
THE ARCHITECTURE OF THE ECLIPSE
JDT

&
Existing Plugin TESTJDT3

Table of Contents

 1 The architecture of the Eclipse JDT ... 2

 1.1 JDT Architecture Introduction .. 2
 1.2 JDT Quality and Attributes ... 2
 1.3 JDT Core ... 3

 1.3.1 The Plug-in Manifest ... 3
 1.3.2 JDT Core Extensions ... 3
 1.3.3 Package: org.eclipse.jdt.core .. 5
 1.3.4 Package: org.eclipse.jdt.core.dom ... 10

 2 Using JDT in Econet .. 13

 3 Existing Plugin TESTJDT3 .. 14

 3.1 Structure ... 14
 3.2 Java Classes .. 15
 3.3 Eclipse integration .. 15

 4 References .. 16

 1 The architecture of the Eclipse JDT
 1.1 JDT Architecture Introduction

The Java Development Tools (JDT) plug-in of the Eclipse platform provides a rich set
of functionality to enable Java developers to use Eclipse as a Java IDE. The JDT is
actually a set of plug-ins that contributes a Java compiler, debugger, as well many Java-
specific user interface elements, to the Eclipse platform.

The JDT is structured into three major components:
● JDT CORE : the headless infrastructure for compiling and manipulating Java

code
● JDT UI : the user interface extensions that provide the IDE.
● JDT Debug : program launching and debug support specific to the Java

programming language.
In this paper, we present a broad overview of the architecture of the JDT. We have

selected the one important plug-in of the JDT and expounded on their architecture. This
plug-in are the Core plug-in. The Core plug-in provides functionality to compile, build,
search, and format Java code. For this plug-in, we discuss how they extend the
functionality of Eclipse and the patterns they use in doing so.

 1.2 JDT Quality and Attributes
The JDT was developed to make Eclipse the top IDE for developing Java applications.
This was achieved to a great extent due to a set of JDT quality attributes that include

modularity, extensibility, usability, and portability.
The extensibility quality attribute is inherited from the plug-in architecture of Eclipse

platform. JDT plug-ins make contributions to the extension-points of the Eclipse
platform, and also define new extension-points. Extension-points are discussed in the
next sections of this document. As a default implementation, JDT plug-ins contribute
several extensions to their own extension-points, thus making the Java IDE highly
configurable.

The JDT Core plug-in provides a JCK-compliant Java compiler with incremental
recompilation, which allows high performance and scales up to large projects.

The JDT plug-ins also incorporate many best practices in software engineering, such as
integrated support for unit test (with JUnit plug-in) and refactoring, which makes Java
programming with Eclipse truly productive.

 1.3 JDT Core
JDT Core is the plug-in that defines the core Java elements and API. In this section,

we'll look at its structure, extensions and some elements of its package.

 1.3.1 The Plug-in Manifest
Each Eclipse plug-in contains a plug-in manifest file that describes the contents of the

plug-in. When Eclipse starts up, it scans the plug-in directory and collects information on
each plug-in by reading each one’s manifest file. The manifest file is always called
“plugin.xml”. This allows the Eclipse platform to load plug-ins only when needed, as
opposed to loading them all when Eclipse starts up.

The plug-in manifest file contains a declaration for the plug-in, the name of the library
that has the binary class files for the plug-in, a list of other plug-ins that this plug-in
depends on, and a list of extensions and extension points.

The plug-in manifest file for JDT Core indicates that the id for the plug-in is
org.eclipse.jdt.core. This id can be used to reference the plug-in when creating other
plug-ins that extend JDT Core.

JDT Core is dependent on the resources, runtime, and text plug-ins. JDT Core will not
run if these three plug-ins are not installed. In addition, it has functionality that depends
on the ant and team plug-ins, but this functionality will be ignored if those two plug-ins
are not installed.

JDT Core defines three extension points. An extension point allows other plug-ins to
extend certain features of a plug-in. JDT Core allows other plug-ins to extend the
following functionality: the formatting of source code and the initialization of classpath
variables and classpath containers.

