definition and consistency verification.

Each part (subproject) constitutes a challenge since thenegoing research on it. Interfaces between the parts
have been roughly defined. A common benchmark has been g pmavoid support mismatch.

A key recommendation from the workshop is that the participahould tackle the objectives in a limited
(but extensible) context in order to produce results in &aryproject. Nevertheless a contribution on the related
research fields is expected. A secondary recommendationtfre workshop is to pursue a cross fertilisation on
the abstract component models and metamodels.

The workshop concluded with some guidelines to the next slavk that should take place in Nantes 2008.

This report relates what happened in the Prague’s work ().

Acknowledgements The participants would like to thank Egide for its financiapport of this workshop.

Contents

1 Introduction 5
1.1 Thel6293RGECONET Project o o i e e e e e 5
1.1.1 Motivations. 5
1.1.2 Partners e e 7
1.1.3 InitialPlan e e 7
1.2 The Workshop at Charles University of Prague. 7
1.21 Preparation 8
1.2.2 Organisation. e 8
1.2.3 Objectives o e 9
1.2.4 Participants 9
1.2.5 Programand Schedule. 10
1.3 ReportContents e 11
2 Workshop Sessions 12
2.1 Team and Technical Presentation Sessions 12
2.1.1 Introduction 12
2.1.2 Monday, September 3,2007. e 13
2.1.3 Tuesday, September4,2007. e 16
2.2 WOrking SEeSSION. o L e 23
2.2.1 Introduction 23
2.2.2 Wednesday, September5,2007. 23
2.2.3 Thursday, September 6,2007 28
2.2.4 Friday, September 7,2007. e e 37
3 Project Architecture 43
3.1 Structural Abstraction Subproject 43
3.1.1 Objectivesand Goals. e 43
3.1.2 Btransformationsandtools 45
3.1.3 Interface 46
3.1.4 Organisation. e 46
3.2 Behavioural Abstraction Subproject. 46
321 Goals. . . . 46
3.2.2 AnnOtations e e 47
3.2.3 ToolsforJavasource analysis. 49
3.2.4 Genericanalysistool (GAT) o e 49
3.2.5 Reverse engineeringback-ends. oL o 49
3.2.6 Organization. e 50
3.3 Metamodel Abstraction Subproject L 50
3.3.1 Objectivesand Goals. 50
3.3.2 Participants e 50
3.3.3 Means 50
3.3.4 Tasksand Schedule 51
3.3.5 Using assertions in modeling - an evaluationtime view. 51
3.4 CommonTOOIS. o 56

ECONET Workshop 2007

3.4.1 Java/Annotation TOOIS 56
3.4.2 Model EngineeringTools. 56
4 Conclusion 57
A More informations on... 58
A.1 Workshop Material. 58
A.2 Collaborative TOOIS. 58
A.3 Annotated Bibliography 58
A3.1 General Papers 58
A.3.2 JavaReverse Engineering. 59
A.3.3 Patterns Reverse Engineering.o 59
A.3.4 Code Model Checking, Source code Analysis 59
A.3.5 Trace Exploration 59
A.3.6 \rification of Software ComponentsandCode 59
A.3.7 Members publicationsonthesubject. L. 59

Chapter 1

Introduction

In this part we remind the context of the workshop, its prafian, organization and the program.

1.1 Thel6293RGECONET Project

The activity described in this report is supported by Egitl¢hie context of ECONET Projects This section
gathers the main features of th6293RGECONET project.

e Title: Behaviour Abstraction from Code
e Subtitle: Filling the Gap between Component Specification and Impieatmsn

e Type:Research and Technology Development Project

Duration:2 years

Domain: Sciences and Information Technology

PartnersCOLOSS (French) - DSRG (Czech) - LCI (Romanian) - OBASCO iEng

1.1.1 Motivations

The project takes place in a specific domain of Informatiochif®logy, called Component Based Software En-
gineering whose goal is to provide languages, methodshigeas and tools for software developpers. The field
of component-based software engineering (CBSE) becameaisingly important in software construction ap-
proaches because it promotes the (re)use of componemigalsd Components Off The Shelf (COTS), coming
from third party developers to build new large systems. Coments are scalable software modules (bigger units
than objects in object-oriented programming) that can leel as$ the high levels of abstraction (software architec-
tures, design) and the low levels (programs, frameworks).

Component-based software engineering is still challempgirboth industrial and academic research. Most of
the academic approaches focus on abstract models (sorsetiose to architectural description languages) with
checkable properties such as safety and liveness; somermfdial with refinement and code generation. As a
counterpart, the industrial proposals such as CORBA, EXGIr .NET are merely implementation-oriented
and also object-oriented. They define flat components (with@rarchical structures) and the model is based
on an underlying infrastructure for component reposi®aed communication management. They often lack of
abstraction means to promote the reuse of components. Mereat the implementation level of a component
based development, some implementations have nothingwatldéhe above industrial standards in the sense that
there are no components at all. The main reason is that treredrue component programming languages yet (a
language such as ComponentJ is a layer on Java). In othesybeade are various component models that cover
the whole software development process but there is a gagbatcomponent specifications (the academic mod-
els) and component implementations (industrial infragtite or object-oriented implementations). The above

1

http://www.egide.asso.fr/fr/programmes/econet/

6 ECONET Workshop 2007

mentioned problem is due to the fact that, usually, compbimgplementation is not based on a rigorous speci-
fication. In cases when the specification precedes the ingl@ation, the conformance between implementation
and specification is seldom realized.

A major problem is then to fill this gap. One way is to define mddensformation techniques in order to
generate a code for the component with respect to the compspecifications. This way can be qualified as the
engineeringvay and it is similar as MDA and MDE approaches. It is quite pter since we should, in theory,
prove the correctness of the translation and also becaeredre various target frameworks and languages. There
are ongoing works on that directioRINPRO5 PP99.

Another way is to focus on program code analysis in order togare component’s actual code with its high-level
(abstract) description. This way can be qualified asréverse engineeringiay. It is quite an open issue in the
current research on CBSBIHMO06, PP0O74 This problem is even more complex than the one above, dtheeto
following reasons :

e Often the source code of a component is not available afieleiployment or even not physically available
in a remote service invocation or Web Service. However, foomponent industry the unavailability of
source code is essential — services may even be offered onpepaise basis.

In case of OO implementations, the absence of componentstas implies to find convenient and adequate
criteria to structure components.

Many statements and message send are to be omitted for arregevrvice identification.

There are no common component model (or standard) for thepgoent (abstract) specification — many
targets for reverse engineering.

Service clients have to properly intercat with the serviaed need to know at least the interface but in most
cases the dynamic behaviour or protocol attached to thécesrvFrom that some compatibility checking and

consistency controls may be performed to ensure a googatten or to avoid wrong or illegal use of the services.

Both the engineering and reverse engineering approacimesieesearch open issues.

The goal of the project is to contribute to the reverse ergging way by developing techniques for extraction
of abstractions from code (including some component iaterfiescription) and for the verification of abstractions
against the code.g.to check an in-line bank service with no available code, ®cklthat a client component is
compatible with an implemented component.

The core project is to establish a link between componerggadd component specifications. The advantages
of abstraction are to check the conformance of componemadd component specifications, to statically check
various properties of the components such as safety antklbge To be pragmatic we have to restrict this huge
mapping according to the partner’s experience.

1. The source model (implementation level) is limited toalJaede. The problem of obtaining an abstract
specification of a component from its code, cannot be solvedsatisfactory manner if the code does not
contain appropriate comments, rather in well defined padteor if the code is not limited to a consistent
subset of concepts.

2. The target models (specification level) are abstract covapt models inspired from the ones of the partners.
Instead of studying only the structural features of theesystwe plan to work ofbehaviouralabstraction
from Java code. BehaviouPl/02 AAAO6, PNPRO%is related to the dynamic and functional features of the
components and services. In particular, dynamic behasidescribe the dynamic evolution of components,
connectors or services (interactions). The mechanisms fissecomponent specifications are grounded
on different formalisms: design by contract (implementgdalssertions), algebraic specifications, state
machines, regular expressions and so on. Each above memtiormalism offers a set of advantages
and has some drawbacks. Design by contract, a declaraggifisption only, supports an "incomplete”
behaviour specification. Algebraic specifications gemgtzdve sound semantics but are, in most cases,
difficult to understand by people working in the industry arad all kind of components can be specified.
The state machines and regular expressions formalismsiéed for dynamic descriptions and have formal
semantics.

1.2. THE WORKSHOP AT CHARLES UNIVERSITY OF PRAGUE 7

1.1.2 Partners

The partners are four research teams which have competendtles project topics.

COLOSS: COmposants et LOgiciels SarS
Reliable Component and Software Component System Specification and Verification

DSRG: Distributed Systems Research Group
SOFA modek~ previous work = basis for the project

LCI: Laboratorul de Cercetare in Informatica
Computer Science Research LaborateryOCL, MDD, Tools

OBASCO: OBjects, ASpects and COmponents
Previous work on Java and Components

The four teams have complementary knowledge and backgmutite project domain. The goal is therefore
to compare and exchange the point of view, and to integratadiv ideas and techniques in the current proposal.

1.1.3 Initial Plan

The project is established for two years. The initial plaignivas organised as follow:
First year:

Determination of the field of application (boundaries ofalaencepts and idioms).

Settings of the major principles to abstract behaviourstdtware components (intémelia, SOFA and
STS) from Java code.

Experimentations on existing code.

Studying and proposing a pattern for annotating EJB commtsrie order to better support RE (behavior
abstraction from code).

Integration of the verification of guards using OCL (and OQLE

Documentation, research report and workshop preparation.

Second year:

Refinement and classification of the principle and techréque

Study of the verification of assertions with OCL.

Reverse engineering from EJB code to EJB specificationzezhln JIML or OCL.
Experimentation with larger case studies.

Documentation, research report and workshop preparation.

Once the context has been introduced, we present now theshapktself.

1.2

The Workshop at Charles University of Prague

The workshop is a major milestone for the first year of thegubjThis section presents the project evolution until
the workshop was held.

http://www.lina.sciences.univ-nantes.fr/coloss/
http://dsrg.mff.cuni.cz/
http://lci.cs.ubbcluj.ro/
http://www.emn.fr/x-info/obasco/

8 ECONET Workshop 2007

1.2.1 Preparation

Since the project has been accepted by Egide in march 208 &xtthanges between the partners became more
frequent and precise at this date. Some of the exchange®agd & the Project Wiki.

This wiki was installed at LINA (University of Nantes) in ab2007. It includes discussions, a repository for
project and workshop material, etc.

¥ econet:start [COLOSS] - Mozilla Firefox 18] x|

Eichier Edition Affichage Historique Margue-pages Qutls 7

G - - @ (00 |23 hetpijjwnnn.ina.sciences.univ-nantes. ricoloss{ibgjdoku. phpid=econetistart =] B [[Cla soo0e 5]

€OLOSS Projects Publications Softwares COLOSS Wiki

Team

[[econet:start]] COLOSS
Facent changes | = |

Tiace: + siail = mateiaks = cantenis = piagiamDy ¢ male sl = pragues2Dl7 = acanal

Welcome to the COLOSS/ECONET Wiki

| “Wekame to e COLOSSECONET Wiki
An Eaide program t @htto //wuw.eaide, 3350 frffifprogrammmes/aconat! “Piaject Gaste
i

Project Goals

Project description in french 3 pdf or in english = pdf

Eat |

Minutes
Discussions here

Ear

Project Materials

Documents, Technical Decriptions here

IED
wWorkshops -y I L e
e
Nantes Workshop
i mareh £007
[
Pragues Workshop

2007/09/03 - 2007/09/07 Thanks to the OSRG greup for organising the lacal accomodation

The workshop page here

EsTowIE
¥ derrone
LaraniE

Terming

Figure 1.1: Project Wiki

The workshop was initially planned on the end of June, pbspinly with the TOOLS conference. This was
not possible and it has been delayed to the first week of séygiem

A special group of pages have been written for the Workshgpr@il.2). The URL address is:

1.2.2 Organisation

The workshop organisation was handled by Pascal André aneP8ery. The local organization committee
included Ondrej Sery, Frantisek Plasil, Petr Hnetynka amiKbfron.

Detailed information is given on the wiki site (figute3).

./FIGURES/wikiStart.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
organization

1.2. THE WORKSHOP AT CHARLES UNIVERSITY OF PRAGUE

) econetipragues2007 [COLOSS] - Mozilla Firefox == x|

Fichier Edition &ffichage Historique Marque-pages Qutls 2

* B = @J E :i. hkkp: ffvwers lina,sciences, univ-nantes fr fooloss fwikifdoku, php?id=econet: pragues2007 B :i > \ l}l ||E|'3Gocq\e | 545 \
£ econetistart [COLOSS] £ econet:pragues2007:arganization [C.., | | £3 econeb:pragues2007 [COLOSS] %] | -

LINA COLDSS Team Projects Publications Softwares COLDSS Wiki

[[econet:pragues2007]] COLOSS

Trace; » start» materials » contents » program07 » materials » aconet» organization » praques 2007

Workshop 2007 at Pragues T
. sWlorkshop 2007 3t Pragues
[Edit] -Organization
" = Contents
~Workshop Materials
«Project Materials

QOrganization

details

Contents el

details
Ledl

wWorkshop Materials
Teams and technical presentations, Working Sessions
documents materials
Worshop Report

contents description
; . | Edit|
Project Materials B
Working Material
here
Bibliography

Bibliography work {(project) here
|Edi]

Terming

Figure 1.2: Workshop on the Wiki

1.2.3 Objectives

The following 'Workshop Objectives and Delivery’ statenh@ras a first throw and kept many issues open.

e Objectivesw State of the art + clear application context

build a reference bibliography of the reverse engineeromain
concepts, related work and comparison, mains issues, appes, plateforms and tools (JPF, Bandera,...)

— set the source area
subset of Java concepts, libraries, components, examples

— set the target area(s)
SOFA, Kmelia, Vercaors, ... - contracts, protocols, intenrite...

— initiate some directions to follow in order to process theerse transformation
patterns, rule based system, combination of several Bgisbols

e Delivery
A report for the project first year evaluation + plan the setpear with individual objectives

1.2.4 Participants

The detailed list is arranged according to the alphabeticiér of first names.

./FIGURES/wikiWork.eps

10 ECONET Workshop 2007

B econet:pragues200T:organization [COLOSS] - Mozilla Firefox =l

Fichier Edition &ffichage Historique Marque-pages Qutls 2

<r‘;| = B = @ E :é_; I’wﬁ:’p’]www.hna.s:ien:es.univ-nantes‘Fr,icu\ussfwiH,l’dUku‘php?\d=acunst:pragussZDD?:Drganizat\un B :i > \ l}l ||E|'3Gocq\e | 545 \
£ econetistart [COLOSS] | £§ econet:praguesz00F:organizatio... [§ | -
> LINA COLOSS Projects Publications Softwares GCOLOSS Wiki =
Team
[[econet:pragues2007:organization]] COLOSS

[Editthis page lOId reviSions _ Recent changes l l Search l

Trace; # start » materials » contents » pragram07 * materials » ecanet » pragues2007 » organization

Workshop 2007 at Pragues : [febleoFGomenes 4]
| +workshop 2007 at Pragues |
o Edi] “Eatde Farme
Organization
Dates

the week 3-7 of September

Venue

Local organisation : Ondrej Sery Elondrej.sery@dsrg.mff.cuni.cz
some callected informations

Participants

participants

Photos
photos
Egide Forms = -
* french members B ficheeconetn?f.doc
* fareign members B ficheecaonetO7e.doc
F it ;I
Terming
Figure 1.3: Workshop Organisation on the Wiki
e Dan CHIOREAN - LClI e Jifi ADAMEK - DSRG
e Dragos PETRASCU - LCI e Ondiej SERY - DSRG
e Frantisek PLASIL - DSRG e Pascal ANDRE - COLOSS
e (lilles ARDOUREL - COLOSS e Pavel PARY ZEK - DSRG
e Jacques NOY E - OBASCO (excused) e Petr HNETYNK A - DSRG
e Jan KOFRON - DSRG e Tomas POCH - DSRG
e Jean-Claude ROY ER - OBASCO e Vliadiela PETRASCU - LCI

1.2.5 Program and Schedule

We present here an overview of the workshop program. It wgarased in two parts

e Day 1 and 2 are dedicated to workshop presentations. Théahsand schedules leave time for numerous
discussions...

— Presentation of the teams (recent work, projects, tod)s, ..
— Technical presentations

e Day 3, 4 and 5 are dedicated to the project work (context,,gwatess, tools, practical organisation and
responsabilities)

./FIGURES/wikiOrga.eps

1.3. REPORT CONTENTS 11

e Social events

More details are given on the Workshop Wiki at:

1.3 Report Contents

In the remaining of the report, we provide more informationghe presentation sessions (secfohof chapter
2) and the working sessions (secti@r? of chapter2). In chapter3 we present the project architecture which is

the main result of the workshop.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07

Chapter 2

Workshop Sessions

This chapter collects the main events and informationse#tbrkshop sessions. We first begin by the presentation
sessions where the participants present themselvestehairand technical contributions (sectidd). Then we
summarise in sectiol.2the contributions of the working sessions where the pauitis discussed on the project
(issues, structure, tasks, technical aspects, tools...).

