ECONET Project
NANTES 2008 - WORKSHOPREPORT

Pascal ANDRE Dan CHIOREAN Frantisek PLASIE Jean-Claude ROYER

2008, 12-16 May

EGIDE

ILINA CNRS UMR 6241 - 2, rue de la Houssiniére, B.P.92208, B2RINantes Cedex 3, France

2Computer Science Research Laboratory, Universitatea BB\BBLYAI Mihail Kogalniceanu nr. 1 RO- 400084 Cluj-
Napoca, Romania

3Distributed Systems Research Group, Charles Universiypsranske nam.25, 11800 Nantes 1, Czech Republic

4“OBASCO - EMN/INRIA LINA FRE CNRS 2729, 4, rue Alfred Kastler-”4307 Nantes cedex 3 France

./FIGURES/logoEgide.eps

2 ECONET Workshop 2008

Executive Summary

An Egide-sponsored workshop was held at the Nantes LabgretoComputer Science -in french Laboratoire
dSinformatique de Nantes-Atlantique (LINA CNRS UMR 624ih)Nantes. This workshop was the second one in
a series of the ECONET Project NI6293RGentitled, '‘Behaviour Abstraction from Codgilling the Gap between
Component Specification and Implementation

The LINA laboratory in "Sciences and technologies of thevgafe" is specialized on two axes : distributed
software architectures and computerized decision-magystems. Associated to the CNRS, the University of
Nantes and the Mines School (EMN - Ecole des Mines de Narites) INA also includes two INRIA projects.

The first workshop provided a detailed outline for the progefining the objective and means, and structuring
it in three subprojects. This second workshop is a milestorthe second year project. It should observe the
project state and refine objectives and cooperation, araptd the objectives of the two years of the project. We
remind here a list of the main tracks we had to follow

e Present the current situation for each subproject (inoly@roducts and problems, future work),

e Tools normalisation (compare tools and techniques of eabprsject, final decisions on the tools panel,
perspectives),

e Study the interface between the parts (languages, fortatsfiAPI...),

e Get afirst prototype (source and documentations for eagbrsjdet, final decisions on the metamodel part,
extract the main open issues, applications on CoCoME)

e Draw the roadmap to the end of the year (development, doctatiem, workshop preparation, publication
of reports and papers)

More precisely, the aims of the workshop were (1) to get soeeelthak of the current developments (2) to
share the experiences and (3) to settle interfaces and cortonts. Additionally we would to take concerted
decisions on the project issues (concrete objectivess tasganisation, responsabilities, deliveries, planning

On these points the workshop put forward new advances husalsie delay of subproject tasks and discus-
sions led to some decisions on both the interaction poindspaoject organisation. The following issues have
been discussed: tools and approaches, interaction paietsanodel, annotations), shared techniques and tools,
common benchmark, etc. The working sessions enabled (Blidate the common component metamodel (its
specification is on the way), (2) to refine the subprojectcijes and context, (3) to plan the work (subproject
objectives and responsabilities) until the next milest@@iej’'s workshop in september), (4) to draw some project
continuation (publications, projects).

The main concrete results are A project architecture wasrdeter fruitful exchanges accompanied with
the definition of tasks, with balanced responsabilities padnerships. This project includes three distinct but
complementary parts:

e A definition of the common component metamodel.

e A new definition of the annotation language.

e A gained experience on model driven tools and code proagssin
e A finer architecture understanding.

The workshop concluded with some guidelines to the next slawk that should take place in Cluj 2008.

This report relates what happened in the Nantes’s workshaQs)).

Acknowledgements The participants would like to thank Egide for its financiapport of this workshop.

Contents

1 Introduction 5
1.1 Thel6293RGECONET Project o o o i e e e e e e e 5
1.1.1 Motivations. e e e 5
1.1.2 Partners e e 7
1.1.3 InitialPlan 7
1.1.4 CurrentState 8
1.2 ReportContents o o e 9
2 The Workshop at the University of Nantes 10
2.1 Preparation. L e 10
2.1.1 Material. 11
2.1.2 Organisation. 11
2.2 Objectives. 12
2.3 Participants. 13
2.4 Programand Schedule 13
2.5 TheWorkshop Sessions. 13
2.5.1 The Presentation SESSIONS. 14
252 TheWorkingSessions 19
3 Project and Technical Presentation Sessions 23
3.1 Metamodel Abstraction Subproject L 23
3.1.1 ECONET CCMM - From Model Specification to Repositoryplementation. 23
3.1.2 LClToolDemos Summarized 23
3.2 Process B: Structural Abstraction Subproject. Lo Lo 28
321 Goals. . . . e 28
3.22 Design 29
3.2.3 ASSESSMENL e 30
3.2.4 Toolsandtechniques. 32
3.2.5 Btransformationsandtools 33
3.26 Interface L 34
3.2.7 0rganisation. 34
3.3 Process A: Behavioral Abstraction Subprojecto Lo oo 35
3.3 1 Goals. e 35
3.3.2 ASSESSMENL e 36
3.3.3 Toolsandtechniques. e 36
3.3.4 Objectivesandorganisation 37
4 Working Sessions 39
4.1 IntroducCtion. e e e e 39
4.2 Metamodel Specification 39
4.3 Annotationsand interfaces. L 39
4.3.1 AnnotationsUpdate. 39
4.3.2 Interfacewith Recoder L 43
4.4 CoCOME 44

ECONET Workshop 2008

4.5 Task, responsabilities, schedule 44
Conclusion a7
Collaborative Tools 50
Al SVNREPOSIHOY. . . . o o o 50
A2 WIKI ..o 15
Common Tools and Interface 53
B.1 JavaTools. o e e 53
B.1.1 Java/Annotation TOOIS e 53
B.1.2 ToolsforJavasourceanalysis. 53
B.1.3 Model Engineering Tools. L 55

B.2 Java Annotations. e e e 55

Chapter 1

Introduction

In this part we remind the context of the workshop, its prapan, organization and the program. This workshop
was the second one in a series of the ECONET Projedt@293RG.

1.1 Thel6293RGECONET Project

The activity described in this report is supported by Egitl¢hie context of ECONET Projects This section
gathers the main features of th6293RGECONET project.

e Title: Behaviour Abstraction from Code

e Subtitle:Filling the Gap between Component Specification and Impieat®n

Type: Research and Technology Development Project

Duration:2 years

Domain: Sciences and Information Technology

PartnersCOLOSS (French) - DSRG (Czech) - LCI (Romanian) - OBASCO iEng

1.1.1 Motivations

The project takes place in a specific domain of Informatiochif®logy, called Component Based Software En-
gineering whose goal is to provide languages, methodshiges and tools for software developpers. The field
of component-based software engineering (CBSE) becameaisingly important in software construction ap-
proaches because it promotes the (re)use of componemigalsd Components Off The Shelf (COTS), coming
from third party developers to build new large systems. Coments are scalable software modules (bigger units
than objects in object-oriented programming) that can leel as$ the high levels of abstraction (software architec-
tures, design) and the low levels (programs, frameworks).

Component-based software engineering is still challemgirboth industrial and academic research. Most of
the academic approaches focus on abstract models (sorsetiose to architectural description languages) with
checkable properties such as safety and liveness; somemfdeal with refinement and code generation. As a
counterpart, the industrial proposals such as CORBA, EX;Ir .NET are merely implementation-oriented
and also object-oriented. They define flat components (witth@rarchical structures) and the model is based
on an underlying infrastructure for component reposi®ard communication management. They often lack of
abstraction means to promote the reuse of components. Meneat the implementation level of a component
based development, some implementations have nothingwatldéhe above industrial standards in the sense that
there are no components at all. The main reason is that ther®drue component programming languages yet (a
language such as ComponentJ is a layer on Java). In othesybade are various component models that cover
the whole software development process but there is a gagbrtcomponent specifications (the academic mod-
els) and component implementations (industrial infragtrite or object-oriented implementations). The above

1

http://www.egide.asso.fr/fr/programmes/econet/

6 ECONET Workshop 2008

mentioned problem is due to the fact that, usually, compbimgplementation is not based on a rigorous speci-
fication. In cases when the specification precedes the ingl@ation, the conformance between implementation
and specification is seldom realized.

A major problem is then to fill this gap. One way is to define mddensformation techniques in order to
generate a code for the component with respect to the compspecifications. This way can be qualified as the
engineeringvay and it is similar as MDA and MDE approaches. It is quite pter since we should, in theory,
prove the correctness of the translation and also becaeredre various target frameworks and languages. There
are ongoing works on that directioRINPRO5 PP99.

Another way is to focus on program code analysis in order togare component’s actual code with its high-level
(abstract) description. This way can be qualified asréverse engineeringiay. It is quite an open issue in the
current research on CBSBIHMO06, PPO7. This problem is even more complex than the one above, dtleeto
following reasons :

e Often the source code of a component is not available afieleiployment or even not physically available
in a remote service invocation or Web Service. However, foomponent industry the unavailability of
source code is essential — services may even be offered onpepaise basis.

e Incase of OO implementations, the absence of componentstas implies to find convenient and adequate
criteria to structure components.

e Many statements and message send are to be omitted for amesevrvice identification.

e There are no common component model (or standard) for thgpopemt (abstract) specification — many
targets for reverse engineering.

Service clients have to properly intercat with the serviaed need to know at least the interface but in most
cases the dynamic behaviour or protocol attached to thécesrvFrom that some compatibility checking and

consistency controls may be performed to ensure a googatten or to avoid wrong or illegal use of the services.

Both the engineering and reverse engineering approacimesieesearch open issues.

The goal of the project is to contribute to the reverse ergging way by developing techniques for extraction
of abstractions from code (including some component iaterfiescription) and for the verification of abstractions
against the code.g.to check an in-line bank service with no available code, ®cklthat a client component is
compatible with an implemented component.

The core project is to establish a link between componerggadd component specifications. The advantages
of abstraction are to check the conformance of componemadd component specifications, to statically check
various properties of the components such as safety antklbge To be pragmatic we have to restrict this huge
mapping according to the partner’s experience.

1. The source model (implementation level) is limited toalJaede. The problem of obtaining an abstract
specification of a component from its code, cannot be solvedsatisfactory manner if the code does not
contain appropriate comments, rather in well defined padteor if the code is not limited to a consistent
subset of concepts.

2. The target models (specification level) are abstract comapt models inspired from the ones of the part-
ners. Instead of studying only the structural features efdysstem, we plan to work domehaviouralab-
straction from Java code. Behaviol\[02 AAAO6a, PNPRO0j is related to the dynamic and functional
features of the components and services. In particulagmymbehaviours describe the dynamic evolution
of components, connectors or services (interactions). mé&ehanisms used for component specifications
are grounded on different formalisms: design by contranplémented by assertions), algebraic specifi-
cations, state machines, regular expressions and so ot dbawe mentioned formalism offers a set of
advantages and has some drawbacks. Design by contraciasatige specification only, supports an "in-
complete" behaviour specification. Algebraic specifiaagigenerally have sound semantics but are, in most
cases, difficult to understand by people working in the itiuasnd not all kind of components can be spec-
ified. The state machines and regular expressions formabsmsuited for dynamic descriptions and have
formal semantics.