 1.3.2 JDT Core Extensions
JDT Core also defines eleven extensions from other plug-ins that provide much of the

functionality of JDT. Some of these extensions will now be explained.

 1.3.2.1 Java Builder Extension
A builder is associated with a project and is used to incrementally build a project

whenever a resource is changed. The changes to the project can also be batched so that
the receiver gets one notification containing all the changes that occurred. Builders work
by processing the list of changes they receive, updating the internal build state, and
generating resources. They are notified whenever a resource is changed or the user selects
a build action, and they build incrementally, so only those resources that are dependent
on the changes that occurred are rebuilt.

The extension declaration for the JDT builder in the plugin.xml file indicates that the
class that implements the builder is org.eclipse.jdt.internal.core.builder.JavaBuilder. This
class is a subclass of IncrementalProjectBuilder and must implement the build() method.
The build() method takes as arguments an integer that represents the type of build to run
(this will usually be AUTO_BUILD or INCREMENTAL_BUILD), a Map object of

3

builder-specific arguments, and an IProgressMonitor object that can be used to show the
progress to the user and to let the user cancel the action if so desired.

The build() method calls the getLastDelta() method with an IProject argument in order
to get any changes that have occurred to the specified project since the last time the
build() method was called. The builder class then does the necessary processing and
returns a list of IProject objects, which specify the projects that the builder would like
deltas on the next time it is run.

The IncrementalImageBuilder, which is also in the org.eclipse.jdt.internal.core.builder
package, is used to do the actual building when an incremental build is done. This class
sets certain resources as derived resources. Derived resources are those resources that are
built by the builder. It creates a new output file (of type IResource) for the source file
being built, builds the output file, and then calls setDerived() with a value of true on the
output file. It is important for other plug-ins to know which resource files are derived so
that they do not put those files under version control.

When creating a new workbench project, a file named “.project” is also created for the
project. This is an XML file that contains metadata about the project so that one can
export the project. The following is part of the XML that is created for Java projects and
lets Eclipse know which builder to invoke on the project:

<buildSpec>
<buildCommand>

<name>org.eclipse.jdt.core.javabuilder</name>
<arguments>
</arguments>

</buildCommand>
</buildSpec>

The builder given is the id of the JavaBuilder class that JDT defines.

 1.3.2.2 Java Marker Extensions
A marker is a mechanism for adding notes and metadata to a resource. Each marker

has an associated string that contains the type of marker it is and an associated identifier
that uniquely identifies it within a resource. There are five standard marker types that are
defined by the Resources plug-in. These are: marker, taskmarker, problemmarker,
bookmark, and textmarker. When a new marker is defined as an extension it is defined
as one or more of these types. Markers can also be persisted by Eclipse if the user
specifies this option in the plugin.xml file. Finally, markers may have attributes attached
to them. The names of these attributes are also listed in the plugin.xml file.

The first marker extension in JDT Core is the Java Problem marker. It has id
“problem” and is of type problemmarker and textmarker. This means that the marker will
be shown in the Problems view and that it is a text-based marker. The marker is also
persistent. The Java Buildpath Problem marker has id “buildpath_problem” and is of type
problemmarker and textmarker. Like the Java Problem marker, it too is persistent. The
Java Transient Problem marker is a non-persistent marker of type textmarker with id

4

“transient_problem”. Finally, the Java Task Marker is a persistent marker with id “task”
and is of type taskmarker. This means that the marker will appear in the Tasks views.The
IJavaModelMarker interface defines constants for the different attributes and ids of the
JDT Core markers. Attributes for the markers can be set using the setAttribute() and
getAttribute() methods. These attributes are key/value pairs. The value can be a String, an
integer, or a boolean. There are also several other attributes that are not in the plugin.xml
file, but are nonetheless used extensively. They are defined as constants in the IMarker
interface. These markers are used to indicate where in the text the marker occurs. The
attributes used for this are IMarker.LINENUMBER, IMarker.CHAR_START, and
IMarker.CHAR_END. If a user double clicks on a problem marker in the Problems view,
the editor will automatically highlight the text indicated by the marker attributes.