The detailed program is given on the wiki at:

The slides, pictures and discussions are stored on the tviki a

2.1 Team and Technical Presentation Sessions

2.1.1 Introduction

During the development process of an information systemaraévnodels are produced (manually or automati-
cally). A main objective of the ECONET partners are to cdnité to improve both the models and the production.
In particular, all partners are concerned with the verifarabf models and programs.

To simplify, let consider at least two levels for the modeteduced during the development process: an
abstract model and a concrete model written in a programfaimguage.e. in Java. From the verification point
of view, the goal is to assert properties (by proof or by martedcking) on both the abstract and the concrete
models. One way (the formal method approach) is to assepepties on the abstract model, then to refine it into
a concrete model and prove the refinement. Another way isseriggroperties on both levels.

In this workshop we are mainly interested in the model cheglapproach for property verification. Model
checking is the process of checking whether a given modfieat a given propertye(g. a logical formula).
The concept is general and applies to all kinds of logics &eit imodels. A simple model checking problem
is to test whether a given formula in the propositional lagisatisfied by a given model. In case of properties
to be checked, the most common way to express them is usinggotal logic (LTL, CTL) and in the form of
assertions. However, it is also possible to check for a et set of properties - deadlocks or properties specific
to a certain class of systems such as device drivers.

One can admit that model checking at the abstract level iskmelwn and there are techniques and tools for
model checking abstract models. But the model checking néiede models is still to explore. Model checking
of software is a popular research topic nowadays, mainlpbse there are several issues that have to be solved
before the technique can be used for real-life applications

How can we contribute? We can check the code itself with gmate tool. This is not convenient because
the tools are not mature in this domain and the concepts atdherete level are quite different from those of
the abstract level, the informations are numerous and nmetegleld, model checking quickly faces the problem of
state explosion. Another approach is to filter the inforoadi

e by selecting informations of the code model checker (asaingtl in the presentation of Pavel Parisek)

12

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:
pragues2007:program07
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:
pragues2007:materials

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 13

e by abstracting informations from the code , this is the mssué of our Econet Project: extract abstraction
i.e.in order to apply model checking at the abstract level. Twsesare possible whether an abstract model
exists or not.

The talks given during the presentation sessions addressedbutions on the above topics. Many of them
present an abstract model and model checking techniquesHPetynka, Jan Kofron, Jean-Claude Royer, Pascal
André). The talk of Pavel Parizek is more precisely abouptiedlem of model checking concrete models against
abstract ones). The talk of Dan Chiorean was more generausedt works on models and metamodels, moreover
it assumes a quite different view of model checking, thahis terification of consistency and completion of
models.

Note that we summarize the main issues of the team presamtaid forget among others, history and mem-
bers details.

2.1.2 Monday, September 3, 2007

[Time | Title | Speaker |
10:30 | Welcome and Program Pascal André
| Participant presentation each participant
| Local Organisation Ondrej Sery, Petr Hnetynka
12:00 | DSRG Team presentation and position Frantisek Plasil
13:30 | SoOFA overview Petr Hnetynka
| (Extended) behaviour protocols + demo (from CoCoME cojptesfian Kofron
17:00 | Checking behaviour protocols against code using Java PatbiF Pavel Parizek

DSRG

Frantisek Plasil presented the Distributed Systems Rels€zoup, one of the research groups of the Department
of Software Engineering of Charles University. Its areamtdrest are:

e Software Performance (Regression benchmarking),
e Software Components (%A, Fractal)

— Architecture/Component models,
— Design (Use cases, behaviour specification of componentsleMchecking),
— Deployment (Connectors - Addressing environment hetereigg

DSRG focuses on research in distributed systems, pantigulee construction of component and service
middleware and its software engineering aspects - systehitecture, formal definition and verification of be-
havioural properties, performance evaluation. This fasugflected in the long runningc®A project, which
deals with a distributed component model that provides lacke features such as formal verification of com-
ponent properties, and which is provided as an open souat®ph. Other major projects that DSRG recently
participated in include the ITEA PEPITA & OSMOSE & OSIRIS jgots and industrial projects with partners
such as France Telecom, Borland and lona.

The areas of contribution to ECONET are in general a croséiZation and joint publications. More specif-
ically, they are providing 8FA, enhancing EBP by additional features from STS/eLTS (tcaenbk expressive
power of EBP), extracting protocols (EBP) from code (at €& from code), defining well-formed rules for
SoFA components, providing a benchmark (the CoCoME example).

SOFA overview

As chief architect, Petr Hnetynka presented an overview@#aS?2. SOFA 2 is the new version of the @A
component system. It focus on removing limitations of theeut SOFA implementation (inconsistencies between
implementation and specifications e.g., protocols vs. eotars, architectures vs. dynamic reconfiguration, ...),
clear design and properly balanced support of advancedrésatThese are mainly:

e model-driven design

14 ECONET Workshop 2007

hierarchical architectures

support for dynamic architectures

support for multiple communication styles

formal modeling of both functional and non-functional gast components

transparent distribution
e behaviour validation

It is implemented in Java (as well as the previoasg-§). The implementation is freely available (LGPL licen'se)
The presentation included detailed informations on

e Component model

metamodel

dynamic reconfiguration (dynamic architectures)
connectors

control parts (non-functional)

versioning

behaviour specification
e Implementation

— component lifecycle
— runtime environment
— usage, tools, current status

Questions

About consistency (Metamodel well-formedness rule) tloggmt organization in two parts on the group (com-
ponents architecture / behaviour specifications) lead teesodependent (and not compatible) evolutions. Well-
formedness rule are informal except for protocols.

The micro-components have a similar concept in Fractal (fmong methods and repository).

The "aspects’ are not really those of Aspect Oriented Prograng.

About the link between specification and code, nar&components can be encapsulated in wrappers, con-
nectors can be RMI, Corba, the implementation is java speeith SOFA knowledge and annotations (future).

Communication style in connectors can be any communicatida (method invocation, shared memory, ...).

Modeling and Verifying behaviour of Software Components inSOFA 2

Jan Kofron presented the (original) behaviour ProtocoBarA and the extensions of behaviour Protocols (EBP)
of SOFA 2. Each part was organised as follow (presentation, degmnmipserification, experience, demo).

The problem of behaviour verification is undecidable in gaheThere are two ways to face it: (1) To use
behaviour description languages which describe behawbtire software precisely and to put up with the fact
that the tools will never stop for some inputs (behavioucdpsions). (2) To use behaviour description languages,
which are not expressive enough to describe behaviour tf/até precisely, but the verification of the specifica-
tions is decidable. We have chosen the second approactefohera behaviour protocol should be seen rather as
an approximation of a component’s behaviour. The most itapdbenefit of this approach is the existence of a
fully automatic behaviour verification procedure (implertezl in our behaviour protocol checker).

The purpose of behaviour protocols is to specify the behawd software components, so that interesting
properties of their behaviour can be verified (not only therafion signatures) using model checking techniques
for example. Model checking is one of the approaches to foveréication of finite state hardware and software
systems. A model checker usually accepts a finite model ofgetaystem and a property expressed in some

1

http://sofa.objectweb.org/

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 15

property specification language, and checks whether theehsadisfies the property via traversal of the state
space that is generated from the model.

behaviours are an abstraction of the component interactiod can be represented by LTS, use cases, se-
guence diagrams, process algebra expressions, etc.o#n, ®ehaviours are described by processes (regular
expressions and communication primitives as in procesbadg. Checking protocol compliance (both horizon-
tally and vertically) is similar to checking component beloar compatibility. Compliance means: absence of
communication errors (bad activity, no activity, infinitetigity) which can be found automatically and verified
separately for particular levels of nesting (hierarchy).

In SOoFA two checkers were implemented: the behaviour Protocol khvgBPC) (proprietary explicit state
model checker for BP, written in Java, uses Parse Tree atadimastate space generation, able to verify state
spaces of the orddi0” states, may run several days) and the dChecker (again gtagyriool, distributed state
space traversal, significantly faster than BPC, state spatcthe orderl0” for each computer i.e., entire state
space of the order afo® state).

Several flaws of BP were identified during the specificatiacklof synchronization mechanisms (impossible to
synchronize more than two components), lack of expressag(absence of macros caused parts repetition in the
specification which make it hard to fix the errors, absencegfbles caused overspecification, absence of a way
to express common patterns, e.g. until loops, caused uaibeasipecification).

This led to extensions of BP on data (method parameters aadl Variables can be of enumerated types),
synchronization (special events: joining events for syanlzation of more than two components) and until loops
(a syntactic abbreviation to enhance the readability)fdP@@ance issues were also a motivation, the new solution
is a transformation of EBP into Promela, the input languagta® Spin model checker. The performance was
comparable on the same benchmak (CoCoME).

Questions

Guards are possible, they are branches on local state.

A visual representation of the protocols is possible vispdrees. The component picture is manually done
with Visio in a UML flavor.

Local checks are performed. Promela checkes both horizamdavertical compliance. One to many is in the
metamodel.

About feedfack, there are solutions (...).

Checking behaviour protocols against code using Java Patlikder

Pavel Parizek addresses a topic that is close to the prajeceensd: verification of conformance between be-
haviour specification and code. The work approaches therglem@blem of model checking programs and es-
pecially Java code. Remind that in the previous presemtaigmn Kofron talked about (abstract) model checking.
The problem addressed here is to do it at the implementagicat.|

A general problem of model checking is the necessity to eraahodel of the system to be checked. Manual
construction of the model is an error-prone process, and éwhe model is automatically extracted from a
specification of the system or from the source code, it is atrattion - therefore, a model checker may find errors
in the model that are not present in the original program acel wersa. A solution is to use a model checker that
does not need to have a model, but works directly with the @mgintation of a target system. There are several
difficulties encountered with such an approach: code mdustker is needed, the models and properties handled
are low-level, there is a problem of state explosion sincalasiract state collapse many concrete states, partial
models are to check and not only full programs. The talk oePdeals with these difficulties.

As to software model checking at the program source codée lax@ucial problem is the size of state space
triggered by the model of a program (i.e. the problem of staq@osion). Despite that, there exist such model
checkers. For Java programs, these are most notably th@a#veinder (JPF) and Bandera tools. (An advantage
of JPF over Bandera is that the most recent release of tlee isthin alpha version, not being fully stable yet, and
that JPF is also more extensible). The properties checleeditirer predefined (e.g. absence of a deadlock) or
specified in LTL (Bandera) and via assertions related to tide ¢JPF). A typical feature of both Bandera and JPF
is the combination of static program analysis and modelkihgc The former is used to create a program model;
to decrease the state space size, abstraction technigquaspied - these include partial order reduction and data

2See the remarks in the introduction section

16 ECONET Workshop 2007

abstraction. State explosion can be also mitigated by therdposition of a software system into small and well-
defined units, components. Typically, a software compogenterates smaller state space than the whole system
and therefore can be checked with lesser requirements ¢nspece and time. Nevertheless, model checking
of code of software components usually brings along the lprotof missing environment, which means that it
is not possible to model check an isolated component, bedaumes not form a complete program with an
explicit starting point (e.g. the main method). In order ¢dve this obstacle, it is necessary to create a model
of the environment of the component subject to model cheglintluding the specification of possible values of
method parameters, and then check the whole program, cetpdshe environment and component. A specific
feature of software components is the existence of ADLs l{Aecture Description Languages) used to specify
component interfaces, and first of all composition of congrdsa via bindings of their interfaces (i.e to specify
the architecture of a component-based application at aehigliel of abstraction than code). Some ADLs even
include the option to specify behaviour of the componengically in a LTS-based formalism. An obvious
challenge, not addressed yet to our knowledge, is to checkdbe of software components against a high-level
behaviour specification provided at the ADL component djuextion level.

In this work, it is assumed that each primitive componentddade) is compliant with its frame protocol (we
thus have an abstract model). It has to accept/issue exhog method call related event sequences on its frame
that are specified by the frame protocol. The goal is to deaigalgorithm and a tool for checking compliance
between Java implementation of a primitive component anftaime protocol via Java source code or byte code
analysis.

The experimentation is done with JPF (Java PathFinder) eehuobecker for Java programs which is highly
customizable and extensible ; it is able to check only loveleroperties (such as deadlocks, uncaught exceptions)
with non-deterministic value choice. It supportBabl i sher/ Li st ener pattern that can watch the course of
the state space traversal and check for specific prope@fescking by JPF is not directly possible because JPF is
able to check only low-level properties. So an extensiorP6fi$ necessary to check the compliance between Java
code and frame protocol. It is a high-level propertycooperation between JPF and the BP checker is defined
with a backtracking policy

Moreover JPF accepts only complete Java programsautomated generation of component environment is
proposed to solve the problem of missing environm@got€omponents). The model should force the environment
to call a certain method of a particular provided interfaictha moment the component expects it and to accept a
certain method call issued on a particular required intertet the moment the component "wishes" to do so. Two
options are possible:

e Inverted frame protocakhich is constructed from the frame protocol by replacinged accept events with
emit events and vice versa. This option models the most gewaid environment

e Context protocoWhich specifies actual use of the target component by the otimeponents in the particular
hierarchical architecture. This option models the sinmplaid environment.

Context protocol is more suitable because the componetitappn typically exploits a subset of functionality
provided by the target component and completeness andil@gsire taken into account at the same time. But
context protocol is time consuming and there are no Javarmh$or acceptance of a method call calling protocol.

Last, two techniques are proposed to reduction of enviran®eomplexity (state explosion problem) : re-
duction of level of parallelism (static code analysis, amnent metrics) and reduction of repetition.

Questions
You used the base BP model checking for this experimentadidnyou investigate it in the context of EBP

with Promela and SPIN. Not really, we should have the samkel@nas probably.

Do you think JPF can be used for reverse engineering? Notlgx#eF provides execution abstractions
through the traversal of execution flows on objects and elads can be connected to other tools via its listeners.

2.1.3 Tuesday, September 4, 2007

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 17

[Time | Title | Speaker |
09:00 | Introduction Pascal André
| LCI Team presentation and position Dan Chiorean
12:00 | (UML) Model Checking - an OCL Based Approach Dan Chiorean
13:30 | OBASCO Team presentation and position Jean-Claude Roye|
| Introduction lllustrating The STSLIB Project: Jean-Claude Roye|
| Towards a Formal Component Model Based on STS
| COLOSS Team presentation and position Gilles Ardourel
18:00 | TheKmelia Component Model Hierarchical Service Description and Asial| Pascal André

Welcome

Pascal André introduced the program of this second day efptations including three team presentations and
technical talks.

LCI

Dan Chiorean presented the Computer Science ResearchatatyqLaboratorul de Cercetare Stiintéitn Infor-
matic - LCI). The Computer Science Research Laboratory waslestatl in 1990, as an auxiliary department of
the Mathematics and Computer Science Faculty of BabegaBblniversity (Universitatea Babes-Bolyai - UBB)
in Cluj-Napoca, Romania. The projects handled by the laboyaare included in contracts with the Ministry
for Research and Technology and certain academic ingtjtiteemain purpose being the promotion of research
activity in a top field, that of object-oriented technology.

The main products designed and implemented in the lab so éae Whe mMFOOPS environment, and the
ROCASE and OCLE tools. The UBB-LCI team patrticipated in thé Research Project IST 1999-20017 NEP-
TUNE. The LCI team obtained recognised results in the areaarfel checking. Continuing the work begun in
the NEPTUNE IST project, and using some of the results obthin that framework, the LCI team designed and
implemented OCLE, one of the most complete OCL tools exadtimay. The LCI group is very keen on contin-
uing its work in the above-mentioned domains, with specitdriest in MOF based repositories, OCL support for
all abstraction levels, use of OCL in transformation larggs OCL extension to support actions, improved code
generation, suggestive use of OCL in Model Driven Developri@DD) applications.

In the context of this ECONET project, the UBB-LCI team bmrits experience in designing and implement-
ing a powerfull repository for the CoreComponent Metamobleimely, the LCI team will be involved in:

e specifying a complete set of Well Formedness Rules at thgpooent metamodel level;

specifying all the APl metamodel’s observers;

generating the Java code corresponding both to assertioh&dditional Operations;

injecting this code in the repository code produced usieggNF framework, the OCLE tool and, possible,
other state of the art tools;

testing and refactoring the repository code.

(UML) Model Checking - an OCL Based Approach

Dan Chiorean exposed his point of view on model checking UMidais. This research area is taken in the
context of the latest modeling approaches (MDA, MDE, LDD LIDSvhich are characterized by the use of meta-
modeling and the use of modeling languages which are moadized compared with UML. The OMG vision
promotes a uniform approach, all modeling languages bei@d-Nhstantiations. In this context, a robust and
thoroughly tested MOF model would be in the benefit of all Mimgelanguages. Specifying a precise syntax
and semantics requires usage of rules. Taking into accbanhthie standard formalism used in specifying rules
is OCL, an appropriate support for the constraint languageéeded. (U)ML uses different formalisms for speci-
fying architectural and behavioural information, therefohecking (U)ML models is quite complex. The results
and conclusions obtained in UML model checking can be useathétking models specified using other MOF
based modeling languages.

18 ECONET Workshop 2007

The objectives of (UML) model checking are: to ensure thatrtiodel conforms to different kinds of rules
((UML) Well Formedness Rules - WFR, Profile Rules - PR, Busindodel Rules - BMR, Methodological Rules
- MR, Behavioral Constraints Rules - BCR), to use acceptetemsy to understand standards in the modelers
community, to validate the standard specification on readet® The following results are expected: realised
applications comply with requirements, applications meeanore reliable, the time needed for developing them
is diminished, the application costs decrease, reuse mgted to all model element levels (classes, components,
patterns, frameworks).

