
ECONET Project
TEST1 BENCHMARK - ANNOTING A JAVA PROGRAM FROM

UML M ODELS

Version 1.0

Pascal ANDRE1

September 29, 2008

supported by

1COLOSS - LINA - FRE CNRS 2729 - 2, rue de la Houssinière, B.P.92208, F-44322 Nantes Cedex 3, France

./FIGURES/logoEgide.eps

Abstract

This document presents theTest1 benchmark for the ECONET project. It is defined as a small subset the
CoCoME benchmark. This document include the component description, the Java code implementation and the
annotation discovery and insertion.

Chapter 1

Introduction

In the context of the Econet project1, we decided during the workshop of Prague [ACPR07] to use a common
component application benchmark. DSRG proposed the COCoMEcontest. DSRG already participated to the
contest by providing studies on SOFA and Fractal based solutions. The base information is available at
http://agrausch.informatik.uni-kl.de/CoCoME
and the results of the CoCoME contest will be published soon [RRMP08].

The whole benchmark is too big to serve as support for the experimentations. During the workshop of Nantes
[ACPR08] we restricted the experimentation field according to the following he constraints:

• The selected subset must be large enough to include representative examples for each subproject (concepts
and constraints for the metamodel, primitive component forthe behaviour abstraction, primitive and also
composite components for the structural abstraction.

• The selected subset must be as small as possible to avoid timeconsuming instanciations.

• The slice is vertical (UML model and Java code).

We retain two included subsets related to two deadlines:

• Test1: TheCashDesk composite component for the structural abstraction. We retain two included subsets:

– TheCashDesk composite component for the structural abstraction.

– TheCashDeskApplication primitive component, which is a component of theCashDesk com-
posite component that helds a dynamic behaviour.

• Test2: TheCashDeskLine composite component, which is the front-end subsystem of the application.

This document summarises an experimentation of theTest1 benchmark for the ECONET project, which is a
subset of the CoCoME case study. The starting point include a(UML) component model, a Java code and anno-
tations. The experimentation goal are (1) to study the link between the component level and the implementation
level (how the implementation is close or far from the component model), (2) to investigate the discovery of anno-
tations from UML descriptions and Java programs (how can we use manually or systematically UML informations
to find the annotations, what to look for in the Java programs). Writing and exploiting the annotation is outside
the scope of this study.

The document is structured as follow. In section3 we overview the component model informations and the
way to use them. In section4 we just overview the (java) implementation model. Last in section 5 we provide
annotations to link both models. But first lets relate a previous annotation experimentation.

1http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start

2

http://agrausch.informatik.uni-kl.de/CoCoME
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start

Chapter 2

Previous Experimentation

Experimentation tests were led with a small subset of the CoCoME case study by a group of students in march
2008. The project is summarised in chapter 3 of [ACPR08] and in a project report. The tests were based on the
three following components present the CoCoME case study: the:CashBoxController,:PrinterController
and:ScannerControllercomponents. These three components are contained in the component:CashDesk
(Fig. 2.1).

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

1 11

Figure 2.1: Master Project: CoCoME subset

Each component has a package name beginning withorg.cocome.tradingsystem. The package name
is hierarchised according to the composition of the name of the composite components which contain the compo-
nent. There are a Java interface for the component and also a folder namedimpl which contains the java classes
that implement the interface. (Fig.2.2).

The test proceeded as follow:
(1) a single class was tested that contained all the annotation. This class allowed to generate the structure that was
required for the generation of the model.
(2) this structure was then used to instantiate the metamodel.
(3) the structure was exported to another structure to the part that wrote the annotations.
(4) the writing annotation processor inserted the annotation corresponding to the intanciated model in Java classes
that are not annotated.
(5) the students checked that the automatic annotated classes are exacly the same that the classes that we annotated
manually.

The processor was implemented using the APT tool. The above experimentation was driven by the first version
of the Java annotations even if the multiple annotation sources was introduced in several annotation definitions.

3

./FIGURES/cashdeskop.eps

4 ECONET Project/Test1 Description

Figure 2.2: Master Project: One class of CoCoME annoted

./FIGURES/codecocome.eps

5

Figure 2.3: Master Project:Extract of the Annotated Class and the CoCoME generated model

./FIGURES/modelCocomeVince.eps

Chapter 3

Component Model

We do realy have a full component model as input: we have a structural model provided as UML component
diagrams and also a behavioural model provided as a collection of UML sequence diagrams.

3.1 Structural Component Model

The CoCoME structural reference model in defined by a UML component diagram1. This is just a MS Visio
drawing and not a rich one generated from a UML CaseTool2. Therefore if we want to reverse engineer the Java
code using UML the UML informations, this model has to be drawn again.

Fig. 3.1illustrates the structural view of the components for the subset we kept in test1.
The structural UML models contain the component instances,the composite relations, the ports and interfaces.

Only component type names, stereotype and number of occurrence are provided. Ports support interfaces which
are named and decribed as Java interfaces. The UML notes (comments) show the datatypes (entityclasses) wihch
are relevant for the corresponding interfaces. This is truefor theInventory related components. There are no
such entities for theCashDesk related components. But additional informations (these rectangle boxes are a new
UML notation ?) is used to denote events associated to interfaces. These events coming from uses case definitions
and sequence diagrams. Curiously the send events are associated to provided interfaces and the "The semicircles
indicate events the component can handle while the circles indicate events which are sent by the component. For
example, the controllerCardReaderController handles the eventExpressModeEnabledEvent while
sending the eventsCreditCardScannedEvent andPINEnteredEvent."

The internal specification of components seems to be an implementation issue (or a refinement if available).

1see chapter 3 - CoCoME - The common Component Modelling Example available in
http://cocome.org/
2We mean the one we could process to get useful informations for the abstraction process A and B.

6

http://cocome.org/

3.2. BEHAVIOURAL COMPONENT MODEL 7

«component»

TradingSystem::CashDeskLine::CashDesk

«component»

:CardReaderController

«component»

:CashDeskGUI

«component»

:LightDisplayController

«component»

:CashDeskApplication

1 1 1 1

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
ExpressModeDisabledEvent
ExpressModeEnabledEvent
InvalidCreditCardEvent
CreditCardScanFailedEvent

ExpressModeEnabledEvent

CreditCardScannedEvent
PINEnteredEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
SaleRegisteredEvent

SaleStartedEvent
ProductBarcodeScannedEvent
SaleFinishedEvent
CashAmountEnteredEvent
CashBoxClosedEvent
CreditCardPaymentEnabledEvent
CreditCardScannedEvent
PINEnteredEvent
ExpressModeEnabledEvent

ExpressModeEnabledEvent
ExpressModeDisabledEvent

SaleStartedEvent
SaleFinishedEvent
CreditCardPaymentEnabledEvent
CashBoxClosedEventChangeAmountCalculatedEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
SaleStartedEvent
SaleFinishedEvent

ProductBarcodeScannedEvent

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

1 11

Figure 3.1: CoCoME subset 1: theCashDesk component

3.2 Behavioural Component Model

The behavioural model is not related to components (staemachines could play that role) but is defined infor-
mally with use case descriptions and UML sequence diagrams.The events attached to the interfaces in the
structural model are message send in the sequence diagrams.The elements related toTest1 are those of the
ProcessSale use case extract (Fig.3.2).

TheProcessSale use case is illustrated by one main scenario (Fig.3.3) and two referenced scenarii (Fig.
3.4and3.5). These are described in [Reu06].
UC ManageExpressCheckout is an extension of of theProcessSale use case.Its role is to hold a statistic
about sales. It is not of interest forTest1.