1.1. THE16293RGECONET PROJECT 7

1.1.2 Partners

The partners are four research teams which have competendtles project topics.

e COLOSS: COmposants et LOgiciels SOrS
Reliable Component and Software Component System Specification and Verification

e DSRG: Distributed Systems Research Group
SOFA modek~ previous work = basis for the project

e LCI: Laboratorul de Cercetare in Informatica
Computer Science Research LaborateryOCL, MDD, Tools

e OBASCO: OBjects, ASpects and COmponents
Previous work on Java and Components

The four teams have complementary knowledge and backgmuiite project domain. The goal is therefore
to compare and exchange the point of view, and to integratadiv ideas and techniques in the current proposal.

1.1.3 Initial Plan

The project is established for two years. The initial plaignivas organised as follow:
First year:

e Determination of the field of application (boundaries ofalagncepts and idioms).

Settings of the major principles to abstract behaviourstdtware components (intémelia, SOFA and
STS) from Java code.

Experimentations on existing code.

Studying and proposing a pattern for annotating EJB commisrie order to better support RE (behavior
abstraction from code).

Integration of the verification of guards using OCL (and OGLE
e Documentation, research report and workshop preparation.
Second year:

e Refinement and classification of the principle and techriéque

Study of the verification of assertions with OCL.

Reverse engineering from EJB code to EJB specificatiornzezhln JIML or OCL.

Experimentation with larger case studies.

Documentation, research report and workshop preparation.

Once the context has been introduced, we present now theshaplitself.

http://www.lina.sciences.univ-nantes.fr/coloss/
http://dsrg.mff.cuni.cz/
http://lci.cs.ubbcluj.ro/
http://www.emn.fr/x-info/obasco/

8 ECONET Workshop 2008

SOFA 2.0 Structures
Kmelia Common Behaviours
Component
STSLib Metamodel WFR (OCL)
Fractal / ~
7 N
Zz ~
Structural Behavioural

Model/Type | Abstract Model
checking flat/hierarchical

Abstract Model
(eEBP)

Model
checking

reverse

" aotafion
| _defintion_

User
informations

*

JPF

patterns
analysers
extractors

Textual
informations

plain Java annoted Java

UML code code

diagrams

EJB, Corba, .NET
Specific component framework
Fractal, SOFA, Spring...

Figure 1.1: Econet Architecture: final version

1.1.4 Current State

The general project organisation has been drawn duringmtepfioject workshop in prague in september 2007.
Figurel.1shows the project architecture.
The executive roadmap for reengineering program is buili three part architecture:

e Process B: Structural abstraction from Java code.
e Process A: Behavioural abstraction from Java code.
e Metamodel definition and consistency verification.

The objective of the process B is to build a structural congmdimodel and a corresponding annotated Java
code. These two elements are inputs of the process A. Thelnsoaleo an instance of the metamodel that will
control its consistency. From plain Java code and userdati®n, process B should produce an annotated Java
code and a corresponding component model (both resultshausinsistent).

Process A extract a dynamic behaviour specification of tmepoments identified during the process A from
the annotated Java code. Therefore, the idea is to makewbeseeengineering as general as possible in order to
allow extraction of behaviour in any formalism. To be moredfic, the formalisms considered afenhanced
behaviour protocol¢EBP) developed by DSR@LTSdeveloped by COLOSS ar&il Sdeveloped by OBASCO.

The metamodel part is shared by the two processes and casdtite foundation API (Application Program-
ming Interface) for component model processing. A maindssiuia component metamodel is to answer to the
problem of handling several component models to get a genegngineering process. Moreover, in the context
of reengineering the metamodel must handle tightened abions to the code that implements component appli-
cations. These connection points are represented by diomstan the Java code. In order to provide a convenient
component model API, a metamodel specification is necessasgrve as reference guide.

The Prague workshop repoACPRO07 provides detailed informations on these subprojects.

./FIGURES/archiEcoTask.eps

1.2. REPORT CONTENTS 9

The current state of the project is online the wiki pages (8du?2).

1 econet:start [COLOSS] - Mozilla Firefox (= x|
Fichisr Edtion Affichage Historique: Marqus-pages Yahoo! Oubls 2
<;l"j - v @‘ ’L’l} |‘{ htkp:ffwww.lina. sciences. univ-nantes. frfcolossfwild/doku. php?id=econet: start u—'i'i D‘ “CJViGuug\e i‘--\‘
econet:start
Edit this page Qld revisions | | Recentchanges | | || Search
hide | Trace! = matarials > econst
Index o
Welcome to the COLOSS/ECONET Wiki | Table of Contents 2
This is an index over all avsilsble pages - B i i =l Vi T B A
ordered by #namespaces, i - .t COLOSS/ECONET Wik
» Project description in french Tt pdf or in english T pdf -Dm]e:t Materiale gre
-warkshops
¥ costo An Egide program : @http:/fwww egide. asso. fr/fr/pragrammes/econat/ - Cluj Workshop
= econet “Nantes Workshop
» biblio | Edit -Pragues Workshop
b e Project Materials S| esenethap
¥ nantes2008 q B |) '] i o i
¥ praguesz007
o Hr s akn = Documents, Techrical Descriptions
» behavioural_modsl = Econet SYMN
= behavioural_madel_comparison " Dietistinne
= comman_toals .
= sconet_sun Edit
» illiesirandrnidads Workshops
= java_header
= materials Edit]
#) et tdel Cluyj Workshop
= nantes2008
= ald
A The workshop will held on 21 of september - 24 of september 2008
= praguesz007
= process_s
g | The warkshop page here
u start Edit
= structural_modal Nantes Workshop :
» htach
: :(“""’If“!t 2008/05/12 - 2008/05/16 - Thanks to the COLOSS group for the iocal organisation.
melia
P miles The workshop page here
¥ playground
v wiki Edit
. stant Pragues Workshop
2007/09/03 - 2007/09/07 Thanks to the DSRG group for the local organisation.
The workshop page here
Edt
Econet Map
Terming.

Figure 1.2: Project Wiki

Project material and documents are downloadable from thebawative tools (further information is given in
appendixA).

1.2 Report Contents

In the remaining of the report, we provide general informagi on the workshop contents in chap?er The
detailed information of the presentation sessions areritbestper subproject in chaptd8r Chapter4 relates the
working sessions and results and especially the commonaoeemy metamodel validation which is the main result
of the workshop.

Warning
This report has been mainly written by Pascal from his peakootes and memory of events. There may remain
english errors, misunderstanding, transcription eriamg, so on. He apologise for these errors.

./FIGURES/wikiStart1.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start

Chapter 2

The Workshop at the University of Nantes

The workshop is an intermediate milestone for the secondagfehe project.

2.1 Preparation

The preparation was twofold: material and organisatiore ddllaborative support is based on a wiki and a SVN
repository (see appendi. In particular there are chapters for each workshop (seesfigQ).

1) econet:nantes2008:start [COLOSS] - Mozilla Firefox |8 x|
Eichier Edtion Affichage Historique Marque-pages Yahoo! Qutls 7
e &= a5 i ose ikildak Tele| [Cll I
& - @ (05 ' hetpiflmm.ina scences univ-nantes.Frc . php?id=econet:nan ctar &jx| B [[Clajsoone 1]
COLOSS Projects Publications Softwares COLOSS wiki
Team
econet:nantes2008:start
| Editthis page 0Old revisions | Recant changes | Search
hide Trace! # wenue » econst * rnaterisls 8 syntax » materials * venue » program0Bn ¢ organization = contents ¥ nantes2008 il
Index
Workshop 2008 at Nantes Table of Contents =
This is an index ouer sll ausilable pagss =
b e e Waorkshop 2008 at Nantas
| Edit
5 0 tion
> coloc News Bt
¥ costo “workshop Materials
v econet cori 4 ” 7 “Links
¥ biblio = Please {ill in the Egide forms to start the refundings “Drajact Materisls
b Ptk (see the details in the Organization section)
¥ minutes Edit
=g Organization
= airport
= contents :
] details
a hotals Edit
3 i
e Contents
= materials
= organization
» particdpants details
* photos
= practice s Edit
» prearambih Workshop Materials
= road
. start . + x .
i e Teams and technical presentations, Working Sessions
train
= tram documents materials
» transportation
R L Workshop Report
. us
» pragues2007 Edt
P tools Links
= meta_model
= process_s
= process_b < ’ Edit
SR Project Materials
b htech
Y iinara Working Material
» kmelia
¥ miles hare
* playground —
¥ wiki
» start Bibliography
Bibliography work (project) here
Edit =l
Terming

Figure 2.1: Workshop pages on the Wiki

The URL address for the one of Nantes (see figuigis:

10

./FIGURES/wikiOrga0.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:nantes2008:start

2.1. PREPARATION 11

2.1.1 Material

Since the last workshop the contributions mainly focusedhenreports (Prague07 Workshop report, Econet
first year evaluation) and the metamodel description (Rati®Rose metamodels, notes). Minutes have not been
summarised on the wiki but the results and documents arayutih the wiki (figureA.3) and the SVN repository
(figureA.1).

A special group of pages have been written for the Workshaemad (figure2.2). The URL address is:
http://ww. | i na.sciences. univ-nantes.fr/col oss/w ki/doku. php?
i d=econet : nant es2008: mat eri al s

£ econet:nantes2008:matetials [COLOSS] - Mozilla Firefox (= x|
Fichier Edition Affichage Historique Margus-pages Yahoo! Oubils 2
@ T @ m |‘< hitp: fivvw. ina. stiences. unlv-nantes. fricok ifdoku. php?id=econet:nantes2008:materials uﬁllv} DJ |,‘_':iGuug\5 |~\J
. SIITALETN1ars |
— —_— - _— —
| Edit this pagiH Ol revisions | | Recent changes H |} Search i
hide Trace: # ComMOn_tools » Matarials » &conat_sun » STart » SConet » organization o nantes2 008 » syntax » materizls
Index.

Workshop Materials

This is an indes over all available pages
ordered by 7 namespaces,

COLOSS + OBASCO

¥ coloc
¥ costo R
~ aconet = Common Metamadel Yalidation Fascal André (Coloss) = metamodsls.pdf
® biblio = Process B: A first prototype Gilles Ardourel {Coloss)
5 "'""'h:E;ms = Composing Component with shared services in the Kmelia Model Christian Attioghé (Coloss) % coloss1.pdf
+ nantes:
i ey = Protocols: the missing link between aspects and components? Jacques Noyé (Obasco)
= contents = Concurrent Event-Based ADP Protocols: the missing link between components and aspects? Jacques Noyé (Obasca) = abasco2 pdf
= horals = Components with N-Party Rendezvous and Symbolic Transition Systems Jean-Claude Royer (Obasco) = {obascol.pdf
" maps
= materials Lot

= organization
= participants

i = ECONET - CCMM the LCI proposal Dan Chiorean (LCI) from model specification — to repository implementation @7 lci_nantes_ccmm.ppt

» practice = ECONET - CCMM the LCI proposal vladiela Fetrascu (LCI)
= Pm:mmﬂﬂn = demo 1: Metamodel g cermm_lci.zip
o » demo 2: OCLE @ ocle_demo.zip
iR = dema 3 EMF aferf_demo zip
= mm = desmo 4: oAW @josw_dema.zip
» transportation
= venue DSREG
* pragues2007
= annotations = Process A: Behavior Extraction - Current status {5 dsro_sconet-nantesis_behaviorestraction.ppt

= behauioursl_mode
= behavioural_medel_comparison
B e o Working Materials
= sconsrsun
= gilles_random_ideas
= java_header
= materials
= meta_model |
® nantes2008
= pragues2007
= process_a |
= process_ b
= ztart |
= structural_model

¥ htech

* intranet

Edi]

Drawing of the architecture introducing a recoder wrapper

¥ kmelia
* miles
¥ playground
¥ ik
. san

Blackboard Tasks

Terming.

