ECONET Project
TEST1 BENCHMARK - ANNOTING A JAVA PROGRAM FROM
UML M ODELS

Version 1.0

Pascal ANDRE

September 29, 2008

EGIDE

1COLOSS - LINA - FRE CNRS 2729 - 2, rue de la Houssiniére, B.E0®2 F-44322 Nantes Cedex 3, France

./FIGURES/logoEgide.eps

Abstract

This document presents thieest 1 benchmark for the ECONET project. It is defined as a small etutie
CoCoME benchmark. This document include the componentigéisn, the Java code implementation and the
annotation discovery and insertion.

Chapter 1

Introduction

In the context of the Econet projéctve decided during the workshop of PragyéCPR07 to use a common
component application benchmark. DSRG proposed the COCobfest. DSRG already participated to the
contest by providing studies on SOFA and Fractal basedisnkitThe base information is available at

and the results of the CoCoME contest will be published sédIP0g.
The whole benchmark is too big to serve as support for thererpatations. During the workshop of Nantes
[ACPRO0g we restricted the experimentation field according to tHe#zng he constraints:

e The selected subset must be large enough to include repaiigerexamples for each subproject (concepts
and constraints for the metamodel, primitive componenttierbehaviour abstraction, primitive and also
composite components for the structural abstraction.

e The selected subset must be as small as possible to avoidainseming instanciations.

e The slice is vertical (UML model and Java code).

We retain two included subsets related to two deadlines:

e Testl TheCashDesk composite component for the structural abstraction. Wanrétvo included subsets:

— TheCashDesk composite component for the structural abstraction.

— TheCashDeskAppl i cat i on primitive component, which is a component of tteshDesk com-
posite component that helds a dynamic behaviour.

e Test2 TheCashDeskLi ne composite component, which is the front-end subsystemeo&gplication.

This document summarises an experimentation offthet 1 benchmark for the ECONET project, which is a
subset of the CoCoME case study. The starting point inclu@iéVl) component model, a Java code and anno-
tations. The experimentation goal are (1) to study the liekveen the component level and the implementation
level (how the implementation is close or far from the comgr@nmodel), (2) to investigate the discovery of anno-
tations from UML descriptions and Java programs (how canseawanually or systematically UML informations
to find the annotations, what to look for in the Java prograi&)iting and exploiting the annotation is outside
the scope of this study.

The document is structured as follow. In sect®bwe overview the component model informations and the
way to use them. In sectiohwe just overview the (java) implementation model. Last iotiem 5 we provide
annotations to link both models. But first lets relate a pragiannotation experimentation.

http://agrausch.informatik.uni-kl.de/CoCoME
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start

Chapter 2

Previous Experimentation

Experimentation tests were led with a small subset of thedB&E case study by a group of students in march
2008. The project is summarised in chapter SALPR0YG and in a project report. The tests were based on the
three following components present the CoCoME case sthey:GashBoxControl | er,: Printer Control | er
and: Scanner Cont r ol | er components. These three components are contained in thppo@mt CashDesk
(Fig. 2.1).

1 «component» {l 1 «component» {l 1 «component» {l

:CashBoxController :ScannerController :PrinterController

Figure 2.1: Master Project: CoCoME subset

Each component has a package name beginningaxith cocone. t r adi ngsyst em The package name
is hierarchised according to the composition of the namb®tbmposite components which contain the compo-
nent. There are a Java interface for the component and atddex hamed npl which contains the java classes
that implement the interface. (Fig.2).

The test proceeded as follow:
(1) a single class was tested that contained all the anootakhis class allowed to generate the structure that was
required for the generation of the model.
(2) this structure was then used to instantiate the metaimode
(3) the structure was exported to another structure to thehpat wrote the annotations.
(4) the writing annotation processor inserted the anmmtatorresponding to the intanciated model in Java classes
that are not annotated.
(5) the students checked that the automatic annotatecatslass exacly the same that the classes that we annotated
manually.

The processor was implemented using the APT tool. The abgerienentation was driven by the first version
of the Java annotations even if the multiple annotationasiwas introduced in several annotation definitions.

./FIGURES/cashdeskop.eps

4 ECONET Project/Test1 Description

@InCDmpDnenttannatation_scr = {"Manual"}, component name = "Cashbhesk™)
public class CashBEoxControllerEventHandlerInpl implements Messagelistener,
CashBoxControllerEventHandlerIf |
final 3tring CHANMEL CONWECTICHN FACTORY = "ChannelConnectionFactory™:
private 3tring topichame;
private Context jndiContext:
private TopicPublisher cashBoxPublisher:
private TopicSession topiclession:

private Logger log = Logger
cgetlogger (CashBoxControllerEventHandlerImpl.class) ;

@Businessattrihute(annntatinn_scr = {"Manual™}
private CashBox cashhox:

@Initmethad(annntatian_scr = {"Manual™}, name of the cowponent = "CashBox™)
protected CashBoxControllerEventHandlerImpl (CashEox cashbox,
String eventchannel) {

try |
this.cashbox = cashbox:;
topicHame = ewventchannel;

jndiContext = new InitialContext (] ;

Figure 2.2: Master Project: One class of CoCoME annoted

./FIGURES/codecocome.eps

& cocome.ecare ¢5 o

= H}_| plat'Fu:mm;,l'resnurce,liEssaiﬁnnotation,lil‘?'!o_clelil;cocnme.ecore.
=< Architecture
=h < Component CashDesk
H Intetface org.cocome.tradingsystem, cashdeskling, cashdesk. printercontroller.impl. Printer CantrollerEventHandler Impl
I Interface org.cocome. tradingsystem. cashdeskline cashdesk. cashboxcantraller impl. CashBoxContrallerEventHandler Irmpl
4 Provided Operation sendPaymentModeEvent
[+ 4 Provided Operation sendCashamountEnteredEvent
I < Required Operation onEvent
[#- < Provided Operation send3aleFinishedEvent
-4+ Provided Operation sendExpressModeDisabledEvent
| < Provided Operation sendCashBoxClosedEvent
| < Provided Operation sendSaleStartedEvent
Interface org.cocome, tradingsystem, cashdeskline, cashdesk, scannercontroller.impl. Scanner ControllerEventHandler Impl
Atrtribuke cashboyx
Attribube jndiConkext
Attribute scannerZontroller
Afrtribuke cashBoxControllerEryentHandler
Artribube tokal
Attribute first
Operation ScannerController
Operation CashBaox
Cperation PrinterController
Cperation PrinterControllerEventHandlerImpl
Operation ScannerContrallerEventHandlerImpl
4 Operation CashBoxControllerEventHandler Impl
Binding

L = SR SR |

&

jox)

+
&

Figure 2.3: Master Project:Extract of the Annotated Classthe CoCoME generated model

./FIGURES/modelCocomeVince.eps

Chapter 3

Component Model

We do realy have a full component model as input: we have atsital model provided as UML component
diagrams and also a behavioural model provided as a calteofiUML sequence diagrams.

3.1 Structural Component Model

The CoCoME structural reference model in defined by a UML congmt diagrant. This is just a MS Visio
drawing and not a rich one generated from a UML Case%o®herefore if we want to reverse engineer the Java
code using UML the UML informations, this model has to be dragain.

Fig. 3.1lillustrates the structural view of the components for theset we kept in test1.

The structural UML models contain the component instartbes;omposite relations, the ports and interfaces.
Only component type names, stereotype and number of ocagrige provided. Ports support interfaces which
are named and decribed as Java interfaces. The UML notesr(ents) show the datatypesnfityclasses) wihch
are relevant for the corresponding interfaces. This isfiobuéhel nvent or y related components. There are no
such entities for th€ashDesk related components. But additional informations (thestarggle boxes are a new
UML notation ?) is used to denote events associated to atest These events coming from uses case definitions
and sequence diagrams. Curiously the send events areatesidti provided interfaces and thEhe semicircles
indicate events the component can handle while the ciroldisate events which are sent by the component. For
example, the controlle€ar dReader Cont r ol | er handles the everixpr essModeEnabl edEvent while
sending the event& edi t Car dScannedEvent andPl NEnt er edEvent ."

The internal specification of components seems to be an imgieation issue (or a refinement if available).