The sale process starts when theCashier presses the buttonStart Saleat his Cash Box. Then the cor-
responding software componentCashBox calls a method at the componentCashBoxController which
publishes theSaleStartedEventusing thecashDeskChannel. The three componentsCashDeskApplication,
PrinterController andCashDeskGUI react to events of the kindSaleStartedEvent. In order to receive
these they have to register themselves at the channelcashDeskChannelfor these events and implement the accord-
ing event handlers. At theCash DeskthePrinter starts printing the header of the receipt initiated by the component
PrinterController and initiated by the componentCashDeskGUI a text at theCash Deskindicates the
start of a new sale.

Some components connected with the channelcashDeskChannelimplement a finite state machine, likeCashDeskApplication

./FIGURES/cashdesk2.eps

8 ECONET Project/Test1 Description

Customer

Cashier

Manager

POSSystem (Test1)

ManageExpressCheckout(2)
«extend»

CardReader CashBox

LightDisplay

Condition:

extension point:

{50% of all sales during the last 60 minutes meet the
requirements of an express checkout
- up to 8 products per sale
- customer pays cash}

Open Express Checkout

ProcessSale(1)

ManageExpressCheckout

Printer

Figure 3.2: CoCoME subset 1: theProcessSale UC

or PrinterController in order to react appropriately on further incoming events.In the next phase of the
selling process the desired products are identified using theBar Code Scannerwhich submitts the data to the cor-
responding controllerScannerControllerwhich in turn publishes the eventProductBarCodeScannedEvent.
The componentCashDeskApplication gets the product description from theInventory and calculates
the running total and announces it on the channel. After finishing the scanning process, theCashierpresses the
buttonSale Finishedat theCash Box. Now theCashiercan choose the payment method based on the decision of
the costumer by pressing the buttonCash Paymentor Card Paymentat hisCash Desk.

./FIGURES/cashdeskuc.eps

3.2.
B

E
H

AV
IO

U
R

A
L

C
O

M
P

O
N

E
N

T
M

O
D

E
L

9

:Cashier

:TradingSystem::CashDeskLine::CashDesk::CashBoxCont roller :TradingSystem::CashDeskLine::CashDesk::CashDeskGUI

:TradingSystem::CashDeskLine::CashDesk::CashDeskApp lication

:TradingSystem::CashDeskLine::CashDesk::PrinterCont roller

:TradingSystem::CashDeskLine::CashDesk::ScannerCont roller

:BarcodeScanner

:TradingSystem::Inventory

ProcessSale

startSale()

SaleStartedEvent ()

SaleStartedEvent()

itemScanned()

ProductBarcodeScannedEvent(int barcode)

getProductWithStockItem(int barcode)

ProductWithStockItemTO

calculateRunningTotal()

RunningTotalChangedEvent(
String productName, double

productPrice, double
runningTotal)

RunningTotalChangedEvent(String productName, double productPrice, double runningTotal)

endSale()

SaleFinishedEvent ()

SaleFinishedEvent()

[Customer wants to pay by credit card]

[Customer wants to pay cash]

alt

ref

SeqBarPayment

ref

SeqCardPayment

[while no more items to scan]

loop

F
ig

u
re

3
.3

:
C

o
C

o
M

E
su

b
set1

:
th

ePr
o
c
e
s
s
S
a
l
e

in
teractio

n
s

F
ig

.3
.4

an
d

3
.5

illu
strate

th
e

seq
u

en
ces

fo
r

each
p

aym
en

tm
eth

o
d

w
h

ich
sh

al
ln

o
td

escrib
ed

in
d

etailh
ere.

./FIGURES/processSaleDS.eps

10
E

C
O

N
E

T
P

roject/Test1
D

escription

:Cashier

:TradingSystem::CashDeskLine::CashDesk::CashBoxCont roller :TradingSystem::CashDeskLine::CashDesk::CashDeskGUI

:TradingSystem::CashDeskLine::CashDesk::CashDeskApp lication

:TradingSystem::CashDeskLine::CashDesk::PrinterCont roller

:TradingSystem::CashDeskLine::CashDesk::ScannerCont roller

:BarcodeScanner

:TradingSystem::Inventory

Bar Payment

:TradingSystem::CashDeskLine::Coordinator

barPayment()

CashAmountEnteredEvent (dou
ble amount, boolean finalInput)

CashAmountEnteredEvent (double amount, boolean finalInput)

CashAmountEnteredEvent(double amount, boolean finalInput)

enterCashAmountDigit()

[until finalInput==true]

loop

ChangeAmountCalculatedEvent(double changeAmount)

ChangeAmountCalculatedEve
nt(double changeAmount)

ChangeAmountCalculatedEven
t(double changeAmount)

closeCashBox()

CashBoxClosedEvent ()

CashBoxClosedEvent()

BookSaleEvent(SaleTO)

SaleRegisteredEvent (int numberOfItems, PaymentMode paymentMode)

F
ig

u
re

3
.4

:
C

o
C

o
M

E
su

b
set1

:
th

ePr
o
c
e
s
s
S
a
l
e

su
b

-in
teractio

n
s

1
/2

co
n

td
.

./FIGURES/processSaleSBPDS.eps

3.2.
B

E
H

AV
IO

U
R

A
L

C
O

M
P

O
N

E
N

T
M

O
D

E
L

11

:TradingSystem::CashDeskLine::CashDesk::CardReader

Bank:Cashier

:TradingSystem::CashDeskLine::CashDesk::CashBoxCont roller :TradingSystem::CashDeskLine::CashDesk::CashDeskGUI

:TradingSystem::CashDeskLine::CashDesk::CashDeskApp lication

:TradingSystem::CashDeskLine::CashDesk::PrinterCont roller

:TradingSystem::CashDeskLine::CashDesk::ScannerCont roller

:BarcodeScanner

:TradingSystem::Inventory

Card Payment

:TradingSystem::CashDeskLine::Coordinator

cardPayment()

CreditCardPaymentEnabledEve
nt()

CreditCardScannedEvent(String creditCardInformation)

PINEnteredEvent(int pin)

validateCard(…)

transactionId (null if card not valid)

[transactionId!=null]

loop

[transactionId!=null] debitCard(transactionId, …)

[transactionId==null] InvalidCreditCardEvent()

BookSaleEvent(SaleTO)

SaleRegisteredEvent (int numberOfItems, PaymentMode paymentMode)

F
ig

u
re

3
.5

:
C

o
C

o
M

E
su

b
set1

:
th

ePr
o
c
e
s
s
S
a
l
e

su
b

-in
teractio

n
s

2
/2

co
n

td
.

./FIGURES/processSaleSCPDS.eps

Chapter 4

Implementation Model

Figure4.1 shows a UML representation of the Java implementation of theCashBoxController component
model.

-cashBoxControllerEventHandler

CashBox

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()
+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

«interface»
CashBoxControllerEventHandlerIf

JPanel

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()
+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

-cashbox

CashBoxControllerEventHandlerImpl

«interface»
MessageListener

CashBoxClosedEvent

«interface»
Serializable

cashboxcontroller

cashboxcontroller.impl

« implements »

-cashBoxControllerEventHandler

*

-cashbox

*

²

²

« implements »

« implements »

Figure 4.1: CoCoME component: theCashBoxController implementation

Fig. 4.2illustrates the implementation for the subset we kept. It isa set of Java classes.
The main design decisions focus on the implementation of the:EventBus component which is based on

the JMS API. The Java Message Service (JMS) API is a messagingstandard that allows application components
based on the Java 2 Platform, Enterprise Edition (J2EE) to create, send, receive, and read messages. It enables
distributed communication that is loosely coupled, reliable, and asynchronous. A JMS application is composed of
the following parts:

• JMS Clients - These are the Java language programs that send and receive messages.