Figure 2.2: Workshop Materials on the Wiki

2.1.2 Organisation

The workshop was initially planned on the end of March. Simeehad not the confirmation of the project
continuation we should delay to the second week of may dieeEgide decision fall and reasonable time to get
transportation means.

The local organization committee included Pascal Andr8eS&Ardourel, Christian Attioghé, Isabelle Con-
dette and Anne-Francoise Quin.

Detailed information is given on the wiki site (figuBe3): venue, program, transportation, city and tourist
information, photos, maps and so on.

http://wwu. | ina.sciences. univ-nantes.fr/col oss/w ki /doku. php?
i d=econet : nant es2008: or gani zat i on

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:materials
./FIGURES/wikiWork1.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:organization

12 ECONET Workshop 2008

.“-'—__}e|:nnet:nantesZDlJB:nrganizatiun [COLDSS] - Mozilla Firefox (= x|
Fichisr Edtion Affichage Historique: Marqus-pages Yahoo! Oubls 2
v L_b - @‘ ’L’l} |‘{ htkp:ffwww.lina sciences.univ-nantes. fricol ifdoku. php?id=econet:nantes2008:organization u—'i'i D‘ “CJViGuug\e
COLOSS Projects Publications Softwares GOLOSS Wiki
Teamn
econet:nantes2008:organization
| Editthis page Qld revisions | Recentchanges | Search |
hide Trace: #.start % econet » nantes2008 * contents ® materials # venue ® organization B N
Index I
Workshop 2008 at Nantes Ly _) LN ! i %
Thiede s index oiecall availabls pages -Warkshop 2008 st Hantes
¥ P ' Editl ~Grganization
+ coloc Organization i s
¥ costo
¥ econet
¥ biblio Dates
¥ minutes
¥ nantes2008 ~ 12 of may - 16 of may 2008
= sirport
= contents . g
i~ Local organisation
= hotels
= maps Contacts
= msterials
= organizstion ® Pascal ANDRE Edpascal.andre@univ-nantes.fr
= participants = Christian ATTIOGBE Edchristian.attiogbe@univ-nantes. fr
= phatos
= practice COLOSS + ORASCO
= program08n
= rosd ® Thanks to Gilles, Isabelle, Anne-Frangoise, Mohamed...
= taurism
u train Local information
= tram
= transportation yenue
= venus
. us 15
Participants
¥ pragues2007
= annotations —
bk onl ot Rafticinants
= behavioursl_model_comparison
= common_tools Photos
= sconet_sun
= gilles_random_idess photos
java_header
= rnsterisls N Edit .|
o meta_modsl Egide Forms
= nantes20028
Sl Sl G For fareign members B ficheeconet07e.doc
= praguesz007
= process_a Edit
= process_b -
= start
= structural_model
¥ htech
b intranet | |
Terming.

Figure 2.3: Workshop Organisation on the Wiki

2.2 Objectives

The following 'Workshop Objectives and Delivery’ staten&vas a first throw and kept many issues open. We
remind here a list of the main tracks we had to follow

1. Present the current situation

e for each subproject
e products and problems
e future work

2. Tools normalisation

e compare tools and techniques of each subproject
¢ final decisions on the tools panel
e perspectives

3. Study the interface between the parts

o format, filters, API...
e languages

4. Get a first prototype

./FIGURES/wikiOrga1.eps

2.3. PARTICIPANTS 13

5.

2.3

source and documentations for each subproject
o final decisions on the metamodel part

extract the main open issues

applications on CoCoME
Draw the roadmap to the end of the year

e development

e documentation

e workshop preparation

e publication (reports, papers)

Participants

The detailed list is arranged according to the alphabeticiér of first names.

2.4

Christian ATTIOGBE - COLOSS o Mohammed MESSABIHI - COLOSS
Dragos PETRASCU - LCI

Pascal ANDRE - COLOSS

Frantisek PLASIL - DSRG
Gilles ARDOUREL - COLOSS
Jacques NOY E - OBASCO
Jean-Claude ROY ER - OBASCO

Petr HNETYNK A - DSRG

Tomas POCH - DSRG

Viadiela PETRASCU - LCI

Program and Schedule

We present here an overview of the workshop program. It wgarased in two parts

Day 1 and 2 are dedicated to workshop presentations. Théa@hsand schedules leave time for numerous
discussions...

— Presentation of the subprojects (recent work, tools, ...)
— Technical presentations and demonstrations

Day 3 is dedicated to the coordination issues for the prpjaet Cluj workshop organisation and social
events.

Day 4 and 5 are dedicated to the project work (metamodekfates, tools, sharing experience, practical
organisation and responsabilities)

Actually the schedule evolved due to some people own cdantrdlighs...).
The detailed program is given on the wiki at:

2.5

The Workshop Sessions

This section is a quick overview of the executed program efutlorkshop. The detail features will be presented
in the following chapters. The workshop material is avdéain the wiki at:

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:program08n
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:materials

14 ECONET Workshop 2008

We first begin by the presentation sessions where the getits presented the their technical contributions
(chapter3). Then we summarise in chaptéithe contributions of the working sessions where the paditis
discussed on the project (issues, structure, tasks, wadtaspects, tools...).

2.5.1 The Presentation Sessions
Monday, May 12, 2008

[Time | Title | Speaker |
14:00 | Welcome Christian Attioghé
| Workshop Introduction Pascal André
| Local Organisation COLOSS
14:30 Technical presentations about the Metamodel subproject

| CCMM the LCI proposal: from model specification -Dan Chiorean
| to repository implementation
| demol: Metamodel Vladiela Petrascu
17:30| demo2: OCLE Vladiela Petrascu

Welcome Christian welcomed the participants in the name of the Latooy and the COLOSS team.

Workshop Introduction Pascal introduced the workshop recalling the ECONET ptajectext for the "new"
participants. He quickly summarised what happended duhiedirst year.

Summary
Events

e March: starting the project
e September: workshop at Prague (initially planned for june)
e October: workshop report, project evaluation
e November: First Common Component Metamodel published
Results
e Workshop Report
e Project Continuation
e First Draft Common Component Meta-Model
Quick Analysis
+ Workshop organisation and result
+ Complementary background of the teams
+ Methods and collaborative tools (Wiki, SVN, email)
- Time Allocation (late start, deadlines, asynchronouskiviy period and exchanges)
- Too few (despite fruitful) technical echanges (bibliggng, metamodel, tools)

- Some Misunderstandings (due to informal definitions oyiwey contexts?)

2.5. THE WORKSHOP SESSIONS 15

First Year Results
Advance in

e Clear project definition (workshop results)

— Convergence on the objectives
— Convergence on the means
— Definition of the tasks

e Project Collaborative tools (Wiki, SVN)
e Toward a common component meta-model
Standby/delay for

e Collaborative field exploration: Annoted bibliography aBgnthesis (components, RE, code engineering,
tools)

e A validation of the common component meta-model
e Delayed or lost activities

— Studying and proposing a pattern for annotating EJB compuisrie order to better support RE (be-
havior abstraction from code).

— Integration of the verification of guards using OCL (and OQLE

First Year Workshop Results
Convergence on the objectives (summary)

e Clear agreement on the "abstract" context
Abstract component models
+ Java Code
+ Reverse = from code to abstract models

e Some vision of the "concrete" context

— Java code nature
Bytecode or Plain source or Annoted Source

— Java code structure
plain Java + informations

— reengineering issues
abstraction rather than full reverse engineering
compare code and specifications (conformance)

e Benchmark =CoCoME

e Two other tracks: cross LTS extensions, WFR definitions
Convergence on the means (summary)

e Project Architecture witfThree parts

1. Component Metamodetoss LTS extensions, WFR
2. Structure Abstractionser interacted tool
3. Behavior Abstractioi-interface definition, annotations generation

e Problem Domain Restriction

— metamodel— components and behaviours

16 ECONET Workshop 2008

— A = no connections, no composition, no statement abstraction
— B = no composition, no statement abstraction, user-intenasti

e Benchmark =CoCoME
Definition of the tasks (summary)
e Prototypeon the project architecture

— Metamodel
— Process A
— Process B

e Cross Contributiona subset of

— Common Metamodel Definition
— Annotation language definition (input of process A)
— Tools Prototypes for Metamodel verification, Process AcEss B

e Synchronisation points =
A-interface, Metamodel def, B-Information def

e Planningdeadlines

— Workshop Nantes (begin of March 2008)
— Workshop Cluj (end of august 2008)

e Publications

Workshop Program The contents includes
e Participants
e Objectives ¢pen issue)!~ Detail Design of the Project Architecture + Technical Issue
— Metamodel: contents and design

concepts, relations, mains issues, approaches, platsfamd tools

— Processes: interfaces and design
structure, libraries, techniques, tools

— Integration and examples
CoCoME

e Delivery~~ workshop report + roadmap until next workshop

Prototype

Refine with concrete models

Documentation, research report and workshop preparation.
Perspectives and Publication

e Detailed Program and Schedule

Presentation Session We started by LCI because the Metamodel supports the ictelfatween subprojects A
and B. Dan recalled the LCi tasks, mainly

e CCMM definition: Metamodel specification, constraints sfieation, metamodel testing, repository code
generation

e Studying and testing different tools supporting the aboeatiwned activities (OCLE, EMF, 0AW).

Then he argued the LCO position and proposals.

There after Vladiela presented a part of the demonstraBbg.started with a metamodel proposal and discus-
sion and continued with the OCLE implementation.

TheMet anodel subproject if further developped in sectionmetamodel afptér3.

2.5. THE WORKSHOP SESSIONS 17

Tuesday, May 13, 2008

The initial schedule was modified in order to continue the H&inonstrations.

[Time [Title | Speaker |
09:00 Technical presentations about the Metamodel subprojentdc)
| demo2: OCLE (contd.) Vladiela Petrascu
| demo3: EMF Vladiela Petrascu
| demo4: 0AW Vladiela Petrascu
12:15 | Common Metamodel Validation Pascal André
13:30 Technical presentations about the Process B (structuractixin) subproject
| Process B: A first prototype Gilles Ardourel
| Composing Component with shared services in the Kmelia Modehristian Attioghé
| Concurrent Event-Based AOP Protocols: Jacques Noyé
17:30 | the missing link between components and aspects?
delayed| Components with N-Party Rendezvous and Jean-Claude Roye
Symbolic Transition Systems

At the beginning Vladiela continued with the second parthef lemonstration using the OCLE, EMF and
0AW implementations. Thi¥et anodel subproject if further developped in sectionmetamodel afptér3.