1see chapter 3 - COCOME - The common Component Modelling El@ayailable in

2We mean the one we could process to get useful informatiarthécabstraction process A and B.

http://cocome.org/

3.2. BEHAVIOURAL COMPONENT MODEL 7

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
SaleStartedEvent
SaleFinishedEvent

SaleStartedEvent
SaleFinishedEvent

CreditCardPaymentEnabledEvent ProductBarcodeScannedEvent |
CashBoxClosedEvent

«component» T @
.) TradingSystem::CashDeskLine::CashDesk .\]J

1 «component» a 1 «component» a 1 «component» E

:CashBoxController :ScannerController :PrinterController

ChangeAmountCalculatedEvent

1 «component» a 1 «component» a 1 «com 1
ponent» a «component» E

:CashDeskApplication :LightDisplayController :CardReaderController :CashDeskGUI
}? | ExpressModeEnabledEvent
SaleStartedEvent RunningTotalChangedEvent
ProductBarcodeScannedEvent CashAmountEnteredEvent
SaleFinishedEvent ChangeAmountCalculatedEvent CreditCardScannedEvent
CashAmountEnteredEvent SaleRegisteredEvent PINEnteredEvent
CashBoxClosedEvent

CreditCardPaymentEnabledEvent
CreditCardScannedEvent ExpressModeEnabledEvent
PINEnteredEvent ExpressModeDisabledEvent
ExpressModeEnabledEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
ExpressModeDisabledEvent
ExpressModeEnabledEvent
InvalidCreditCardEvent
CreditCardScanFailedEvent

Figure 3.1: CoCoME subset 1: tlkashDesk component

3.2 Behavioural Component Model

The behavioural model is not related to components (staeimas could play that role) but is defined infor-
mally with use case descriptions and UML sequence diagraiie events attached to the interfaces in the
structural model are message send in the sequence diagfdralements related fbest 1 are those of the
Pr ocessSal e use case extract (Fi§.2).

ThePr ocessSal e use case is illustrated by one main scenario (Bi§) and two referenced scenarii (Fig.
3.4and3.5). These are described iR§u04§.

UC ManageExpr essCheckout is an extension of of thBr ocess Sal e use case.lts role is to hold a statistic
about sales. It is not of interest fdest 1.

The sale process starts when B&shi er presses the buttoStart Saleat his Cash Box Then the cor-
responding software compone@ashBox calls a method at the componetdshBoxCont r ol | er which
publishes th&aleStartedEventsing thecashDeskChanneThe three componen@shDeskAppl i cati on,
PrinterController andCashDeskCGUl react to events of the kinBaleStartedEventn order to receive
these they have to register themselves at the chaasbDeskChannébr these events and implement the accord-
ing event handlers. At th@ash DeskhePrinter starts printing the header of the receipt initiated by th@gonent
PrinterController and initiated by the compone@ashDeskGUl a text at theCash Deskndicates the
start of a new sale.

Some components connected with the chanashDeskChannehplement a finite state machine, lidashDeskAppl i cat i

./FIGURES/cashdesk2.eps

8 ECONET Project/Test1 Description

Printer CardReader CashBox

\ / LightDisplay

POSSystem (Test1)
Customer
ProcessSale(1) «extend»
-— - e —— ManageExpressCheckout(2)
ManageExpressCheckout ;
/

Cashier ‘/
Condition:
{50% of all sales during the last 60 minutes meet the
requirements of an express checkout
- up to 8 products per sale
- customer pays cash}
extension point:
Open Express Checkout

Manager

Figure 3.2: CoCoME subset 1: tike ocessSal e UC

or PrinterControll er inorderto react appropriately on further incoming evemsthe next phase of the
selling process the desired products are identified usmBah Code Scannewhich submitts the data to the cor-
responding controllescanner Cont r ol | er which in turn publishes the eveRtoductBarCodeScannedEvent
The componen€ashDeskAppl i cat i on gets the product description from th@vent ory and calculates

the running total and announces it on the channel. AfterHingsthe scanning process, tBashierpresses the
buttonSale Finishedat theCash Box Now theCashiercan choose the payment method based on the decision of
the costumer by pressing the butt@ash Paymemnr Card Paymenat hisCash Desk

./FIGURES/cashdeskuc.eps

"2Jay |re1ap ul paquosspaRIY2IyM poylaw JuawAed yoes 1oj saousnbas ayl arensn|ig spue s b4

suonoeIaUI 8 [BSSS990 &Y (T 19SqNS JN0D0D :£°€ ainbi-

ProcessSale
:Cashier TradingSystem::CashDeskLine::CashDesk::CashDeskApp lication :TradingSystem::CashDeskLine::CashDesk:ScannerCont roller :TradingSystem::Inventory
I]] I
: :TradingSystem::CashDeskLine::CashDesk:CashBoxCont roller : ‘TradingSystem::CashDeskLine::CashDesk::PrinterCont roller : ‘TradingSystem::CashDeskLine::CashDesk::CashDeskG Ul : :BarcodeScanner
| 1 | I | I 1 T
tartSal
| Sorser0 pl [| [[| I
| | SaleStartedEvent () |] | | |]
: : SaIeStaﬂ]d Event() \: : : : :
| | | | | | |
Ioop| : : : : itdtmScanned() : :
>
[whjle no more items to scan]]] ProductBarcodeScafjnedEvent(int barcode) |‘ | |)
l l ~ 1 getProducthhStockl,em(mt barcode) I I l
| | 1 { | | >I)
| | 1 —_——— ProductWithStl)ckltemTO l I l
————— —_— e e e e . - —— e — — - —— — —
I I I r r 1 !
| | | | | | |
| | | calculateRunningTotal() | | | |)
| | : | | | :
| | | | | |
| | | RunningTotalChangedEvent([} |] |)
| | | string productName, double | | | |)
| | 1 productPrice, double ~J | | | '
runningTotal)
| | | 1 | 1 | |
: : : RunningTotalChanged Evenl(string productName, double prodLlctPrice, double runningTotal) \: : :
1 1 1 |] 1 [l [
+ + + + +
: endSale() L: : : : : : :
| " SaleFinishedEvent () |] | | |]
| I 5l 1 |]] 1
SaleFiniSh&dEvent()
| 1 =1 | | | 1
[[[(] [[[[
) i i | i i i |
[CuStomer wants to pay cash] l l l l I | 1
] | 1 1 1 1 1 1
ref
SeqBarPayment
N v
[[Clstomer wants to pay by creditcaray I . . I T T T T T T T T T T T T T AT T T T T T T T AT T T T T T T T T T TR
| - | | | | | |
re
SeqCardPayment
| | | | | | |)
[} [} [}] 1 1 1]

713AO0ON LNINOJINOD TVdNOIAVHIEE 'C°€

./FIGURES/processSaleDS.eps

‘pIUOD

Bar Payment

0T

Z/T SuonoeIBUI-gNS 8 [BS SS90 &Y :T 19SqNS JN0D0D 'S ainbiH

Cashier T :CashDeskLine::CashDesk::CashDeskApp lication TradingSystem::CashDeskLine::CashDesk::ScannerCont roller Tradi Inventory Trading! :CashDeskLine::Coordinator
I I T J I
: :TradingSystem::CashDeskLine::CashDesk:CashBoxCont roller : :TradingSystem:CashDeskLine::CashDesk::PrinterCort roller : :TradingSystem::CashDeskLine::CashDesk:CashDeskGUI | : :BarcodeScanner | :
| barPayment() I | I 1 T) T |
I pl) I | I | 1 |
| |) | | | 1 1 |

o I T T T I T T I

| | | | | 1 1 !
[util finalinput==true]]] |]]] []]
. : ! : u Lo -

N,

P CashAmountEnteredEvent (dou | |
| | "bie amount, boolean finalinput) < |) | 1 1 |
| I CashAmountEntered Even((dﬁ!ﬂe amount, boolean finalinput) !) | | | |
! ! 1 >) | 1 | !
]] | CashAmountEnteredEvent (doyple amount, boolean finallnput)]]]]]
| T T 1 ! 1 | | !
]]] |] }] []
! ! 1 |) | | | |
| | 1 |) | | | |
| | 1) | | | |
1]] ChangeAmjpuntCalculated Event(double charfyeAmount)])]]
	I I ! A)		
! 'ChangeAmoumCalcu\atedEve))	
	V7 t(double changeAmount)])]
] changeAmountCalculatedEven	>]])]]	
L~ t(double changeAmount) 1	1) 1 1	
			1
closeCashBox() ! !	1 !)	!	