In the context of the new modeling approaches, model cotiildnas to become a mandatory requirement
(like source code compilation). In order to accomplish ¢heljectives and to benefit from the expected results,
an incremental and iterative approach is proposed: ruleifigegion, rule validation, identification of reasons for
rule failures, model updating - applied to different modgliayers.

Then, Dan described some features of UML models related tb & verification rules, and some exam-
ples of rules from each of the above mentioned categorieRVPAR, BMR, MR, BCR). UML model checking
concerns the following properties: model completenesslehconsistency, model correctness and model archi-
tecture accuracy. Model checking related activities masipported by appropriate CASE tools. Some questions
are: What could be done in order to improve the state of faotsthore specifically, Is the needed information
disposable? Is the textual formalism appropriate?

As UML is grounded on different formalisms - OCL, STD (ASMYaph theory (Petri nets) - UML model
checking requires different approaches. Dan discussefbiibaiing aspects: multi-view models, lack of a com-
plete formal semantics for modeling languages and the neamegt of inconsistencies (inherited cyclic composi-
tion inconsistency, dangling type reference, and conmegiecification missing).

The last part of the talk is dedicated to tool support.

First Dan sketched some UML/OCL tools (commercial and acac)e stressing that working with medium
or large models is currently difficult. The following drawdie restrict a widespread use of tools that support
OCL: the lack of coordination between UML services and OQlvises, a weak support for interchanging UML
models, the proprietary architecture used for reposiotie lack of OCL support at M2 level, the lack of support
for reusing OCL specifications at M2 level, the weak supparupdating UML models in an interactive manner.
Compiling UML models before transforming them is not yet anal activity. Unfortunately, only a small part of
UML static semantics was tested. For some rules, the infospeification is ambiguous. Many specialists make
general statements about the UML specification drawbackghky haven't tried either to identify the rationale
of these drawbacks or to precisely mention the drawbackgriSingly, misconceptions and incorrect statements
about using OCL and about the language potential can be atered in many papers.

Next, Dan presented the OCLE tool, developed at LCI, and raatimonstration of its functionalities. What
distinguishes OCLE from other similar tools is: it allowsnsiltaneous access at both M2 and M1 level, it im-
plements OCL 2.0 specifications (ensuring compatibilitthiormer OCL versions), it offers extended support
for the “def, let” mechanism, it supports simultaneous ipidtviews of the same information, it aids users in
correcting the errors identified by evaluating the rulesHjgel at the M1/M2 level, it allows semantic checking of
XML documents, it ensures MDA support both by defining andckimey profile rules, it proposes a friendly GUI,
it promotes reuse by means of OCLE projects, and it permitgpdling and evaluating OCL specifications spread
in different files. In order to better accomplish the requients related to the intuitiveness, rigor, usefulness, the
following functionalities were implemented in OCLE: tréihge closure operation, neutral printing operations, ex-
plicit context specification, flexible specification for epgons without parameters and the compatibility with the
syntax of previous OCL versions. Some benefits are: thelpitissto specify simpler OCL expressions, extended
possibilities for debugging OCL specifications, and supfosreusing earlier specifications without any changes.

Checking UML models against Well Formedness Rules usingpanopriate UML/OCL tool is the natural
way to check UML models and to correct various errors. Mangsbiound in the UML static semantic specifi-
cation v1.5 were fixed and the majority of the rules were testésing the OCLE code generator, the Java code
implementing the additional operations behaviour was gead completely and used in the OCLE repository.
The OCL 2.0 specification was extended with a set of practézglures. The solution we proposed for checking
XML documents overcomes the drawbacks that all the “clagssolutions carry.

Remark
The definition of model checking is quite different from theedn SOFA, KADL, andKmelia approaches.

The main reason is that the vision considered by OCLE takesiccount UML model’s conformance to WFR.
In fact, this represents the first check that all UML modelgeha pass.

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 19

Questions

A first question was about components in UML and verificatiools. An approach is that described in
Cheesman and Daniels’ bookdML Componentspublished by Addison Wesley in 2001.

Another question was about a formal semantics of OCL 2.0. &gfained that beginning with the OCL 2.0
version this is described using the OCL 2.0 metamodel, detiin the standard.

OCLE (and ROCASE) have been used for both education andtiydus

Other questions are summarised in a draft version extrdiciedPA notes.

e Completeness and consistency of WFR: this is a difficult jemob

e Extension of OCL to some reduced kind of Action SemanticgttbesFunctional Computation descriptions:
it can be done since there exists in fact a family of OCL langsa

e Standard evolutions (what happens when a new version istedlopthe metamodel is downloaded, the
crucial point is the MOF description.

e Import-export facilities by XMl files and visual represetias by DI (Diagram Interchange): tools do not
fully comply XMI, and DI is not adopted yet. UML models différom MOF models. OCLE is not a
standalone tool but | have to show and navigate on classatiggnapshots, use case

¢ Different problems : non-standard visual notations first Rocase (C++), OCLE code generation in MDE,
java code generation (model, assertions) parts of the itepplave been produced by the tool.

e Java profile for code generation. We use our own policy - rerrties.

e Implementation aspects: the JGraph library was used fagridgghical editor, and the Velocity template was
used in order to generate the Java code. OCLE XMI parsersemtirely implemented at LCI.

e A big problem concerns the tool's maintenance: the peopigned in realizing OCLE left the laboratory
due to the lack of financial resources.

OBASCO

Jean-Claude Royer presented the OBjects, ASpects, and @@mis (OBASCO) team. OBASCO is a joint

research group of (the CS Departement of) Ecole des MineseNand INRIAs research center in Rennes,
IRISA (see also OBASCO'’s home page at IRISA). OBASCO is alsam of Laboratoire Informatique de Nantes
Atlantique (LINA, FRE CNRS 2729). The LINA laboratory is méi a cooperation between Ecole des Mines
de Nantes and the University of Nantes. It is specializedwmadxes : distributed software architectures and
computer-aided decision systems.

The OBASCO (Objects, Aspects and Components) researcip gairesses the general problem of adapting
software to its uses by developing tools for building sofvarchitectures based on components and aspects. We
are (re)using techniques developed in the programmingikges domain, and more precisely in object-oriented
programming.

The objectives are to solve scalability problems in sofenamgineering and to improve software architectures
adaptation. Two main directions followed are the sepamnatioconcern (specific programs for specific problems)
and correct composition of existing programming artefacts

The research domain covers topics of the Software Engimgeri

e Software components and scalability
e Programming languages

e Post object-oriented programming

e Generative programming

— Sequential, concurrent and distributed
— Mechanism for separation and composition

20 ECONET Workshop 2007

— Objects versus aspects versus components
e Model driven engineering: transformation techniques
according to three swim lanes
e Aspect-oriented programming

— To explicit links between metaobject and aspect
— To formalize aspect-oriented models

— To design and implement a language

— Reverse engineering of legacy code with aspects

¢ Software component

— Explicit protocols for components
— Property verification for components and architectures
— Understand relations between aspects and components

e Domain specific language

— Domain specific language
— Expressiveness, extensibility and compilation
— Aspect languages, composition and DSL

OBASCO brings its experience to the ECONET project with astraet model based on algebraic specifica-
tion and LTS, and its derivation to Java code (engineeringgss while in ECONET we work on the reverse-
engineering process). A first work was to verify some prapsiin component systems with data, we have some
results here, which make it possible to abstract componetdqols with data. We have also shown how to gen-
erate Java code from protocol descriptions, such that caerge can communicate according to their declared
behaviour. Finally, we have investigated aspect languggele modularization of crosscutting concerns defined
in terms and through modification of protocols. A questiohick we did not study, was the compatibility between
some Java code and a protocol. OBASCO is also interestedendirg the ®FA approach to introduce data,
parameters and guards. Furthermore, we intend to studytbgration of these techniques with our on-going
effort on the static analysis of properties of protocol-fifigidg aspects.

Introduction lllustrating The STSLIB Project: Towards a Fo rmal Component Model Based on STS

Jean-Claude Royer presented an approach that covered the edvelopment models from abstract description
to Java implementation.

Component-based software engineering is becoming an tamgaspproach for system development. It is
assumed here that explicit protocols are integrated intopament interfaces to describe their behaviour in a
formal way. In this case, explicit protocols are often digated from component code, it is not ensured that
component execution will respect protocols rules. A cruisisue is to fill the gap between high-level models,
needed for design and verification, and implementation.

This talk introduces first a component model with expliciboicols based on symbolic transition systems.
Some related models are quickly overviewed: Java/A, CABRakiour Protocol models (A, PROCOL, CO-
OPN), FSP java, JCSP.

The model is presented through an example: The Cash-Paset&ady. The main conceptis STS, for Symbolic
Transition System, that is a dynamic description coupleith &idata type description. A Labelled Transition
System or LTS is an automaton with simple labels, statesaretmes called control states in this document.
STS add to LTS full data types, guards and input/output &luetransition is defined byyguar d] event
comuni cation / action. The communication can be an emission (simple or multiple) eceipt. The
data types describe the operation semantics of the emitterguards, the generators and the actions. An algebraic
style with positive conditional axioms is used to descritiezgldata types.

An architecture is almost a UML communication diagram rathan a UML component diagram: a link between
ports denote event synchronization with communicatioss Was rather the KbL model which is dedicated to

2.1. TEAM AND TECHNICAL PRESENTATION SESSIONS 21

analysis and verification purposes: the communication glsémplified which is very expressive inAoL and
some other features are not taken into account: no inhedthetween STS, ADT description are less general, no
component parameterization.

The cash point example is illustrated on two points: defirdr§TS, defining the architecture. The existing
elements or experimentations for tool support are expthine

e Defining an STS
One first implementation was implemented in Python (it haanbewriting in Java 1.5 under Eclipse) for
the STS: the user writes.ast s file (a parser exists for the dynamic part), an interface genebuilds an
ADT skeleton. adt (the user has to fill the axioms), a Java translator genesalasga class from the ADT
(experimental) but the user may also write a Java class seramn existing one.

e Defining an architecture
A grammar allow to express component types, local instariagings and exports. This is a bit more
complex since the parser and the loader have to be recultsalso needs to call the STS parser and loader.
When loading an architecture we have also to specify wheréharJava classes. The instantiation process
is also a bit more complex. Itis not completely stable siramae choices about bindings are pending.

The talk pursue by the level devoted to verification. In thetpan approach using PVS (Theorem prover) has
been experimented. The new approach rather close to modekicly is based on the notion of Configuration
Graph (or CFG) which is a LTS but with a data value associatezath control state. This allows formal analysis
methods to analyze component and their interactions. @ilyréhe verification process is to compute the syn-
chronous product and check it or to compute the configurafiaph and prove some properties. This tackle the
difficult problem of state explosion when model checkingwdata.

Then a Java implementation for it is presented (runtimeméter) that relies on a rendez-vous mechanism
to synchronize events between component protocols. Thish@wed how to get a correct implementation of a
complex rendez-vous in presence of full data types, gudrdeditions and, possibly, guarded receipts.

A tool support is made of a library with parsers and analysigst STSLIB is a project devoted to the design
of sophisticated concurrent systems, their verificatiah@de generation. Currently, this is rather a Java APl and
the targeted runtime language is also Java. It may be uséd tontext of Eclipse or as a Java application.

Questions

One question was about the assistance for specificatioly: texual representations, the systematic usage
of a ’self’ parameter for data type operations, manual cléispecification processing. These points should be
improved with the future (planned) GUI (Graphical User tfaee) on Eclipse.

Another was about functional (for specification) and impieea(for implementation) styles for ADT. Only a
restricted form of ADT is accepted.

A last question was about communication primitives and @sfig the multiple one. Only the multiple rendez-
vous is implemented.

Time aspects were also discussed.

COLOSS

Gilles Ardourel presented the Relaible Components andvaods (COLOSS - COmposants et LOgiciels SOrS)
group, a team of the LINA (see the OBASCO presentation above)

The research activities of the COLOSS team range from fuedémhaspects of software to applications. The
main goal is the elaboration of concepts, methods and tqukaisupported by tools for software designers and
developers. We explore formal approaches to assist s&taraalysis and development:

e Multi-formalism specification and analysis of softwaretsyss,

e Specification, verification and validation of componentd software architectures.
The goal is to ensure correctness of components used an@ddngposition in complex software systems.

The motivations (fundamental challenges) are correctdftesare construction, the software quality and safety
and the support for specific development methods. The ma@areh areas are

22 ECONET Workshop 2007

e Multi formalism specifications, multi-faceted analysis.
The mono formalism approaches are limited by a partial ¢Gogeaf problem and a partial analysis. COLOSS
studies the formal methods integration and faces some ohélenges (decomposition, semantic interop-
erability, formal analysis). Multi-platforms experimenise B, PVS, Spin, Grafcet, Petri nets...

e Design and verification of model properties.
We investigate the use of formal methods and tools for medntadeling (component, objects) and prop-
erty verification (system and model properties). In the CBSEtext, the motivation is to provide models
and practical tools to assist users in formal componengddsvelopment ; it covers the abstract definition
of components and composition (simple, flexible and exprejshe verification of properties (safety, con-
sistency, compatibility...) and the binding from compotsen code (refinement or code generation).
In the UML context, the motivation is to improve the confideric large and multifacet (diagrams) spec-
ifications where a formal semantics does not exist and wheypepties are quite complexg. model
consistency is made of plenty (sub) properties. A singl@erty can be decomposed into finer ones, can
concern several groups of model elements, can be verifiefffettesht levels of completeness, and can be
verified using several techniques with various costs anfbpaances. We work on a generic verification
process composite verification processes (with orderittgyifig, results propagation and annotation of
faulty elements. . .) that supports the classification offieations and properties (levels, diagrams...) and
the abstraction of the results of different tools and foismas.

COLOSS contributes to ECONET by providing Kmelia (an alitt@mponent model) and its associated
COSTO tool, its experience on formal methods and properification, its experience on Java programming and
a first experimentation on reverse-engineering Java to UBQL OSS also expects fruitful exchanges withd
and SOFA to gain mutual enrichments.

The Kmelia Component Model Hierarchical Service Description and Anaysis

Pascal André presented tKenelia Component Model and the Property Formal Verification toweatee COm-
ponent Study TOolbox (COSTO). The COSTO modules are beinglaged with JAVA. The modules have been
integrated into the Eclipse IDE as plug-ins. Both the speatifbn and analysis were illustrated on a Bank Auto-
matic Teller Machine (ATM) case study and its withdrawalses.

The presentation begins by an overview of the model. Kimelia model is a simple, formal and abstract
component model based on the description of complex sexvice

e The simplicity relies on the few number of concepts that aeduto describe the components and their
assemblies. The main characteristics are: componentizagrcomponent assemblies, protocols, pre-post
conditions, specification of complex interaction betweenvises.

e The components are abstract, independent from executiimoements and therefore non-executable.
Kmelia can be used to model software architectures and their pgiepethese models being later refined
to execution platforms. It can also be used as a common modstddying component or service model
properties (abstraction, interoperability, composafili

o A formal model is defined for components and services, innyidyntax and type checking, pre-post con-
ditions and LTS. This is the basis for any automated prongssipport.

e The services are first class elements and not only messagie$, means that (1) services may be defined
by a dynamic behaviour in addition to their signature andgwst conditions and (2) services may be built
from other services. Each service has an enhanced serwréire which includes a service dependency
composed of the provided services and the required serwbésh are used in its context. The notion
of service is central t&Kmelia and a component interface describes mainly services. Ta@mthat the
components are connected via their services (functionat@ctions). The interaction model is therefore
simple: required services are directly linked to provided/ies.

The model is extensible: it is possible to add new concepta the kernek.g.protocols, adaptors, aspects...

A component is a structuring unit that encapsulates a statesarvices; it has an interface with usage con-
straints. A component has an interface made of providedcg=rand required services. A service is an abstraction
of a functionality (signature, contract); it has a behavif@ynamic evolution). The behaviour is defined by an
extended LTS where transitions accept functional actiorsocmmunications (message send or receipt, service

2.2. WORKING SESSION 23

call or return). A service also has an interface includingvpied services and required services that may lead
to a hierarchical structuration. Assembly links are a serqipport for component connection and interaction.
Promotion links are a means for simplifying encapsulation.

The second part of the talk is dedicated to the verificatioproperties and its support with COSTO. The
verification principles are: a formal verification of propes, a reduced user interaction (automation), customis-
able verification process, interconnection with apprdpriaols (open framework). For this last point, the specific
property analysis modules is realised by COSTO modulestandeneral property analysis are checked by con-
nection with existing tools (model checking or theoremyimg). This is illustrated on the ATM example for the
behavioural compatibility property. Its scope is the cotmess of components assemblies and compositions, the
availability of components and services, the compatibibt linked interfaces, the service compatibility and a
diagnosis on mismatch. The service compatibility is defiatsfdur levels of control: service signatures, enhanced
service interfaces, contracts (pre/post conditions),thadehaviours (correct interactions between the caller se
vice and the called service via the required service). Asitation with MEC an existing powerful model-checker
for synchronised LTS. MEC has a compatible definition of ST& &llows a systematic translation into input for-
malisms and feedback. A verification is done for each tripkseovices based on a first level assembly link. In the
ATM example, a deadlock is detected and visualized.