The Common Metamodel Validation is part of the working sessiclosely related to the metamodel subpro-
ject (see sectiof.5.2.

Technical presentations about the Process B subprojettdtaith a short presentation of the experimenta-
tions leaded in the COLOSS team. The project was realisedjbyusp of students and included bith the annotation
processing and the metamodel managment (for a limit sulbskbéanetamodel). The idea was to install a boot-
strap for the Process B machinary which is an iterative m®.c€he goal is to link Java programs (with or without
annotations) and component models (which is assumed to bbstraction of the Java program). The prototype
read and write annotations and instantiate models from am@del implementation in ATL (see sectiBnl.3).
ThePr ocess B subproject if further developped in secti8r of chapter3.

The other presentations are related work. The last preg@mtaccurred on thursday due to timing constraints.
Here is a short summary of the presentations.

Composing Component with shared services in the Kmelia Mode TheKmelia component mode{AA06D]
was introduced as an abstract formal component model deditathe specification and development of correct
components. The model is equipped with a language whicholyierg together with the expressive power of the
model. In AAAO6b] we have distinguished two semantics for the link betweenmanent services. Only one,
monadic semanti¢svas treated in this previous article. The second pobjadic semanticsvas not treated. The
hypothesis for thenonadic semanticis: only one provided service may be associated to a reqsiedce; a
componentis both a component type and the unique instangeagequired service may be linked to at most one
provided service; only one instantiation of a service exagtany time.

In the current article we consider thpolyadic semanticsa provided service may be linked with various
required services (allowing broadcast communications)ara example, a chat system provides an interaction
service for multiple clients. In the same way a requiredisermay be linked to various provided services. We
present the new features of okimelia model, the language aspects that support these featurdsomanthese
improvements are integrated with the previous work&aorelia.

The modelling of various real life systems such as auctigtesys, chat systems, distributed brokers, etc
requires the use of several components of the same type eraseervices with identical functionalities but
coming from different components. This leads to the needtefraction means to support the assembly and the
composition w.r.t to the multiplicity of services that mag onnected. The currekinelia model and language
provide a one to one service/component interaction evesvéral components participate in the assembly. This
does not cover the kind of systems listed above.

The contribution of this article is the improvement of thg@ressivity of theKmelia component model with
shared services, multipart interaction based on synclusnery communications. We exteKthelia to support
multiple connections between services. Also, we expjidistinguish betweenomponent typesndcomponents
(as elementshence we may use several components of the same type ineamtagsAccordingly, the interaction
betweerKmelia services is updated.

18 ECONET Workshop 2008

Concurrent Event-Based AOP Protocols Concurrent Event-based AOP (CEAOPR)LBNSO0€ is based on the
seminal work by Douence, Fradet, and Sudhiok$03 on Event-based AOP. Event-based AOP extends “standard
AOP” (& la AspectJ) withstatefulor event-basedspects, which, instead of associating additional belayen
advice to an atomic execution point {ain point), associate behaviour to a sequence of execution poirgs, se
aseventsmonitored by the aspect. Whereas the initial semantics @EAvas sequential, CEAOP defines a
concurrent semantics of stateful aspects. It does so bydsrirgy abstract aspects defined by regular sequences
of events to which advices can be associated. These aspecibsract as events are plain labels and advices
are simply sequences of actions, including the predefingdrecski p andpr oceed, to specify whether an
event should be skipped or not. The semantics of such an taispien defined by two transformations, an
aspect transformation turning the aspect into a FiniteeStabcess (FSPMKO06], and a base transformation
“instrumenting” the FSP representing thaseprogram with which the aspect should be composed, suchthtbat t
parallel composition of both the aspect FSP and the instniedd=SP behaves as expected.

For instance, if we compose the base applicailenver and the aspec@onsi st ency (where the operator
> and the keyworgki p are constructs specific to CEAOP), we expect the eupdiat e not to happen during
server sessions.

Server = Session =
(login -> Session (checkout -> Server
| update -> Server | update -> Session
), | browse -> Session
).
Consi stency = Session =
(login -> Session (update > skip -> log -> Session
), | checkout -> Consistency
).
||S = (Server || Consistency).

The instrumentation scheme makes it possible to contrathsymization between the aspect and the base
program whereas additional composition operators (whichatso be translated into plain FSP) make it possible
to deal with the synchronization of several aspects.

We have used this model as the execution model of a concrietestan of Java, BatomNNO074d, which com-
bines concurrent and aspect-oriented programming. InrBdtase programs are composition of active objects.
These objects are instrumented withintcutsdescribing the events of interest whereas the aspect tranafion
of CEAOP is used to synthesized aspects described in a sgotakining FSP and Java traits. As part of in-
strumenting the base program and synthesizing the aspeetspmpiler also generates calls to a global monitor,
which is responsible for performing synchronization asc#je by the model.

This has been extended in order to support a simple compaomeael NNO7H, whereby the base is struc-
tured as components with static interfaces describingaheiredandprovidedservices, as well as thpublished
events (this is related to the notionagen modulepAld05]) and dynamic interfaces describing the corresponding
behaviour. On the aspect side, the staipect interfacedescribe the events of interest, which mayskgpable
as well agequiredandprovidedservices. In the same way as a composition of aspects anddaBi® turned
into a mere composition of FSPs, a composition of aspectEamponents can be turned into a composition of
mere components.

Finally, we have considered, on top of CEAOP, abstractibas facilitate the modelling of context-aware
applications NNO74.

We think that this work give an interesting perspective oa lihks between processes, components, and
aspects and paves the way to concrete languages that sthms@tnotions, including support at the architectural
level, in a more integrated way.

Components with N-Party Rendezvous Component software engineering has been used to improtensys
modularisation and artefact reuse. However, most of theentiproposals are restricted to binary communications.
They are often suitable, but there exist some applicatiansains, like controller synthesis, where they are not
sufficient enough. We argue that more complex interactioesieeded, and we designed a component language
with explicit symbolic protocols and N-party rendezvousihis context, we introduce sophisticated bindings to
control component behaviour in a black box way, and we addrescomputation of a global protocol associated
to component assemblies. We define an extension of the symahs product adapted to our protocols which

2.5. THE WORKSHOP SESSIONS 19

keeps inside states and transitions, the structure of timpaesite and enables four kinds of bindings In a second
step, we formalise our model and define behavioural comipstibNVe further introduce a new property called
event strictness, and we prove some preliminary resultstabe checking of these properties.

Wednesday, May 14, 2008

The initial schedule was modified in order to discuss abaiptioject itself and the workshop of Clu;.

[Time | Title | Speaker |

09:00 | Technical presentations about the Process A (behavioraatixin) subprojec
| Econet process A: Reengineering behaviour specificgtidomas Poch

11:30 ECONET Project discussions

13:00 | Social

18:30| Events

Tomas presented the work leaded by DSRG about the Processhaviour extraction) subproject. The
goal is to extract the behaviour specification of a primitbeenponent implemented by a set of Java classes.
Only primitive components behaviour will be abstracted. Composite components adaithe scope of the
subproject. Additional information is still needed whicte rovided by the process B in form of annotations
(e.g. which classes implement the component, which are ringions and requirements, which are the data
abstraction...). The strategy is to stick with Java as lagassible, make transformations over the Java AST and
perform the transformation to the target behavioural mai#te last step. The transformation chain should be
configurable. An experimentation is shown on a toy example.

ThePr ocess A subproject if further developped in secti8r8 of chapter3.

We also discussed about the organisation of the next wopkshthree months (budget, dates, people). A
two-week period is fixed that takes into account various aitalle constraints. It has been precised after the
workshop. It will held or21 of september - 24 of september 2008

2.5.2 The Working Sessions

This section summarises the discussions and contribubioithe working sessions.

Working Session Roadmap

The initial Working Session program was proposed as follow:

1. Common Component Metamodel

e Materials
e Discussions and Decisions

— Concepts and relations

— Architectural choices (core, concepts, specialisatianaptations, management, instances)
— Tools

— APl and tools

e Others: Roundtrip
e Specification document

Goal of days 2,4 = Clear agreement on the "common" metamodel
2. Tools and techniques

e Discussions offools and techniques

— Experience feedback
— Tools coordination

e Model Management

20

ECONET Workshop 2008

EMF, OCLE, 0AW...
Rule based systems, checking
Compatibility

e Re-engineering techniques

Java Compilers and Analysers
Patterns, rule based systems
Used notations and Intermediate layers (models)

(optimistic) Goal of day 4 = organize the implementation mea
3. Definition of the tasks

e What to do ?on the project architecture
— Metamodel
— Process A
— Process B
e Contributions 7a subset of
— Common Metamodel definition
— Annotation language definition (input of process A)
— Tools Prototypes for Metamodel verification, Process AcBss B

e Synchronisation points =
A-interface, Metamodel def, B-Information def

e Planningdeadlines
— Workshop Nantes report
— Workshop Cluj (end of august 2008)
— Project Evaluation (november 2007)
— Publications

(optimistic) Goal of day 5 = each participant has a somewleatrédea of what he will do

4. Production

e Workshop Report

— Collect paper and slideRlease send them to me
— Summary of the discussions

+ Bibliographical Notes

= project plan for year 2 anBvaluation

Fix the participants objectives

Documentation, research reports

e Intermediate results—=- Thirsd Workshop

Publications (?)

see also the initial 'Second year objectives’

2.5. THE WORKSHOP SESSIONS 21

Thursday, May 15, 2008

The initial schedule was modified in order to include the técal presentation of Jean-Claude and also a discus-
sion on tasks, responsabilities and delivery schedule.

[Time | Title | Speaker |
09:00 | Technical presentations about the Process B (Structuraatixin) subprojec
| Components with N-Party Rendezvous andean-Claude Royer
| Symbolic Transition Systems
| ECONET Project discussions
12:00 | Task, schedules |

14:00 | Working session Il
17:00 | Metamodel, annotations

Tasks and Scheduled The discussions started with some interrogations of Dantabe metamodel specifica-
tion and some doubts LCI had about CCMM v1.0 (big model, nough constraints and informations...). LCI
also worried about including the behavioural aspects andtations management in the metamodel. The answer
is twofold :

e Distinction between a specification metamodel and an impteation metamodel which is a subset of the
primer metamodel. Behaviours (too specific concepts), @amgintation language (java concepts), strong
model management, additional concepts (specific to oneathanconcrete component metamodel) are not
in the scope of the implementation.

¢ Validation of the metamodel (selection and definition of a@pts and their relations, constraints and exam-
ples) is one goal of this workshop.

We also discussed about modelling methodology (to repteseiation on concepts in a metamodey. using
gen/spec relations, attributes, associations)randel transformations using ATL, AW or EMF - for example
to get a CCMM instance frorextended Behavior Protocols (EBB) (Extented) Labelled Transitions Systems
(LTS)

Thereafter we discussed about tasks, responsabilitiedeattlines for the metamodel subproject.

e Tasks

— CCMM specification + special requirements (input)
— Metamodel verification

— API generation and testing
e Deadlines

— specification: 7 of june 2008
— version 1 (EMF) : 22 of june 2008
— version 2 (0AW) : end of june 2008

Discussions on process A and B, prototypes, case studynuatations and publications are delayed. We also
discussed again on the dates for the Cluj Workshop.