| | 1 1) | |
]] CashBoxClosedEvent ())] []])]]
! I CashBoxClokedEvent() | 1 |) | |
| 1) ~ 1 1 | [} |
]]] | BookSaleEvejt(SaleTO)] | ']
I I I I Sa\eReg\steredEv{m (int numberOfitems, Paymenﬂv’ude paymentMode) A ' l
]]] |]] 1 ~)
| |) | 1 1 | 1 |
| | | | | | 1 1 |
! !) | | ! 1 1 |
)]	1 1		
)			1 1	
					1 1
) ! 1 1 !		
))	1 1		
	1)	1 1		
	1)	1 [}		
1 1 [} |] 1 ' [}

uonduosaq T1sa198loid 13INODT

./FIGURES/processSaleSBPDS.eps

‘pIUOD

G'¢ ainbiq

1 18sgns JN0D0D :

2/Z SUONJeIBIUI-GNS 8 [ES SS90 Y

Card Payment

ashDeskLine:CashDesk:CashDeskApp lication | ashDeskLine::CashD Cont roller T entory. T hDeskLine::Coordinator Bank
T T T T
: ‘TradingSystem::CashDeskLine::CashDesk::CashBoxCont roller : TradingSystem::CashDeskLine::CashDesk:PrinterCont roller : TradingSystem::CashDeskLine::CashDesk::CashDeskGUI : BarcodeScanner | : TradingSystem::CashDeskLine::CashDesk::CardReader
| T | T | T | T | T
| | [} | | | 1 1 [} |
| cardPayment()] | | | 1 1 1 1
CreditCardPaymentEnabledEve | I I] 1 1] |
ul			1 [} [}
[} 1			1 [} [}
[} 1			[} [} [}
] 1] [}]
oop T T T T T T T T T T			
[} 1	I Credie &, } [} [}		
transdtionldi=null 1 e	1 redit (pUring creditCar 1 1 1		
1 1		PINEnteredfvent(int pin)]]]	
: : :\ ! T : validateCard(...) H : .' _			
\ 1 1 trpnsactionld (null if card not valid)]]		
	l‘ [ﬂans;l;unld ull] InvalidCreditCardE yent() r :- T -: a		
[transactjonidi=nul] debitCard(transactioni{. ..)]]			
T T T) L) T			
] [} 1	
] [}	
] [} [} 1	
T T T 1) T T			
: ;	P		
BookSaleE 1(SaleTO; I I			
ookSalel ve	(SaleTO) 1 - \ H		
SakRegisteredEvqnt (it numberOfitems, Paymenthjode paymentviode)] 1 1			
T T T T T			
		1 1 [}	
		1 1 [}	
		L	
[} I			
	[}		
[} 1			1 [} [}
[} 1			1 [} [}
[} 1			[} [} [}
[} 1			[} [} [}
[} 1			[} [} [} }
. . . ' ' . . .

713AO0ON LNINOJINOD TVdNOIAVHIEE 'C°€

1T

./FIGURES/processSaleSCPDS.eps

Chapter 4

Implementation Model

Figure4.1shows a UML representation of the Java implementation oCdehBoxCont r ol | er component
model.

«interface»
Serializable

cashboxcontroller] « impl$ents »
JPanel

«interface» «interface»
CashBoxClosedEvent .
CashBoxControllerEventHandlerlf MessageListener

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) () //'
+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

« implemehts » / « implements » lr
| /

cashboxcontroller.impl | | |
1 1 Z

CashBoxControllerEventHandlerimpl / -cashBoxControllerEventHandler -cashbox CashBox

~cashbox / -cashBoxControllerEventHandler
+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) () /
+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

Figure 4.1: CoCoME component: tiBashBoxCont r ol | er implementation

Fig. 4.2illustrates the implementation for the subset we kept. #t $&t of Java classes.

The main design decisions focus on the implementation of theent Bus component which is based on
the JMS API. The Java Message Service (JMS) API is a messatgindard that allows application components
based on the Java 2 Platform, Enterprise Edition (J2EE)eater send, receive, and read messages. It enables
distributed communication that is loosely coupled, rdéabnd asynchronous. A JMS application is composed of
the following parts:

e JMS Clients - These are the Java language programs that sémdceive messages.

¢ Non-JMS Clients - These are clients that use a message Systeative client API instead of JMS. If the
application predated the availability of IMS it is likelyattit will include both JMS and non-JMS clients.

e Messages - Each application defines a set of messages theteakéo communicate information between
its clients.

e JMS Provider - This is a messaging system that implementsidM&dition to the other administrative and
control functionality required of a fullfeatured messagproduct.

e Administered Objects - Administered objects are precondudMS objects created by an administrator for
the use of clients.

The maininterfaces of the APl ar€onnect i on, Sessi on, Message, MessagePr oducer ,Messageli st ener.

12

./FIGURES/cashBoxControllerImpl.eps

& lava - EconetAlma/src/annotation/Businessattribute.java - Eclipse Platform

File Edit

=i
|: T

Source Refactor Mawigabe Search Project Costo Menu RoundTrip Run

| @k 2T B0 Q- | EE G-

El

&~ 0

L EE d

-8 cocomesrc

- org.cocome. tradingsystern. cashdeskline . cashdesk:
s Ill CashDesk. java
e Ill CashDeskLine.java
~H% org.cocome. tradingsystem,cashdeskling, cashdesk, application
= EI ApplicationEventHandler I java
-3 org.cocome. tradingsvstem.cashdeskline . cashdesk. application.impl
- Iil ApplicationEventHandlerImpl, java
- [J] CashDeskStates.java
-4 org.cocome. tradingsystem. cashdeskline..cashdesk. cardreadercontroller
e Ill CardReaderControllerEventHandlerIF, java
~H% org.cocome.tradingsystem,cashdeskline, cashdesk, cardreadsrcontroller imp
i"l m CardReader.java
|i| CardReaderControllerEventHandlerImpl. java
-84 org.cocome. tradingsvstem.cashdeskline . cashdesk. cashboxcontroller
& Iil CashBoxControllerEventHandlerIf . java
-} org.cocome. tradingsystem. cashdeskline . cashdesk. cashboxcontroller impl
'?-J |1| CashBox.java
H |l| CashBoxControllerEventHandlerImpl. java
-4 org.cocome. tradingsystem. cashdeskline . cashdesk. qui
- ul GUIEventHandlerIf.java
-3 org.cocome. tradingsystem.cashdaskine cashdesk, gui.impl
EIﬁ CashDeskalULjava
- Iil GUIEventHandlerImpl.java
-} org.cocome. tradingsystem . cashdeskline . cashdesk. lightdisplaycontraller
s i1| LightDisplayControllerEventHandlerIF java
-3 org.cocome. tradingsystem . cashdeskline. cashdesk. lightdisplaycontraller imp
e |l| LightDisplawContraller.java
- |i| LightDisplayControllerEventHandlerImpl.java
-~ org.cocome. tradingsystem.cashdeskline . cashdesk. printercontraller
- Iil PrinterControllerEventHandlerIf. java
-#3 org.cocome. tradingsystem . cashdeskline . cashdesk. printercantroller impl
e |i| PrinterControllar. java et
'}J i1| PrinterCantrallerEventHandlerImpl. java
+ Iil Printerstates.java
~#% org.cocome.tradingsystem,cashdaskline cashdesk, scannercontraller
G- m scanner_ontrollerEventHandlerIF . java
-3 org.cocome. tradingsystem . cashdeskline . cashdesk. scannercontroller..impl
& Iil scannetConktroller.java
= Iil Scanner_ontrollerEventHandlerImpl. java
8 org.cocome. tradingsystem.cashdeskline . coordinator
8 org.cocome. tradingsystem.cashdeskline .coordinator impl
B3 org.cocome. tradingsystem.cashdeskline datatypes
B3 org.cocome. tradingsystem.cashdeskline. events
8 org.cocome. tradingsystem.external
4 org.cocome. tradingsystem. external.impl
1_4,:} org.cocome, bradingsystem.inventory. application
-3 org.cocome. tradingsystem.inventory application. product dispatcher |fj
»

-

I
|

Figure 4.2: CoCoME subset 1: tiBashDesk java implementation

./FIGURES/cashdeskcoder.eps

Chapter 5

Finding and Writing the Annotations

In this section we discuss about the process of annotingeactale from component information. The annotating
process is composed of two processes : finding the annotétiorotation Discoveryand writing the annotations.
We only deal with the first on&@he second one will be done manually.