Questions

Questions were asked all along this talk on the hierarclaspécts, the communication primitives, the be-
haviour specification, the external tools used, the linkitspecifications, etc.

2.2 Working Session

2.2.1 Introduction

The goals of the working sessions are mainly to fix a roadmap®project. This means to clarify and delimit
the detailed objectives in a feasible manner, to define lgi¢lae¢ concrete and coordinated contribution of each
partner, to define task, products and results, to orgars&s {aesponsibilities, contributors, schedule...). Ors fi
issue was to check that each partner has a compatible (orbettar the same) vision of the project. Another
one is to structure the work in several parts because a ntbieaiisk cannot be realised by four geographically
separated entities.

These sessions are highly dynamic so that a strict prograsmegestablished. Thus the detailed program
given in the following subsections are post-workshop paowg. Nevertheless, the initial program covering in-
cluded three aspects for the working session:

e decision on the source and target area boundaries,
e discussions on the way to get reverse transformations,
¢ find application examples.

In the following we will summarize the session contents daylay.

2.2.2 Wednesday, September 5, 2007

This is a half-day session.

| Time | Activity | Speaker |
09:00 | Introduction to the working sessiorjsPascal André
| LCI Point of view Dan Chiorean
| DSRG Point of view Frantisek Plasil
12:00 | Round tables and discussions all

24 ECONET Workshop 2007

Introduction to the working sessions

The slides of this (first plan) introduction are provided ba YWorkshop Wiki at:

Pascal introduced the working session by giving its viewhef turrent project situation and provided some
tracks for the discussions. Consequently the Working 8e$3oadmap was organised around four points

1. Convergence on the objectives.
2. Convergence on the means.
3. Definition of the tasks.

4. Production

The three first points define an initial objective for each dithe working session.

1- Convergence on the objectives

There is a clear agreement on the "abstract" context:

1. We have abstract component modelsks, Kmelia, KADL) and tools. Some have elements for Java code
generation (engineering).

2. We assume Java Code Specifications and Programs. Thicontins informations about structure and
behaviours (even if it was not designed in a CBSE).

3. We want to practice Reverse Engineering = from code taatistnodels. There exist general techniques
and tools such as code analysers, patterns, extractors...

Kmelia SOFA 2.0 STSLib Fractal
1
i
reverse -
| I
. ntermedlqte ocL
1 representation
]
1
Y patterns
Behaviours i
Special analysers
Java EJB Corba component
Structures framework extractors

Figure 2.1: ECONET Project: "abstract" context

There is a fuzzy vision of the "concrete" context.

e What sort of Java code nature do we want to process?

— Bytecode - the one that exists at run-time.
— Plain source - the one usable for an open source project.

— Annotated Source - a Java program (source or compiled)tblatdes informations usable for connect-
ing to an abstract model. This is the case when the prograpaitglly) generated from a component
abstract specification by some code generator.

e Assuming we have a Java program, to what extend should treelmsdtructured?

— plain Java: there is no special structure.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
./FIGURES/archiEco1.eps

2.2. WORKING SESSION 25

— "componentised" Java (EJB, Corba, .NET, issued from a cedergtor - SOFA, Fractal...): the code
has a component flavour.

— "behavioural" Java (threads, communication primitivesyed from a code generator...): the code has
a behaviour flavour.
e What are the reengineering issues? It means toward whattmgjelo we look for abstractions?
— legacy code recovery/discovery: the usual goal of reverggneering. You have an existing code but
it was not designed according to the same abstract concepts.

— compare code and specifications (conformance): we wantgckolvhether a concrete representation
and an abstract representation (of the same system!) asestant.

— roundtrip: the code is generated from a model and complateniodel. The development process
includes engineering and reverse-engineering activilies approach is frequent in MDA.

Goal of day 3 = Clear agreement on the "concrete" context

2- Convergence on the means

Once we agree on the right objectives, the question is howveargach them.

e Collaborative State of the Art Study.
The idea here is to share the individual experiences bothoamaths and tools in order to accelerate the
collaborative work. The state of the art covers works andstoglated to: reverse engineering (in general,
for components), Java reverse engineering, Java code ulatdm (analysis, annotation, extraction...).

e Re-engineering techniques.
The objective is to be up-to-date in techniques availabte@open source community.
— Java Compilers and Analysers to handle the Java code.
— Patterns, rule based systems for reverse-engineerirggissu
— Used notations and Intermediate layers (models) for alsyegtep process.

e Separate modules (e.g. structural / behavioural / metalslod® we work on separate parts and levels with
different applications or shall we use one program only? [@gwopose a framework for general purpose
or do we design a single purpose application?

e Benchmark example.
It is quite difficult to find Java code related to componentscoaborative work implies that we work
together on the same Java program.

We also have experience on OCL and metamodels.
(optimistic) Goal of day 4 = organise the means tracks andtfiadenchmark

3- Definition of the tasks

Once we agree on the right objectives and we have a somewaidéa of the means we provide, the question
is to organise the worke. the project management.

e Whatto do?
Define a list of tasks to do and the delivery.

e Contributions?
Define the actors and collaborations (who do what).

26 ECONET Workshop 2007

e Synchronisation points
Point out the bottlenecks of the process.

e Planning
Define who do what and when.

(optimistic) Goal of day 5 = each participant has a somewleatr¢dea of what he will do

4- Production
Here are some guidelines for that part.

e Workshop Report

— Collect paper and slides

— Summary of the discussions

+ Bibliographical Notes

— project plan for year 2 anBvaluation

Fix the participants objectives

Documentation, research reports

Intermediate results—=- Second Workshop

Publications (?)

These are also part of the initial 'Second year objectives’

LCI Point of view

Dan talked about various aspects of reverse engineeringgpetially those related to models (MDA). Reverse
engineering is about finding the concepts of the models blysing the code and inject the model. There are
several models: the programming language (Java) modeatpth@onent models. He stressed three aspects:

1. About reverse engineering (RE).
He expects a more clear definition of the context and goals. ddmain is quite difficult and unexplored.
There are different programming languages (Eiffel, C+~ala and different tools. There are some
existing work on the subject, we should have a look at them.wdgied about the practical result of
Component RE (the value of RE, the mandatory results). Dea%ipplications have non<g-a parts.

2. About Behaviour Checking.
Do we want to detect possible deadlocks in the code? What eatovif component instances relate to the

same component type.

3. About pre-post conditions.
This information is rarely present with a clear format in gmrams (even for Java assertions).

Dan also noticed that most tools work with the architectdrde application. He also remind that LCI had a
previous experience with reverse-engineering UML from @#egrams.

2.2. WORKING SESSION 27

DSRG Point of view

The slides of this intervention are provided on the Workst6ki at:

Frantisek recalls that the ECONET project is a small profpatiget, duration). He commented the initial
project definition (see sectidnl). As a general remark he recalled that the pragmatic outfdultee project are a
cross fertilization and joint publications.

He distinguished four area of contribution by DSRG:

1. Providing ®FA.

2. Enhancing EBP by additional features from STS/eLTS (tuaece expressive power of EBF):
3. Extracting protocols (EBP) from code (at least BP fromejod
4. OCL: WFR (well-formed rules) for component diagramsjwtgt diagrams? WFR for 8FA components,

Note that point 2 and 4 are indirectly related to reversereging but can participate to define a more general
framework.
Frantisek brings an answer to one of theandssues: the benchmark. He proposes to take an exemple from
a previous work on a Dagstuhl Modelling Contest, theCoME (Common Component Modelling Example)
. The advantage is to benefit from a Java program that implenaecomponent
application (this is rare enough to have both a specificati@ha program) and two abstract models that have been
manually built on it. Two trivial examples are more fruitful

Discussions

The discussions took place from the three above intervesitio
Here are some Gilles’s random ideas:

1. We are interested in behavior models.
(a) Getting them from plain Java code without structuradinfation about the component architecture is
far beyond the scope of this project.
(b) We at least need some kind of "boundaries".

2. There are two first steps :

(a) Our benchmarks shouldn’t be spaghetti code (while ngkiag to a particular component model, the
application should have something that look like a compoagzhitecture). A proposed task is finding
fitting benchmarks.

(b) Then let's pretend we already got most of the structunfal about the component architecture (manu-
ally, automatically from specification or code...).

3. We are about to target different abstract models.

(&) We need meta information somehow common to the modelsinianal structural component model
(component hierarchy, one or several interfaces by compng proposed task is finding this mini-
mal meta information. We don’t need a Unified Component Laiggujust the minimal stuff to work
(remember the size of the project).

(b) Additional model-specific meta information (because might want to do something beyond this
project’s scope some day).

Annotations examples

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
http://www.cocome.org/

28 ECONET Workshop 2007

code source part (class, package, nethod, whatever..) "is part of conponet id #12344"
code source part (class, package, nethod, whatever..) "is part of interface id #12344"

Here is a short summary.

e Benchmark
The CoCoME benchmark is adopted. It has many interest: iegigiformations on requirements, on
component design, available Java program.

e Input
Of course the fine input would be a component program but it du# exist yet. A better input is an
object program with information (comments, annotatiomsfomponents. Again, it does not exist yet. We
decided that the input is a plain source Java with possibletations or information (comments, separate
documentation files, UML models...). Having a source codtanato use parsers, extraction techniques,
comments and various informations that are not availableJéwa bytecode. These annotations and/or
informations should inform on some component abstractidfesare not sure to find such informations but
we assume that as soon as component design is be appliedl, (tanéll help to inject annotations in the
plain Java code.
A practical question remains: which information or anniotag do we need?

e Input Model
We do not want to have an instantiated model of the Java pmogjre. we carry only some informations of
the program not all of them (no model transformation foranse).

e Reverse engineering goal
The goal is to find abstractions than realise full reverseresgging. The abstraction help to analyse some
properties of the program, to get an abstract model, eitheompare with an existing one (conformance)
or to document the application.

e Separation of concerns
We discussed about two main problem issues: structure/imiraone or more target.

— We distinguish the structural information from the behava. Both aspects are orthogonal and ex-
isting works mainly relate to one aspect only. Moreover figdihe behavioural abstractions depends
on both the Java code and the structural model. The strligtarts at first a delimitation of what are
the components in the Java code.

— We may want to target several abstract models. Shall we imgié a tool for each of them or try
to share both procedure and knowledge. Note that some oé tineslels can have only structural
features. One way to proceed is to use metamodels (pengingsiso be studied on thursday).

This separation of concerns also make it easy to split thiegiroealisation.

e Background
Other contributions of the project are recalled: cross LXt@mrsions, WFR definitions.

2.2.3 Thursday, September 6, 2007

[Time | Activity | Speaker |
09:00 | Welcome Pascal André
| CoCoME Contest Jan Kofron
| "ECONET tasks" proposal Petr Hnetynkal
| CoCoME in $FA 2.0 Jan Kofron
12:00 | Round tables and discussions -
13:30 | Java Path Finder, Bandera Jiri Adamek
| Project modules and interfaces (discussions)
17:00 | Toward an annotation language (discussions)

2.2. WORKING SESSION 29

Welcome

Pascal introduced the second day working session by givirdpstract of the discussions and the gainful decisions
of the first day. Since the goals of day 3 were roughly reached¢an now fight the ones of day 4, which are
convergence of the means (see secfidh? and especially try to advance on the input format, the berck
and the available techniques. To this end a presentatidmedfénchmark has been planned in the morning and
another one on Java Path Finder (and Bandera) in the afteride rest of the day (morning and afternoon) is
reserved for discussions.

The slides (second plan) are provided on the Workshop Wiki at

CoCoME Contest

Jan Kofron presented Common Component Modeling Examplesbn

CoCoME is an international contest aiming
at comparison of different modeling approaches on a commssigiament organized by Technische Universitat
Clausthal, Universitat Karlsruhe, Politecnico di Mila@harles University in Prague. Sharing a common close-to-
real-life assignment should reveal strengths and weaksesdhe different modeling approaches and thoroughly
test their applicability in practice.

The assignment is a trading system, a business applicatiangnaging chain of stores with about 200 stores
and 8 cash desks per store. Participants had as input al gpeiafication via UML, informal specifications as
use-cases for the requirements, deployment diagramsdatiskribution and a reference implementation (realised
by a teacher and students).

The workshop held at Dagstuhl in Germany. Eighteen teame weplved in that contest. The objective
was to model the application on various aspects (structiggloyment, behaviour modelling extends behaviour
protocols). Note that UML models were not fully consisteiittvthe code and the components were given.

The slides of this intervention are provided on the WorksW6ki at:

"ECONET tasks" proposal

Petr Hnetynka proposed some answers to pending questidhs objectives and the means.

To the question "What is an input?" his answer is "plain Java"

For obtaining a behavior specification we need also a mod@eldichitecture). To the question "How to obtain
model?" his answer is "it is already given or we extract itirthe plain Java sources.

We need a single concrete metamodel (for specifying madé&ls@ problem is that each component system
has its own means for specifying models but most of composgstems are similar (black-box component,
provided/require services, nesting), thus we can use tteeafdhe SOFA 2 metamodel as a concrete metamodel.

In addition to the objectives of the day he also proposedidisk assignment proposal: model extraction (-?)
and behavior specification extraction (DSRG).

The slides of this intervention are provided on the Workst6ki at:

CoCoME in SoFA 2

Back to the CoCoME, Jan Kofron overviewed ar solution for the Common Component Modeling Example.
He skipped the 8FA 2 presentation to focus on the general design solution amddtification of a part of the
system.

The following summarizes modeling of the CoCoME assignnusitig SOFA 2.

e Architecture
First, the SOFA architecture of the TradingSystem (Rig) was created, forming basis for further work.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
http://agrausch.informatik.uni-kl.de/CoCoME
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07

30 ECONET Workshop 2007

e Behavior modeling
All CoCoME components were specified using EBP. Parts of th€dIE assignment are ambiguous and
even contradictory; the behavior specification is mainlgduabon the reference implementation.

e Verification
Checking communication of components for errors (Badvigtno-activity (deadlock) infinite-activity),
Compliance checking (Translation of EBP specification iRtomela using the SPIN model checker to
search the state space),
Code checking (Via combining Java PathFinder with Behaviotocol Checker).

e Performance

Eanklf
I ‘TradingSystem €]
:CashDeskLine ﬁ
:CashDesk £]
’ :LightDispIathﬁ]‘ ’ :CavdReaderCtrI%:‘ ’ :CashDeskGUIE‘H :C; trl E‘ ’ Ctir E‘H :PrinterCtrl 3:“
Py Py &
SR S TR T 2 T ;
[CashDeskBus =]
9
T 3
i Q
5 4
QP I
[CashDeskLineBus £
&

CashDeskConnectorlf AccountSaleEvent
& &

:Inventory I T %
EnterpriseServer « T :StoreSeL:ver
ReportingApplicatiog] St icati £] ReportingApplicatich]
£] £] £]
:ReportingGUI :StoreGUI :ReportingGUI
Reponinglg? ProductDispatcher g7 ésw"e" %_PREPOM"Q"
) o<i—0—1 &0] [l [
:ReportingLogic ProductDis| alche]rlf\}mé} :StoreLogic O{kéé :ReportingLogic
p: >0+
>0
£4 T LN Lies
EnterpriseQueryIfT Persistencelf | StoreQuerylf StoreQuerylf [Persistencelf M{erpliseQuerylf
% :Dgta g] % :D?ta % £]
:Enterprise | | :Persistence :Store :Store :Persistence | | :Enterprise

Figure 2.2: CoCoME: Sofa static architecture

Benefits : As SOFA 2 explicitly supports components througtltive entire software lifecycle, the architecture
erosion is mitigated. Moreover automatic connector geimrgrovides seamless component distribution. Be-
havioral modeling via EBP and subsequent verification aléwy reasoning about correctness of the design even
before actually having an implementation. Then with thelengentation available, one can use code checking to
find out, whether the implementation obeys its EBP specifinat

The solution involves (i) modeling architecture in SOFA amabdel, (ii) specification of component behavior
via extended behavior protocols, (iii) checking behaviompliance of components, (iv) verification of corre-
spondence between selected component Java code and hedpedification, (v) deployment to SOFA run-time

./FIGURES/cocomeSofa.eps

2.2. WORKING SESSION 31

environment (using connectors that support RMI and JMS]J,(ai) modeling of performance and resource us-
age via layered queuing networks. We faced several issugsgdmplementation of the CoCoME assignment
in SOFA 2. Most notably, the architecture was modified in otdamprove clarity of the design. In particular,
the hierarchical bus was replaced by two separate busesiamavientory component was restructured. Extended
behavior protocols for all the components are based on théded plain-English use cases, the UML sequence
diagrams, and the reference Java implementation (thermssiyf does not include a complete UML behavior
specification e.g. via activity diagrams and state charts).

Jan showed the SOFA solution for CoCoME: static view, bedraview (BP [sofa, fractal], EBP [Sofa 2]),
deployment view, performance view (model performanceingarison with UML, flat / hierarchical models,
multiplicity, evaluation.

The slides of this intervention are provided on the WorksWki at:

Morning Discussions

Here is a short summary of thursday discussions and desision
Petr drew a quick picture of a Sofa metamodel (2 which should correspond to all our component models
(with different names).

Frame Interface

protocol : String

Instance Architecture

InterfaceType

*

Binding

Figure 2.3: Sofa: short metamodel

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
./FIGURES/sofaMeta.eps

32

ECONET Workshop 2007

Then we discussed about the application design (Eid). The figure shows a three parts architecture with
a common metamodel and a dependency between structurabhasibural abstraction. The contribution is an
annotation definition, a first prototype (Java analyser, ol®) that must be incremental. See also Spring and

Fractal.