 1.3.2.3 Java Nature Extension
A nature groups a project with functionality specific to that project, such as a builder.

Also, a nature can choose to hide certain actions from projects, if those actions do not
apply to the specific project. A nature extension defines a new nature with an id that is
used to refer to it. It also specifies a class that implements the
org.eclipse.core.resources.IProjectNature interface.

JDT Core defines a Java nature and all Java projects that are created have this nature
associated with them. This nature is also added to the project’s .project file. The
following is part of the XML that is created for Java projects and lets Eclipse know which
nature the project has:

<natures>
<nature>org.eclipse.jdt.core.javanature</nature>

</natures>
The class that implements the IProjectNature interface for JDT Core is

org.eclipse.jdt.internal.core.JavaProject. This class implements the methods configure(),
which adds a Java builder to the project, and deconfigure(), which removes a Java builder
from a project.

 1.3.3 Package: org.eclipse.jdt.core
The jdt.core package contains the model used to represent the various objects involved

with Java development. It also contains the plug-in class for JDT core.

 1.3.3.1 The Java Core Plug-in Class
Each Eclipse plug-in contains one class that represents the plug-in to the Eclipse plug-

in loader. This plug-in class is responsible for accessing and storing state information for
the plug-in, as well as accessing any resources associated with the plug-in. The plug-in
class contains methods that are run when the plug-in is loaded, as well as methods that
are automatically called when the plug-in is about to be terminated. These methods are
called start() and stop(), respectively. All plug-in classes must extend either Plugin or
AbstractUIPlugin. The former is extended by non-UI plug-ins, while the latter is
extended by UI plug-ins.

5

The plug-in class for JDT Core is JavaCore. It is located in the org.eclipse.jdt.core
package and extends the Plugin class, since it is not a UI-based plug-in. The JavaCore
class is usually accessed through its static methods, which allow one to create different
nodes that are part of the Java model (such as new projects, classes, folders, and files).
The JDT Core plug-in does not maintain any state or preference information, and so does
not implement the start() or stop() methods.

 1.3.3.2 Detailed Description of the Java Model
The Java model is used to represent the elements of the Java language as a tree. When

programmers need to access different Java elements (such as a source file, or a method)
they do so by using the Java model to get the correct node in the tree.

The following description of the jdt.core package will explain the Java model, starting
from the topmost elements in the model to elements comprising single source files and
parts of source files. In addition code examples will be given to show how to get handles
to these objects, as well as how to manipulate them.

● IJavaElement
The Java model is represented as a tree. Each node in the tree is of type IJavaElement.

Many operations on Java model elements take in an IJavaElement and return an
IJavaElement. Some useful operations for an IJavaElement are getParent() which return
the parent of the element in the model as an IJavaElement. To get the name of the
element use getElementName(). To get the type of the element use getElementType().
This method returns an int that represents the type of the element. The int is one of the
static constants declared in the IJavaElement class. Two other useful functions are
getAncestor() and getPath(). The getAncestor() method returns the closest ancestor of the
element matching the specified type, which is given as a parameter to the method. The
getPath() method returns an IPath object representing the path to the parent of the
element.

● IOpenable and ISourceReference
While all the elements in the Java model implement the IJavaElement interface, they

can all be divided based on whether they implement the IOpenable interface or the
ISourceReference interface.

The IOpenable interface is implemented by those elements in the Java model that must
be opened before they can be manipulated. These elements are generally files on the
system. The elements in the Java model that implement this interface are usually high up
in the hierarchy, such as IPackageFragmentRoot and IProject. Three operations that are
very important for elements that implement this interface are open(), close(), and save().
If an element in the Java model that implements this interface is obtained and accessed by
a client, the Java model will automatically open the element as needed. To open an
element, all of its parent elements must also be opened. However, this is also done
automatically by the Java model. The Java model will not open its children though,
unless they are accessed by a client.