5.1 Assumptions

At this point we assume that there is some component modetiggsn (here in UML2) and a Java implementa-
tion of it. We also assume that the Java code is not a compamae| transformation (no code generation) and it
does not include component annotations. This is the casei@dCoME example.

The annotations must conform to the current Java annotdgédinition for Econet. These are detailed in
appendixA.

5.2 Annotation Discovery

Assuming a UML component model and a Java implementatienythin goal of the annotation process is to map
concepts between the models.

5.2.1 Annotation Templates

An annotation is a link between a model element and an impi¢atien element. This is some kind of the one
we discussed (Figh.1).

The useful UML (component or not) concepts are: componemposition, class (e.g. parameters or parts of
components), operations with signatures, types, intesfgeorts, connectors, stereotypes, instances (objatts ca
be interpreted component instances), messages with pemame

5.2.2 Mapping the concepts

Since the implementation is more concrete and more dettiibadthe abstract model and the process must start
from the abstract component model. This not an easy process.

There are no direct transformation (in the sense of MDA) fildML (abstract) component model to Imple-
mentation models. So it is not possiblettace' the model elements.

Moreover (abstract) component model are usually definitelyUML component diagrams but rather a col-
lection of UML diagrams. The CoCoME example can be a good @k@mf legacy component systems: the
collection of UML diagrams is a documentation that helpsitwarstand the Java (component) implementation
but it is not its abstract description. The main difficultystet the annotations is that there are no complete compo-
nent reference model to define what are business featurésialeinentation features. The full model is provided
by UML documentation but also the system Java implememtafidie UML models are only an overview with
many holes. We have to look at the implementation source fio&leome of the component model features.

ITraceability is a mapping that fits to our needs.

14

5.3. ANNOTATING THE COCOME 15

Abstract Java
concepts concepts
Entry point
R
Interface » Interface

3 sorts of methods:
Operation »Methods X business (services)
X non business (java)

Connections Statements
Types Inheritance 3 sorts of classes:
\ X components
Types / classes X types
Composites x Java only

(later)

Figure 5.1: Mapping concepts

Indeed, missing Component information can be infered franpus source code elements. But some component
model elements names are changed during the manual impiatioan for example th€ashBoxCont r ol | er
does not exist as so in the Java implementation.

5.2.3 Implementation Patterns

An interesting solution is to draw some transformationgrais in ordre to set the mappings. We will see examples
in section5.3.

5.2.4 Automatic Annotation Inference vs Manual Inference

Automatic annotation inference is based on concept nanekstang processing. Thus it requires a component
model textual description provided by some software ergging casetool (XMl or text format). In our case we
only have Visio diagrams. So we will lead a manual infereri®et the way is still open for later study because
we try to find some implementation patterns.

5.3 Annotating the CoCoME

In the Test 1 benchmark, the annotations are put manually in the Java. cOudy the classes related to the
Test 1 subset are annotated.

5.3.1 Finding Mappings

First we look at the structural (component diagram) and aft¢he dynamic view. In each case we try to find a
correspondence.

5.3.2 Structural Component Model Analysis

The static model includes anonymous component instaneesfaces, ports and connection information, com-

ponent compositions. The connection information are nohédised but we find events (used in the behavioural

model) or data (data model). Component types are not rgadigified but the structure is the same at the instance
level and the type level.

./FIGURES/absMapping.eps

16 ECONET Project/Test1 Description

Mapping UML Components to Java

The components and interfaces are linked to packages asgbslalhe name are not always identical but manual
inference is quite easy. We try to find patterns for the maggin
As an example, let's take tieashBoxCont r ol | er component of Figur8.1. The component provides an
anymous provided interface and an anymous required icrtavents (types) are related to these interfaces.
Figure5.2 shows the mapping between the component model (extractedRigure3.1) and the implemen-
tation model (Figuré.1).

1 «component» E

:CashBoxController

ChangeAmountCalculatedEvent SaleStartedEvent

CreditCardPaymentEnabledEvent
CashBoxClosedEvent

«interface»
Serializable

cashboxcontroller /] « implements »
l «interface» «interface» JPanel
(CashBoxClosedEvent)
CashBoxControllerEventHandlerlf MessageListener
+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) () ///'
+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)() Q
‘ « implemehts » / « implements »
[
cashboxcontroller.impl | 1]
1 1 Z
CashBoxControllerEventHandierimpl / -cashBoxControllerEventHandler -cashbox CashBox
~cashbox / -cashBoxControllerEventHandler

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()
+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

Figure 5.2: CoCoME component: tlkashBoxCont r ol | er implementation mapping

Component Pattern A componentCl is implemented by a packa@d including
e theClEventHandlerlfinterface
e theCl.implpackage including

— the C1LEventHandlerimptlass that implements th&l EventHandlerlfinterface,
— theCl’ class that implements a GUI part.

These classes includes corresponding attributes thatecegpbesented by a UML bidirectional association.

Interface Pattern Provided and required interfaces are merged and the me#hwod is an indication of whether
events are sent (provided interface) or received (requmtedface).
The anonymous interfaces of compon€htare implemented by theél EventHandlerlfinterface where

e arequired everfREvt (operation ? service ?) is defined bpaEvent (REvt r Evt); method.
Examplewvoi d onEvent (ChangeAnount Cal cul at edEvent changeAmount Cal cul at edEvent) ;

./FIGURES/cashBoxControllerMap.eps

5.3. ANNOTATING THE COCOME 17

e aprovided everPEvt (operation ? service ?) is defined by@ndPEvt (PEvt pEvt); method. Exam-
ple:voi d sendCashBoxCl osedEvent (CashBoxC osedEvent cashBoxCl osedEvent);

The ClEventHandlerlfinterface is then implemented by t& EventHandlerimptlass.

Service/operation Pattern The implicit convention is to interpret events as serviogg(ations) such that emit-
ting events is providing services and receiving eventsgsirang services.

But this rule is not followed systematically. New events @g@ipthat issued from the behavioural component
modele.g.sendPaynment MbdeEvent ,sendExpr essModeDi sabl edEvent . Some events are not imple-
mentd as se.g.Cr edi t Car dPaynent Enabl edEvent .

Events are specified by classes in tt'shdeskl i ne. event s package.

Composition Patterns From a scope (naming/lexical) point of view, component pa@s are included in the
composite package but except to this there are no true ege®n of composition:

e ports are not explicitely represented (no promotion: theemponent are directly connected) because
e interfaces are shared by the component and its composite,
e there are no object compositierg. by instance variable declaration.

IntheCashDeskLi ne example, th&€ashDeskLi ne class is grouped with theashDesk class in the the
cashdesk package. Th&vent Bus is notimplemented as so but rather via the Java GUI. So thenecedirect

mapping.

Looking outside the scope

The above mapping seems to be convenientGashDeskLi ne subcomponents even if name inference is
quite difficult because the rules are evolving. For exampéedomponen€CashDeskAppl i cati on is im-
plemented by the packagepl i cat i on including theAppl i cati onEvent Handl er | f interface and the
appl i cation.inmpl packageCl includingtheAppl i cati onEvent Handl er | npl andCashDeskSt at es
classes.

Moreover the above components are somewhat related to dyreapects of the model. In the case of
I nvent ory components (Figur®.1 of appendixB.1) e.g. Appl i cati on or St or e, the rules look like
different.

e Each interface is implemented by a Java interface. A reduireerface is in fact an exact matching of
a provided one in another componeittréfers to a provided onle The package importations solve the
interface linking (this is an explicit promotion/delegatithat do not respect composition encapsulation).

e A (primitive ?) componenCl is implemented by a clagglImpl class of theCl.impl package, such that

— Climplimplements the (Java) provided interfaces,

— Climpl declares an instance variable (attribute) for each reduirerface (it is initialised using a
factory).

e Here events are replaced by datatype (implemented by Jassed).
e An application factory design pattern is used.
e The component model includes "business" data types mobgleldsses, implemented in the same package

as the component.