[}
H Model (BP, EBP
W Informations : ' ’

rd
Zz
Structural
Model
Q7 flat/hierarchical
(/f 4—> Ful
description
reverse
| |
I Informations |
annotations \

[}
.

Metamodel

Behavioural
I Structural

e eEBP)

Hand-made ->
automatic (goal)

After, Tomas explained a short example of code generatmm fBoFA architecture. He took theogDeno

plain Java
code

Figure 2.4: Econet Architecture: draft 1

example and illustrated different versions of the Java geoe

nmodul e | ogdenp {

LogDemo (?elog.log)*

elog

Logger frame Caller {

requires:

(?ilog.log)* 9

b

frame Logger {
provi des:

interface Loglnterface {
void log(in string nunber);

Logl nterface Log;

Logl nterface Log;

b
}s

There are two primitive componentgal | er (or Cal | er in his example) and.ogger . Logger pro-
vides the interfac&ogl nt er f ace, Cal | er requires this interface, in the componérigdeno these two
components are instantiated and their provision and remuént are bound together.

In the first translation, plain Java code is generated withegific implementation of requirements (variable +

methods).

/'l Loggerlnpl.java
package SOFA. denps. | ogdeno;

public class Loggerlnpl inplenents Loglnterface {

public void | og(java.lang.String nmsg) {
Systemout.println("**+x+x LOG "+nsQ);
}
}

/1 Callerlnpl.java
package SOFA. denps. | ogdeno;

public class Callerlnpl inplenments Runnable {
SOFA. Conponent . DCUP. DCUPConponent Manager | npl

./FIGURES/archiEcoTaskV0.eps
./FIGURES/logdemo.eps

2.2. WORKING SESSION 33

Logl nterface LogRequirenent;

bool ean end;

bool ean st opped;

public Callerlnpl (SOFA. Conponent . DCUP. DCUPConponent Manager I npl _cm) {

}
private void setRequirenment () throws SOFA. Conponent. Nam ngException {

LogRequi rement = (Loglnterface) cm get Requirenent("Log");

}
public void run() {

)
public void setEnd() {

}
publ i c bool ean isStopped() {

}

In a second translation, the provisions and requiremeatsgecified as annotations in Java for a post process-
ing.
/1 Loggerlnpl.java

@r ovi si on(l og)
public class Loggerlnpl inplenents Loglnterface {

}

/1 Callerlnpl.java

@ equi renment s(1 og)

public class Callerlnpl {
bool ean end;
bool ean st opped;
public Callerlnmpl () {

public void run() {

}
public void setEnd() {

}
publ i c bool ean i sStopped() {

}

The architecture is generated or predefined. There are &esgdbr connectors.

Last, we discussed about flat component/ hierarchical coes and the composition operators. At first, we
cannot re-engineer the composite components from scr@ied.can build hierarchies on performance criteria or
distribution criteria. But it is enough for instance to lolihe primitive components and then to build the structures
manually. Jiri proposed launching the code with introsjeeatather than parsing the code.

Java Path Finder, Bandera

The afternoon started with a short description of JPF (amitiBea) by Jiri Adamek. The slides of this intervention
are provided on the Workshop Wiki at:

Bandera

Jiri explained that Bandera was unstable at the time heedutiand the second version was not really public
on the web sité Bandera is a 6-years old source transformer. Banderastiowheck in a semi-automatic way
different properties for different abstractions (F&g5). Two years ago a model-checker for Java, called BOGOR
has been developped ; it can be a future source of informatidriool.

3
4

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07
http://bandera.projects.cis.ksu.edu/
http://bogor.projects.cis.ksu.edu/

34 ECONET Workshop 2007

Java source Temporal Logic

____________ Specification

i Abstraction
/ Bindings
kéraction

b | Library

Model Checking Tools
Abstracted Guarded
Javargource PVS Assignments
Translator
Model Promela | Promela {SPIN)
Constructor Translaror|

SMY TRANS (SMV)

Translator

Figure 2.5: Bandera overview (from web source)

Java Path Finder

JPF is a Java model checker developped at NASA Ames ReseantarC

dala/scheduiing
M heurlstics o.bservaum

library choice vm verification report
verification target | abstraction generator fstener |@#¢ 0 aor palh
(fava bylacode ic
prggm_m) Step #11 Thread #0
oldclassic javaBs evend Lwait_for_everd():
v Idciassic java3y wailf):
*.class = !
- '.I’lrtual Machine b
*.jar mgm | Step #14 Threed #1
oldciassic java 95 everi2wait_lor_averif):
oldciazeic javecdT waill):
111 Vi
Search Strﬂlegf driver CoreJPF | | e threed slacks
Thread: Threed-0
at java lsng. Coject.waitijavalangDioject java:420)

&t Eventwait_ for_eveni{oldciazsic jave:37)

/ i
Thread: Threed-1
properh,' search e ; . ;
error-path &t jeva lang Object waifjavalang Ooject java:d2)
checker | rlstaner pa at Event wait_tor_svert{oldciassic javasir)
system/ searct]

propesty
violation
\

apps ohiservation

Figure 2.6: JPF model of operation (from web source)

In general, JPF is capable of checking every Java prograndties not depend on unsupported native meth-
ods. The JPF VM cannot execute platform specific, native cddhés especially imposes a restriction on what
standard libraries can be used from within the applicatiodeun test. While it is possible to write these library
versions (especially by using the Model Java Interface -Ethanism) there is currently no support for java.awt,
java.net, and only limited support for java.io and Javaigtime reflection. Another restriction is given by JPF'’s
state storage requirements, which effectively limits tize ©f checkable applications to 10kloc (depending on
their internal structure) if no application and propertgsific abstractions are used. Because of these library and
size limitations, JPF so far has been mainly used for agmicathat are models, but require a full procedural pro-
gramming language. JPF is especially useful to verify coreu Java programs, due to its systematic exploration

5

./FIGURES/bandera.eps
./FIGURES/jpf1.eps
http://javapathfinder.sourceforge.net/

2.2. WORKING SESSION 35

of scheduling sequences - an area which is particularlycdifffor traditional testing.

One problem in a component view is that it accepts only clgesesiprograms. It explores the state space. Out
of the box, JPF can search for deadlocks and unhandled éxegj¢.g. NullPointerExceptions and Assertion-
Errors), but the user can provide own property classes, ibe Vistener-extensions to implement other property
checks. A number of such extensions, like race conditiorhaag bounds checks are included in the JPF distribu-
tion. One advantage of JPF is that it accdistenersfor custom search algorithms and an access to a Model-Java
interface via its API (Fig2.7).

Model layer
verification target

A J —

— S e W

| +PF (Java appiication}-. ~{ E
Java layer sy 2

= Q5

"Mode! Java fiterface”

"Java Native Interface” nostdvM - | 9 gandard Java
[NI | P . | Installation
TElve 7
Native layer | libraries I J
platform OS

Figure 2.7: JPF Java layers (from web source)

./FIGURES/jpfapi.eps

36 ECONET Workshop 2007

Project modules and interfaces (discussions)

In this part we discussed more precisely on the project tctire (Fig. 2.8), its modules and the minimal
information we need for behavioural abstraction.

Structures

SOFA 2.0
Kmelia Common Behaviours
Component
STSLib Metamodel WFR (OCL)
Fractal S ~
7 ~N
Zz N
Structural Behavioural
Model/Type ;T\bs;r_act Mr?'d6|| Abstract Model Model
checking at/hierarchica (eEBP) checking

reverse

[annotation

User

informations | _definition_ IPE
patterns
Textual analysers

informations

- extractors
plain Java annoted Java

UML code code

diagrams

EJB, Corba, .NET
Specific component framework
Fractal, SOFA, Spring...

Figure 2.8: Econet Architecture: final version

The abstraction process ((Fi@.9)) should infer components and structure for the behavlabstraction.
The information are given directly by the source code visaJawnotations. A main information for the latter is
the "entry point" information (intialisation). The entrpint denotes the active component.

IPAddress
String

Integers

L] [
INeile

application components

Values, types

Figure 2.9: Abstraction Process

The B process is more general than the A one since it can apphpii-behavioural abstract modelf.
provides more complete results with less informatidorhe borders delimit frontiers and component contexts
(separate business and management for example) and Isgeslto components. The goal is to extract interfaces
(one or more) using hierarchical graph analysis for examplee approach uses annotation based methods and
techniques coupled with user friendly graphical interfacget the missing informations from the user. Possible
starting points and resources are: Java only, UML modefapoment models, EJB program...

Toward an annotation language (discussions)

To define the required informations (and annotations) veel i@ map the model concepts (F&§10. We separate
business functionalities from non-business ones (reletelhva computations or to management handling e.g.

./FIGURES/archiEcoTask.eps
./FIGURES/absProcess.eps

2.2. WORKING SESSION 37

setRequirements). We should find annotations about prdvitderfaces (which is absent or difficult to find in
plain Java). Provided interface are annotated on Javdants and methods. Required interfaces can be annotated
from Java attributes. All the classes belonging to a compbsigould be annotated. One question is: how many
instances of a component do we accept, only one?

Abstract Java
concepts concepts
Entry point
Frame / Class
Interface » Interface

3 sorts of methods:
Operation »Methods x business (services)
X non business (java)

Connections Statements
Types Inheritance 3 sorts of classes:
\ X components
Types / classes X types
Composites x Java only

(later)

Figure 2.10: Mapping concepts

Remark 1: there is one protocol per component (frame) angeranterface.
Remark 2: the annotations must be compliant with other Jamatations (metamodel).

2.2.4 Friday, September 7, 2007

[Time | Activity | Speaker |
09:00 | Welcome Pascal André
| Comparison of Abstract Models (discussions) -
| Common MetaModels (discussions) -
12:00 | Round tables and discussions -
13:30| Technical discussions (RE techniques and top
| annotation Language, collaborative tools...) | -
17:00| Closure Pascal André, Ondrej Sery, Petr Hnetynka

Sl

Welcome

Pascal introduced the third day working session by givinglastract of the discussions and the gainful decisions
of the previous days. We significantly progressed on theeptgjtructure and module interfaces and reached
partially the convergence of the means (see se@idrf). This can be summarised as follows

e DSRG experienceCoCoME, Behaviour Extraction, Tools (JPF, Bandera)
e Project Architecture (Fig2.8) Three parts

1. Component Metamodetoss LTS extensions, WFR
2. Structure Abstractionser interacted tool
3. Behavior Abstractior-interface definition, annotations generation

e Problem Domain Restriction

— metamodel— components and behaviours

— A = no connections, no composition, no statement abstraction

./FIGURES/absMapping.eps

38 ECONET Workshop 2007

— B = no composition, no statement abstraction, user-intenasti
e Benchmark =CoCoME

There remain things to do for this last day: the detailedgatgfinition, the responsibility repartition and the

planning building. Moreover some discussions were mamgato technical informations: models (abstract and

concrete models toward a common metamodel), techniques¢tfow or parsing, detailed annotation language,

...). The (optimistic) goal of day 5 is that each participaas a somewhat clear idea of what he will do later.
Here are some guidelines for the definition of the tasks:

e What to do?on the draft architecture

— Metamodel
— Process A
— Process B

Contributions? subset of

— Common Metamodel definition?
— Annotation language definition (input of process A)
— Tools Prototypes for Metamodel verification, Process AcEss B

Synchronisation points =
A-interface, Metamodel def, B-Information def

Planningdeadlines

— Evaluation (october 2007)
— Workshop Nantes (March 2008)
— Workshop Cluj (August 2008)

The slides (third plan) are provided on the Workshop Wiki at:

We started the day by a comparison of abstract models andsafteral discussions on the CMM (Common
MetaModel), the AL (Annotation Language), the tools andtdsk repartition.
Comparison of Abstract Models (discussions)

The discussions continued with a fast comparison of thestAbstract models (8-A, KADL, Kmelia) in order to
grasp the structural and behavioural models and therdferarinotations and some kind of metamodel.

| Concept/Model | SoFAEBPL | K ADL | Kmelia |
Attachment Frame Component Service+ component
Operations atomic assignments atomic functions atomic action+
(computation) (constants?) (algebraic) service calls
Types Enums any ADT "complex but open”
means ad hoc
Guards logic + enum logic + ADT logic + ad hoc FL
Dynamic formalism reg. expr. state transition state transition +
"hierarchy"”
I/0 1? 2% 212?21
Labels ?iface.notified [guard] event com/action [guard] action*
{liface2.pre} (actions can be com or functions

We studied the corresponding Java constructs in an engigéeverse-engineering points of view.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:pragues2007:
program07

2.2. WORKING SESSION

39

s)

| Concept/Model | SoFA EBPL | K ADL | Kmelia |
Attachment set of classes set of classes set of classes
Operations plain methods plain methods methods + behaviours
(computation) user Java statemenfsalgebraic translation generated code
Types Java types Java types Java types +
classes (ADT) classes
Guards boolean expr. boolean methods conditions
Dynamic formalism control flows control flows various statements
(RML...) (LTS Library) (control structure, messages, metho
110 method calls method calls method calls
parameters parameters parameters

Labels assignments if-then-else statements

user Java statements patterns (Kml-lang)

We started the day by a comparison of abstract models andaaftiscussions on the common metamodels
and the annotation language, and the task repartition.

Common MetaModel (discussions)

The common component metamodel will include only the compemmin its first design, leaving some holes for
specific features. The structural concepts are quite ginnildne target languages. The main features are those of
the annotation language. They differ mainly on the repridgiem of behaviours (Fig2.117).

Technical discussions

Fractal SOFA 2.0 Kmelia KADL
| ~Addiionar 1 x A
| _ daa _| h\ Y

Behavioural
Abstract Model

annotations |

plain Java
code

Figure 2.11: Common Component MetaModel

First a debate opened on the behaviour abstraction RE tpedsiand tools. On one hand, the usual way to
proceed is to build the control graph: the states are thes stefhe system evolution - its state space - and the
transitions are the events and actions performed (methhdtaements, control structure). Then we can split the
system behaviour onto components or just model check it.prblem is that it contains low level information
and it should be abstract: group state and transitions. t€hfmnique is well fitted to LTS base components. On
another hand, we can parse the java code and build parsgA8&sabstract syntax tree with terminal and non
terminal tokens). This provides modular trees that can bgeuécollapsed/extended to a more general flow. This
technique seems to be interesting to build regular expmesgor the FA model. It uses the SunAPI for Java
and tools likg avacc, ant | r,JavaCup, etc. In any case, one has to cross the results with existimgponent
structures. The second solution is chosen.
Some issues remain open:

./FIGURES/ecoCCMM.eps

40 ECONET Workshop 2007

JAVA

PT
(parse tree)

e

CPT
(component PT)

N

CF
(control flow)

SOFA 2.0

CCF
(component CF)

Kmelia

KADL =

Figure 2.12: Java Behaviour Abstraction

e Parse Tree

— Coloration used to collapse parts of the parse trees.
— Tools?

e Control Flow

— Coloration used to collapse parts of the control flows.
— Tools?
— Format? textual +API

e Find a good common format for both parse tree and control flow.

Then we exchanged views about the annotation language. cdi&ructs in the component modelare
associated or derived from one or several annotations indde.

Frame/Component
e Corresponding Java construct: one or more classes
e Corresponding Java annotation:

— targetclass or interfac® nConponent (annot ati on_sour ce, name_of _the_conponent)

Interface
e Corresponding Java construct: one or more interfaces, eira@f snethods from a class
e Corresponding Java annotation:

— targetclasgr ovi ded(annot ati on_source, name_of the_nodel _interface, nane_of _the_ja
— target method@®r ovi ded(annot ati on_source, nane_of _the_nodel _i nterface)
— target attribute® equi r ed(annot at i on_sour ce, name_of the_nodel _interface)

things to think about later : (temp requirement passed aspeters)

./FIGURES/ecoJBA.eps

2.2. WORKING SESSION 41

"entry point"
e Corresponding Java construct: The main class of a component
e Corresponding Java annotation:

— target clas®@ ni t cl ass(annot ati on_sour ce, nane_of _t he_conponent)
— target method® ni t met hod(annot ati on_source, nanme_of _the_conponent)

Gilles: nane_of _t he_conmponent seems redundant because the method or the class shouldyalrea
belong to a component (see InComponent annotation)
things to think about later: (consistency rules neededausly several initclasses, methods in a component
legal?)
Operation Do we need it? We already know methods from the provided atioot
e Corresponding Java construct: Method
e Corresponding Java annotation:
— target method@
Business methods have to be singled out
Types Goal: identify parameters of business methods
Problem: String or Integer may be used as business obje@tsnes and sometimes not
e Corresponding Java construct: class or interface
e Corresponding Java annotation:

— targetclass or Interfag@ ni t cl ass(annot ati on_source, nane_of _t he_conponent)
— target method@usi nesspar anet er (annot ati on_source, paraneter_nane) (thisone
takes precedence over the previous one)

things to think about later: another annotation could beafistracting data : telling that an integer only has
a few cases...

Business types have to be annotated. In some cases (libithguvaccessible source code) they can't be, so
a textual configuration file will be used to list them or to lsin-business types. White list, black list, regular
expressions over full name?