When an IOpenable element is opened, a buffer is created in memory that contains the
contents of the corresponding file. A client can access this buffer by calling the

6

getBuffer() method on the IOpenable element, which returns an IBuffer class. Clients
may manipulate the IBuffer directly to change the contents of the underlying file, but it is
safer to use the corresponding Java model element instead to do so. The Java model
contains a cache of opened buffers. If a buffer has been edited and not saved, it will not
be removed from the cache. Otherwise, buffers will be moved out in LRU order to make
room for new opened buffers. Therefore, clients should save buffers frequently because
having too many buffers open at the same time will use up memory quickly.

In contrast to IOpenable, the ISourceReference interface is implemented by elements
that correspond to source code. They are not represented by files, but are contained in
them. These elements are further down in the tree that represents the Java model. The
elements in the Java model that implement this interface are IClassFile,
ICompilationUnit, IPackageDeclaration, IImportDeclaration, IImportContainer, IType,
IField, IMethod, and Iinitializer.

● IJavaModel
The IJavaModel interface is at the root of the Java model. It acts as a container for all

the Java projects in the workspace. The following code is used to get a handle to this
object:
IWorkspace workspace = ResourcesPlugin.getWorkspace();
IJavaModel model = JavaCore.create(workspace.getRoot());

Usually, with an IJavaModel object, you will want to get a specific Java project to
manipulate. The getJavaProjects() method returns an array of IJavaProject objects
corresponding to all the Java projects in the workspace. Alternatively, if you know which
project you want, you can get the project directly by calling the getJavaProject() method
with the name of the project as a parameter.

● IJavaProject
The IJavaProject interface represents a Java project. The following code is used to get

an IJavaProject object that corresponds to a Java project in the workspace named
“TESTJDT3”.
IJavaProject project = model.getJavaProject(“TESTJDT3”);
The children of an IJavaProject are IPackageFragment objects (which represents a

package in the project), IPackageFragmentRoot objects (represents jar files in the
project), and IClassPathEntry objects (representing the values of the classpath
environment variable for the project).

There are several actions one might want to perform on an IJavaProject object. To find
a Java element in the project, one first constructs an IPath object that represents the path
of the Java element. Then one calls the findElement() method with the IPath object. The
method returns an IJavaElement object, or null if no object is found with the specified
path. IPath objects are defined in the org.eclipse.core.runtime package, and describing
them is beyond the scope of this document. One can also find types in the project by
calling the findType() method with the fully qualified name of the type as the parameter.
The return value will be an object of type IType, or null if none is found.

7

Another useful method in this class is newTypeHierarchy(). This method takes in an
IRegion object and an IProgressMonitor object as parameters. It returns an
ITypeHierarchy. The IProgressMonitor object can be used to kill the operation if it is
taking too long. If this feature is not needed, one can just enter null as the parameter. An
IRegion object contains a set of IJavaElement objects, and the children of all the elements
in the set.

● IPackageFragment
The IPackageFragment interface represents all or part of a package in a project. A

package can contain either class files or source files. Class files are represented by
IClassFile objects, and source files are represented by ICompilationUnit objects. The
following code can be used to get an IPackageFragment object from an IJavaProect
object:
IPath path = new Path("/TESTJDT3/packageOne");
IPackageFragment pack = project.findPackageFragment(path);

In the above code, the path can either be an absolute path, or can be relative to the
workspace of the user.

We mentioned above that we can get an ITypeHierarchy object from a project.
Here is some sample code that gets that object and represents the type hierarchy for the
package object created above:
IRegion region = JavaCore.newRegion();
region.add(pack);
ITypeHierarchy typeHierarchy = project.newTypeHierarchy(region, null);
Normally, with an IPackageFragment object, we will want to get the class files and

source files that are in the given package. getCompilationUnits() returns an array of the
source files in the package represented as ICompilationUnit objects. getClassFiles() does
the same thing for the class files in the package. If we know which source file we want,
we can call get getCompilationUnit() and pass it the name of the source file we want as a
String. The corresponding method for class files is getClassFile(). Finally, one can create
a new source file in the package by calling the createCompilationUnit(). This method
takes in the name of the source file to create, the contents of the source file (as a String
object), a boolean value that will force an existing file with the same name to be
overwritten if it is true, and an IProgressMonitor that can be used to kill the operation in
progress.