5.3.3 Behavioural Component Model Analysis

It is important to note that message names are built using@ smmventions. In th€ashDeskLi ne they all end
by Event and some start witeend

18 ECONET Project/Test1 Description

Message Patterns
The idea is to project message send end receptions on eelihelibf the sequence diagrams according to the
naming convention given in the above sections.

We find the same mismatches.

Unfortunately the sequence diagrams are not numerous @inma systematic and automatic discovery pro-
cess?
5.3.4 Entry Point Patterns
Statically, one can have a look the constructors ontlien methods. Dynamically one can have a look at the top
level sequence diagrams.
5.3.5 Writing the annotations

The annotations are put manually. We take the symmetrict pdimiew of the above mapping. We look for
elements in the source code corresponding to

e InComponenthe class belongs to a component

e InitClassthe class is a "main" part of the component

¢ InitMethodthe method belongs to the main operations of the component
e Providedthe field links to a provided interface

e ProvidedlIfthe Java interface refers to a provided interface

e ProvidedMethod method implemnts a provided operation

e Requiredhe field links to a required interface

e BusinessTypthe java type implements a component basic type

e BusinessFieldhe field refers to a component basic type

e BusinessParametehe parameter refers to a component basic type

We illustrate the process on tllashBoxCont r ol | er component of th€ashDesk composition.

a) Exploring the Java interfaces

Intuitively each Java interface should map to a componentiged interface but actually Java interfaces are used
twofold

e As a provided interface, it is then implemented by some class
e As arequired interface, it is then referenced in "providgelds.

Moreover the Java interface gathers incoming and outgoregte (push/pull modes) so that it is not clear
what is provided or required inside. Nevertheless we wllbfe the Java structure where there are no distinction
between required and provided interface.

There no annotations envisaged for Java interfage¢o indicate which is the owner component, whether it
is provided or required. Indeed, a required element (oriBrface are envisaged here) is attached to a class field
and a provided element is attached to a class vidtogidedlf The missing link should be deduce later when
exploring all required fields to get implementors.

Reverse Rule 5.3.1 (Java Interface)ava interfaces are not annoted.

Reverse Rule 5.3.2 (Provided Java InterfaceWhen a Java interface is implemented by a class which is IRCom
ponent a componel@l then it is a provided interface @1. There are no special annotation for that because it
can be deduced in the class declarations via the Providedibgation.

5.3. ANNOTATING THE COCOME

19

Reverse Rule 5.3.3 (Required Java InterfaceA Java interface is a required interface of a compon€htif it
is referenced in a Required field of a class which is InCompb@#&. There are no special annotation for that
because there can be many classes (and components) repihigrinterface.

Reverse Rule 5.3.4 (Java Interface Qualification)Pava interfaces can be qualified as both provided or required

package org.cocome.tradingsystem .cashdeskline.cashdesk.lagbontroller;

import
import
import
import
import
import
import

public
void
void
void
void
void

org.
org.
org.
org.
org.
org.
org.

cocome.
cocome.
cocome.

cocome
cocome

tradingsystem
tradingsystem
tradingsystem

.tradingsystem
.tradingsystem
cocome.
cocome.

tradingsystem
tradingsystem

.cashdeskline.
.cashdeskline.
.cashdeskline.
.cashdeskline.
.cashdeskline.
.cashdeskline.
.cashdeskline.

events.
events.
events.
. ExqpvesieDisabledEvent ;
. PayvhedeEvent;

events.
. SadetedEvent;

events
events

events

interface CashBoxControllerEventHandlerlf {
onEvent(ChangeAmountCalculatedEvent changeAmountGktedEvent);
sendSaleStartedEvent (SaleStartedEvent saleStartedEye
sendSaleFinishedEvent(SaleFinishedEvent saleFinighexht);
sendPaymentModeEvent (PaymentModeEvent paymentModeBye
sendCashAmountEnteredEvent (
CashAmountEnteredEvent cashAmountEnteredEvent);
void sendCashBoxClosedEvent (CashBoxClosedEvent cashBox€dBvent);
void sendExpressModeDisabledEvent (
ExpressModeDisabledEvent expressModeDisabledEvent);

b) Exploring the Java classes declarations

CaghArtEnteredEvent ;
CaszBBBasedEvent ;
ChanmgmuntCalculatedEvent;

SaleshiedEvent ;

For each class that have a correspondence to the compondetwmapply the following rules.

Reverse Rule 5.3.5 (Business Clas$) the class declaration we add the annotation (@InComporteat link
the class to the component.

Reverse Rule 5.3.6 (Business Class Interfacdf) the class implements a "business" interface we add th@-ann
tation (@Providelf) that link the class to the componentiface and the Java interface.

Reverse Rule 5.3.7 (Business Main Clasdj the class is the main entry point a component we add thetaano
tion (@InitClass).

Reverse Rule 5.3.8 (Anonymous model interface)Ve assumed that every component should have only named
interfaces. By default a component unnamed interface wittdomed asConponent Nanme>| f .

package org.

import

import
import
import

import
import

info

java.
java.
java.

awt. Color;
awt.event.ActionEvent;
awt.event.ActionListener;

javax .swing.JButton;
javax .swing.JLabel;

.clearthought.layout.TableLayout;

cocome. tradingsystem .cashdeskline.cashdesk.lbagbontroller.impl;

20 ECONET Project/Test1 Description
import javax.swing.JPanel;
import org.cocome.tradingsystem .cashdeskline.cashdesk.basbontroller.

CashBoxControllerEventHandlerlf;

import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.
org.
org.

cocome.
cocome.
cocome.
.tradingsystem .

cocome

cocome.
cocome.
cocome.
cocome.

tradingsystem
tradingsystem
tradingsystem

tradingsystem
tradingsystem
tradingsystem
tradingsystem

.cashdeskline.
.cashdeskline.
.cashdeskline.
cashdeskline.
.cashdeskline.
.cashdeskline.
.cashdeskline.
.cashdeskline.

datatypes SKeoke ;
datatypesmeatMode ;

events.
.CazbBBimsedEvent ;
events.
events.
events.
events.

events

CaghArtEnteredEvent ;

ExypViesieDisabledEvent;
Payvhede Event;
SalefiedEvent ;
SaetedEvent;

import econet.annotationsx,

% %

x+ GUI for the CashBox component

* @author Yannick Welsch

*/

@SuppressWarning§éerial ")
@InComponent(annotationSrc ="Pascal "}, componentName
@InitClass (annotationSrc ="fascal "}, componentName =
public class CashBox extends JPanel {...

}

package org.cocome.tradingsystem .cashdeskline.cashdesk.bagbontroller.impl;

= {CashBoxControl ler"})
{CashBoxControl l er"})

import java.io.Serializable;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.Messagelistener;
import javax.jms.ObjectMessage;
import javax.jms. Session;

import javax.jms.TopicConnection;
import javax.jms.TopicPublisher;
import javax.jms.TopicSession;

import javax.jms.TopicSubscriber;
import javax.naming.Context;

import javax.naming. InitialContext;
import javax.naming.NamingException ;
import org.apache.log4j.Logger;
import org.cocome.tradingsystem .cashdeskline.cashdesk.basbontroller.

CashBoxControllerEventHandlerlf;

import
import
import
import
import
import
import

import

% x

org.
org.
org.
org.
org.
org.
org.

cocome.
cocome.
.tradingsystem .

cocome

cocome.
cocome.
cocome.
cocome.

tradingsystem
tradingsystem

tradingsystem
tradingsystem
tradingsystem
tradingsystem

econet.annotationsx,

.cashdeskline.
.cashdeskline.
cashdeskline.
.cashdeskline.
.cashdeskline.
.cashdeskline.
.cashdeskline.