Last we discussed about tasks, responsibilities and milest Every body participates to the common anno-
tated bibliography on the wiki. Here is a pictured summarthefresponsibility and participant repartition on the
project structure (Fig2.13).

As a collaborative tool, a versioning system (SVN) will betadled by DSRG, in addition to the wiki platform
installed by COLOSS. We want to share the tools (source apér&nce) used during the development.

Closure
Production
e Workshop Report

— Collect paper and slides.
— Summary of the discussions

e Bibliographical Notes

= project plan for year 2 anBvaluation

42 ECONET Workshop 2007

Leader: LCI
Participants: all Common
Component
Metamodel WFR (OCL)
7 ~N
/ II ~
Z / ~
/
Structural Mode,(/Type Behavioural Model
Abstract Model her,\king Abstract Model checking
flat/hierarchical (eEBP)

Leader: COLOSS, OBASCO

Participants: LCI

—

_ " annotation j---
=) definiton_

Leader: DSRG
Participants: COLOSS, OBASCO

User
informations
*

reverse JPF
Textual patterns
informations analysers
. extractors
UML plain Java annoted Java
code code
diagrams

EJB, Corba, .NET
Specific component framework

Fractal, SOFA, Spring...

Figure 2.13: Econet Architecture: responsabilities

e Fix the participants objectives

e Documentation, research reports

¢ Intermediate results=- Second Workshop
e Publications (?)

see also the initial 'Second year objectives’
The organizers thanks the participants for their contidms and take a date for a next workshop at Nantes in

2008.

./FIGURES/archiEcoTaskR.eps

Chapter 3

Project Architecture

The contents of this chapter has been defined individuallr die workshop. It presents a detailed vision of
the three subprojects, defined in the workshop. There regmaire coordination to process on the common parts
(especially on the interface formats and model tools) asd @ share the experience on tools.

3.1 Structural Abstraction Subproject

Writer: Pascal André, Gilles Ardourel

This is currently a draft version.

3.1.1 Objectives and Goals

The objective of the process B (Fig.8) is to build a structural component model and a correspanaimotated
Java code. These two elements are inputs of the process #hésdetailed process in secti8r?). The model is
also an instance of the metamodel (see the detailed deésariptsection3.3) that will control its consistency.

A general view of the process B is given in figuB€l; from plain Java code and user interaction, process B
should produce an annotated Java code and a correspondipgprent model (both results must be consistent).
Some restrictions apply to the first program release:

e Input

— Annotations are those related to the Common Component Met@zeMCCMM) but do not include
other component models yet (Fractal, Sofa, ...). The latikbe calledextended annotation

— UML models are not accepted as direct inputs but are readebygér.
e Output

— Only flat component models are targetted.

— Process B is not directly responsible of the consistenoyéxt a model and the corresponding Java
annotated code.

— The conformance of the produced component model is chedkbd enetamodel level.

The process B is in fact iterative because its source is darign the sense that it may include many infor-
mations from different nature) and target different go&dsr instance one goal is to abstract structural elements
of a component model from a plain Java code and user infoomstiAnother is to read and interpret existing
annotations. Another is to check the compatibility betweree component model and an annoted Java code... On
each iteration, the process accepts a Java program (wititttww annotation) and a component model (possibly
empty). It computes some information, sometimes usingreatéools and human interaction. This information
modifies the a Java program and the component model.

The idea is to combine primitive transformations and dgveleustomised (or human driven) process B. Here
are some of these primitive transformations:

43

44 ECONET Workshop 2007

| Tannotation 1 |7 ccmm 1
| _definition | | _definition__|

Annoted code plain Java

Structural

code i i
Fractal, SOFA, Abstract Model hierarchical
Kml... flat
Structure .
User Abstraction consistent

informations (process B)

interactive

() f annoted Java

code
Textual

informations

i /

\ UML /

i diagrams
Figure 3.1: A general view of the process B

consistent

[annotated]

Java code
i

Structural
Abstract Model

| “annotaton 1 conm
| _definiton_ | | _definition __|
Structure External Tools
User Abstraction - » (parsers, graphs,
informations (process B) XMl...)

interactive)

consistent

[annotated]

Java code
i+1

Structural
Abstract Model
i+1

Figure 3.2: An iterative view of the process B

. Annotate a Java program from user information.
. Build a component model from an annotated Java source.

. Build a component model from a plain Java source.

1

2

3

4. Analyse a distributed program to detect components ¢geptnt).

5. Extract cluster using graph tools (grouping class intojgonents, or grouping components into composite).
6. Process model transformations such as fusion, select@mthe couple (code, model).

7

Important remarks:

1. Note that combining transformation 1 and 2 provides a ffestilt of process B which can be reusable in
process A.

2. Note also that input and outputs need format filters (neadéer) which are common to all subprojects.

./FIGURES/processB.eps
./FIGURES/processBiter.eps

3.1. STRUCTURAL ABSTRACTION SUBPROJECT

45

3. Note also that some of these transformations ought todetinghe other subprojects.

Consequently, process B is rather a tool box or a sequenedpfacess applications.

consistent

[annotated]

Java code
i

Structural

Abstract Model
i

[annotation [CCMm |
| _definition_ | | _defintion_
Annota L
- '\;'Odff' fon | quuet E'f_t”' Model External Tools
User df“:r’ anrr?g:at writer ing”fo‘a aﬁ;ﬁf transfo | ... |-—| (parsers, graphs,
informations ions | from ser | rmation XML...)
(interactive) model

|:| Input filter
|:| Output filter

consistent

[annotated]
Java code
i+1

Structural
Abstract Model
i+1

Figure 3.3: An architectural view of the process B

3.1.2 B transformations and tools

1. Annotate a Java program from user information.

This program needs input/output functions for annotatagJbsources.
Some tools are

e Java parsers, analysers... see se@i@r8on page49.
e JDK 5.0 Java Annotation Processing T@&T?.

e A program that lead the interactions.

o XML reader/writer.

. Build a component model from an annotated Java source.
Having an annotated Java program, one can build the comdsgpmodel, providing we have the good
filters and formats (see the adapted transformations).

. Build a component model from a plain Java source.
This can be obtained by combining other transformationscesthe input model is empty, the human must
provide many informations and can be helped by the clustér to

. Analyse a distributed program to detect components ¢gepnt).
One way to find components is to analyse the distribution émark. Components in this case are linked
to deployment nodes. We can use RMI analysis for exampleoftoac?).

. Extract clusters (grouping class into components, ougirgy components into composite).
We need graph tools to analyse component architectures.

. Process model transformations such as fusion, selectnthe couple (code, model).
In collaboration with the team working on the metamodel weeh@ develop transformations on models
and their pending Java annotation transformations.

. Consistency checker.
In collaboration with the team working on the metamodel weeh@ develop tools that check the consis-
tency between models and their corresponding annotatedodagrams.

./FIGURES/processBbox.eps
java.sun.com/j2se/1.5.0/docs/guide/apt/

46 ECONET Workshop 2007

8. Filters.
In collaboration with the other teams we have to define theéds and to develop utilitary programs to read
and write on the adopted format (XMI, MOF-XMI, Ecore, Javad¢bAPI, ...).

9. Scheduler.
This program will chain the transformation in order to builteractive B processes.

3.1.3 Interface

The annotation language and component metal model havedisissed but the full definition of interface need
an interoperable format. Especially we need a couple (forimal) to support model and metamodel instanciation.

1. Metamodel format (XMI, ECore, MOF, model API...)
2. Model format (XMI, ECore, MOF, model API...)

3. File exchange vs. model repository.

It is not interesting to exchange text files ou XML files betwélee three subprojects because we should all
have to write readers and writers modules and manage ourepvagentation of the models. Instead we have to
share this common part.

This part is a common part. It is discussed in sec8ah2

3.1.4 Organisation

This task is led by the COLOSS group; the OBASCO group alsdritarie significantly to the toolbox; the LCI
team will bring its experience on reverse-engineeringgool

The program is designed as a set of tools which can be devkingependently provided the interfaces are
well defined (see sectioh 1.3. The list of tools is open and will be extended each time wedrenother tool.

We have to distribute the transformations on the partidpand to define which transformations are to include
in each delivery. Transformations 1 and 2 are basic transitions and have to be implemented later with a core
abstractation process (transformation 8) in the beginofriggbruary 2008. These transformations are mandatory
to test the model management module and the interface acledusen the other modules will be added by team
members.

First results on the structural analysis tool are expectethé time of the second workshop (Nantes 2008).
Results on extraction back-ends are expected till the thindkshop (Cluj 2008).

3.2 Behavioural Abstraction Subproject

Writer: Tomas Poch

Reverse engineering general Java application into comp@pplication consists of two tasks. First, extrac-
tion of an architectural view (identification of componeriteeir interconnections, etc.); second, extraction of a
dynamic behaviour specification of the components idedtiigring the first task. Constituting an interface be-
tween the two tasks, the architectural information is to tioeesl in a form of Java annotation in the actual Java
sources of the application being reverse engineered.

This section presents goals, means and organization oetiend task in the scope of the ECONET project,
and thus summarizing a part of the results of the Prague’2@@Rshop working sessions.

3.2.1 Goals

Each group participating in the project has developed its fwmalism for behaviour specification. Therefore,
the idea is to make the reverse engineering as general ablpassorder to allow extraction of behaviour in any
formalism.

To be more specific, the formalisms considered are:

e Enhanced behaviour protocolEBP) developed by DSRG,

3.2. BEHAVIOURAL ABSTRACTION SUBPROJECT a7

e eLTSdeveloped by COLOSS,
e STSdeveloped by OBASCO.

The individual behaviour specification formalisms diffdoa This makes creation of a general tool very diffi-
cult. However, steps common to extraction of any behavipac#ications (in particular behaviour protocols and
LTS-based formalisms eLTS and STS) might be identified. Tthesgeneral approach is to divide all necessary
steps of behaviour extraction into two parts: i) steps comto@ll formalisms, and ii) steps specific to a particular
formalism.

The first part will be implemented in a General analysis tedijle the second part will be performed by
back-ends specific to a particular formalism.

To prevent reinvention of the wheel, the analysis tool isgarbplemented using existing libraries/tools/plat-
forms (for parsing Java sources and annotation extraciar),

To sum it up, the goals of reverse engineering behaviourifsge@n are as follows:

1. Find a suitable libraries/tools/platforms for analysigava sources.

2. Create a generic Java analysis tool which produces amiatkate representation of behaviour suitable for
subsequent creation of concrete behaviour specificatioaghosen formalism.

3. Create formalism-specific back-ends for extraction dfavéur specification from the intermediate speci-
fication.
3.2.2 Annotations

Reflecting the goals stated in the previous section, thegssoof reverse engineering behaviour specification
starts, where the first process (reverse engineering coemp@nchitecture) ends—i.e. by extracting and using
architectural information provided in a form of Java antiotss directly in the Java sources and, of course, the
Java sources themselves.

The necessary architectural information consists of:

assignment of Java classes to individual components,
identification of provided interfaces and their methods,

identification of required interfaces (as class attebjtand

A W b

demarkation of the components’ initialization code.

Moreover, in order to help extraction of behaviour speciftag it might be helpful to have explicitly annotated
ValueTypeclasses. By a ValueType, we mean a class used for storingassing data rather than providing a
specific functionality.

As the ValueTypes have to be reflected in the behaviour spatiifn, hints about the abstraction may be
necessary. By abstraction we mean replacement of the a&ilusType by a simpler abstract type (for example
integer type by enumeration). Although the abstract typelbss states, it captures all information necessary
for the component behaviour. For example if the behaviodheftomponent depends on the sign of the integer
parameter, all information we need can be stored in theeibiglof information. Thus, the boolean type suffices
for the parameter.

The information about ValueType abstraction could be djpetd the target formalism and even more added
manually by a human user. More detailed description of tpased set of annotations follows.

Component

One or more Java classes can be assigned to a single comp®ueiman assignment is specified by the following
annotation of a Java class:

@ nConponent (annot ati on_src, comnponent _nane)

As in the rest of this section, tlennot at i on_sr c specifies the origin of the annotation—i.e. a name of a tool
which inserted the annotation in the code or whether thetatioa has been inserted manually.

48 ECONET Workshop 2007

Interfaces

Methods of Java classes may be assigned to compomeotsled interfacesn two different ways. First, as an
annotation of a Java class:

@r ovi ded(annot ati on_src, nodel _iface_nane, java_iface_nane)

This way, all methods of the specified Java interface (whiehannotated class has to implement) are marked as
a part of the provided interface of the component. The seposdibility is to mark individual methods of a Java
class by the annotation:

@rovi ded(annotation_src, nodel iface nane)

This is necessary in a case the component’s provided icsfdo not correspond with the Java interfaces.

In Java sources, a required interface is present in a formctd#ss attribute. The attribute stores a reference
to another component, whose provided interface is bounkisaé¢quired interfaces. Therefore, the target of the
annotation for required interface is an attribute of a Jdassc

@ equi red(annotati on_src, nodel _iface_nane)

Component’s initialization

In order to be able to derive the behaviour specificationemily, knowledge about a component initialization is
crucial. By initialization, we mean instantiation of classassigning references to the required interfaces @i.e. t
the class attributes), starting threads of active comptsnetc.

Typically, there are two ways of initialization. First, tivétialization is performed by a class. This class is
the first instantiated and is responsible (its construdtonhe instantiation and initialization of the component’
content. To identify such a class, the following annotatsoused:

@ni tclass(annotation_src, component _nane)

The second possibility is that the component content isamited and initialized by a static method (an
equivalent of themainmethod).

@ ni t met hod(annot ati on_src, nane_of _the_conponent)

Data and method parameters abstraction

Some of the internal component data and method parametghs ba of crucial importance for correct extraction
of the behaviour specification. Those should be also exlyl@nhnotated, in order that the behaviour specification
extractor could take them into account and provide a nepeasatraction.

However, it is hard to predict the needs of behaviour eximadh advance and thus these annotations are yet
to be further elaborated. The initial proposal is to idgntilue Types classes and interfaces, and therefore mark
all their instances as important for the component behaviou

@usi nesspar anet ert ype(annot ati on_src)

As some types might be important only in a specific context. (&tring), there is also possibility to mark
particular method parameters and Java class attributespastant for business logic.

@usi nessattribute(annotation_src)
@usi nesspar anmet er (annot ati on_src, paraneter_nane)

For the actual behaviour specification extraction, hinthow to perform a data abstraction from the concrete
values of these types have to be added by a human user. Ayparfecrmat of these hints will be further analyzed.

External dependencies

Some architecture information cannot be introduced inéocibde as annotations. Mostly, these are the external
dependencies on the class libraries used by the compongat Etasses from the libraries can be also important
for the behaviour extraction but in general, they cannot ibectly annotated. Therefore, these dependencies
are listed in an extra file. The complete code of the compoisetitus a set of classes annotated by both the
I nConponent annotations and also the content of the dependencies file.

3.2. BEHAVIOURAL ABSTRACTION SUBPROJECT 49

3.2.3 Tools for Java source analysis

Having the Java sources properly annotated, the questlmvofo extract the annotations and analyze the sources
comes up. There is quite a choice of tools to be used for thizgse.

Possible options are:

e JavaC P]—standard Java compiler from Sun—is a natural first optisntas standard part of the Java
development kit (JDK) and features a reasonable interfaceither annotation processing alone or to
obtain the complete abstract syntax trees.

e JavaCC (Java Compiler Compilef]) s a generator of parsers. To create a parser, it uses a gkgmmar.
e ANTLR [3] is another parser generator which also uses LL(n) grammars

e Java CUP{] is also a parser generator, but in comparison to the prevaoes it uses LALR(1) grammars.
Itis quite similar to the standard YACC and Bison tools. Imtast, it is written in Java.

e SableCC 5] is another LALR(1) parser generator.

In a case, the chosen parser generator does not providecallaralyser, a usage of tools like JLex and JFlex
has to be considered.

Choosing the suitable tool will require deeper exploratiad in-depth analysis of all features provided by the
tools. The preferred option is to use JavaC, as it alwaysaguiees to parse the current (and also older) version of
the Java languages and also it does not introduce any thitgi4ool dependencies.

3.2.4 Generic analysis tool (GAT)

Behaviour specification extraction is divided into two stepirst step is to preprocess the annotated Java sources
and propagate information about architecture to the adtue code, so that Java statements can be categorized as
either externaly visible events (method calls on requinggifaces), visible actions (change of business attrijute
changes in control flow (if and cycle statements), or inteimasible actions (work with local variables). The
result of the process is an abstract syntax tree with nodssr&d” by the architecture information (obtained from
the annotations).

In the second step, the produced cAST (colored AST) is usettde a control flow graph (CFG) representing
the code. Again, nodes of the graph are "colored" by the tactire information (cCFG). Both cAST and cCFG
are available by the defined API (all details about the APlehtavbe analyzed yet) and/or in a serialized textual
form.

A specific formalism back-end can choose whether cAST iscseiffi for it or whether the usage of cCFG is
necessary.

Based on the preliminary analysis, for the EBP back-end c&STfficient while the LTS-based formalism
(eLTS and STS) requires an existence of cCFG.

The whole process is illustrated with Figuset.

There is a bigger set of transformations which can be peddramong AST, cAST, cCFG. Some of them,
like coloring, are necessary part of the proposed processer@ansformations, like omiting actions on non-
ValueType data, can be used by some back-ends or even tie siteg These transformations should be available
to the authors of the back-ends in order to prevent duplivat&.

