
ECONET CCMM
PA

16/04/2008

I. Starting point
Collected documents available on the Econet Wiki or SVN repository.

I.1. Prague Workshop Report
− SOFA metamodel (parts) p. 31, variant p. 52

− Mapping concepts (component elements, annotations) p. 37

− Model comparison p. 38-39

− Common metamodel p. 39

− Annotations (p. 40-41, p. 47-48

I.2. Concrete Metamodels
− SOFA metamodel

− Kmelia metamodel

I.3. Abstract Metamodels
− CMM metamodel (PA – november 2007)

− CMM metamodel (PH from another project – march 2008)

− CCMM_1.0_ecore (VP – march 2008)

I.4. Normative or specific model
This is a inspiration source for finding the core element and relations and to name them. For
example we could define special profiles.

− Ecore from EMF project

− OMG UML 2.1 (UML 2.0, UML 1.5)

ECONET COLOSS 1/7

II. Model V1.0
This is a draft version.
From the above document and models I tried to get a synthesis model.

II.1. Modelling concepts and organisation
I added some basic and core concepts (elements, types…) that we find in most of abstract and
concrete models.

Therefore I organised the metamodel in three layers :

− Basic layer : common concepts that overlap components (to be connected with usual core
metamodels (UML, EMF).

− Common Component layer (an abstraction of what we find in general component models)

− Specific Component layer (for concrete models)

Many WFR will apply to concrete model layers especially to restrict the element combinations.

I also tried to present the diagrams in a layered presentation.

II.2. Conflicting concepts
In order to solve them (except noun conflicts), I propose to draw a specialisation hierarchy.

a. Interface

Can be a (restricted) Classifier, a NamedElement (Sofa, KADL) or simply an Element (Kmelia).

Can be separate between Provided/Required or not.

I made a specialisation hierarchy..

In other approaches we have also ports.

b. Operation
As a behavioural feature denoting some functional computation with or without dynamic features.

Can be simply an Operation (Sofa, KADL) or a complex Entity (Kmelia)

I took NamedElement.

c. Protocol
Can be simply associated to a component (Sofa, KADL), an interface or a service (Kmelia)

d. Service
Can be simply an Operation (Sofa, KADL) or a complex Entity (Kmelia)

I took NamedElement.

e. Constraints/Predicate/Properties
Can be used to writie assertions, classify concepts…

I put them in a special package.

f. Pre/post conditions
Set in operations as optional features.

ECONET COLOSS 2/7

g. Architecture/Assembly – Connectors-Bindings
I defined a Architecture type that denotes patterns of assembling.

Connectors are simply bindings. The question is about what we bind : this can be interfaces or
services. A CCMM should accept boths. I tried to make it more abstract using EndPoints and
specialised endpoints. An endpoint has a target which is either an interface or an operation
(service).

II.3. Modelling issues
This is a short summary of discussion points.

1. Represent Java concepts (like JMI model)

⇒ NO

2. Represent model management

⇒ NOT YET

⇒ Only a package

3. Represent component instances

⇒ NOT YET

⇒ Only a package

4. Represent annotations

⇒ YES

Attributes

− YES

Special Package and Relations

− YES ? On going work

5. Represent non functional requirements

⇒ NO

6. Represent Ecore

⇒ NOT EXACTLY but inspired

⇒ Basically UML 2

II.4. Comments
This an on going work

⇒ Removed UML qualified associations

⇒ not finished

⇒ not validated by Econet group

II.5. Constraints
⇒ To be continued in the next section.

ECONET COLOSS 3/7

II.6. Overview

Annotations are everywhere but
they can be grouped in the
implementation package.

CCMM_Core

CCMM_
Behaviour

CCMM_Basic

CCMM_
Instance

CCMM_Code
Mapping

CCMM_Model
Management

CCMM_Addins

Types

Elements

Classifiers

BasicBehaviour CCMM_
Architecture

CCMM_
Components

Annotations

ECONET COLOSS 4/7

III. Constraints
This is a preliminary work that should be completed later once the model will be validated.

StructuralFeatureBehavioralFeature

Attribute

NamedInterface

NamedElement
<<0..1>> name : String

SOFA,
KADL

Kmelia

QualifiedInterface
provided/required : Enum

QualifiedOperation
provided/required : Enum

Kmelia
Service

TypedElement
(from Types)Namespace

(from Elements)