+ Implementation for the CashBox component

*

* @author Yannick Welsch

*/

events.
.CazBBusedEvent ;

.ChanmgruntCalculatedEvent;
events.
events.
events.
events.

events
events

CaghArtEnteredEvent ;

ExypViesieDisabledEvent;
Payvhede Event;
SalethiedEvent ;
Saet®dEvent;

@InComponent(annotationSrc ="Pascal "}, componentName = {CashBoxController"})

@Providedlf(annotationSrc={Pascal " },

javalfaceName ={CashBoxControl | er Event Handl er | f" })
public class CashBoxControllerEventHandlerImpimplements MessagelListener,
CashBoxControllerEventHandlerlf {...

}

Reverse Rule 5.3.9 (Business Typejome classes correspond to business datatypes and not pmonents. We

found them in the data description.

modellfaceName={CashBoxControl l erlf"},

5.3. ANNOTATING THE COCOME 21

Examples In cashbox example, all events and datatypes are defineébsed related to business datatypes.

package org.cocome.tradingsystem .cashdeskline.events;

import java.io.Serializable;

import org.cocome.tradingsystem .cashdeskline.datatypes SKeke ;
import econet.annotations.BusinessType;

% %
This event signals the entering of a cash amount at the cask k®yboard
after taking cash from the customer. It is raised by the casix ktontroller
component after EVERY key stroke, <code>isFinallnput ()

</code> is true if

the final input is entered.

/

%X * ¥ ¥ ¥ x ¥

@BusinessType (annotationSrc=ascal " })
public class CashAmountEnteredEvenimplements Serializable {
private static final long serialVersionUID = —-5441935251526952790L;
private KeyStroke keystroke ;
public CashAmountEnteredEvent (KeyStroke keystroke) {
this . keystroke = keystroke;

public KeyStroke getKeyStroke () {
return keystroke ;

}
}

c¢) Exploring the Java classes structure

This section applys for the class that inf€omponentlasses only.

The instance variables (fields) can implement a link to aireduinterface, a business field, or an internal
coupling (for example th€ashBoxCont r ol | er component is implemented by the (main) cl&sshBox
and theCashBoxCont r ol | er where each class declares a field to the other class).

Reverse Rule 5.3.10 (Required fieldBased on the types, one can find the field that correspond touires
interface (even if it was not declared as so in the UML compomedel).

Reverse Rule 5.3.11 (Business field3ased on business types, one can find the business field atatnti@m.

Reverse Rule 5.3.12 (Internal coupling)internal coupling is represented as a sped@equi r ed annotation
with an interface name set by a reserved keywarter nal . Its information would be useful for further investi-
gations. This is not a business field.

Reverse Rule 5.3.13 (Implementation Required fieldSometimes the requirements refer to some implementa-
tion rather than the component concepts. To keep that irdtiom we propose to define a special keyword

i mpl enent at i on to denote that the required interface is not present at th@eémentation level but obtained
from various sources. If possible we also provide anothemace and interface entry to the component model.

Examples Nothing in theCashBox class, there’s only an internal coupling towadshBoxCont r ol | er
Event Handl er | mpl .

In theCashBoxCont r ol | er Event Handl er | npl class, there’s an internal coupling towatds hBox
and also implementation required fields related to the impletation of the Event Bus. The difficulty here is
that component concepts disappear at the implementatiehde note it using the special keyword
i mpl enent ati on.
public class CashBoxControllerEventHandlerImpimplements MessagelListener,

CashBoxControllerEventHandlerlf {
final String CHANNEL_CONNECTION_FACTORY ="Channel Connecti onFactory" ;

private String topicName;
/l'implementation references

22 ECONET Project/Test1 Description

@Required (annotationSrc ="fascal " ,"Mdel "}, modellfaceName = {"inplenentation" , "EventBuslf"})
private Context jndiContext;

@Required (annotationSrc ="fascal " ,"Mdel "}, modellfaceName = {"inplenentation" , "EventBuslf"})
private TopicPublisher cashBoxPublisher;

@Required (annotationSrc ="fascal " ,"Mddel "}, modellfaceName = {"inpl enentation" , "EventBuslf"})
private TopicSession topicSession;

@Required (annotationSrc ="fascal " ,"Mddel "}, modellfaceName = {"inpl enentation" , "EventBuslf"})

private Logger log = Logger
.getLogger(CashBoxControllerEventHandlerimpdlass);

/l'internal references

@Required (annotationSrc ="fascal "}, modellfaceName = {"internal" })

private CashBox cashbox;

d) Exploring the Java class behaviour

This section applys for the class that amecomponentlasses only. The main goal is to find so-called business
methods and main (init) methods.

The methods refer to service (component operation, busimegthod) specification. We manually decide
whether a method is a service (component operation, bissmethod) or not.

Reverse Rule 5.3.14 (InitMethod) The InitMethod is chosen among the constructor or initatizn methods.

Reverse Rule 5.3.15 (ProvidedMethod)he "business" methods signature refer to service or opsiat The
business qualification is decided manually.

Examples The component service description is quite absent of the Whidel. Only the sequence charts
provide some valuable but information.
ThelnitMethodwere not present in the component model.

@InitMethod(annotationSrc ="{Pascal "}, componentName = {CashBoxController"})
public CashBox(String eventchannel) {
super();

)

TheSer vi ce were partially presentin the component model. Their shhpaged during the implementation
pattern of JIMS.

//should be a required method according to the UML model

@ProvidedMethod (annotationSrc ="Kanual "}, modellfaceName = {CashBoxControllerlf"})
public void onEvent(ChangeAmountCalculatedEvent changeAmountGlitedEvent) {
log.info (" ChangeAnount Cal cul at edEvent received");

cashbox.openCashBox ();

}

@ProvidedMethod (annotationSrc ="Kanual "}, modellfaceName = {CashBoxControllerlf"})
public void sendSaleStartedEvent (SaleStartedEvent saleStartedEyvd

try {

cashBoxPublisher .publish (topicSession

.createObjectMessage (saleStartedEvent));

} catch (JMSException e) {

log.error(e);

e.printStackTrace ();

}
}

e) Exploring the Java methods

Reverse Rule 5.3.16 (BusinessParametefhe business parameters are found in the "business" metigiiz-
ture. Among the method signature some refer to service &ipes) parameters others are implementation ones.
The business qualification is decided manually.

5.3. ANNOTATING THE COCOME 23

/l'should be e required method according to the UML model
@ProvidedMethod (annotationSrc ="Kanual "}, modellfaceName = {CashBoxControllerlf"})
public void onEvent(
@BusinessParameter (annotationSrc “P&scal "}) ChangeAmountCalculatedEvent changeAmountCalculd&eent) {
log . info (" ChangeAnount Cal cul at edEvent received");
cashbox.openCashBox ();

}

@ProvidedMethod (annotationSrc ="Kanual "}, modellfaceName = {CashBoxControllerlf"})
public void sendSaleStartedEvent (

@BusinessParameter (annotationSrc “P@scal"}) SaleStartedEvent saleStartedEvent) {
try {

cashBoxPublisher .publish (topicSession

.createObjectMessage (saleStartedEvent));

} catch (JMSException e) {

log.error(e);

e.printStackTrace ();

}
}

e) Full Example

The (main) clas€ashBox of theCashBoxCont r ol | er component.

package org.cocome.tradingsystem .cashdeskline.cashdesk.bagbontroller.impl;

import info.clearthought.layout.TableLayout;

import java.awt. Color;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JPanel;

import org.cocome.tradingsystem .cashdeskline.cashdesk.

cashboxcontroller.CashBoxControllerEventHandlerlf;

import org.cocome.

tradingsystem

.cashdeskline.

datatypes SKeoke ;

import org.cocome.tradingsystem .cashdeskline.datatypesmEayMode ;

import org.cocome.tradingsystem .cashdeskline.events.CaghArtEnteredEvent;
import org.cocome.tradingsystem .cashdeskline.events.CasBBisedEvent;

import org.cocome.tradingsystem .cashdeskline.events . ExpVMe@sleDisabledEvent;
import org.cocome.tradingsystem .cashdeskline.events.PayvheteEvent;

import org.cocome.tradingsystem .cashdeskline.events . SalesfhiedEvent;

import org.cocome.tradingsystem .cashdeskline.events. SadetedEvent;

import econet.annotationsx,

% x

*+ GUI for the CashBox component

* @author Yannick Welsch

*/

@SuppressWarningséerial ")