• Non-JMS Clients - These are clients that use a message systemŠs native client API instead of JMS. If the
application predated the availability of JMS it is likely that it will include both JMS and non-JMS clients.

• Messages - Each application defines a set of messages that areused to communicate information between
its clients.

• JMS Provider - This is a messaging system that implements JMSin addition to the other administrative and
control functionality required of a fullfeatured messaging product.

• Administered Objects - Administered objects are preconfigured JMS objects created by an administrator for
the use of clients.

The main interfaces of the API are:Connection,Session,Message,MessageProducer,MessageListener.

12

./FIGURES/cashBoxControllerImpl.eps

13

Figure 4.2: CoCoME subset 1: theCashDesk java implementation

./FIGURES/cashdeskcoder.eps

Chapter 5

Finding and Writing the Annotations

In this section we discuss about the process of annoting a Java code from component information. The annotating
process is composed of two processes : finding the annotation(Annotation Discovery) and writing the annotations.
We only deal with the first one.The second one will be done manually.

5.1 Assumptions

At this point we assume that there is some component model description (here in UML2) and a Java implementa-
tion of it. We also assume that the Java code is not a componentmodel transformation (no code generation) and it
does not include component annotations. This is the case in the CoCoME example.

The annotations must conform to the current Java annotationdefinition for Econet. These are detailed in
appendixA.

5.2 Annotation Discovery

Assuming a UML component model and a Java implementation, the main goal of the annotation process is to map
concepts between the models.

5.2.1 Annotation Templates

An annotation is a link between a model element and an implementation element. This is some kind of the one
we discussed (Fig.5.1).

The useful UML (component or not) concepts are: component, composition, class (e.g. parameters or parts of
components), operations with signatures, types, interfaces, ports, connectors, stereotypes, instances (objects can
be interpreted component instances), messages with parameters, ...

5.2.2 Mapping the concepts

Since the implementation is more concrete and more detailedthan the abstract model and the process must start
from the abstract component model. This not an easy process.

There are no direct transformation (in the sense of MDA) fromUML (abstract) component model to Imple-
mentation models. So it is not possible totrace1 the model elements.

Moreover (abstract) component model are usually definitelynot UML component diagrams but rather a col-
lection of UML diagrams. The CoCoME example can be a good example of legacy component systems: the
collection of UML diagrams is a documentation that helps to uinderstand the Java (component) implementation
but it is not its abstract description. The main difficulty toset the annotations is that there are no complete compo-
nent reference model to define what are business features andimplementation features. The full model is provided
by UML documentation but also the system Java implementation. The UML models are only an overview with
many holes. We have to look at the implementation source to define some of the component model features.

1Traceability is a mapping that fits to our needs.

14

5.3. ANNOTATING THE COCOME 15

Entry point

Frame

Interface

Operation

Connections

Types

Abstract
concepts

Composites
(later)

Class

Interface

Methods

Statements

Inheritance

Types / classes

Java
concepts

3 sorts of classes:
x components
x types
x Java only

3 sorts of methods:
x business (services)
x non business (java)

Figure 5.1: Mapping concepts

Indeed, missing Component information can be infered from various source code elements. But some component
model elements names are changed during the manual implementation: for example theCashBoxController
does not exist as so in the Java implementation.

5.2.3 Implementation Patterns

An interesting solution is to draw some transformation patterns in ordre to set the mappings. We will see examples
in section5.3.

5.2.4 Automatic Annotation Inference vs Manual Inference

Automatic annotation inference is based on concept names and string processing. Thus it requires a component
model textual description provided by some software engineering casetool (XMI or text format). In our case we
only have Visio diagrams. So we will lead a manual inference.But the way is still open for later study because
we try to find some implementation patterns.

5.3 Annotating the CoCoME

In the Test1 benchmark, the annotations are put manually in the Java code. Only the classes related to the
Test1 subset are annotated.

5.3.1 Finding Mappings

First we look at the structural (component diagram) and after to the dynamic view. In each case we try to find a
correspondence.

5.3.2 Structural Component Model Analysis

The static model includes anonymous component instances, interfaces, ports and connection information, com-
ponent compositions. The connection information are not formalised but we find events (used in the behavioural
model) or data (data model). Component types are not really specified but the structure is the same at the instance
level and the type level.

./FIGURES/absMapping.eps

16 ECONET Project/Test1 Description

Mapping UML Components to Java

The components and interfaces are linked to packages and classes. The name are not always identical but manual
inference is quite easy. We try to find patterns for the mappings.

As an example, let’s take theCashBoxController component of Figure3.1. The component provides an
anymous provided interface and an anymous required interface. Events (types) are related to these interfaces.

Figure5.2shows the mapping between the component model (extracted from Figure3.1) and the implemen-
tation model (Figure4.1).

«component»

:CashBoxController

1

SaleStartedEvent

SaleFinishedEvent

CreditCardPaymentEnabledEvent

CashBoxClosedEvent

ChangeAmountCalculatedEvent

-cashBoxControllerEventHandler

CashBox

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()

+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

«interface»

CashBoxControllerEventHandlerIf

JPanel

+onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent) ()

+sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent)()

-cashbox

CashBoxControllerEventHandlerImpl

«interface»

MessageListener
CashBoxClosedEvent

«interface»
Serializable

cashboxcontroller

cashboxcontroller.impl

« implements »

-cashBoxControllerEventHandler

*

-cashbox

*

²

²

« implements »

« implements »

Figure 5.2: CoCoME component: theCashBoxController implementation mapping

Component Pattern A componentC1 is implemented by a packageC1 including

• theC1EventHandlerIfinterface

• theC1.impl package including

– theC1EventHandlerImplclass that implements theC1EventHandlerIfinterface,

– theC1’ class that implements a GUI part.

These classes includes corresponding attributes that can be represented by a UML bidirectional association.

Interface Pattern Provided and required interfaces are merged and the method name is an indication of whether
events are sent (provided interface) or received (requiredinterface).

The anonymous interfaces of componentC1 are implemented by theC1EventHandlerIfinterface where

• a required eventREvt (operation ? service ?) is defined by aonEvent(REvt rEvt); method.
Example:void onEvent(ChangeAmountCalculatedEvent changeAmountCalculatedEvent);

./FIGURES/cashBoxControllerMap.eps

5.3. ANNOTATING THE COCOME 17

• a provided eventPEvt (operation ? service ?) is defined by asendPEvt(PEvt pEvt);method. Exam-
ple: void sendCashBoxClosedEvent(CashBoxClosedEvent cashBoxClosedEvent);

TheC1EventHandlerIfinterface is then implemented by theC1EventHandlerImplclass.

Service/operation Pattern The implicit convention is to interpret events as services (operations) such that emit-
ting events is providing services and receiving events is requiring services.

But this rule is not followed systematically. New events appear that issued from the behavioural component
modele.g.sendPaymentModeEvent,sendExpressModeDisabledEvent. Some events are not imple-
mentd as soe.g.CreditCardPaymentEnabledEvent.

Events are specified by classes in thecashdeskline.events package.

Composition Patterns From a scope (naming/lexical) point of view, component packages are included in the
composite package but except to this there are no true representation of composition:

• ports are not explicitely represented (no promotion: the subcomponent are directly connected) because

• interfaces are shared by the component and its composite,

• there are no object compositione.g.by instance variable declaration.