Working session Il One group worked on the metamodel validation (see sedti®n
The other one on annotation refinement (see sedtidn).

Friday, May 16, 2008

The initial schedule was modified in order to discuss abaiptioject itself and the workshop of Clu;.

22

ECONET Workshop 2008

[Time | Title

| Speaker |

09:00

|
12:00

ECONET Project discussions

Task, schedules

Working session IlI

Metamodel, interfaces, architecture, recoder wrappei@ark

At first we discussed about tasks, responsabilities andideador the processes subproject. Figdréis a
shapshot of the discussions.

Working session llI

One group worked on the case study selection (see setdhn

One group worked on the metamodel validation (see sedt@)n
The other one on annotation refinement and interfaces (stersé.3.1).

Chapter 3

Project and Technical Presentation
Sessions

The contents of this chapter presents a detailed snapslhio¢ @urrent state of the three subprojects, defined in
the workshop of Prague.

3.1 Metamodel Abstraction Subproject

Writer: Vladiela Petrascu
+++ TODO This is currently a draft version +++

3.1.1 ECONET CCMM - From Model Specification to Repository Implementation

+++ to wite +++

3.1.2 LCI Tool Demos Summarized
Objectives and Goals

The LCI tool demos aimed at analysing and comparing theiti@silprovided by different CASE tools for meta-
models’ representation (including Well Formedness Rul&Rs, and observers - query operations) and gen-
eration of the associated repository code. We have corsldbe following tools: Object Constraint Language
Environment (OCLE)¢cl], Eclipse Modeling Framework (EMFemf], and openArchitectureWare (0AVWD&W,

and the following criteria for differentiating among them:

(1) support offered for integrating metamodel WFRs and nfgss, counting the ease of writing and compiling
constraints (code completion was taken into account);

(2) ease of evaluating these constraints on concrete m¢gtepshots) and assistance provided by the tool in
locating a possible validation error and correcting it ialtme;

(3) completeness of the generated repository code, inutlie code corresponding to WFRs and observers;

(4) generated code’s simplicity and intelligibility (essi@l in case additions and/or changes are required on it),
as well as the amount of dependencies required when rurtroigside of its generator environment.

The presentation’s ultimate goal was for the partners t@sb@ne or several of these tools to be used within
the current ECONET project.

The LCI proposal for a starting version of the Common CompoiMetaModel (CCMM) was the metamodel
used throughout the OCLE, EMF, and 0AW tool demos. SeveraR¥Wvere specified on it, including name
unigueness constraints inside namespaces (hame unigwéimgpes,| nt er f aceTypesandConponent Types

23

24

ECONET Workshop 2008

inside
Ar chi

aReposi t ory; name uniqueness of @nponent Type’s | nt er f aces; name uniqueness of an
t ect ur e’'s Conponent s; name uniqueness of @per at i on’s Par anet er s), valid component bind-

ings constraints (compatiblent er f aceTypes of | nt er f aces linked through &i ndi ng; Assenbl y /
Del egat i onBi ndi ng semantics encapsulating constraints), or non-cyclic ieimof composed component

instances. An operation that selects@hponent Types that provide a certainnt er f aceType, from within
aReposi t ory, was taken as an observer example.
The three tool demos are summarized below, following thev@lbeentioned four criteria.

[

M ocle 2.0 - OCL Environment g@
File Model Project Edit Tools Options Help

EER BB o 5 E5 @

PN TR Ty =B BmiE M
asm «

ashDeszkLine . CompaonentType

;. Fie 7 B9 rradingSystem & f I
nventary : ComponentType B £ -
raductivithStockltemTO : Type D:MadiiCercetare'Proiecte ECONET! i _pioj o .

aleTo : Type -— ANY BINDING MUST CONNECT COMPATIELE INTERFACES -

tring : Tvpe
radingSystem : ComponentType

having the same type (exact match)

- for now, compatible
— this mseds to be sxtended to gemeral plug-inm match (comsidering the concept of subf
context Binding

inv invCompatibleInterfaces: self.from.interfaceType = self.to.interfaceType] BI

indBankif : DelegationBinding
indCashDeskConnectorlf: AssemblyBinding
ookSale : Operation

ardinformation : Parameter
ashDeskLine : Camponent
ashDeskLineBankif: Interface
ashDeskLineCashDeskConnectorlf Interface

t required to provided interfaces (of the same interface iff

S _BTAMTNG MIST BE AN TNTERFACK REQITRED BY A COMPONENT B
»

nsen 6378 vrte enantea [)

name = cashDeskLineCashDeskCornectorlf

B B User model{ComM)
| B Blcomm
B Basic
Brcore
B Intermacespecinication
B Bl Architecture
=] Binding

| LOG | Messages
Model checking finished

ehitCard : Operation [S =
etP roductwith Stockitern : Gperation bindCastDeskConnectarlf:AssemblyBinding |
nt: Type u
_E_W.lmmm.nm_cnmmmt—, = i————|inventaryCashDeskConnectorTF:Inkerface
A i R L4 inventory:Component et e tdion Conponent W ey L]
T Gearioria e name = inventoryCashDeskConnectorIf
> Servoce Ememeey e ipetiory name = inventory
Chject properties
Mame bindCashDeskConnectorlld é |
Namespare Collahoration = [Finwantor-commonanrrune] cashiesk ine:Comannent Ture! 5
Wisibility Frae: - | Dladic roiectglEC ONET! |_prajectsio R ber . 18

B [0 seltfrom interfaceType=selfto.interfaceType
A Rule failed for context "bindCashDeskConnectonf: Object -
OCLoutput Evaluation | Search results |

| 21925KB | 195136KB

Figure 3.1: Model checking in OCLE

OCLE Demo summarized

@)

)

In OCLE, the CCMM metamodel is represented as a UML 1.5ehodBoth WFRs and observers are
included inside .bcr (business constraint rules) files; WRRe specified aisiv («invariant» stereotyped)
constraints, while metamodel level queries are repredamang the OCLdef mechanism («definition»
stereotyped constraints). OCLE .bcr files can be compilel] drthe case, meaningful error messages
are displayed inside the Messages tab, including the exace phe error occurred in. Code completion
facilities are not yet provided by the tool.

In OCLE, constraints’ evaluation is performed on shaph®hese are object diagrams containing (meta)class
instances (having slots corresponding to attributes’eg)land links among them (instances of associations
specified in the (meta)model). The evaluation process caomepass either all specified constraints or a
particular one, chosen by the user. Single constraint atialuinvolves two steps: (a) selection of a contex-
tual instance among the existing snapshot objects, andéh)aion of the different constraint constituents
(in particular, the whole contraint), using the Evaluatée8ton option. Evaluation results are displayed
inside the OCL Output Tab. Observers can be evaluated bywrlfy a similar scheme. Evaluation of all
specified constraints is triggered by a Check Model menwaptll errors are reported inside the Evalu-
ation tab in a tree-like manner: eack broken constraint itk by a node having as a direct ancestor its
context (meta)class and as direct descendants rule failassages pointing at the “responsible” instances.
Selecting such a message makes the corresponding objexatddmatically set as the constraint’s contex-
tual instance (simultaneously with selecting it in the bsewand object diagram, respectively), therefore

FIGURES/OCLEsnapshot.eps

3.1. METAMODEL ABSTRACTION SUBPROJECT 25

®3)

(4)

single constraint evaluation can be done, which signifigdrelps in identifying the cause of the error. A
snapshot of the model checking activity in OCLE is illustchin Figure3.1.2

OCLE code generator uses the Apache Velocity templaggnen For each metamodel class, a corre-
sponding Java repository class is created, containingésiied attributes and references, a default con-
structor, and get/set or get/add/remove methods (depgmadirthe multiplicity) for references’ manage-
ment. In case WFRs were specified in the context of a (mets)cthen its generated code includes a
Const r ai nt Checker class with validation methods corresponding to each WFR fitlethod’s code
represents the Java translation of the WFR’s OCL consjra@unstraint breaking is indicated by a mes-
sage displayed on the standard output, pointing out thaté@dlinvariant’s name, as well as the responsible
object. Calling theConst r ai nt Checker methods is left on behalf of the user.

The generated CCMM repository code is simple, easy terstand and manage. Using it within a Java
project only requires importing the small OCLFrameworkaity.

EMF Demo summarized

1)

)

®3)

In EMF, a metamodel (CCMM, in particular) is represerasdn Ecore model. WFRs are specified in OCL
(with minor "dialect" differences compared to OCLE, eogl | sUndef i ned() vs.i sUndefi ned())
and attached to their context metaclasses in the form oftations Pam07. Metamodel level observers are
given as metaclass operations, having their body defined ICGL expression. The expression is attached
to the observer operation in the form of an annotation, tgpas child a Details Entry of the fornb@dy,
<bodyOclExpression>) - see Figusel.2 Therefore, EMF constraints and observers directly "pellthe
metamodel as annotations, unlike in OCLE or 0AW, where thieyspecified in separate files. Compilation
facilities are not provided at this level. In order to ensareorrect syntax of WFRs and observers, the
corresponding OCL expressions should be copy-pasted ahdated inside the OCL Interpreter tool. The
interpreter compiles the OCL before evaluating it, sigmalny syntax errors. Code completion facilities
are provided. Still, we find this compilation alternativersgshow cumbersome.

EMF model checking can be done interactively, by chapsitvalidate option from a popup menu on the
root element of a model. The model can be constructed ussgHhhF tree-like editor. Validation results
are displayed inside a message box. If validation problegme been identified, then their details may be
consulted, each detail line indicating both the violatedstraint’s name and the model element responsible
for breaking it. Theoretically, selecting such a detaifelshould automatically point to the responsible
object on the tree, but unfortunately this only works catlyefor the first line. We signal this as a bug.
Apart from checking the entire model by validating its roibis also possible to individually check any
of its branches (children), in a similar manner. If the vatidn fails because a constraint is broken by a
certain model object, discovering the error’s cause isiplesthrough partial evaluations. This resumes to
copying different parts of the OCL expression into the OCletpreter and evaluating them on the selected
object, which is assumed to be the contextual instance. Migiais is not as straightforward as in OCLE,
since it involves manually going back to the constraint dédin inside the metamodel file and copy-pasting
different parts of it inside the interpreter. Thus, the dtieg facilities implemented in OCLE are indeed
quite helpful and time-saving.

EMF code generation uses JET (Java Emitter Templatesjemplate language having a JSP-like syntax.
The code generator uses as input a .genmodel file, which atesothe initial .ecore file containing the
metamodel with additional generation related informatidfor each of the metamodel packages, three
corresponding code packages are generated: an interfakagea an implementation package and an util
one.

For each metaclass, one interface and one implementatiariifes are generated, inside the interface and
implementation packages corresponding to the metamod&bga to which the metaclass pertains. The
interface contains get/set methods for attributes andiptialty-one references, and only get methods for
multiplicity-many references (returning ELists). Metas$ operations’ signature is also included into the
generated interface file. Within implementation files, atiees’ notification is handled appropriately. More-
over, for eack metamodel package, corresponding factbat éllows the instantiation of model objects)
and package (that allows metadata management) interfaden@tementation files are created.