● ICompilationUnit
An ICompilationUnit object represents a Java source file. The following code gets an

ICompilationUnit object representing the source file named “MyClass.java”.
ICompilationUnit source = pack.getCompilationUnit("MyClass.java");
With this object, there are many useful methods we can call. We can get all the types

in the class with a call to getTypes(), which returns an array of all the types. If we know

8

the type we want, we can call getType() with a String parameter that is the name of the
type. The topmost type matching the String will be returned. We can get the package
declaration with a call to getPackageDeclarations(), which will return an array of
IPackageDeclaration objects. This array will usually be of size one, since most Java
classes are part of one package. There is also a method to get the import declarations, as
well as methods to create new import declarations for the class.

The following diagram shows the Java model as a tree with the topmost elements of
the tree. An arrow from one element to another means that element being pointed to is a
child element of the other element. For instance, IJavaProject is a child element of
IJavaModel and can be accessed from an IJavaModel object.

IOpenable

IJavaModel

IJavaProject

IPackageFragmentRoot

IPackageFragment

IClasspathEntry

IClassFile ICompilationUnit

IPackageDeclaration IImportContainer

IImportDeclaration

ISourceReference

There are many more elements in the Java model. Some of the most useful are IType,
IField, IMethod, and IMember. These elements all have similar operations that one can
perform on them, and one is referred to the Javadoc for more information.

9

 1.3.4 Package: org.eclipse.jdt.core.dom
The jdt.core.dom package comprises an Abstract Syntax Tree (AST) for the Java

language, as well as objects that perform operations on the AST.

 1.3.4.1 Detailed Description
● AST class:

The AST class is the owner of the AST. Any new AST nodes created by using an
object of this class will be owned by that object.

The AST class also acts as a factory for producing ASTNode classes. A node of any
type can be created using a method of the form newXXX where XXX is the name of the
syntax element to be created. Each node that is created in this way does not have any type
name or value specified. The node also has no parent.

Finally, AST provides a utility method resolveWellKnownType(). This method takes
in a String which names a well known type. It returns an ITypeBinding, which is an
interface that represents a well known type. It will be discussed further below.

● ASTNode class:
The ASTNode class is the superclass for the many AST node types. An ASTNode

represents a syntactic element in the Java language. Each node has links to each of its
children, as well as to its parent node. Therefore, the AST can be traversed either from
the top down, or from the bottom up. In addition, each ASTNode object contains the
range in the source file where the syntactic element can be found. The getStartPosition()
method returns an index into the source file where the element starts, and the length()
method returns the number of characters that comprise the element.

There are three static variables in the class that are used as flags. One of particular
interest is the ASTNode.MALFORMED flag, which indicates that the syntactic element
contains a syntax error. The other static variables are used to represent different nodes.
They are used in the createInstance() method of the AST class to specify the AST node to
create.

● ASTParser class:
The ASTParser class is responsible for converting source code into an AST. There are

no constructors to use for this class. Instead a static factory method called newParser() is
used to create a new ASTParser. The argument to this method specifies the level of the
Java Language Specification to use. The setSource() method specifies the source to
compile. There are three overloaded versions of this method. One of them takes in an
array of characters, which will contain the source to parse. The createAST() method will
create the AST from the source that was given to the object. It returns an object of type
ASTNode, which will represent the root of the produced AST. It also takes in an
IProgressMonitor object that can be used to cancel the operation in progress, if so
desired. If this functionality is not required, null can be passed in as the argument. A
useful method that this class provides is setProject(). This method takes in an

10

IJavaProject object that is used to specify a Java project on the workbench. This Java
project will be used to reolve types in the source string that otherwise could not be
resolved by the compiler.