3.2.5 Reverse engineering back-ends

Depending on the choice of the target behaviour specificétionalism (BP, EBP, STS, eLTS, ...) a specific back-
end of GAT is used to extract the behaviour specification.example, the back-end for extraction of behaviour
protocols abstracts from everything except externalylésevents and control flow (replacing statements by
alternative and cycles by repetition).

50 ECONET Workshop 2007

General analysis tool

Java sources
+
annotations

Colored

1

1

Colored X
control flow X
1

1

1

abstract syntax

tree graph

Formalism-specific back-ends

Figure 3.4: The two step process of reverse engineering/imiraspecification

3.2.6 Organization

This task is led by the DSRG group; the OBASCO and COLOSS gralgp participate. The first version of
the set of annotations was created by all groups during thguer 2007 Workshop. However, the initial ver-
sion is expected to be further enhanced in order to allowraated (or at least semi-automated) abstraction of
ValueTypes.

More specifically, DSRG is responsible for creation of theeyal analysis tool. For this tool, each partici-
pating group (DSRG, OBASCO, COLOSS) is going to implemeairtbwn back-ends specific to the behaviour
specification formalisms they use.

First results on the generic analysis tool are expected éytithe of the second workshop (Nantes 2008).
Results on extraction back-ends are expected till the thinkshop (Cluj 2008).

3.3 Metamodel Abstraction Subproject

Writer: Dan Chiorean

3.3.1 Objectives and Goals

Designing and coding a powerful repository that implemém<Common Component Metamodel architecture
represents the main objective of the current sub-projectofplishing this objective will support modelers in
creating and validating models that instantiate the Com@mmponent Metamodel in an efficient manner.

3.3.2 Participants

LCI will represent the main participant, responsible witketamodel’s design, implementation and testing.
DSRG, COLOSS and OBASCO teams will provide the requiremeflisteams will be involved in testing the
repository, and, of course, in taking the final decision.

3.3.3 Means

The static semantics of the repository will be specified byanseof OCL constraints. The repository’s (meta-
model’s) API will also be described in a formal manner, by meaf observers, specified in OCL.

The OCLE tool will be used both in validating metamodel’distaemantics and APl observers, and in gener-
ating the Java code corresponding to Additional OperatmasOCL assertions.

./FIGURES/general_analysis_tool.eps

3.3. METAMODEL ABSTRACTION SUBPROJECT 51

3.3.4 Tasks and Schedule

1. Investigating the existent Component Models in ordextoaet the common parts and produce the informal
specification of the Common Component Metamodel (CCM) &chire and metamodel assertions.
ResponsibleDSRG, COLOSS and OBASCO teams
Deadline 15" of November 2007

2. Specifying metamodel assertions and API observers in.OCL
Responsiblel Cl
Deadline 1%¢ of December 2007

3. Validating the OCL specifications on significant models.
Responsiblel Cl
Deadline 15 of December 2007

4. Analyzing state of the art approaches and generatingatteegode corresponding to the CCM repository,
including the code associated to assertions and AdditiOparations. At least two repositories will be
created (one containing the code generated using the ajgtesoEMF tools and another one using OCLE).
Responsiblel Cl
Deadline 1%t of February 2008

5. Testing and improving the above mentioned repositosegydifferent models.
Participants all teams
Deadline 15 of March 2008

6. Choosing the ECONET repository.
Participants all teams
Deadline 1°¢ of April 2008

3.3.5 Using assertions in modeling - an evaluation time view

Using assertions in modeling is incomplete if this is rastd just to better understand the problem and to
emphasize the conditions that have to be accomplished kgligrgs and the provider of a functionality. The true
benefits can be obtained only if assertions are used at renéssisting the user in preventing software runtime
crashes or obtaining inaccurate results. Our interesttimibed to validation. In case of constraint violation, we
are interested in identifying rationales and even more xindibugs and errors. The price that needs to be paid
for obtaining the maximum benefits from using assertions adeting is to take into account the moment when
constraints are evaluated. The main target of this paper féghlight the manner in which the moment when
assertions are evaluated influences their specification.

In order to support an easier understanding of our statemer will consider the CoreComponent Meta-
model - a simple model grouping the common features of maspoment-oriented modeling languagBsiP0q.
Moreover, in Figure3.5, only the elements referred in assertions are represented.

Model validation (model checking) can be regarded from twespectives (views): static checking and dy-
namic checking. As we will see in the following, these viewiience assertions’ specification.

Static checking - The constraints aid in correcting and valiating a previously constructed model

Models are metamodel instances - our objective is to chettleiinalyzed models comply with all the con-
straints associated to different metamodel elements. Tdidgm is entirely similar with that of an UML model
validated against WFR specified at the UML metamodel levethis case, constraints are specified by means of
invariants.

As mentioned in [Moo00, during its construction, the model is incomplete and stimmes it is incorrect
against the constraints associated to the modeling lamguktterefore, before doing model transformation, it is
important to check model correctness and completenessg{rnonhpilability).

In case of the CoreComponent Metamodel, XlaR constraint between the unidirectional associations from
Subcomponent | nst ance towardFr anme andAr chi t ect ur e (graphically specified in Figurg.5), can be
expressed by means of the following invariant:

52 ECONET Workshop 2007

NamedEnkity
rame:String
VergionedEntity
Interface
Architecture SubcomponentInstance +requiredinterface r] - N
communicationStyle String
@ lacation:String @ SubcomponentInstancel argiFrame) @ connectionType: ConnectionType
Subcomponentinstancel arg: Architecture) 0. % iscallection: Boclean
% cotInctantisteFramer arg: Frame)
% cotInetantistearchitecturel srg: Architecture)
0.1 | +instantiatearchitecture L) +pravidedinterface | 0.
Frame
0.1 # pratocol:string
% wddbrnatation(aAnnatation " vt o
-
+instartiateFrams ¥ LddprovidedinterfacelargiInterface) - annatation
+annotation
XOR Arirokation
0.*
TopLevel Factory

Figure 3.5: A part of the CoreComponent Metamodel

(1) context Subcomponentlnstance
i nv FrameOr ArchitectureAssoc:
sel f.instantiateArchitecture.isUndefined xor
sel f.instanti at eFrane. i sUndefi ned

If the above invariant's value ial se, evaluating both itXOR sub-expressions supports the developer in
identifying error’s rationale, enabling, this way, errodiffig.

The constraint concerning the name uniqueness of requitedaces associated to an instance offhane
metaclass, specified by means of the following invariant:

(2) context Frame
i nv requiredlnterfacesNane:
sel f.requiredl nterface. nane->i sUnique(n | n)

does not support enough the user in identifying interfalcasdaused this invariant’s violation. This is because in
case of many interfaces, a careful study of their names s tiomsuming, tedious and error prone.
A more appropriate specification, aiding the user in idgimd interfaces with the same name is:

(3) context Frane
i nv requiredlnterfacesNane:
let ri = self.requiredlnterface in
(ri->reject(e | ri.name->count(e.nane)=1))->i sEnpty

In case of an invariant violation, simply evaluating thelection of interfaces having identical names helps
the user in navigating the above mentioned interfaces antbutel updating (correction), in order to comply with
this invariant (see Figur.6).

If the uniqueness condition concerns both required andigeovinterfaces, the specification could be:

./FIGURES/metaCCM.eps

3.3. METAMODEL ABSTRACTION SUBPROJECT 53

B ocle 2.0 - OCL Environment
Fil: Model Project Edit Tools Options Help
BEEFE BN Fo B 55 &
[S = E = o 35 T 4%
I® A_Subsumption_SubcomponentinterfaceEndpaint =3 /A8 @ O pgmid |
[A VersionedEnty_Version !F
B B Collaboration GHIOCLE 2.0.4'SamplesiCoreCy o L_Static.her e B
MewObjectDiagram model CoreComponentModel E
topL1:TopLevel
context Frame
B [11 - Interface inv ennotations Type:
communicationStyle=undefined self.annotation->select (e | not e.oclIsTypeof{Toplevel])->isEmpty
connectionType=normal 7 P
1 Frame
isCallection=false o
name=recit protocel =
] 11 - Interface name = Frame 1
context Frawe
ez, e, e fact1sFactory
communicationstyle=undefined 5 g
& dorsetbrypetoal let ri = self.requiredInterface in
(ri->rejectlle | ri.name->count (=.nane}=1}) ->isEnpty
=) |ontext Frame
inv unicueInterfaceshiamek:
let rpi = self.reguiredInterface-runion(self.providedInterface] in
RS {rpi->reject(e | rpi.name->count(e.name|=1}|->isEnpty
Name [1znterface
Namespace Collaboration context Subcomponent Instance
isitilty BB inv Frameorirchitecturenssoc:
S self.instantiateArchitecture.isUndefined xor self.instantiateFrame.isUm
Tagged Values
Constraints endmodel
Classifiers
Ovmedinstances. E
sits Iy
I Inset 1348 Wiite enabled
NEWDhJEClD\agmm > % 8
Selestion: Boolean~false E|
Selection: Set(Interface)=Set(rl1,112}
Context for Frame is now set to:fr2

[Selection Set(Interface)=Set(111,112) el

L0G | Messages ocLoutput [Evaluation | Search restits

| |[z0z66r8 1 195136K8 |

Figure 3.6: Identifying Interfaces that violated the Framariant requiredinterfacesName using OCLE

(4) context Frane
i nv uni quel nt erfacesNane:
let i = self.requiredlnterface->union(self.providedlnterface) in
(ri->reject(e | ri.nanme->count(e.nane)=1))->i sEnpty

Comparing the specifications presented in (3) and (4) wighsihecification presented in (2), we can notice
that the price paid for an easier identification of intertaelating theFr ane invariant
requi r edl nt er f acesNane (Figure3.6) is a more detailed OCL specification.

In case of constraints restraining the type of elementsdfiatbe associated &s anme annotations, we will
adopt a solution similar to the previous one:

(5) context Frane
i nv annot ati ons_Type:
sel f.annotation->select(e | not e.ocllsTypeO (TopLevel))->i seEnpty

Like for specifications presented in (3) and (4), the obyecis not restricted to catch invariant violation. We
are interested in identifying the rationale of this failuEvaluating the collection returned by the select openatio
(5) supports users in identifying the annotations vioktims constraint.

Dynamic checking - The constraints aid in preserving the moedl valid after each operation

This situation is similar to that of an object-oriented aggtion, in which objects are created, destroyed
or change their state. The universe of these objects has pedmeanently valid. Therefore, we have to take
appropriate decisions, enabling us to keep the system ilickstate after each call of a constructor or of a modifier.
The strategy adopted will comply with the philosophy "befteevent than cure", therefore, the constraints will be
specified mainly by means of pre and postconditions.

As in the static checking case, we will first analyze the a@mst between the two unidirectional associations
starting from theSubconponent | nst ance class toward-r ane andAr chi t ect ur e. ThexOR constraint
(graphically specified on the class diagram) states theirgidrom Subconponent | nst ance we will always
have a single association, either towardnene class, or toward thAr chi t ect ur e class.

According to the "design by contract” principlelgy97, the invariant specified for the
Subcomponent | nst ance class has to be satisfied by all its instances during theedife, excepting the time
when modifiers are applied on those instances. A first comseguis thaSubconponent | nst ance objects

./FIGURES/sofaOcle.eps

54 ECONET Workshop 2007

must be created always using explicit constructors. In oésesingle explicit constructor, among its parameters
we should have a valid reference toward one offhan®e or Ar chi t ect ur e classes and only one. Therefore,
the other reference has to be nulh@ef i ned). An alternative for the invariant will be:

(6) context Subcomponentl nstance:: Subconponent | nstance(a: Architecture,
f: Frane) : Subconponent | nst ance
pre subconponent | nstance_connecti on:
(a.isUndefined and f.ocl|sTypeO (Frane)) or
(f.isUndefined and a.ocl|IsTypeO (Architecture))
post subconponent | nstance_connection_:
(result.instantiateFrane = f) and
(result.instantiateArchitecture = a)

The OOP philosophy requires the methead | nst ant i at eFrame(f: Frane) and
setlnstantiateArchitecture(a: Architecture) toupdateonlythe value oftlessoci ati onEnd
transmitted as a parameter. Therefore, in case of thesdiaredihe pre and postconditions could be:

(7) context Subconponentlnstance::setlnstantiateFrame(f: Frane)
pre instantiate_ Frane:
self.instantiateArchitecture.isUndefined and f.ocl|sTypeO (Frane)
post instantiate_ Frane:
self.instantiateFrane = f

(8) context Subcomponentl|nstance::setlnstantiateArchitecture (a:
Archi tecture)
pre instantiate_Architecture:
sel f.instantiateFrane.isUndefined and a. ocl I sTypeO (Architecture)
post instantiate_ Architecture_:
self.instantiate Architecture = a

If the requirements explicitly mention that in case ddabconponent | nst ance object it is possible to
remove its association towardra ane instance and to add a new association towardrashi t ect ur e instance
(to switch from aFr ane to anAr chi t ect ur e) or vice versa, the operation supporting this requiremeugtm
comply with a precondition similar to that above specifiedtfe explicit constructor. In the body of that method,
an appropriatset | nst ant i at e method will be called just after setting the other possibference to null.

Regarding the constraints ensuring the uniqueness of tmesafr equi r edl nt er f aces attached to a
Fr ame, we will take into account the fact that this constraint carbboken only when a new interface is added.
Therefore, the assertions attached to the operatimiRequi r edl nt er f ace(i : I nt er f ace) would be:

(9) context Frane::addRequiredlnterface(i:Interface)
pre uni queNane:
i .nane.size > 0 and sel f.requiredlnterface. nane->excl udes(i . nane)
post uni queNane_:
self.requiredlnterface->size = self.requiredlnterface@re->size + 1
and sel f.requiredl nterface. name->i ncl udes(i . nane)

If changing the interface name after attaching the intertaca Frame is required, then, an appropriate pre-
condition has to be specified for the metiadt er f ace: : set Nane(n: Stri ng) . Also, if explicit construc-
tors initializing the value of the requiredinterface rolewardl nt er f ace objects) were specified for the class
Fr ame, then, appropriate preconditions have to be specified fmalabove mentioned constructors.

The last constraint concerns the type of instances thateatthched to a Frame as annotations. In this case,
the assertion will also be specified by means of a precomditio

(10) context Frane::addAnnotati on(a: Annot ati on)
pre params_type:
a. ocl | ski ndOrf (TopLevel)

3.3. METAMODEL ABSTRACTION SUBPROJECT 55

Conclusion

When specifying assertions, the evaluation time must bentalto account. In case of static evaluation,
the assertions are mainly specified by means of invarianthe ifivariant specification has to help designers in
identifying the rationales of invariant failure. The pritebe paid is a detailed OCL specification. In case of
dynamic evaluation, the assertions are mainly specifiedsinygypre and postconditions. At runtime, assertions
specified in OCL are translated in the target programmingudage. Therefore managing assertions failure must
consider both the support of the programming language anflutictionalities offered by the IDE used.

56 ECONET Workshop 2007

3.4 Common Tools

Interface between subprojects can be text files or XML fild¢gHia quite poor and each group will need to develop
tools on Java and Models. In order to get a standard visioheofisgble technologiesm we need to agree on the
model and metamodel tools used in each subproject.

3.4.1 Java/Annotation Tools

Several tools will be used in more than one subproject.
1. JavaCC]|

2. Java Development Kit

3. ANTLR,

4. Java CUP;

5. SableCC]|

3.4.2 Model Engineering Tools

We need tools for model management, preferably on Eclipse.aWéady discussed on a modeling tool around
Eclipse technologies (Ecore, XML, EMF, MOF...) that allotos

1. describe and check component metamodels CMM (with siralcand behavioural features, with a model
that links to Java code)

2. describe and check component models CM
3. provide an API to navigate on and query models, to add tipessand processing on models
4. ..

LCI should maintain this (CMM-CM) layer since it relates t@tamodels.

At first sight OCLE can provide the main elements on pointsd Zbut it doesn’t provide an API usable in
process A (structure) and B (behaviour).

Other tools exist that can help to use Ecore without handlidigectly:

e Kermeta (IRISA)

e ATL (LINA)

e ArgoUML tool (OpenSource)

e others...

Information on this aspect can be found here:

o Generalities

Eclipse Modeling Tools

e Kermeta (IRISA)

ATL (LINA)

Tools

It would be helpful to compare tools

https://javacc.dev.java.net/
http://java.sun.com/
http://www.antlr.org/
http://www2.cs.tum.edu/projects/cup/
http://sablecc.org/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://argouml.tigris.org/
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language
http://www.eclipse.org/modeling/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47

Chapter 4

Conclusion

We report many informations of the workshop in this documertis work has also been intended to be the
technical part of the project first year report.

The workshop emphasis the (intuited) fact that the absimactels of the partners share a common basis on
components, services and behaviours. The differencesecaedn merely as enrichment rather than concurrency.
A common metamodel can therefore be proposed, which candraented later to be a proposal for component
model interoperability. The cross fertilisation seem® algssible at the tool level.

A plan is a sketch for a first step proposal in component attstrafrom Java code. We fixed a limited context
and objectives to be achieved in one year and several moiities practical implementation will be led in the
second year.

57

Appendix A

More informations on...

see the Project Wiki.

A.1 Workshop Material

Most of the elements are on the project and workshop Wiki.

A.2 Collaborative Tools

Some collaborative tools have been installed to exchangemdents.