In theCashDeskLine example, theCashDeskLine class is grouped with theCashDesk class in the the
cashdesk package. TheEventBus is not implemented as so but rather via the Java GUI. So there are no direct
mapping.

Looking outside the scope

The above mapping seems to be convenient forCashDeskLine subcomponents even if name inference is
quite difficult because the rules are evolving. For example the componentCashDeskApplication is im-
plemented by the packageapplication including theApplicationEventHandlerIf interface and the
application.implpackageC1 including theApplicationEventHandlerImplandCashDeskStates
classes.

Moreover the above components are somewhat related to dynamic aspects of the model. In the case of
Inventory components (FigureB.1 of appendixB.1) e.g. Application or Store, the rules look like
different.

• Each interface is implemented by a Java interface. A required interface is in fact an exact matching of
a provided one in another component (it refers to a provided one). The package importations solve the
interface linking (this is an explicit promotion/delegation that do not respect composition encapsulation).

• A (primitive ?) componentC1 is implemented by a classC1Impl class of theC1.impl package, such that

– C1Impl implements the (Java) provided interfaces,

– C1Impl declares an instance variable (attribute) for each required interface (it is initialised using a
factory).

• Here events are replaced by datatype (implemented by Java classes).

• An application factory design pattern is used.

• The component model includes "business" data types modeledby classes, implemented in the same package
as the component.

5.3.3 Behavioural Component Model Analysis

It is important to note that message names are built using some conventions. In theCashDeskLine they all end
by Event and some start withsend

18 ECONET Project/Test1 Description

Message Patterns

The idea is to project message send end receptions on each lifeline of the sequence diagrams according to the
naming convention given in the above sections.

We find the same mismatches.
Unfortunately the sequence diagrams are not numerous to imagine a systematic and automatic discovery pro-

cess?

5.3.4 Entry Point Patterns

Statically, one can have a look the constructors or themain methods. Dynamically one can have a look at the top
level sequence diagrams.

5.3.5 Writing the annotations

The annotations are put manually. We take the symmetric point of view of the above mapping. We look for
elements in the source code corresponding to

• InComponentthe class belongs to a component

• InitClassthe class is a "main" part of the component

• InitMethodthe method belongs to the main operations of the component

• Providedthe field links to a provided interface

• ProvidedIf the Java interface refers to a provided interface

• ProvidedMethoda method implemnts a provided operation

• Requiredthe field links to a required interface

• BusinessTypethe java type implements a component basic type

• BusinessFieldthe field refers to a component basic type

• BusinessParameterthe parameter refers to a component basic type

We illustrate the process on theCashBoxController component of theCashDesk composition.

a) Exploring the Java interfaces

Intuitively each Java interface should map to a component provided interface but actually Java interfaces are used
twofold

• As a provided interface, it is then implemented by some class.

• As a required interface, it is then referenced in "provided"fields.

Moreover the Java interface gathers incoming and outgoing events (push/pull modes) so that it is not clear
what is provided or required inside. Nevertheless we will follow the Java structure where there are no distinction
between required and provided interface.

There no annotations envisaged for Java interfacee.g to indicate which is the owner component, whether it
is provided or required. Indeed, a required element (only interface are envisaged here) is attached to a class field
and a provided element is attached to a class via theProvidedIf. The missing link should be deduce later when
exploring all required fields to get implementors.

Reverse Rule 5.3.1 (Java Interface)Java interfaces are not annoted.

Reverse Rule 5.3.2 (Provided Java Interface)When a Java interface is implemented by a class which is InCom-
ponent a componentC1 then it is a provided interface ofC1. There are no special annotation for that because it
can be deduced in the class declarations via the ProvidedIf annotation.

5.3. ANNOTATING THE COCOME 19

Reverse Rule 5.3.3 (Required Java Interface)A Java interface is a required interface of a componentC1 if it
is referenced in a Required field of a class which is InComponent C1. There are no special annotation for that
because there can be many classes (and components) requiring this interface.

Reverse Rule 5.3.4 (Java Interface Qualification)Java interfaces can be qualified as both provided or required.

package org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . cashdesk . c a s hb o x c o n t r o l l e r ;

import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . CashAmountEnteredEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . CashBoxClosedEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . ChangeAmountCalcu la tedEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . ExpressModeDisab ledEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . PaymentModeEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . S a l e F in i s h e d E v e n t ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . S a l e S ta r t e d E v e n t ;

pub l i c i n t e r f a c e C a s h B o x C o n t r o l l e r E v e n t H a n d l e r I f {
vo id onEvent (ChangeAmountCalcu la tedEvent changeAmountCa lcu la tedEvent) ;
vo id s e n d S a l e S t a r t e d E v e n t (S a l e S t a r t e d E v e n t s a l e S t a r t e d E v en t) ;
vo id s e n d S a l e F i n i s h e d E v e n t (S a l e F i n i s h e d E v e n t s a l e F i n i s h e dE v e n t) ;
vo id sendPaymentModeEvent (PaymentModeEvent paymentModeEvent) ;
vo id sendCashAmountEnteredEvent (

CashAmountEnteredEvent cashAmountEnteredEvent) ;
vo id sendCashBoxClosedEvent (CashBoxClosedEvent cashBoxClosedEvent) ;
vo id sendExpressModeDisab ledEvent (

ExpressModeDisab ledEvent expressModeD isab ledEvent) ;
}

b) Exploring the Java classes declarations

For each class that have a correspondence to the component model we apply the following rules.

Reverse Rule 5.3.5 (Business Class)In the class declaration we add the annotation (@InComponent) that link
the class to the component.

Reverse Rule 5.3.6 (Business Class Interface)If the class implements a "business" interface we add the anno-
tation (@ProvideIf) that link the class to the component interface and the Java interface.

Reverse Rule 5.3.7 (Business Main Class)If the class is the main entry point a component we add the annota-
tion (@InitClass).

Reverse Rule 5.3.8 (Anonymous model interface)We assumed that every component should have only named
interfaces. By default a component unnamed interface will be named as<ComponentName>If.

package org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . cashdesk . c a s hb o x c o n t r o l l e r . imp l ;

import i n f o . c l e a r t h o u g h t . l a y o u t . Tab leLayout ;

import j a v a . awt . Co lor ;
import j a v a . awt . even t . Ac t ionE ven t ;
import j a v a . awt . even t . A c t i o n L i s t e n e r ;

import j avax . swing . JBu t ton ;
import j avax . swing . JL abe l ;

20 ECONET Project/Test1 Description

import j avax . swing . JPane l ;

import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . cashdesk . c a s hb o x c o n t r o l l e r .
C a s h B o x C o n t r o l l e r E v e n t H a n d l e r I f ;

import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . d a t a t y p e s . KeyStroke ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . d a t a t y p e s . PaymentMode ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . CashAmountEnteredEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . CashBoxClosedEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . ExpressModeDisab ledEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . PaymentModeEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . S a l e F in i s h e d E v e n t ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . S a l e S ta r t e d E v e n t ;

import econe t . a n n o t a t i o n s .∗ ;

/∗ ∗
∗ GUI f o r t h e CashBox component
∗ @author Yannick Welsch
∗ /

@SuppressWarnings ("serial")
@InComponent (a n n o t a t i o n S r c = {"Pascal" } , componentName = {"CashBoxController" })
@In i tC lass (a n n o t a t i o n S r c = {"Pascal" } , componentName = {"CashBoxController" })
pub l i c c l a s s CashBox extends JPane l { . . .
}

package org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . cashdesk . c a s hb o x c o n t r o l l e r . imp l ;

import j a v a . io . S e r i a l i z a b l e ;

import j avax . jms . JMSExcept ion ;
import j avax . jms . Message ;
import j avax . jms . MessageL is tener ;
import j avax . jms . ObjectMessage ;
import j avax . jms . Sess ion ;
import j avax . jms . T op icConnec t ion ;
import j avax . jms . T o p i c P u b l i s h e r ;
import j avax . jms . T op icSess ion ;
import j avax . jms . T o p i c S u b s c r i b e r ;
import j avax . naming . Con tex t ;
import j avax . naming . I n i t i a l C o n t e x t ;
import j avax . naming . NamingExcept ion ;

import org . apache . l o g 4 j . Logger ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . cashdesk . c a s hb o x c o n t r o l l e r .