26 ECONET Workshop 2008

The package validator class (from within the generatedp#idkage) contains validate methods for all
repository classes contained in that package. For eackigpeiavariant, a corresponding validate method
is created. By default (using only the default code genematemplates), its body must be filled in by
the programmer (only the body skeleton in generated, the émdevaluating the constraint is missing).
Generating code for evaluating invariants, observers amiyetl attributes and references requires using
dynamic templates and modifying some .genmodel propefsies the approach proposed DamO07).
OCL expressions are not translated directly to the javadagg, as in OCLE. Instead, their evaluation is
delegated to MDT OCL.

Apart from the metamodel repository code, a test projectatektual model editor project can also be
generated..

(4) The generated repository code is quite complex, inolgidich functionality (e.g. notification management,
metadata management, factories, several List implemensataylored to specific needs, etc.). However,
using it within a new Java project involves several depen@sn

& lava - CCMMRepository/model/CCMM.ecore - Eclipse SDK

File Edit Refackor Mavigate Search Project Bun Sample Ecore Editar Window Help
= . H0- Q- BLF G- ™ - T | & Java
\"3 Higrarchy % Package Explor ©0 T O %) coMM.ecore) 4 ComponentRepasitary repositaory -
- = = @ architecture ~
=] ',-7‘J COMMRepasitory +_' & frhtastirg
= G < + | Component -> NamedElement
i cemm.architeckure & B Brding
L : g = fl= Ecore
+ 1 cemm, architecture.impl
- . . ! constraints - = compatiblelnterfaces
o comm, architecture, ukil
o =R SRelal
P m——— }ompatiblelnter, e = <ef bo.nterfaceType
5 I comm besic i) . = ornpatiblelnterfs pe = seff to.interfaceType. ..
. ; # 5* architecture | Architecture
+ o comm.basic, ukil :
1 # 5* fram : Interface
+ L comm, core !
.- # 5* ko Interface
4 comm, core.impl i —
b cemm.core.uti B8 Aslsam _Y o \;g-> |n. :;g
Lo c=| _
+ 1 comm.interfacespecification & - D'_a egaundig - Hihdihg
#t4 comminterfacespecification.impl temaskory
" ; o y = | Repository
+ 1 comminterfacespecification. util + p
1 =l # getComponentTypeswithProvidedinterfaceType(InterfaceType) : EEList<?>
+ L comim. repository £ on
+ & comm.repositary.impl - G " ‘ i ; ; i
T ﬁ._. o y';-> self . component Types- =select{ct :ComponentType | ct.providedInterf aces interface Type-=includes(it))
i + :
4 B IRE System Library [jrel.6.0_05] il me: el e
=
™ Plug-in Dependencies 1) EERser
g METAINF " Problems @ lavadoc = Declaration [| Properties = Consale ©7 e | v
= mode| z
Inkeractive OCL . ?
& CCMM.ecore @ Ecore T M2, - Bk *8E8=
B ComM, genmodel . 2 E-valua”ti.ng: ~
< ComponentRepository repositary | self From.interfaceType = seff ta.interfaceType
] templates
oo build.properties
5| plugin.properties Results:
“l phagin.zml true -
= COMMRepository.edit
& b‘J CCMMRepository. editor
=% CCMMReposiory tests
%) Selected Object: compatibleInterfaces - = self fram.interfaceType = self to.interfaceType...

Figure 3.2: An Ecore metamodel including WFRs and observers

oAW Demo summarized

(1) Since oAW 4 supports EMF based metamodels (among otpestgf metamodels), this tool demo has
used the same metamodel representation as the previousdoriea dAW, metamodel level invariants are
isolated in .chk files and are defined using the declarativstcaint language Check/KEH06]. Check
is an OCL-like language, thus it has an OCL similar syntaxwkoch it adds the possibility of defining
custom error or warning messages to be displayed whenewerstraint is violated. With the intention of
keeping metamodels as simple and clear as possible, in oktiditional properties are defined externally
in .ext files, using the 0AW Xtend language. This has been thiscase with our CCMM observers. In

FIGURES/EMFsnapshot.eps

3.1. METAMODEL ABSTRACTION SUBPROJECT 27

)

®3)

(4)

order to be able to refer to the metamodel classes withinxtpeessions contained in Check and Xtend
files, a line importing the metamodel should be included atlibginning of these files. This makes the
text editors metamodel-aware. The editors provide syntdaring and code completion facilities to the
user. Compilation of constraint and extension files is auattically done at the moment they are saved, and
appropriate error messages are displayed, if the case.

In 0AW, all model operations are coordinated by means wbekflow. As shown in Figure.1.2 such

a workflow consists of an ordered collection of workflow coments, each component executing a well
defined model related task. There are some standard workéimpanents offering functionalities such as:
reading (loading) a model from a file, checking the modehsfarming it, persisting (writing) the transfor-
mation, or generating code based on it, but user defined coemg®are allowed as well. Within a workflow
run, the check component verifies a model against the Chatitreints specified at the metamodel level.
If validation errors occur, these are reported on the cendidie error messages contain information related
to the name of the constraint’s context metaclass, the ndithe nstance that breakes the constraint, plus
the error/warning message specified by the user. No othe@osuipr identifying and correcting the error is
provided, such as automatic object selection and part&uations.

0AW includes a generator workfow component, that allovesiting code in a programming language (e.g.
Java) starting from a model file and some code generationléesp This is actually a model-to-text trans-
formation. The template definitions are written using theaXg language and contained in .xpt files. We
have used this facility in order to simulate a forward engiireg approach, by generating component inter-
faces’ code, starting from a model. Generating a metamegbalsitory using oAW requires thus defining
our own templates. This seems as a quite flexible alterndtivtét has not been materialized yet.

The shape of the code, its simplicity and inteligibilityectly depends on the way templates are written by
the user.

& openhrchitectureWare - CCMMRepository/sreiworkflowfworkflow.oaw - Eclipse SDK

File Edit Refactor Mavigste Search Project Bun Window Help

[} ‘?;5 O~ ‘&‘ # i R C > 5 - 12 :‘J_ﬁopenmch\tect... N
I Package Exp 7 ?2 Hisrarchy 1] workflow.oaw 07 =5
&
= : <workf low> -~

= 12 COMMRepository

N

e
o=

8 i <property file="workflow/workflow.properties"/>

= {2 metamodel
£ COMM EXTENSIONS 2t <1=-~ set up IAF for standalons execution -->
= CCMM7WFR.chk <bean ¢lass="org.eclipse.mwe.emf.Standalonefecup™s
& CCMM;core <platformlUri walue=".."/>

58 médel </hean>
<= ComponentRepositary’,xmi

& fB template €!-- load model and store it in slot 'model’ -->
T beraplaia sast <component id="reader” eclass="org.eclipse.mwe.emf.Reader™s

&8 werklow <uri walue="platform:/resource/§{modelFile}"/>
B v i e <wodelSlot value="modsl"/>
— workflow, properties </eomponent>

= JRE System Library [jrel.6.0_05]

<!== gheok model -->

= Plug-in Dependencies
META-INF
src-gen

wio build, properties

<component id="validator"™ elass="oaw.check.CheckComponent™s
cweraModel id="mm" class="org.eclipse.mit.cype.ent.EmfRegistryMecalodel />
<checkFile value="metamodel: :CCHM WFR"/>
<ewfAllChildrenSlot walue="model™/ >
<abortOnError value="trus"/>

</ component:

b
" Prablems @ Javadoc & Dedaration & Consale 0 | Propetties X% w88 #2B8--=0
<terminated:= workFlow oaw [Java Application] C:\Program Files\Javaljrel 6.0_05\bin'javaw.exe (18,.06,2008 21:59:54)
534 TINFO StandaloneSetup - Registering platform uri 'D:3yVladi}Cercetare)Proiecte)ECOL™
703 INFO CompositeComponent — Reader (reader): Loading model frow platform:/resource/CCH]
875 INFO CompositeComponent — CheckComponent (validator): slot model check file(s): metss
1219 ERROR WorkflowRunner — Workflow interrupted. Beason: Errors during wvalidation.
1219 ERROR WorkflowRunner — [cewm: :Type, int] There must be no hawe clashes inside a ke
1219 ERROR WorkflowRunner — [ccwn: : Type, int] There must be no newe clashes inside a ke

w

€ ¥

Figure 3.3: 0AW workflow run

FIGURES/oAWsnapshot.eps

28 ECONET Workshop 2008

3.2 Process B: Structural Abstraction Subproject
Writer: Pascal André

Process B provides structural informations to process 4.(Eil): an instance of the component metamodel
with a corresponding annotated Java code. More preciselgeps B is to build a couple (structural component
model, annotated Java code) from a plain Java code and efeedinformation. The two elements of the couple
should be consistent.

In this section, we recall the initial goals and desigrpaicess Bpresent an assessment of the subproject,
technical elements and future work.

3.2.1 Goals

The main goal of Process B was to abstract a component steyciomponents and architectures) from Java code
and additional user-defined information. The goals statethe Prague 2008 Workshop are recapitulated in the
rest of this section.

A general view of the process B is given in figu8el; from plain Java code and user interaction, process B
should produce an annotated Java code and a correspondipgprent model (both results must be consistent).
Some restrictions apply to the first program release:

e Input

— Annotations are those related to the Common Component Met@zeMCCMM) but do not include
other component models yet (Fractal, Sofa, ...). The lattkbe calledextended annotation

— UML models are not accepted as direct inputs but are readebygér.
e Output

— Only flat component models are targetted.

— Process B is not directly responsible of the consistenoyéxat a model and the corresponding Java
annotated code.

— The conformance of the produced component model is chetkbd enetamodel level.

| anmomon 1 | &omm 1
| _definition | | _definition__|

\ Structure

Abstraction
informations (process B)
(interactive)

informations ? /

Textual
UML -//

i diagrams

plain Java
code

Annoted code
Fractal, SOFA,
Kml...

Structural
Abstract Model
flat

hierarchical

User consistent

annoted Java
code

Figure 3.4: A general view of the process B

./FIGURES/processB.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 29

consistent

[annotated]

Java code
i

Structural
Abstract Model
i

| annotation 1 |~ conm
| _definition | | _definition |
Structure External Tools
User Abstraction - » (parsers, graphs,
informations (process B) XMl...)

interactive)

consistent

[annotated]

Java code
i+1

Structural
Abstract Model
i+1

Figure 3.5: An iterative view of the process B

3.2.2 Design

The process B was designed as an iterative process3E)g.This process is architectured around a toolbox (Fig.

3.6). One step in the process is the application of one of thest@le transformation).
The inputs are

(1) Aninput modelwhich is a couple cm, jac > wherecm is a component model (an instance of the common

component meta-model) andc is a java annotated source code.
(2) User informations from any kind (textual, annotatiodb)L, user interactions...)

The output is a new couple cm/, jac’ >.
External tools are used to process the transformations.
The inputjac may be plain Java only. The input: may be empty or disconnected from ajay:.