Operation

FeatureClassifier

1..* *

classifier

1..*

features

*

Interface
s_interface : String

0..*

0..*

+services

0..*

+owner0..*

10..* 10..*

C1. In an interface, the provided/required qualification must be consistent.
Context Interface

inv qualif-consistency:

self.isTypeOf(QualifiedInterface) implies

 self.services->forAll(s |

 if(s.isTypeOf(QualifiedOperation))

 then s.provide/required = self.s.provide/required

 endif)

C2. For each interface of a classifier there must have a provided/required qualification.
Context Classifier

inv qualif-exists:

self.interface->forAll(i | i.isTypeOf(QualifiedInterface) or

 i.services->forAll(s | s.isTypeOf(QualifiedOperation)))

ECONET COLOSS 5/7

Operation
s_method : String

also called
Frame

the s_ prefix denote the (object) source
targets

We have no component instances, just named
components => var : Type.
Arrays (or collections) of components are allowed.

Namespace

RequiredEndPoint ProvidedEndpoint

Attribute
(from Classifiers) Composite

Component
multipl icity : Enum

Classifier

AnnotedType
s_Type : String
s_sort : Enum

ComponentType
s_Classes : HashMap

0..*

1

0..*

+owner
1

0..*

0..*

+componentTypes
0..*

0..*

/composite

1

+type

1

Interface
s_interface : String

0..* 10..* 1

0..1+returnType 0..1

0..*

+parameters

0..*

0..*

0..*

+owner0..*

+services0..*

0..*

1-services

0..* -owner

1

EndPoint
s_attribute : String

0..10..*

+targetI

0..10..*

0..1

0..*

+targetO

0..1

0..* {xor}

Service

As a concept , a service is a kind of
operation.

ArchitecturalElement

C3. The operation of an interface, are those of its component type.
Context ComponentType

inv interf-op:

self.services->includesAll(self.interface.services)

C4. Recursive component composition is not possible at the type level. We could work only
at an instance level (C5) providing a more flexible constraint.

Context Composite::myComponents():Set(ComponentType)

pre: true

post:

 let mct = self.componentTypes in

 mct->iterate(ct ; result : Set(ComponentType) = mct |

 if ct.isTypeOf(Composite) then

 result->union(ct.myComponents())

 else

 result

 endif)

Context Composite

inv recursive:

 self.myComponents()->excludes(self)

C5. Adapt C4 to the component instance (true instance or simple variable association) level.
ECONET COLOSS 6/7

C6. Adapt C4 to architectures

C7. EndPoints are either interfaces or operations. (this can be specified differently in the
metamodel).

Context EndPoint

inv exclusion:

 self.targetO->isEmpty xor self.targetI->isEmpty

inv consistency:

 let epi : Set(EndPoint) = EndPoint.allInstances in

 epi.targetO->isEmpty xor epi.targetI->isEmpty

Connection
<<lost>>

Elements can be Operation/Service
(Kmelia), Interface (Sofa, Kadl)
It differs from one model to another

We have no component instances,
just named components
var : Type.

the s_ prefix denote
the source targets

Classifier

Connector
<<lost>>

Com ponent
multiplicity : Enum

ProvidedEndpoint
(f rom CCMM_Components)

0..*1..*

+provides

0..*

+providedBy

1..*

RequiredEndPoint
(f rom CCMM_Components)

0..*
1..* +requires0..*+requiredBy 1..*

ComponentType
s_Classes : HashMap

1

+type

1

Architectures an
d types help to
define parts of
component
systems and
patterns.

Binding

11

11

Composite

0..*

0..*

+componentTypes 0..*

0..*

/composite

Architecture

ArchitecturalElement

ArchitectureType
s_Classes : HashMap

0..*0..*

0..* 1
-owner

0..* 1

1

+type

1

1..*
+contains

1..*

No
special

C8. The component endpoints are consistent with their types.
Context Interface

inv comp-ep-consistency

let ct : Set(ComponentType) = self.provides.targetO.owner->union(

 self.provides.targetO.owner) in

 ct->size() = 1 and ct->includes(self.type)

C9. etc.

ECONET COLOSS 7/7

IV. Toward Model V1.1
Next step will be model v1.1. Everyone is invited to propose (meta) model evolutions.

ECONET COLOSS 8/8