@InComponent(annotationSrc ="Pascal "}, componentName = {CashBoxController"})
@InitClass (annotationSrc ="fascal "}, componentName = {CashBoxController"})
public class CashBox extends JPanel {

/lerror @BusinessField (annotationSrc = "Manual")

@Required (annotationSrc ="fascal "}, modellfaceName = {"internal" })
private CashBoxControllerEventHandlerlf cashBoxControllerBnxelandler;
private JLabel cashbox;

@InitMethod (annotationSrc ="{Pascal "}, componentName = {CashBoxController"})
public CashBox(String eventchannel) {

private void addListenerToButton{inal

JButton b) {

24

ECONET Project/Test1 Description

//found in sequence chart diagrams of the UML modeldefault interface
@ProvidedMethod (annotationSrc ="Pascal "}, modellfaceName = {CashBoxControllerlf"})
public void openCashBox () {

}

cashbox.setForeground(Color.PINK);
cashbox. setText"(cashbox open");

//found in sequence chart diagrams of the UML modeldefault interface
@ProvidedMethod (annotationSrc ="Pascal "}, modellfaceName = {CashBoxControllerlf"})
public void closeCashBox() {

}
}

cashbox.setForeground (Color .BLACK);
cashbox.setText"(cashbox cl osed");

5.3.6 Annoted Components

Here is the list of annoted primitive components of Trest 1 benchmark. Java interfaces are not annotated but
appear in thé’rovidedIf annotation.

ComponenCashBoxCont r ol | er with its implicit interfaceCashBoxControl | er | f.
ClasseCashBox andCashBoxCont r ol | er Event Handl er | npl .

Componenscanner Cont r ol | er with its implicit interfaceScanner Control | er | f.
Classesscanner Cont r ol | er andScanner Cont r ol | er Event Handl er | npl .

TheScanner Cont r ol | er creates &canner Cont r ol | er Event Handl er | npl butthereis a uni-
directional internal link from the scanner to the controlle

ComponenPr i nt er Cont r ol | er with its implicit interfacePr i nt er Control l er|f.
ClassedrinterControl | er andPri nter Control | er Event Handl er | npl .

The printer state is internal to the component here and weras# could be considered as a business type.
ThePrinterControl | er creates&ri nter Control | er Event Handl er | npl butthereisa uni-
directional internal link from controller to printer.

Componenti ght Di spl ayCont r ol | er with itsimplicitinterfaceLi ght Di spl ayControl l erlf.
Classed.i ght Di spl ayControl | er andControl | er Event Handl er | npl .

TheLi ght Di spl ayControl | er creates&i ght Di spl ayCont r ol | er Event Handl er | npl but
there is a unidirectional internal link from controller tsplay.

ComponentCar dReader Cont r ol | er with its implicit interfaceCar dReader Control | er | f .
Classe<Car dReader andCar dReader Contr ol | er Event Handl er | npl .

TheCar dReader creates &ar dReader Cont r ol | er Event Handl er | npl but there is a unidirec-
tional internal link from reader to the controller.

ComponenCashDeskGUl with its implicit interfaceCashDeskGUI | f .

ClasseCashDeskGUl andGUI Event Handl er | npl .

The CashDeskGUl creates &Ul Event Handl er | npl but there is a unidirectional internal link from
controller to gui.

ComponentCashDeskAppl i cat i on with its implicit interfaceCashDeskAppl i cati onl f is not
really implemented as usual.

ClasseAppl i cat i onEvent Handl er | npl represent the controller but part of the applicat belong to
the composit€ashDesk or CashDeskLi ne.

The cash desk statBashDeskSt at es is internal to the component here and we assume it could be
considered as a business type.

The compositeCashDesk (or CashDeskLi ne) creates appl i cat i onEvent Handl er | npl but
there is no link from controller to application, they may aoomicate via the buses.

5.3. ANNOTATING THE COCOME 25

5.3.7 Composition

No annotations are defined for the composition. Moreoverapsulation and promotion is not preserved in Java
except on the package naming.

The distinction betwee@ashDesk andCashDeskLi ne is not clear in the Java code.

We only annotated th€ashDesk. There are twdnitMethods: a constructor and a main.

This is not clear what should be all the interfaces becatese tre no encapsulation, it is directly handled by
(sub) components.

5.3.8 Conclusion

Finding business elements in the Java code is mainly afaotedl process in the case of CoCoME. Some guide-
lines or templates can apply but there are many exceptions.

Mapping models = trace the concepts and decisions

Reverse engineering should work on patterns

Manual implementation lead to exceptions

Incomplete models prevent nouns comparison

Syntactic is not sufficient

Problem of inheritance

Chapter 6

UML/Java

Draft version resulting from Cluj's workshop

6.1 Introduction

In this chapter we investigate the field of reverse engingelava code against UML. In this context, there are
several approaches

1. compose two transformations Java to UMUML to components

+ get a more abstract object oriented representation
+ reuse existing attemps

+ useful for data types modelling

- loose pertinent information ? behaviour

- similar heuristic problems on the "business" part

- still a problem to get a component model

2. compare an existing UML component model with Java to sebveations (e.g. the Testl experimentation)

+ components are known

+ identify similarities is easier and more sure than findirogrf scratch
+ useful for data types modelling

- partial component model informations

- defining what is a UML component model from UML diagrams

- noun comparisons is still difficult

- instanciate an XML ou XMI model (API)

3. Find a mapping Component UML - Java

+ simple, applicable to plain Java and annotations
+ quite close to the CCMM

+ define reverse patterns

- code information is still needed for behaviour

- strict code arrangement

- notools (?)

Solution 1 is not yet feasible without powerfull UML RE todteluding statecharts.
Solution 2 was experienced manually, implementation meg8 tool (UML models, Java code, a bridge)
Solution 3 may run on a limited set of programs. It implies eo$eecognition patterns.

26

6.2. MAPPING UML COMPONENTS TO JAVA CLASSES 27

6.2 Mapping UML Components to Java Classes

We consider a UML Component Model made of a setaifisistentML diagrams.
Some assumptions

e Components are distingued from classes (even if the metalmets that it it a class)
e UML interface are restricted to Java interface

e Ports and port connections are ignored but not binding effates.

e Connectors are simply bindings.

e Protocol state machines are associated to components goatinterfaces.

e Lightened UML model (events, actions...)

e Properties and constraints

Unser these assumptions we try to identify some translgiadierns.

6.2.1 Basic Component Pattern
e componento — a clasC! of a packag&'o

— provided interfacei — inherited interfacei of a packag& o
— requided interfacei — field of type an interfacei of a packag&’o (may vary here)
— ports are omitted- traceable comments to the interfaces

e Features— methods

— Attributes— fields to Datatype classes
— Operations— methods

e Dynamic Behaviour (protocofy» implementation pattern

— communications— message send or some communication support
— state/transitions» some automaton pattern

6.2.2 Composition Component Pattern

e architectured — a classA of a packaged
— components and interfaces (as above) component packayée éacluded in packagé (but it can
also be classify in some "reusable" library of types.

— terfacerconnectorsrightarrow fieither an exact matching or inheritance of interface (ssha dis-
turbing to imply the same name)

— ports are omitted- traceable comments to the interfaces
e Composite (UML composite structure, UML composition riglaj

— Logicalfifield in the composite class of type the componeasgl(according to multiplicity) + some
marking or annotation

— Name: package inclusion (disturbing for reusing the types)
e Connections

— type level = interface link
— instance level = object value with a consistent type

28 ECONET Project/Test1 Description

6.3 Mapping Java Classes UML Components

The idea is to reverse the mapping patterns.
to continue

Chapter 7

Conclusion

Since the mapping from the UML component model to the Java ¢edhot a model transformation (defined
as a set of rules) there are no true correspondence betweeaticrete (java) model and the abstract (UML
component) model. Moreover the component is specificatioludes many holes that are fullfilled by the code
"interpretation” Therefore reversing the mapping is nalyeta draw: the user must identified elements that may
correspond to the abstract model, find an abstract eleméngists, find a rule if it can be ruled, or create a
component model element.

We also met the problem of inheriting annotati@ng. interface/class.