C a s h B o x C o n t r o l l e r E v e n t H a n d l e r I f ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . CashAmountEnteredEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . CashBoxClosedEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . ChangeAmountCalcu la tedEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . ExpressModeDisab ledEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . PaymentModeEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . S a l e F in i s h e d E v e n t ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . S a l e S ta r t e d E v e n t ;

import econe t . a n n o t a t i o n s .∗ ;

/∗ ∗
∗ Im p lem en ta t ion f o r t h e CashBox component
∗

∗ @author Yannick Welsch
∗ /

@InComponent (a n n o t a t i o n S r c = {"Pascal" } , componentName = {"CashBoxController" })
@Prov idedI f (a n n o t a t i o n S r c ={"Pascal" } , modelI faceName ={"CashBoxControllerIf" } ,

javaI faceName ={"CashBoxControllerEventHandlerIf" })
pub l i c c l a s s CashBoxCon t ro l l e rE ven tHand le r Im p limplements MessageL is tener ,

C a s h B o x C o n t r o l l e r E v e n t H a n d l e r I f { . . .
}

Reverse Rule 5.3.9 (Business Type)Some classes correspond to business datatypes and not to components. We
found them in the data description.

5.3. ANNOTATING THE COCOME 21

Examples In cashbox example, all events and datatypes are defined by classes related to business datatypes.

package org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s ;

import j a v a . io . S e r i a l i z a b l e ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . d a t a t y p e s . KeyStroke ;
import econe t . a n n o t a t i o n s . Bus inessType ;

/∗ ∗
∗ This even t s i g n a l s t h e e n t e r i n g of a cash amount a t t h e cash box keyboard
∗ a f t e r t a k i n g cash from t h e cus tomer . I t i s r a i s e d by t h e cash box c o n t r o l l e r
∗ component a f t e r EVERY key s t r o k e , <code > i s F i n a l I n p u t ()
∗ </ code > i s t r u e i f
∗ t h e f i n a l i n p u t i s e n t e r e d .
∗ /

@BusinessType (a n n o t a t i o n S r c ={"Pascal" })
pub l i c c l a s s CashAmountEnteredEventimplements S e r i a l i z a b l e {

p r i v a t e s t a t i c f i n a l long s e r i a l V e r s i o n U I D = −5441935251526952790 L ;
p r i v a t e KeyStroke k e y s t r o k e ;
pub l i c CashAmountEnteredEvent (KeyStroke k e y s t r o k e) {

t h i s . k e y s t r o k e = k e y s t r o k e ;
}
pub l i c KeyStroke ge tKeyS t roke () {

re tu rn k e y s t r o k e ;
}

}

c) Exploring the Java classes structure

This section applys for the class that areInComponentclasses only.
The instance variables (fields) can implement a link to a required interface, a business field, or an internal

coupling (for example theCashBoxController component is implemented by the (main) classCashBox
and theCashBoxControllerwhere each class declares a field to the other class).

Reverse Rule 5.3.10 (Required field)Based on the types, one can find the field that correspond to a required
interface (even if it was not declared as so in the UML component model).

Reverse Rule 5.3.11 (Business field)Based on business types, one can find the business field an annotate them.

Reverse Rule 5.3.12 (Internal coupling)Internal coupling is represented as a special@Required annotation
with an interface name set by a reserved keywordinternal. Its information would be useful for further investi-
gations. This is not a business field.

Reverse Rule 5.3.13 (Implementation Required field)Sometimes the requirements refer to some implementa-
tion rather than the component concepts. To keep that information we propose to define a special keyword
implementation to denote that the required interface is not present at the implementation level but obtained
from various sources. If possible we also provide another a source and interface entry to the component model.

Examples Nothing in theCashBox class, there’s only an internal coupling towardCashBoxController
EventHandlerImpl.

In theCashBoxControllerEventHandlerImpl class, there’s an internal coupling towardCashBox
and also implementation required fields related to the implementation of the:EventBus. The difficulty here is
that component concepts disappear at the implementation level we note it using the special keyword
implementation.

pub l i c c l a s s CashBoxCon t ro l l e rE ven tHand le r Im p limplements MessageL is tener ,
C a s h B o x C o n t r o l l e r E v e n t H a n d l e r I f {

f i n a l S t r i n g CHANNEL_CONNECTION_FACTORY ="ChannelConnectionFactory" ;
p r i v a t e S t r i n g topicName ;
/ / im p lem en ta t i o n r e f e r e n c e s

22 ECONET Project/Test1 Description

@Required (a n n o t a t i o n S r c = {"Pascal" ,"Model" } , modelI faceName = { "implementation" , "EventBusIf"})
p r i v a t e Con tex t j n d i C o n t e x t ;
@Required (a n n o t a t i o n S r c = {"Pascal" ,"Model" } , modelI faceName = { "implementation" , "EventBusIf"})
p r i v a t e T o p i c P u b l i s h e r cashBoxPub l i sh e r ;
@Required (a n n o t a t i o n S r c = {"Pascal" ,"Model" } , modelI faceName = { "implementation" , "EventBusIf"})
p r i v a t e T op icSess ion t o p i c S e s s i o n ;
@Required (a n n o t a t i o n S r c = {"Pascal" ,"Model" } , modelI faceName = { "implementation" , "EventBusIf"})
p r i v a t e Logger log = Logger

. ge tL ogger (CashBoxCon t ro l l e rE ven tHand le r Im p l .c l a s s) ;
/ / i n t e r n a l r e f e r e n c e s
@Required (a n n o t a t i o n S r c = {"Pascal" } , modelI faceName = { "internal" })
p r i v a t e CashBox cashbox ;

d) Exploring the Java class behaviour

This section applys for the class that arein componentclasses only. The main goal is to find so-called business
methods and main (init) methods.

The methods refer to service (component operation, business method) specification. We manually decide
whether a method is a service (component operation, business method) or not.

Reverse Rule 5.3.14 (InitMethod)The InitMethod is chosen among the constructor or initialization methods.

Reverse Rule 5.3.15 (ProvidedMethod)The "business" methods signature refer to service or operations. The
business qualification is decided manually.

Examples The component service description is quite absent of the UMLmodel. Only the sequence charts
provide some valuable but information.

TheInitMethodwere not present in the component model.

@InitMethod (a n n o t a t i o n S r c = {"Pascal" } , componentName = {"CashBoxController" })
pub l i c CashBox (S t r i n g e v e n t c h a n n e l) {

super () ;
. . . }

TheServicewere partially present in the component model. Their shape changed during the implementation
pattern of JMS.