The idea is to combine primitive transformations and dgveleustomised (or human driven) process B. Here

are some of the primitive transformations:
(1) Annotate a Java program from user information.
(2) Build a component model from an annotated Java source.
(3) Build a component model from a plain Java source.

(4) Analyse a distributed program to detect componentsdgepent).

(5) Extract cluster using graph tools (grouping class imimponents, or grouping components into composite).

(6) Process model transformations such as fusion, setectmn the couple (code, model).
(7) Property Verification

e Check the consistency of a couptecm, jac > .

e Check the completeness of a couglem, jac > .

e Check special system properties (various kind of compayiji.)
3) ...

Important remarks:

./FIGURES/processBiter.eps

30 ECONET Workshop 2008

(1) Note that combining transformation 1 and 2 provides & fesult of process B which can be reusable in
process A.

(2) Note also that input and outputs need format filters @eaariter) which are common to all subprojects.

(3) Note also that some of these transformations ought tsbd in the other subprojects.

consistent

[annotated]
Java code

Structural

Abstract Model
i

[” annotation

| _definition_ _dﬂni_ion_JI
Annota .
Model | "7 Distri- |1 del External Tools
. Sche- from 0 Cluster | bution oae
User writer | . transfo | ... |- » (parsers, graphs,
.) . duler | annotat ing tool | analy- -
informations : from rmation XMLI...)
ions | el ser

(interactive)

|:| Input filter
|:| Output filter

consistent

[annotated]

Java code
i+1

Structural

Abstract Model
i+1

Figure 3.6: An architectural view of the process B

3.2.3 Assessment

A first prototype of the toolbox was implemented by a groupafrfstudents of a Master of computer Science
the University of Nantes. A compressed archive of their wisrkvailable on the SVN repository on directory
pr ocessB namediast er OpPr oj ect Fi nal . zi p. This files include the source programs and the docu-
mentation. The work overpassed the context of process Bubedaalso required and implemented a simple
metamodel management (using the CMM 1.0 specification). eKiperimentations were led with a small subset
of the CoCoME case study. A report relates their wBKkIFD0]. Here are some rewrited pieces of this report.

Project Goals

The goal of this master project is to contribute in the cotiog@nd in the implementation of the collective toolbox
(Fig. 3.6). Our work contains several steps. In the first part we shoolderstand the concept of components
architecture, the global architecture of the reverse+esgging application and the components metamodel. In a
second part, we should understand how the annotation lgeguad the Java code management tools works. In
the last part, we mustimplement the tool wich instanciatd@hfxom annotations and generate code from models.

Project Organisation

To be as productive as possible, we divided the developntegé sn two parts, each of them are realised by a
couple of students.

e The management of annotations :
This work was also divided in two parts :

(1) The reading of annotations :
We have to create the library of annotations. Afterwardsilitbe necessary to write a grammary with
differents annotations for read them in a JAVA code. Wheas tork is satisfied, we can extract the
structure of the Java code in a Component Model.

./FIGURES/processBbox.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 31

(2) The writing of annotations :
To do that, we need the Component Model. Thanks to the lastreniibrary of annotation, we can
give a Java code annotated, which respect the structure déMyven.

e The management of models :
As following, we have divided this part in two steps.

(1) The models transform :
If we give a description of a model in XMI, for exemple, we caartsform it in FA or Kmelia. In
this step, it have to write the transform rules.

(2) The instanciation of model :
If the user gives a Component MetaModel and complementéoyrirations, this part allows to obtain
a Component Model.

In the following diagram, we summarize the division of work :

Java
Annoted

Reading annotations Resource

Models Manager

Generating annotations Resource

Models Manager

Annotations Manager

Figure 3.7: Process B: Master Project Organisation

Both parts are relatively distinct. The management of aatimis was realised by Tanguy and Claire and the
management of models was realised by Guillaume and Vincent.
Integration

The whole process was implemented by an Eclipse Plugin @herdentation is available on SVN).

Experimentations

The experimentations were led with a small subset of the G oase study. We use for the tests the three
following components present the CoCoME case studjashBoxControl | er,: Printer Control |l er,
: Scanner Cont r ol | er. These three components are contained in the compo@asthDesk (Fig. 3.9).

1 wcomponents {l 1 «Components E 1 #COMponents E

:CashBoxController :ScannerController ‘PrinterController

Figure 3.8: Process B:Master Project: CoOCoME subset

./FIGURES/roundTripOp.eps
./FIGURES/cashdeskop.eps

32 ECONET Workshop 2008

Each component has a package name beginning avith. cocomne. t r adi ngsyst em The following
package name is the composition of the name of the compasitpa@nents which contain this component. There
are a Java interface of the component and also a folder nenm@dwhich contains the java classes that implement
the interface.

At first time, we tested a single class that contained all th@otation. This class allowed to generate the
structure that is required for the generation of the modeh $econd part, this structure is used to instanciate the
metamodel. After, the structure is exported to anothecsire to the part that writes the annotaations. In the part
that manages the writing of the annotation, we write the tatiam corresponding to the intanciated model in Java
classes that are not annotated. We check that the automatitatied classes are exacly the same that the clesses
that we annotated manually.

@InCDmpUnent(annotation_scr = {Manual™}, component name = "Cashbhesk")
public class CashBoxControllerEventHandlerImpl implements Messagelistener,
CashBoxControllerEventHandlerIf {
final 5tring CHANNEL CONNECTION FACTORY = "ChannelConnectionFactory";
private SItring topicMame:
private Context JjndiContext:
private TopicPublisher cashBEoxPubhlisher:
private TopicSession topiclession:

private Logger log = Logger
getLoggyer (CashBoxControllerEventHandlerInpl.class)

@Businessattribute[annotatian_scr = {"Manual"})
private CashBox cashhox:

@Initmethod(annotation_scr = {"Manual™}, name of the cowponent = "CashBox™]
protected CashBoxControllerEventHandlerImpl (CashBox cashbox,
3tring eventchannel)

try {
this.cashkox = cashbox;
topicaie = ewventchannel;

JndiContext = new InitialContexti();

Figure 3.9: Process B:Master Project: One class of CoCoMiGtad

Then, we tested the three CoCoME components. The previgueagh has been used on the classes of these
three components, we checked that the classes annotated pyogram were the same that the classes that we
annotated manually.

3.2.4 Tools and techniques

In this section we provide technical elements for the Magsteject.

Annotation Management

+++ to wite +++

./FIGURES/codecocome.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 33

e =
| cocome.ecore &5

| =] platform;jresource/Essaifinnotation Modelfcorome. scare:
= 4 architecture

<+ Component CashDesk

[

<> Interface org.cocome.tradingsystem.cashdeskline. cashdesk. printercontroller impl.PrinterControllerEventHandler Impl
|« Interface org.cocome. tradingsystem. cashdeskline. cashdesk. cashboxcontroller impl. CashBoxControllerEventHandler Impl
4 Provided Operation sendPaymentModeEvent

-4 Pravided Operation sendCashamountEnteredEvent

|- 4 Required Operation onEvent

|- 4 Provided Operation sendsaleFinishedEvent

-4y Provided Operation sendExpressModeDisabledEwvent

I < Provided Operation sendCashBoxClosedEvent

I~ <4 Provided Operation sendSaleStartedEvent

Interface org, cocome, tradingsystem, cashdeskline. cashdesk, scannercontroller impl. Scanner ControllerEventHandler Impl
Atkribute cashbo:x

Attribute jndiContext

Attribute scannerCaontraller

Attribute cashBoxControllerEventHandler

Attribute kokal

Attribute Firsk

|- 4 Operation ScannerController

< Operation CashBox

<4 Cperation PrinterCaontrollee

|- 4 Operation PrinterCantrollerEventHandles rpl

[+ Operation ScannerControllerEventHandlerImpl

[+ < Operation CashBoxControllerEventHandlerImpl

bbb 4 ®

e

-

- < Binding

Figure 3.10: Process B:Master Project: Extract of CoCoMitegated model

Reading annotations

Generating annotations

CCM Model Management

+++ to wite +++

Instanciation of models

Reading models slides GA
The Student Project Write Java annotations and APT praug¥fite yet another version of a CCMM ;-) :

CCM Architecture.ecore Instanciate a Model from the Anterdalava code Generate Annotated Java Code from

the model

Before the Demo What was done before the Demo DL eclipse 3.BME Copy the CCM Architecture.ecore
in the workspace Add ProjetOp 1.0.0.jar to eclipse plugirsotory

Current Status The project is on the econet svn Most stu@eatabout to be unreachable Multi source anno-

tations to be done Problems with automatic build Code Géioares not working correctly

B transformations and tools

This is a simple overview. Recode opened a new perspecteesgctiont.3.20f chapte)

(1) Annotate a Java program from user information.
This program needs input/output functions for annotatagksources.
Some tools are

e Java parsers, analysers... see se@idron page53.

./FIGURES/modelCocomeVince.eps

34 ECONET Workshop 2008

e JDK 5.0 Java Annotation Processing T@GIT?.
e A program that lead the interactions.

e XML reader/writer.

(2) Build a component model from an annotated Java source.
Having an annotated Java program, one can build the comdsmpmodel, providing we have the good
filters and formats (see the adapted transformations).

(3) Build a component model from a plain Java source.
This can be obtained by combining other transformationscesthe input model is empty, the human must
provide many informations and can be helped by the clustgr to

(4) Analyse a distributed program to detect componentsdgepent).
One way to find components is to analyse the distribution éark. Components in this case are linked
to deployment nodes. We can use RMI analysis for exampleoftoac?).

(5) Extract clusters (grouping class into components, ouging components into composite).
We need graph tools to analyse component architectures.

(6) Process model transformations such as fusion, setectmn the couple (code, model).
In collaboration with the team working on the metamodel weeha develop transformations on models
and their pending Java annotation transformations.

(7) Consistency checker.
In collaboration with the team working on the metamodel weeh@ develop tools that check the consis-
tency between models and their corresponding annotatedodagrams.

(8) Filters.
In collaboration with the other teams we have to define theéds and to develop utilitary programs to read
and write on the adopted format (XMI, MOF-XMI, Ecore, Javadé¢bAPI, ...).

(9) Scheduler.
This program will chain the transformation in order to buiiteractive B processes.

3.2.5 Future Work

This task is led by the COLOSS group; the OBASCO group alsdritarie significantly to the toolbox; the LCI
team will bring its experience on reverse-engineeringsool

Full Annotation Management

+++ to wite +++

The program is designed as a set of tools which can be dewkingependently provided the interfaces are
well defined (see sectiah2.6. The list of tools is open and will be extended each time wedrenother tool.

We have to distribute the transformations on the partidpand to define which transformations are to include
in each delivery. Transformations 1 and 2 are basic tramsftions and have to be implemented later with a core
abstractation process (transformation 8) in the beginofriggbruary 2008. These transformations are mandatory
to test the model management module and the interface acledu#en the other modules will be added by team
members.

First results on the structural analysis tool are expectethé time of the second workshop (Nantes 2008).
Results on extraction back-ends are expected till the thindkshop (Cluj 2008).