Wiki
For storing documents, discussions...

Version Management. A SVN repository for the project is ringrat

CoCoME

A.3 Annotated Bibliography

We summarise some useful papers on the subject. These papdare downloaded on the wiki, project material.

A.3.1 General Papers

Reverse Engineering: A Roadmap by Hausi Muller atldlJ$"00]

The Vienna Component Framework Enabling Composition Acf@smponent Models by Johann Oberleit-
ner et al. PGJO3

A technique for automatic component extraction from obignted programs by refactoring by Hironori
Washizakia et al.\[WF05

Program and interface slicing for reverse engineering loyBkxrk et al. BE9J
A Simple Method for Extracting Models from Protocol Code bauiil Lie et al.LCEDO]]

An Intermediate Representation for Integrating Reversgirtgering Analyses by Rainer Koschke et al.
[KGW9g|

58

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start
svn://aiya.ms.mff.cuni.cz/econet
http://agrausch.informatik.uni-kl.de/CoCoME
http://www.cocome.org/

A.3. ANNOTATED BIBLIOGRAPHY 59

A.3.2 Java Reverse Engineering

e Experiences with the Development of a Reverse Engineeidiod for UML Sequence Diagrams: A Case
Study in Modern Java Development Matthias Merdes etND(6]

e Reverse Engineering a Large Component-based Software:@rog JM Favre and alHED™01]

A.3.3 Patterns Reverse Engineering
Pattern-Based Reverse-Engineering of Design CompongRsitholf K. Keller et al. KSRP99

An approach for reverse engineering of design patternsdayRhilippow et al. PSRNO0%
e Reverse Engineering of Design Patterns from Java Source Bplija Shi et al. §004

A Comparison of Reverse Engineering Tools Based on DesitjarRdecomposition by Francesca Arcelli
et al. AMRTO5]

Automatic Detection of Design Pattern for Reverse Engingdsy Hakjin Lee et al. [YLO7]

e Experiments on Design Pattern Discovery by Jing Dong eCa10[7]

A.3.4 Code Model Checking, Source code Analysis
Model-checking Distributed Components: The Vercors Blatfby Tomas Barros at alBCMRO07]

Source Code Analysis: A Road Map by David Binkl@&irj07]

Formal verification of software source code through sentaatic modeling by Cindy EisneE[s0§

Counterexample-Guided Abstraction Refinement by Edmun@listke et al. CGJ™00]

The SLAM Project: Debugging System Software via Static Aelby Thomas Ball et alBR0Z]

A.3.5 Trace Exploration
e A Survey of Trace Exploration Tools and Techniques by Abaélab Hamou-Lhadj et alHLL04]
e Bandera: extracting finite-state models from Java sourde by J.C. Corbett et alCDH*00]
e Tool-supported program abstraction for finite-state weatfon by M.B. Dwyer et al.[pHJ™01]

e Component Recovery, Protocol Recovery and Validation inHaas by Thomas Eisenbarth et &K\V05]

A.3.6 \Verification of Software Components and Code
e Roadmap for enhanced languages and methods to aid vedifitatiGary T. Leavens et alLAB 06
e Modular Verification of Software Components in C by SagariCkaal. [CCG™04]
e Predicate Abstraction of ANSI-C Programs Using SAT by EdthGlarke at al. CKSY04]

A.3.7 Members publications on the subject
DSRG
e Runtime Support for Advanced Component Concepts by TomassBat al. BHP™07]

e Modeling Environment for Component Model Checking from tdiehical Architecture by Pavel Parizeka
etal. [PP0O74&

e Specification and Generation of Environment for Model Cliregkf Software Components by Pavel Parizek
etal. [PPO7hH

60 ECONET Workshop 2007

e Model Checking of Component Behavior Specification: A Re#ié [Experience by Pavel Jezek et al.
[JKPOG

e Model Checking of Software Components: Combining Java Ratter and Behavior Protocol Model
Checker by Parizek Pavel, et dPHK07]

e Model Checking of Software Components: Making Java PatigfirCooperate with Behavior Protocol
Checker by Parizek Pavel, et dPHK0§

OBASCO

e Java Implementation of a Component Model with Explicit Syhid Protocols by Sebastian Pavel et al.
[PNPRO%

Bibliography

[AAAO6]

[AMRTO5]

[BCMRO7]

[BE93]

[BHMO6]

[BHPOB]

[BHP*07]

[Bin07]

[BRO2]

[CCG+04]

[CDH*00]

[CGJ00]

Christian Attioghé, Pascal André, and Gilles Ardel Checking Component Composability. In
5th International Symposium on Software Composjtimiume 4089 of_ecture Notes in Computer
ScienceSpringer Verlag, 2006.

Francesca Arcelli, Stefano Masiero, Claudia Riel, and Francesco Tisato. A Comparison of Re-
verse Engineering Tools Based on Design Pattern Decongoaodit ASWEC '05: Proceedings of the
2005 Australian conference on Software Engineerpages 262—269, Washington, DC, USA, 2005.
IEEE Computer Society.

Tomas Barros, Antonio Cansado, Eric Madelainel Biarcela Rivera. Model-checking distributed
components: The vercors platforflectron. Notes Theor. Comput. $di82:3-16, 2007.

Jon Beck and David Eichmann. Program and interfaioingl for reverse engineering. IfCSE
'93: Proceedings of the 15th international conference oftare Engineeringpages 509-518, Los
Alamitos, CA, USA, 1993. IEEE Computer Society Press.

Tomas Barros, Ludovic Henrio, and Eric Madelaineodi#l-checking distributed components: The
vercors platform. Irinternational Workshop on Formal Aspects of Componeningoé (FACS'06)
Prague, September 2006. Electronic Notes in Theoreticalg@iter Science (ENTCS).

Tomas Bures, Petr ktynka, and FrantiSek PIasil. SOFA 2.0: Balancing advafeatires in a hier-
archical component model. Fourth International Conference on Software EngineeriRgsearch,
Management and Applications (SERA 2006), 9-11 August 288éttle, Washington, USAages
40-48. IEEE Computer Society, 2006.

Tomas Bure§, Petr Hitynka, FrantiSek PIasSil, Jan Klesnil, Ondrej Kmoch, anthds Kohan and-
Pavel Kotrc. Runtime support for advanced component caacép5th ACIS International Confer-
ence on Software Engineering Research, Management & Agtiolits (SERA 2007pages 337-345.
IEEE Computer Society, 2007.

David Binkley. Source code analysis: A road mapFSE '07: 2007 Future of Software Engineer-
ing, pages 104-119, Washington, DC, USA, 2007. IEEE Computee8§o

Thomas Ball and Sriram K. Rajamani. The slam projdebugging system software via static anal-
ysis. INPOPL, pages 1-3, 2002.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, ahdu Veith. Modular verification of
software components in ¢EEE Trans. Softw. Eng30(6):388—402, 2004.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shaweobach, Corina S.&%areanu, Robby,
and Hongjun Zheng. Bandera: extracting finite-state mofdefa java source code. IICSE '00:
Proceedings of the 22nd international conference on Sofveagineering pages 439-448, New
York, NY, USA, 2000. ACM Press.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu,Helchut Veith. Counterexample-

guided abstraction refinement. @AV '00: Proceedings of the 12th International Conference o
Computer Aided Verificatigrpages 154—169, London, UK, 2000. Springer-Verlag.

61

62

ECONET Workshop 2007

[CKSY04]

[DHJ*+01]

[DZ07]

[Eis05]

[EKVO5]

[FED*01]

[HLLO4]

[JKPOB]

[KGWOS]

[KSRP99]

[LAB +06]

[LCEDO1]

[LYLO7]

[MDO6]

Edmund Clarke, Daniel Kroening, Natasha Sharggiend Karen Yorav. Predicate abstraction of
ansi-c programs using sa@orm. Methods Syst. De25(2-3):105-127, 2004.

Matthew B. Dwyer, John Hatcliff, Roby Joehanes, Shawolzaeh, Corina S. #areanu, Hongjun
Zheng, and Willem Visser. Tool-supported program abswadbr finite-state verification. IWCSE
'01: Proceedings of the 23rd International Conference offt8are Engineeringpages 177-187,
Washington, DC, USA, 2001. IEEE Computer Society.

Jing Dong and Yajing Zhao. Experiments on designguattliscovery. IlPROMISE '07: Proceed-
ings of the Third International Workshop on Predictor Masletl Software Engineeringpage 12,
Washington, DC, USA, 2007. IEEE Computer Society.

Cindy Eisner. Formal verification of software saeiande through semi-automatic modelirgoft-
ware and System Modeling(1):14-31, 2005.

Thomas Eisenbarth, Rainer Koschke, and Gunthee\/o8tatic object trace extraction for programs
with pointers.J. Syst. Softw77(3):263-284, 2005.

Jean-Marie Favre, Jacky Estublier, Frédéric DuclospRBanlaville, and Jean-Jacques Auffret. Re-
verse engineering a large component-based software pgrdd@SMR '01: Proceedings of the Fifth
European Conference on Software Maintenance and Reenigigepage 95, Washington, DC, USA,
2001. IEEE Computer Society.

Abdelwahab Hamou-Lhadj and Timothy C. Lethbridgé survey of trace exploration tools and
techniques. ITCASCON '04: Proceedings of the 2004 conference of the Cétsdvanced Studies
on Collaborative researctpages 42-55. IBM Press, 2004.

Pavel Jezek, Jan Kofipand FrantiSek PIaSil. Model checking of component befrapecification:
A real life experience. In Luis Barbosa and Zhiming Liu, edst International Workshop on For-
mal Aspects of Component Software (FACS 2008lume 160 ofElectronic Notes in Theoretical
Computer Scien¢gpages 197-210, Macao, Macao, 2006.

R. Koschke, J.-F. Girard, and M. Wirthner. An interiate representation for reverse engineering
analyses. IWCRE '98: Proceedings of the Working Conference on Revergmgering (WCRE'98)
page 241, Washington, DC, USA, 1998. IEEE Computer Society.

Rudolf K. Keller, Reinhard Schauer, SébastieniRdke, and Patrick Pagé. Pattern-based reverse-
engineering of design componentsICGHE '99: Proceedings of the 21st international conferenice
Software engineeringpages 226—235, Los Alamitos, CA, USA, 1999. IEEE Compubeiely Press.

Gary T. Leavens, Jean-Raymond Abrial, Don Batory, MéttBaitler, Alessandro Coglio, Kathi Fisler,
Eric Hehner, Cliff Jones, Dale Miller, Simon Peyton-Jonesirali Sitaraman, Douglas R. Smith,
and Aaron Stump. Roadmap for enhanced languages and mdthads verification. InGPCE
'06: Proceedings of the 5th international conference on &ative programming and component
engineeringpages 221-236, New York, NY, USA, 2006. ACM Press.

David Lie, Andy Chou, Dawson Engler, and David LIIDA simple method for extracting models for
protocol code. IHSCA '01: Proceedings of the 28th annual international sgsipm on Computer
architecture pages 192—-203, New York, NY, USA, 2001. ACM Press.

Hakjin Lee, Hyunsang Youn, and Eunseok Lee. Autoim&tetection of Design Pattern for Reverse
Engineering. InProceedings of the 5th ACIS International Conference ortwoé Engineering
Research, Management & Applications (SERA 20payes 577-583, Washington, DC, USA, 2007.
IEEE Computer Society.

Matthias Merdes and Dirk Dorsch. Experiences with ttevelopment of a reverse engineering tool
for uml sequence diagrams: a case study in modern java gevelat. InPPPJ '06: Proceedings of
the 4th international symposium on Principles and practitprogramming in Javgpages 125-134,
New York, NY, USA, 2006. ACM Press.

BIBLIOGRAPHY 63

[Mey97]

[MJS+00]

[Moo00]

[0GJ03]

[PNPRO5]

[PP99]

[PPO7a]

[PPO7b]

[PPKO6]

[PPKO7]

[PSRNO5]

[PV02]

[SO06]

[WFO05]

Bertrand Meyer.Object-oriented Software Constructiomternational Series in Computer Science.
Prentice Hall, 2 edition, 1997. ISBN 0-13-629155-4.

Hausi A. Muller, Jens H. Jahnke, Dennis B. Smith, Margémne Storey, Scott R. Tilley, and Kenny
Wong. Reverse engineering: a roadmaplG8E '00: Proceedings of the Conference on The Future
of Software Engineeringpages 47—60, New York, NY, USA, 2000. ACM Press.

Michael Moors. Consistency checking, rose aratjtepring issue. Technical report, Rational, April
2000.

Johann Oberleitner, Thomas Gschwind, and Mehdiygaz The vienna component framework en-
abling composition across component modelsIG8E '03: Proceedings of the 25th International
Conference on Software Engineerimages 25-35, Washington, DC, USA, 2003. IEEE Computer
Society.

Sebastian Pavel, Jacques Noyé, Pascal PoizaleaneClaude Royer. A java implementation of a
component model with explicit symbolic protocols.Rmoceedings of the 4th International Workshop
on Software Composition (SC’'Q5)olume 3628 ol ecture Notes in Computer Scienpages 115—
125. Springer-Verlag, 2005.

Radek Pospisil and Frantisek Plasil. Describingrinectionality of EJB using the Behavior Proto-
cols, 1999.

Pavel Parizek and FrantiSek PI&aSil. Modeling enwirent for component model checking from hi-
erarchical architecture. Ifhird International Workshop on Formal Aspects of Compadisaitware
(FACS 2006)volume 182 ofElectronic Notes in Theoretical Computer Scieneages 139-153. El-
sevier B.V.,, 2007.

Pavel Parizek and FrantiSek PI&Sil. Specificatidrgeneration of environment for model checking of
software components. Formal Foundations of Embedded Software and ComponeredBagftware
Architectures, FESCA 2008olume 176 oElectronic Notes in Theoretical Computer Scieruages
143-154. Elsevier B.V., 2007.

Pavel Parizek, FrantiSek PIasSil, and Jan Kafrbodel checking of software components: Making
java pathfinder cooperate with behavior protocol checkechmical Report 2, KSI MFF UK, 2006.

Pavel Parizek, FrantiSek PI&Sil, and Jan Kafiodel checking of software components: Combining
java pathfinder and behavior protocol model checker.30th IEEE/NASA Software Engineering
Workshop (SEW-30pages 133-141. IEEE Computer Society, 2007.

llka Philippow, Detlef Streitferdt, Matthias Riech, and Sebastian Naumann. An approach for
reverse engineering of design patter8sftware and System Modeling(1):55—70, 2005.

F. Plasil and S. Visnovsky. Behavior protocols fofta@are components, 2002. IEEE Transactions on
SW Engineering, 28 (9), 2002.

Nija Shi and Ronald A. Olsson. Reverse engineerindesign patterns from java source code. In
ASE '06: Proceedings of the 21st IEEE/ACM International feoence on Automated Software Engi-
neering pages 123-134, Washington, DC, USA, 2006. IEEE Computeie§o

Hironori Washizaki and Yoshiaki Fukazawa. A techmédor automatic component extraction from
object-oriented programs by refactorirgci. Comput. Program56(1-2):99-116, 2005.

List of Figures

11
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4
3.5
3.6

Project WiKi. o 8
Workshoponthe Wiki e 9
Workshop Organisationonthe Wiki o 10
ECONET Project: "abstract" context. i 24
CoCoME: Sofa static architecture e 30
Sofa: shortmetamodel L 31
Econet Architecture: draft 1. L 32
Bandera overview (fromweb source) 34
JPF model of operation (fromwebsource) 34
JPF Java layers (fromweb source) e 35
Econet Architecture: finalversion L 36
AbStraction Process o e 36
Mapping CoONCEPLS. e 37
Common ComponentMetaModel 39
Java Behaviour Abstractian. 40
Econet Architecture: responsabilities L L L 42
AgeneralviewoftheprocessB e 44
An iterative view of the process B 44
An architectural view of the processB. L 45
The two step process of reverse engineering behavieoifgation 50
A part of the CoreComponentMetamodel. 52
Identifying Interfaces that violated the Frame invariequiredinterfacesName using OCLE. . 53

64

	Introduction
	The 16293RG ECONET Project
	Motivations
	Partners
	Initial Plan

	The Workshop at Charles University of Prague
	Preparation
	Organisation
	Objectives
	Participants
	Program and Schedule

	Report Contents

	Workshop Sessions
	Team and Technical Presentation Sessions
	Introduction
	Monday, September 3, 2007
	Tuesday, September 4, 2007

	Working Session
	Introduction
	Wednesday, September 5, 2007
	Thursday, September 6, 2007
	Friday, September 7, 2007

	Project Architecture
	Structural Abstraction Subproject
	Objectives and Goals
	B transformations and tools
	Interface
	Organisation

	Behavioural Abstraction Subproject
	Goals
	Annotations
	Tools for Java source analysis
	Generic analysis tool (GAT)
	Reverse engineering back-ends
	Organization

	Metamodel Abstraction Subproject
	Objectives and Goals
	Participants
	Means
	Tasks and Schedule
	Using assertions in modeling - an evaluation time view

	Common Tools
	Java/Annotation Tools
	Model Engineering Tools

	Conclusion
	More informations on...
	Workshop Material
	Collaborative Tools
	Annotated Bibliography
	General Papers
	Java Reverse Engineering
	Patterns Reverse Engineering
	Code Model Checking, Source code Analysis
	Trace Exploration
	Verification of Software Components and Code
	Members publications on the subject