Last, we surely had better to change the reference modebidstf UML to get a "more component" descrip-
tion. On one hand we could compare the implementation witR&cFAL or SOFA component specification (or
later create a CCMM one). On the other hand we will abstra@@MM models. This can be led in an ongoing
experimentation.

All the content informations of this experimentation is be SVN repository in theasest udy directory.

Ongoing Workinclude

e Define a CCMM-UML mapping (or transformation)

Explore further the UML-Java (engineering, reverse-eegimg)

Classify patterns

Rule based-system investigation

e ... Openissue

29

Bibliography

[ACPRO7] Pascal André, Dan Chiorean, Frantisek Plasil, Jeah-Claude Royer. ECONET Project - Prague
Workshop Report, September 2007.

[ACPRO08] Pascal André, Dan Chiorean, Frantisek Plasil, Jeah-Claude Royer. ECONET Project - Nantes
Workshop Report, June 2008.

[Reu06] Ralf et al. Reussner. CoCoME - The Common Componertteling Example, 2006. Gl-Dagstuhl
Research Seminar.

[RRMPO08] Andreas Rausch, Ralf Reussner, Raffaela Miramdahd Frantisek Plasil, editorsThe Common
Component Modeling Example: Comparing Software Compolenatels volume 5153 ofLNCS

Springer, Heidelberg, 2008.

30

Appendix A

Annotations

In this appendix we provide the Java definition of the annarnat

Component - Class Relation

Listing A.1: InComponent.java

package econet.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation. Target;

[* *
+ One or more Java classes can be assigned to a single component
* Such an assignment is specified by this annotation.
x/
@Target(ElementType .TYPE)
/! Should be just a class
public @interface InComponent {
[* *
%+ @return the array of sources for this annotation
*/
String [] annotationSrc ();

[* *

x+ @return the array (one entry per annotation source) conitagncomponent
+ Names which the annotated class is assigned to. If a single

* source declares the class to participate in several compisng

* Its entry should be a commaeparated list of component name

*/

String [] componentName ();

}

Entry points

Listing A.2: InitClass.java

package econet.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

% x

*+ This class is the first instantiated and is responsible
% (its constructor) for the instantiation and initializatmo
+ of the component’s content.

*/

@Target(ElementType .TYPE)

31

32 ECONET Project/Test1 Description

/!l Should be just a class
public @interface InitClass {

[%

+ @return the array of sources for this annotation

*/

String [] annotationSrc ();

[%

@return the array (one entry per annotation source) conitagncomponent

Names for which the annotated class provides the initialtizen .

If a single source declares the class to participate in seavler

components , its entry should be a commsa@parated list of

component name
/

x ¥ ¥ X %X % *

String [] componentName ();

}

Listing A.3: InitMethod.java

package econet.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

% x
+ The component content is instantiated and initialized by atmod
% (it can be a constructor, a static method or an initializanianethod
+ to be called after the default constructor).
x/
@Target({ ElementType.CONSTRUCTOR, ElementType .METHOD
public @interface InitMethod {
% %
*+ @return the array of sources for this annotation
*/
String [] annotationSrc ();

[* *

*+ @return the array (one entry per annotation source) conitagn component
+ Names for which the annotated method provides the initiadfzon .

*/

String [] componentName ();

}

Interfaces

Provided

Listing A.4: Provided.java

package econet.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

% %

In Java sources, a provided interface might be in a form of asd
attribute. The attribute stores a reference to a class im@eting
the provided interface.

EE I

% This type is missing in the ECONET proposal
*/
@Target(ElementType.FIELD)
public @interface Provided ({
[x
% @return the array of sources for this annotation

33

*/
String [] annotationSrc ();

[*

* @return the array (one entry per annotation source) coniagn
+ the name of the interface represented by this field

*/

String [] modellfaceName ();

}

Listing A.5: ProvidedIf.java

package econet.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

% x
+ All methods of the specified Java interface (which the anatetd
*+ class has to implement) are marked as a part of the provided
* interface of the component
*/
@Target(ElementType .TYPE)
public @interface ProvidedIf {
% x
*+ @return the array of sources for this annotation
*/
String [] annotationSrc ();

% x
*+ @return the array (one entry per annotation source) coniagnthe

+ name of the component interface represented by this type
*/

String [] modellfaceName ();

% %

x+ @return the array (one entry per annotation source) conitagnthe name
+ of the java interface which is defining one component Intack

+ If a single source declares to participate in several congus,

% its entry should be a commaeparated list of java interface

+ names (for instance {"ActionListener ,WindowListener"}

x/

String [] javalfaceName ()default { "" };
}

Listing A.6: ProvidedMethod.java

package econet.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation. Target;

/i*The method is a part of the provided interface of the compdnen
@;F‘I/'arget(ElementType.MEl'HOD)

public @interface ProvidedMethod {

/i*@return the array of sources for this annotation

S*t/ring[] annotationSrc ();

[* *

@return the array (one entry per annotation source) coniagnthe
name of the component interface which the annotated methed i
part of. If a single source declares to the method participat

in several interfaces, its entry should be a comwmaparated

¥ ¥ ¥ % ¥

34 ECONET Project/Test1 Description

x list of interface names
*/
String [] modellfaceName ();

}

Required

Listing A.7: Required.java

package econet.annotations;

import java.lang.annotation.ElementType;
import java.lang.annotation. Target;

[* *

In Java sources, a required interface is present in a form of a
class attribute. The attribute stores a reference to anothe
component, whose provided interface is bound to this reeulir
interfaces. Therefore, the target of the annotation for ueed
interface is an attribute of a Java class.

O

*/

@Target(ElementType . FIELD)

public @interface Required {

[* *

% @return the array of sources for this annotation
*/

String [] annotationSrc ();

[* *

* @return the array (one entry per annotation source) conitagn
+ the name of the interface represented by this field

x/

String [] modellfaceName ();

Business elements

Listing A.8: BusinessType.java

package econet.annotations;
import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

% %
« all their instances of such type are important for a compdnen
+ behaviour .
x/
@Target(ElementType .TYPE)
public @interface BusinessType {
[%
% @return the array of sources for this annotation
*/
String [] annotationSrc ();

Listing A.9: BusinessField.java

package econet.annotations;
import java.lang.annotation.ElementType;
import java.lang.annotation. Target;

[* *
*+ Marks particular Java class attributes as important for imess logic.
*/

@Target(ElementType.FIELD)

35

public @interface BusinessField {

[* *

+ @return the array of sources for this annotation
*/

String [] annotationSrc ();

Listing A.10: BusinessParameter.java

package econet.annotations;
import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

% x
+ Marks particular method parameter as important for busines
* logic.
*/
@Target(ElementType .PARAMETER)
public @interface BusinessParameter {
[* *
% @return the array of sources for this annotation
*/
String [] annotationSrc ();

}

Appendix B

Component Model Examples

These examples are outside the scope of Testl but they at¢ouseplain some mapping rules of chagier

B.1 Structure: the Tradi ngSystem : I nventory:: Application
component

«component» E:l

TradingSystem::Inventory::Application

Reportinglf |

«component»
Reportinglf O_[M E

:Reporting

TradingEnterprise,
:'—(ProductSupplier,

Product

OrderEntry,

]—C ProductOrder,

Stockltem,
Store

]—C StoreQuerylf

* «component» E
sorett O F———0—
:Store

Storelf

L AT

Figure B.1: CoCoME component: tii@ adi ngSyst em : | nvent ory: : Appl i cati on component

36

./FIGURES/inventoryApplication.eps

	Introduction
	Previous Experimentation
	Component Model
	Structural Component Model
	Behavioural Component Model

	Implementation Model
	Finding and Writing the Annotations
	Assumptions
	Annotation Discovery
	Annotation Templates
	Mapping the concepts
	Implementation Patterns
	Automatic Annotation Inference vs Manual Inference

	Annotating the CoCoME
	Finding Mappings
	Structural Component Model Analysis
	Behavioural Component Model Analysis
	Entry Point Patterns
	Writing the annotations
	Annoted Components
	Composition
	Conclusion

	UML/Java
	Introduction
	Mapping UML Components to Java Classes
	Basic Component Pattern
	Composition Component Pattern

	Mapping Java Classes UML Components

	Conclusion
	Annotations
	Component Model Examples
	Structure: the TradingSystem::Inventory::Application component