/ / shou ld be a r e q u i r e d method a c c o r d i n g to t h e UML model
@ProvidedMethod (a n n o t a t i o n S r c = {"Manual" } , modelI faceName = {"CashBoxControllerIf" })
pub l i c vo id onEvent (ChangeAmountCalcu la tedEvent changeAmountCa lcu la tedEven t) {

l og . i n f o ("ChangeAmountCalculatedEvent received") ;
cashbox . openCashBox () ;

}

@ProvidedMethod (a n n o t a t i o n S r c = {"Manual" } , modelI faceName = {"CashBoxControllerIf" })
pub l i c vo id s e n d S a l e S t a r t e d E v e n t (S a l e S t a r t e d E v e n t s a l e S t a r t e d E v en t) {

t r y {
cashBoxPub l i sh e r . p u b l i s h (t o p i c S e s s i o n

. c rea teOb j e c t Me ss a ge (s a l e S t a r t e d E v e n t)) ;
} catch (JMSExcept ion e) {

log . e r r o r (e) ;
e . p r i n t S t a c k T r a c e () ;

}
}

e) Exploring the Java methods

Reverse Rule 5.3.16 (BusinessParameter)The business parameters are found in the "business" methodssigna-
ture. Among the method signature some refer to service (operations) parameters others are implementation ones.
The business qualification is decided manually.

5.3. ANNOTATING THE COCOME 23

/ / shou ld be e r e q u i r e d method a c c o r d i n g to t h e UML model
@ProvidedMethod (a n n o t a t i o n S r c = {"Manual" } , modelI faceName = {"CashBoxControllerIf" })
pub l i c vo id onEvent (

@Bus inessParameter (a n n o t a t i o n S r c = {"Pascal" }) ChangeAmountCalcu la tedEvent changeAmountCa lcu la tedEven t) {
l og . i n f o ("ChangeAmountCalculatedEvent received") ;
cashbox . openCashBox () ;

}

@ProvidedMethod (a n n o t a t i o n S r c = {"Manual" } , modelI faceName = {"CashBoxControllerIf" })
pub l i c vo id s e n d S a l e S t a r t e d E v e n t (

@Bus inessParameter (a n n o t a t i o n S r c = {"Pascal" }) S a l e S t a r t e d E v e n t s a l e S t a r t e d E v e n t) {
t r y {

cashBoxPub l i sh e r . p u b l i s h (t o p i c S e s s i o n
. c rea teOb j e c t Me ss a ge (s a l e S t a r t e d E v e n t)) ;

} catch (JMSExcept ion e) {
log . e r r o r (e) ;
e . p r i n t S t a c k T r a c e () ;

}
}

e) Full Example

The (main) classCashBox of theCashBoxController component.

package org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . cashdesk . c a s hb o x c o n t r o l l e r . imp l ;

import i n f o . c l e a r t h o u g h t . l a y o u t . Tab leLayout ;
import j a v a . awt . Co lor ;
import j a v a . awt . even t . Ac t ionE ven t ;
import j a v a . awt . even t . A c t i o n L i s t e n e r ;
import j avax . swing . JBu t ton ;
import j avax . swing . JL abe l ;
import j avax . swing . JPane l ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . cashdesk .

c a s h b o x c o n t r o l l e r . C a s h B o x C o n t r o l l e r E v e n t H a n d l e r I f ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . d a t a t y p e s . KeyStroke ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . d a t a t y p e s . PaymentMode ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . CashAmountEnteredEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . CashBoxClosedEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . ExpressModeDisab ledEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . PaymentModeEvent ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . S a l e F in i s h e d E v e n t ;
import org . cocome . t r a d i n g s y s t e m . c a s h d e s k l i n e . e v e n t s . S a l e S ta r t e d E v e n t ;

import econe t . a n n o t a t i o n s .∗ ;

/∗ ∗
∗ GUI f o r t h e CashBox component
∗ @author Yannick Welsch
∗ /

@SuppressWarnings ("serial")
@InComponent (a n n o t a t i o n S r c = {"Pascal" } , componentName = {"CashBoxController" })
@In i tC lass (a n n o t a t i o n S r c = {"Pascal" } , componentName = {"CashBoxController" })
pub l i c c l a s s CashBox extends JPane l {

/ / e r r o r : @Bus inessF ie ld (a n n o t a t i o n S r c = " Manual ")
@Required (a n n o t a t i o n S r c = {"Pascal" } , modelI faceName = { "internal" })
p r i v a t e C a s h B o x C o n t r o l l e r E v e n t H a n d l e r I f c a s h B o x C o n t r o l l e r E v en t H a n d l e r ;
p r i v a t e JL abe l cashbox ;

@Ini tMethod (a n n o t a t i o n S r c = {"Pascal" } , componentName = {"CashBoxController" })
pub l i c CashBox (S t r i n g e v e n t c h a n n e l) {
. . .
}

p r i v a t e vo id addL is tene r T o Bu t t on (f i n a l JBu t ton b) {
. . .
}

24 ECONET Project/Test1 Description

/ / found in sequence c h a r t d iagrams of t h e UML model− d e f a u l t i n t e r f a c e
@ProvidedMethod (a n n o t a t i o n S r c = {"Pascal" } , modelI faceName = {"CashBoxControllerIf" })
pub l i c vo id openCashBox () {

cashbox . s e t F o r e g r o u n d (Color . PINK) ;
cashbox . s e t T e x t ("cashbox open") ;

}

/ / found in sequence c h a r t d iagrams of t h e UML model− d e f a u l t i n t e r f a c e
@ProvidedMethod (a n n o t a t i o n S r c = {"Pascal" } , modelI faceName = {"CashBoxControllerIf" })
pub l i c vo id c loseCashBox () {

cashbox . s e t F o r e g r o u n d (Color .BLACK) ;
cashbox . s e t T e x t ("cashbox closed") ;

}
}

5.3.6 Annoted Components

Here is the list of annoted primitive components of theTest1 benchmark. Java interfaces are not annotated but
appear in theProvidedIf annotation.

• ComponentCashBoxControllerwith its implicit interfaceCashBoxControllerIf.
ClassesCashBox andCashBoxControllerEventHandlerImpl.

• ComponentScannerControllerwith its implicit interfaceScannerControllerIf.
ClassesScannerController andScannerControllerEventHandlerImpl.
TheScannerController creates aScannerControllerEventHandlerImplbut there is a uni-
directional internal link from the scanner to the controller.

• ComponentPrinterControllerwith its implicit interfacePrinterControllerIf.
ClassesPrinterController andPrinterControllerEventHandlerImpl.
The printer state is internal to the component here and we assume it could be considered as a business type.
ThePrinterController creates aPrinterControllerEventHandlerImplbut there is a uni-
directional internal link from controller to printer.

• ComponentLightDisplayControllerwith its implicit interfaceLightDisplayControllerIf.
ClassesLightDisplayController andControllerEventHandlerImpl.
TheLightDisplayControllercreates aLightDisplayControllerEventHandlerImplbut
there is a unidirectional internal link from controller to display.

• ComponentCardReaderControllerwith its implicit interfaceCardReaderControllerIf.
ClassesCardReader andCardReaderControllerEventHandlerImpl.
TheCardReader creates aCardReaderControllerEventHandlerImpl but there is a unidirec-
tional internal link from reader to the controller.

• ComponentCashDeskGUI with its implicit interfaceCashDeskGUIIf.
ClassesCashDeskGUI andGUIEventHandlerImpl.
TheCashDeskGUI creates aGUIEventHandlerImpl but there is a unidirectional internal link from
controller to gui.

• ComponentCashDeskApplication with its implicit interfaceCashDeskApplicationIf is not
really implemented as usual.
ClasseApplicationEventHandlerImpl represent the controller but part of the applicat belong to
the compositeCashDesk or CashDeskLine.
The cash desk stateCashDeskStates is internal to the component here and we assume it could be
considered as a business type.
The compositeCashDesk (or CashDeskLine) creates aApplicationEventHandlerImpl but
there is no link from controller to application, they may communicate via the buses.