One can also specify compiler options to use to parse the source string. The method to
do this is called setCompilerOptions(). This method takes in a Map object. All the keys
and values of the Map are expected to be String objects, where the key is a compiler
option, and the value is the desired value for that option. An argument of type null sets
the options back to their defaults.

● The AST hierarchy:

ASTNode
{abstract}

BodyDeclaration
{abstract}

Expression
{abstract}

Type
{abstract}

Statement
{abstract}

Name
NumberLiteral
CharacterLiteral
NullLiteral
BooleanLiteral
StringLiteral
TypeLiteral
ThisExpression
SuperFieldAccess
FieldAccess
Assignment
ParenthesizedExpression
ClassInstanceCreation
ArrayCreation
ArrayInitializer
MethodInvocation
SuperMethodInvocation
ArrayAccess
InfixExpression
InstanceofExpression
ConditionalExpression
PostfixExpression
PrefixExpression
CastExpression
VariableDeclarationExpression

Block
IfStatement
ForStatement
WhileStatement
DoStatement
TryStatement
SwitchStatement
SynchronizedStatement
ReturnStatement
ThrowStatement
BreakStatement
ContinueStatement
EmptyStatement
ExpressionStatement
LabeledStatement
AssertStatement
VariableDeclarationStatement
TypeDeclarationStatement
ConstructorInvocation
SuperConstructorInvocation

ClassDeclaration
InterfaceDeclaration
MethodDeclaration
ConstructorDeclaration
FieldDeclaration
Initializer

PrimitiveType
ArrayType
SimpleType
QualifiedType
ParameterizedType
WildcardType

11

● ASTVisitor class:
To perform operations on an AST, we use the ASTVisitor class. ASTVisitor is an

abstract class. It provides two operations to be performed on every node of an AST. The
visit() method returns true if the node has children that will be visited after the current
node is visited. The endVisit() method is similar to visit() except that the children of the
node will be visited before the node itself is visited. The default implementation provided
in the ASTVisitor class does nothing in the endVisit() methods, and returns false for the
visit() methods. The developer who wishes to implement a visitor for the AST must
subclass ASTVisitor and then define the operations for each node to be visited in the
appropriate method.

In addition to all the type-specific visit operations, there are two operations that
perform work on an ASTNode in general, and not on specific types within the AST
hierarchy. The preVisit() method is used to visit an ASTNode before the type-specific
visit operation is called on that node. The postVisit() method visits the ASTNode after
the type-specific visit operation on that node.

 1.3.4.2 Patterns Used
AST uses the following patterns to perfom operations mentionned above.
● Factory Pattern:

The AST class utilizes the Factory design pattern to create new ASTNode objects. The
method createInstance() takes an integer value that represents a certain node. The method
will return an instance of that node. Each class that it returns inherits from the ASTNode
class.

The ASTParser class also uses the Factory pattern. To create a new parser, one calls
the newParser() method instead of using a constructor. This method will create the
appropriate parser based on the level of the JLS specified.

● Visitor Pattern:
The ASTVisitor class uses the Visitor pattern. The Visitor pattern is generally used to

perform operations on a structure with lots of small nodes in them. Rather than putting
the functionality for the nodes in the nodes themselves, they are moved to a visitor class,
which implements the functionality for all of the nodes. In general, we would use a
visitor class if the operations we are performing on the structure involve most or all of the
nodes of that structure. When subclassing ASTVisitor, we will usually define operations
on all of the nodes, since the nodes represent syntactic elements in the Java language, and
we do not want to leave out processing any of these elements. However, it is conceivable
that one would construct an ASTVisitor that implements only some of the operations on
the nodes. For instance, one could write a visitor that traverses an AST and outputs all the
class names in the AST. In this case, we would only be interested in nodes that represent
classes, or nodes that can contains classes as descendants. The rest can be ignored and the
default operations on them will be performed.

12

 2 Using JDT in Econet
This study of JDT will enable us to understand the Eclipse development environment,

to capture the TESTJDT3 plugin structure and develop a new Econet plugin in the sense
that we will be able to transform the structure of a Java code without modifying its logic.
For illustration, we could:

• Manipulate Java classes and/or interfaces resources to extract information
regarding their structure: attributes, methods.

• Create an AST to analyze compilation units.
• Interrogate AST data on implementing extraction rules.
• Modify code in order to position annotations.

13

 3 Existing Plugin TESTJDT3
This section explains Econet project's existing plug-in. TESTJDT3 is the plug-in used

to extract the component structure of a Java code.

 3.1 Structure
The plug-in is structured as a classic JAR file containing in addition to its Java classes

two files(META-INF/MANIFEST.MF and plug-in.xml)
MANIFEST.MF is the configuration file describing the functioning of the plug-in Jar

archive. It is used to by Eclipse kernel, Equinox, to obtain information about the plug-in
that particularly serves to manage the life cycle and the relationship with others plug-ins.

The figure below illustrates the content of the MANIFEST.MF file of TESTJDT3

The file syntax is described in the OSGi specification, it contains information about the
plug-in regarding:

● the MANIFEST version number: 1.0

● Its own version, currently 1.00
● The MANIFEST version : 2
● The name: Plugin TESTJDT
● The symbolic name: TESTJDT3
● The name of its unit Activator used at start-up and shut-down of the plug-in:

testjdt3.Activator
● Its execution environment : J2SE-1.5
● And, login of necessary units and their version for utilisation. This section has to

contain all the plug-ins required at compilation, as well as all the plug-ins
supplying extensions points used by our plug-in.

14

The file plug-in.xml is unique to Eclipse (it is not part of OSGi), it serves to realised
Eclipse extension functionalities. Via this , optional, file the plug-in declares extension
points and allow other to connect to them.

 3.2 Java Classes
 The extraction process of the component structure architecture of a Java code uses the

following Java classes
● Activator : the activator class controls the plug-in life cycle.

● ASTActionDelegate : experiment with JDT to parse and extract component
boundaries.

● DisplayText : general class to simply display some texts.

● TypesTable : table for storing informations about the types.

● MyIType : auxiliary class for additional services of ItypeBinding

● GenericASTParser : A generic ASTParser which could be configure with the
visitor type.

● Fields : cl'ass for storing structure with full information

● Communications : class to store communications.

● InfoCom : class to store method reference from calls in the code

● Decision : class for decision.

● Provided : class to store per type name the set of required services

● Information : class for information about the types.

● Utility : simple utility class.

 3.3 Eclipse integration
Whilst the plug-in is loaded in Eclipse, a new tab appears on the menu bar with

TESTJDT3 as a label. This menu contains an item Visit that triggers the extraction
process.

To extract Java code, the process consists of a simple click on the Visit tab, followed
by providing the name of the project to be parsed. However, this project has to exist in
the configuration workspace or at least appears in the project list on the project explorer
window.

15

 4 References

1. Eclipse Home Page: http://www.eclipse.org/
2. David Boxer, Ashutosh Galande, Thuc Si Mau Ho of University of Illinois at

Urbana-Champaign : JDT Architecture, Publication 2004 41p.

16

http://www.eclipse.org/

	 1 The architecture of the Eclipse JDT
	 1.1 JDT Architecture Introduction
	 1.2 JDT Quality and Attributes
	 1.3 JDT Core
	 1.3.1 The Plug-in Manifest
	 1.3.2 JDT Core Extensions
	 1.3.2.1 Java Builder Extension
	 1.3.2.2 Java Marker Extensions
	 1.3.2.3 Java Nature Extension

	 1.3.3 Package: org.eclipse.jdt.core
	 1.3.3.1 The Java Core Plug-in Class
	 1.3.3.2 Detailed Description of the Java Model

	 1.3.4 Package: org.eclipse.jdt.core.dom
	 1.3.4.1 Detailed Description
	 1.3.4.2 Patterns Used

	 2 Using JDT in Econet
	 3 Existing Plugin TESTJDT3
	 3.1 Structure
	 3.2 Java Classes
	 3.3 Eclipse integration

	 4 References