5.3. ANNOTATING THE COCOME 25

5.3.7 Composition

No annotations are defined for the composition. Moreover, encapsulation and promotion is not preserved in Java
except on the package naming.

The distinction betweenCashDesk andCashDeskLine is not clear in the Java code.
We only annotated theCashDesk. There are twoInitMethods: a constructor and a main.
This is not clear what should be all the interfaces because there are no encapsulation, it is directly handled by

(sub) components.

5.3.8 Conclusion

Finding business elements in the Java code is mainly an intellectual process in the case of CoCoME. Some guide-
lines or templates can apply but there are many exceptions.

• Mapping models = trace the concepts and decisions

• Reverse engineering should work on patterns

• Manual implementation lead to exceptions

• Incomplete models prevent nouns comparison

• Syntactic is not sufficient

• Problem of inheritance

Chapter 6

UML/Java

Draft version resulting from Cluj’s workshop

6.1 Introduction

In this chapter we investigate the field of reverse engineering Java code against UML. In this context, there are
several approaches

1. compose two transformations Java to UML◦ UML to components

+ get a more abstract object oriented representation

+ reuse existing attemps

+ useful for data types modelling

- loose pertinent information ? behaviour

- similar heuristic problems on the "business" part

- still a problem to get a component model

2. compare an existing UML component model with Java to set annotations (e.g. the Test1 experimentation)

+ components are known

+ identify similarities is easier and more sure than finding from scratch

+ useful for data types modelling

- partial component model informations

- defining what is a UML component model from UML diagrams

- noun comparisons is still difficult

- instanciate an XML ou XMI model (API)

3. Find a mapping Component UML - Java

+ simple, applicable to plain Java and annotations

+ quite close to the CCMM

+ define reverse patterns

- code information is still needed for behaviour

- strict code arrangement

- no tools (?)

Solution 1 is not yet feasible without powerfull UML RE toolsincluding statecharts.
Solution 2 was experienced manually, implementation requires 3 tool (UML models, Java code, a bridge)
Solution 3 may run on a limited set of programs. It implies a set of recognition patterns.

26

6.2. MAPPING UML COMPONENTS TO JAVA CLASSES 27

6.2 Mapping UML Components to Java Classes

We consider a UML Component Model made of a set ofconsistentUML diagrams.
Some assumptions

• Components are distingued from classes (even if the metamodel sets that it it a class)

• UML interface are restricted to Java interface

• Ports and port connections are ignored but not binding of interfaces.

• Connectors are simply bindings.

• Protocol state machines are associated to components, ports and interfaces.

• Lightened UML model (events, actions...)

• Properties and constraints

Unser these assumptions we try to identify some translationpatterns.

6.2.1 Basic Component Pattern

• componentCo → a classCl of a packageCo

– provided interfacepi → inherited interfacepi of a packageCo

– requided interfaceri → field of type an interfaceri of a packageCo (may vary here)

– ports are omitted→ traceable comments to the interfaces

• Features→ methods

– Attributes→ fields to Datatype classes

– Operations→ methods

• Dynamic Behaviour (protocol)→ implementation pattern

– communications→ message send or some communication support

– state/transitions→ some automaton pattern

6.2.2 Composition Component Pattern

• architectureA → a classA of a packageA

– components and interfaces (as above) component packages can be included in packageA (but it can
also be classify in some "reusable" library of types.

– terfacerconnectorsrightarrow fieither an exact matching or inheritance of interface (somewhat dis-
turbing to imply the same name)

– ports are omitted→ traceable comments to the interfaces

• Composite (UML composite structure, UML composition relation)

– Logicalfifield in the composite class of type the component class (according to multiplicity) + some
marking or annotation

– Name: package inclusion (disturbing for reusing the types)

• Connections

– type level = interface link

– instance level = object value with a consistent type

28 ECONET Project/Test1 Description

6.3 Mapping Java Classes UML Components

The idea is to reverse the mapping patterns.
to continue

Chapter 7

Conclusion

Since the mapping from the UML component model to the Java code is not a model transformation (defined
as a set of rules) there are no true correspondence between the concrete (java) model and the abstract (UML
component) model. Moreover the component is specification includes many holes that are fullfilled by the code
"interpretation" Therefore reversing the mapping is not easy to draw: the user must identified elements that may
correspond to the abstract model, find an abstract element ifit exists, find a rule if it can be ruled, or create a
component model element.

We also met the problem of inheriting annotationse.g. interface/class.
Last, we surely had better to change the reference model instead of UML to get a "more component" descrip-

tion. On one hand we could compare the implementation with a FRACTAL or SOFA component specification (or
later create a CCMM one). On the other hand we will abstract toCCMM models. This can be led in an ongoing
experimentation.

All the content informations of this experimentation is on the SVN repository in thecasestudy directory.
Ongoing Workinclude

• Define a CCMM-UML mapping (or transformation)

• Explore further the UML-Java (engineering, reverse-engineering)

• Classify patterns

• Rule based-system investigation

• ... open issue

29

Bibliography

[ACPR07] Pascal André, Dan Chiorean, Frantisek Plasil, andJean-Claude Royer. ECONET Project - Prague
Workshop Report, September 2007.

[ACPR08] Pascal André, Dan Chiorean, Frantisek Plasil, andJean-Claude Royer. ECONET Project - Nantes
Workshop Report, June 2008.

[Reu06] Ralf et al. Reussner. CoCoME - The Common Component Modeling Example, 2006. GI-Dagstuhl
Research Seminar.

[RRMP08] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantisek Plasil, editors.The Common
Component Modeling Example: Comparing Software ComponentModels, volume 5153 ofLNCS.
Springer, Heidelberg, 2008.

30

Appendix A

Annotations

In this appendix we provide the Java definition of the annotations.

Component - Class Relation

Listing A.1: InComponent.java

package econe t . a n n o t a t i o n s ;

import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ One or more Java c l a s s e s can be a s s i g n e d to a s i n g l e component.
∗ Such an ass ignm en t i s s p e c i f i e d by t h i s a n n o t a t i o n .
∗ /

@Target (E lementType . TYPE)
/ / Should be j u s t a c l a s s
pub l i c @ i n t e r f a c e InComponent {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y per a n n o t a t i o n sou rce) c o n t a i ni n g component
∗ Names which t h e a n n o t a t e d c l a s s i s a s s i g n e d to . I f a s i n g l e
∗ sou rce d e c l a r e s t h e c l a s s to p a r t i c i p a t e in s e v e r a l components ,
∗ i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f component name
∗ /

S t r i n g [] componentName () ;
}

Entry points

Listing A.2: InitClass.java

package econe t . a n n o t a t i o n s ;

import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ This c l a s s i s t h e f i r s t i n s t a n t i a t e d and i s r e s p o n s i b l e
∗ (i t s c o n s t r u c t o r) f o r t h e i n s t a n t i a t i o n and i n i t i a l i z a t i on
∗ of t h e component ’ s c o n t e n t .
∗ /

@Target (E lementType . TYPE)

31

32 ECONET Project/Test1 Description

/ / Should be j u s t a c l a s s
pub l i c @ i n t e r f a c e I n i t C l a s s {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y per a n n o t a t i o n sou rce) c o n t a i ni n g component
∗ Names f o r which t h e a n n o t a t e d c l a s s p r o v i d e s t h e i n i t i a l i z at i o n .
∗ I f a s i n g l e sou rce d e c l a r e s t h e c l a s s to p a r t i c i p a t e in s e v e ra l
∗ components , i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f
∗ component name
∗ /

S t r i n g [] componentName () ;
}

Listing A.3: InitMethod.java

package econe t . a n n o t a t i o n s ;

import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ The component c o n t e n t i s i n s t a n t i a t e d and i n i t i a l i z e d by a method
∗ (i t can be a c o n s t r u c t o r , a s t a t i c method or an i n i t i a l i z a t i on method
∗ t o be c a l l e d a f t e r t h e d e f a u l t c o n s t r u c t o r) .
∗ /

@Target ({ E lementType .CONSTRUCTOR, ElementType .METHOD})
pub l i c @ i n t e r f a c e In i tMe thod {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y per a n n o t a t i o n sou rce) c o n t a i ni n g component
∗ Names f o r which t h e a n n o t a t e d method p r o v i d e s t h e i n i t i a l i za t i o n .
∗ /

S t r i n g [] componentName () ;
}

Interfaces

Provided

Listing A.4: Provided.java

package econe t . a n n o t a t i o n s ;

import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ In Java sou rces , a p rov ided i n t e r f a c e might be in a form of a c la s s
∗ a t t r i b u t e . The a t t r i b u t e s t o r e s a r e f e r e n c e to a c l a s s implement ing
∗ t h e p rov ided i n t e r f a c e .
∗

∗ This type i s m iss ing in t h e ECONET p r o p o s a l
∗ /

@Target (E lementType . FIELD)
pub l i c @ i n t e r f a c e Prov ided {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n

33

∗ /
S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y per a n n o t a t i o n sou rce) c o n t a i ni n g
∗ t h e name of t h e i n t e r f a c e r e p r e s e n t e d by t h i s f i e l d
∗ /

S t r i n g [] modelI faceName () ;
}

Listing A.5: ProvidedIf.java

package econe t . a n n o t a t i o n s ;

import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ A l l methods of t h e s p e c i f i e d Java i n t e r f a c e (which t h e a n n o ta t e d
∗ c l a s s has to implement) a r e marked as a p a r t o f t h e p rov ided
∗ i n t e r f a c e of t h e component
∗ /

@Target (E lementType . TYPE)
pub l i c @ i n t e r f a c e P r o v i d e d I f {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y per a n n o t a t i o n sou rce) c o n t a i ni n g t h e
∗ name of t h e component i n t e r f a c e r e p r e s e n t e d by t h i s t ype
∗ /

S t r i n g [] modelI faceName () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y per a n n o t a t i o n sou rce) c o n t a i ni n g t h e name
∗ of t h e j a v a i n t e r f a c e which i s d e f i n i n g one component I n t e r fa c e
∗ I f a s i n g l e sou rce d e c l a r e s to p a r t i c i p a t e in s e v e r a l components ,
∗ i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f j a v a i n t e r f a c e
∗ names (f o r i n s t a n c e {" A c t i o n L i s t e n e r , WindowListener "}
∗ /

S t r i n g [] javaI faceName () d e f a u l t { "" } ;
}

Listing A.6: ProvidedMethod.java

package econe t . a n n o t a t i o n s ;

import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ The method i s a p a r t o f t h e p rov ided i n t e r f a c e of t h e component
∗ /

@Target (E lementType .METHOD)
pub l i c @ i n t e r f a c e ProvidedMethod {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y per a n n o t a t i o n sou rce) c o n t a i ni n g t h e
∗ name of t h e component i n t e r f a c e which t h e a n n o t a t e d method is
∗ p a r t o f . I f a s i n g l e sou rce d e c l a r e s to t h e method p a r t i c i p a te
∗ i n s e v e r a l i n t e r f a c e s , i t s e n t r y shou ld be a comma−s e p a r a t e d

34 ECONET Project/Test1 Description

∗ l i s t o f i n t e r f a c e names
∗ /

S t r i n g [] modelI faceName () ;
}

Required

Listing A.7: Required.java
package econe t . a n n o t a t i o n s ;
import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ In Java sou rces , a r e q u i r e d i n t e r f a c e i s p r e s e n t in a form of a
∗ c l a s s a t t r i b u t e . The a t t r i b u t e s t o r e s a r e f e r e n c e to a n o t h er
∗ component , whose p rov ided i n t e r f a c e i s bound to t h i s r e q u i re d
∗ i n t e r f a c e s . T here fo re , t h e t a r g e t o f t h e a n n o t a t i o n f o r r e qu i r e d
∗ i n t e r f a c e i s an a t t r i b u t e of a Java c l a s s .
∗ /

@Target (E lementType . FIELD)
pub l i c @ i n t e r f a c e Requi red {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y per a n n o t a t i o n sou rce) c o n t a i ni n g
∗ t h e name of t h e i n t e r f a c e r e p r e s e n t e d by t h i s f i e l d
∗ /

S t r i n g [] modelI faceName () ;
}

Business elements

Listing A.8: BusinessType.java
package econe t . a n n o t a t i o n s ;
import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ a l l t h e i r i n s t a n c e s of such type a r e i m p o r t a n t f o r a component
∗ behav iou r .
∗ /

@Target (E lementType . TYPE)
pub l i c @ i n t e r f a c e Bus inessType {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

Listing A.9: BusinessField.java
package econe t . a n n o t a t i o n s ;
import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ Marks p a r t i c u l a r Java c l a s s a t t r i b u t e s as i m p o r t a n t f o r b u si n e s s l o g i c .
∗ /

@Target (E lementType . FIELD)

35

pub l i c @ i n t e r f a c e B u s i n e s s F i e l d {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

Listing A.10: BusinessParameter.java

package econe t . a n n o t a t i o n s ;
import j a v a . lang . a n n o t a t i o n . ElementType ;
import j a v a . lang . a n n o t a t i o n . T arge t ;

/∗ ∗
∗ Marks p a r t i c u l a r method param ete r as i m p o r t a n t f o r b u s i n e ss
∗ l o g i c .
∗ /

@Target (E lementType .PARAMETER)
pub l i c @ i n t e r f a c e B u s i n e s s P a r a m e t e r {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

Appendix B

Component Model Examples

These examples are outside the scope of Test1 but they are used to explain some mapping rules of chapter5.

B.1 Structure: the TradingSystem::Inventory::Application
component

«component»

TradingSystem::Inventory::Application

«component»

:Reporting

«component»

:Store
StoreIf

ReportingIf *

*

TradingEnterprise,
ProductSupplier,
Product

StoreQueryIf

OrderEntry,
ProductOrder,
StockItem,
Store

StoreIf

ReportingIf

Figure B.1: CoCoME component: theTradingSystem::Inventory::Application component

36

./FIGURES/inventoryApplication.eps

	Introduction
	Previous Experimentation
	Component Model
	Structural Component Model
	Behavioural Component Model

	Implementation Model
	Finding and Writing the Annotations
	Assumptions
	Annotation Discovery
	Annotation Templates
	Mapping the concepts
	Implementation Patterns
	Automatic Annotation Inference vs Manual Inference

	Annotating the CoCoME
	Finding Mappings
	Structural Component Model Analysis
	Behavioural Component Model Analysis
	Entry Point Patterns
	Writing the annotations
	Annoted Components
	Composition
	Conclusion

	UML/Java
	Introduction
	Mapping UML Components to Java Classes
	Basic Component Pattern
	Composition Component Pattern

	Mapping Java Classes UML Components

	Conclusion
	Annotations
	Component Model Examples
	Structure: the TradingSystem::Inventory::Application component