1

java.sun.com/j2se/1.5.0/docs/guide/apt/

3.3. PROCESS A: BEHAVIORAL ABSTRACTION SUBPROJECT 35

Metamodel APl integration and experimentation
Metamodel API integration

OBASCO nRne uneOtude (pésenéei_ Cluj) sur l'abstraction de classes en composants, par pkepar
aggl(")gation utilisant des techniques de graphes.

Peut-etre faire un topo general

As | promised during the workshop, I've just put the implertation of the jAbstractor tool into the repository
(svn:/laiya.ms.mff.cuni.cz/econet/processA/jabstnac

Paragraph sur Madeleine

OBASCO nRne uneOtude (pf)senéei. Cluj) sur l'abstraction de classes en composants, par phepar
aggl(")gation utilisant des techniques de graphes.

Automating the embedding of Domain Specific Languages iipEelJDT peut-etre voir

Writer: Pascal André

+++ TODO This is currently a draft version. +++

3.3 Process A: Behavioral Abstraction Subproject

Writer: Ondrej Sery, Tomas Poch

The goal of Process A was to analyze options of reverse eaginggbehavior specification from Java code and
additional architectural information in the form of Javanatations. The architectural information is the expected
outcome of Process B. Moreover, prototype implementatfosm Generic analysis tool (GAL) was anticipated.
The goals stated on the Prague 2008 Workshop are recapdutathe next section.

3.3.1 Goals

Three of the groups participating in the project have dexatiotheir own formalism for behavior specification.
Therefore, in order to allow extraction of behavior in anytleé formalisms, the goal is to design the behavior
reverse engineering process as general as possible.

To be more specific, the formalisms considered are:

e Enhanced behavior protocols (EBP) developed by DSRG,
e eLTS developed by COLOSS,
e STS developed by OBASCO.

The individual behavior specification formalisms differad, lwhich makes creation of a general tool a chal-
lenging task. However, steps common to extraction of angbien specifications (in particular behavior protocols
and LTS-based formalisms eLTS and STS) might be identifigtusTthe general approach is to divide all nec-
essary steps of behavior extraction into two parts: (i)stEpnmon to all formalisms, and (ii) steps specific to a
particular formalism.

The first part will be implemented in a General analysis taiije the second part will be performed by back-
ends specific to a particular formalism. To prevent reinienof the wheel, the analysis tool is to be implemented
using existing libraries/tools/platforms (for parsingaaources and annotation extraction, etc.). To sum it &, th
goals of reverse engineering behavior specification arelksvs:

(1) Find a suitable libraries/tools/platforms for anasysf Java sources.

(2) Create a generic Java analysis tool which produces amietiate representation of behavior suitable for
subsequent creation of concrete behavior specificatioashosen formalism.

(3) Create formalism-specific back-ends for extractioneffdvior specification from the intermediate specifi-
cation.

36 ECONET Workshop 2008

3.3.2 Assessment

So far, a prototype implementation of the GAL—caljabistractor—has been created. The use a Recoder library
[6] to parse Java source codes and then employs a set of tnanasions over the abstract syntax trees (AST).
Figure3.3.2depicts the transformation process from Java sources toradbeither LTS or regular expression.
The LTS form is designed to preserve as much information fteoriginal sources as possible. This is essential
for further transformation into other formalisms (e.g.,5dnd eLTS). However, these transformations are out of
the scope of the project.

| elTs |

LTS | Al i

AST2LTS| preserving /\\ ———————————]

Recoder Inlining Merged AST data __\?: E

Java Ricsql_er Class 5] ; STS
asT | Y :]

@ AST2BP BP |

AST transformations

Figure 3.11: Workflow of the process A

3.3.3 Tools and techniques

The input of the jabstractor tool is a set of annotated Jaueces, a name of a component and a specification of
intended usage of the primitive component (Bid2. The annotations were defined KEPRO7. The sources
are parsed using the Recoder tool which results iatzsiract syntax tre€AST) of the involved Java classes. As
the Recorder tool is specialized for Java, it provides massful features; e.g., resolving references, side-effect
removal and so on. Moreover, it provides a framework fording user defined transformations based on the
visitor pattern.

In the next step, Recoder transformations are applied teertrakoriginal Java code closer to the capabilities
of target formalisms. The result is still a parse tree of aJXade. The strategy is to stick with Java parse tree
as long as possible and perform the transformation intoatget formalism as the last step. The motivation is
reuse of transformations independently on the target fisma The target formalisms have the power of finite
automatons, while Java is Turing complete. However, asatget formalisms are intended to capture just the
behavior on a component boundary, internal computatiohsrethe complexity is often hidden, may be omitted.
In particular, the omitting works in terms of following defions:

Definition 1 Letaandbbe AST nodes. We say tltds reachable fronaif

e bisin the subtree o&
or

e there is a method declaration, such that nodeall f is reachable frona, andb is reachable from method
declaration

The omitting transformation the s&p,.,,,, all AST nodes reachable fronpaovidedmethod declaration, and
Rpeq, all AST nodes, such thatrequired or businessnember variable reference is reachable from it. The sets
of provided methods, required and business member fielddedireed in source codes by annotations. Finally,
an intersectiol = Rpreq N Rproy iS computed. Then all statements (AST nodes) that are nbieirset/ are
removed together with all declarations which are not refeeel any more. There are also other transformations,
which can be applied at this point, depending on the targehdbsm (side effect elimination, removing of a
method parameters, removing of recursion).

The result of transformations is a set of simplified JavaselagFig.3.13. In the next step, these classes are
merged into single one, roughly corresponding to a compiidre merged class contains:

FIGURES/process_a.eps

3.3. PROCESS A: BEHAVIORAL ABSTRACTION SUBPROJECT 37

public class A{
@businessboolean cond;
B _b =new B();

@provided
public void a(){
Aa for (int i = 0; i<10; i++)
- ~ } {bO;b0;:}

public void b(){
Q 2 if (cond) hp();
- else d();
}
e public void hp(){

}
public void d(){_b.x();}

. Cc J }

public class B{
@required C c;
public void x(){c.c();}
}

Figure 3.12: Example input of the process A. There is onairs of the A class and one instance of the B class
within the instance of the component

public class A{ if (cond) NULL;
@businessboolean cond; else d();
B _b =new B(); }
@provided public void d(){_b.x()}
public void a(){ }
for (int i = 0; i<10; i++)
{b();b();} public class B{

@required C c;
public void x(){c.c()}
public void b(){ }

Figure 3.13: Example after omitting an internal behavior

Method declaration for each method provided by the compibnen

Constructors, thread definitions

e Field for each required interface

Field for each business member

A method of the merged class may only access a business fiéld\varke methods on required fields. Merging
of classes involves method and member fields inlining. Tieeeenumber of issues regarding both control flow
(recursion, method overloading, inheritance, virtualmoels) and data (points-to-analysis, method parameters).
Typically, these are often related to the halting problemsuch cases, overspecification is applied.

Having the merged class in hand, the final step—transfoomatito a particular target formalism—can be
done (Fig3.14).

3.3.4 Objectives and organisation

In order to proceed and provide a working tool chain, follegviasks must be done. First, annotations used by
the process A and process B should be synchronized. Als@ltkractor tool should be improved to use method

FIGURES/input.eps

38

ECONET Workshop 2008

public class Merged{
@required C c;
@businessboolean cond;
bool _b _mode;

@provided
public void a(){
for (int i = 0; i<10; i++){

if (cond)NULL;

else if (_b_mode) c.c()
if (cond)NULL;

else if (_b_mode) c.c()

}
?a{

{
swi t ch(cond) {
case TRUE:
case FALSE: !c.c;
}s
swi t ch(cond) {
case TRUE:
case FALSE: !c.c;

}
}*
}

Figure 3.14: The merged class and the result in EBP

parameters. At the Nantes workshop, opportunities for ifeedRkecoder tool also in process B emerged. In order
to minimize effort, a wrapper encapsulating the Recodectfonality used by both processes should be created.

Tasks related to the jabstractor tool (and process A) are talried out by the DSRG team. Synchronization
of annotations is to be done in cooperation with COLOSS.

Chapter 4

Working Sessions

This chapter relates the working sessions.

4.1 Introduction

The goals of the working sessions are mainly to capitaliseettperience and to fix a roadmap for the project
continuation. This means to clarify the common issues:

(1) Metamodel: validate the metamodel in order to benefinfem aggreed one for the end of the project.

(2) Interface: define better requirements and provisiomefstubprojects including annotation definition, tools
sharing, special requirements, API...

(3) Case study: define a convenient subset of the benchmedkaysall subprojects.

From the organisation point of view the objective of the wogksessions is to refine the task initial definition and
planning the detailed objectives in a feasible manner, to define tiehe concrete and coordinated contribution
of each partner, to define task, products and results, to misgatasks (responsibilities, contributors, schedyle...
until the next workshap Last, everyone was invited to think about a project cortiimn and valorisation by
publishing results.

4.2 Metamodel Specification

Chapter 1 and 2 ofAP0g are a detailed explanation on the work leaded in this warkjroup. The reader is
invited to consult these chapters. The whole docun®ROf is the result of the validation process leaded by this
group in the working sessions.

4.3 Annotations and interfaces

A working group was build upon the interface between proeedsincluded annotations, tools and special re-
quirements.

4.3.1 Annotations Update

The annotations defined in the workshop of Prague have béi@eddn order to take into account experience
gained from the work on processes A and B, and also to alloayaiwf sources.

Component - Class Relation

39

40 ECONET Workshop 2008

@Target (ElementType . TYPE)
public @interface InComponent {

String [] annotationSrc ();

String [] componentName ();

}

Entry points

@Target (ElementType . TYPE)

public @interface InitClass {

String [] annotationSrc ();

String [] componentName ();

}

@Target({ ElementType.CONSTRUCTOR, ElementType.METHOD
public @interface InitMethod {

String [] annotationSrc ();

4.3. ANNOTATIONS AND INTERFACES

41

String [] componentName ();

}

Interfaces

Provided

@Target (ElementType .FIELD)
public @interface Provided {

String [] annotationSrc ();

String [] modellfaceName();

}

@Target (ElementType.TYPE)
public @interface ProvidedIf {

String [] annotationSrc ();

String [] modellfaceName ();

String [] javalfaceName ()default { "" };

42 ECONET Workshop 2008

@Target (ElementType .METHOD)
public @interface ProvidedMethod {

String [] annotationSrc ();

String [] modellfaceName ();

}

Required

@Target(ElementType.FIELD)
public @interface Required {

String [] annotationSrc ();

String [] modellfaceName();

}

Business elements

@Target (ElementType.TYPE)
public @interface BusinessType {

String [] annotationSrc ();

}

4.3. ANNOTATIONS AND INTERFACES 43

[* %
x Marks particular Java class attributes as important for imess logic.
x/

@Target (ElementType.FIELD)
public @interface BusinessField {

[% %

x+ @return the array of sources for this annotation
*/

String [] annotationSrc ();

}

x Marks particular method parameter as important for busine®gic.
.
*/
@Target (ElementType . PARAMETER)
public @interface BusinessParameter {
[% %
x+ @return the array of sources for this annotation
x/
String [] annotationSrc ();

}

4.3.2 Interface with Recoder

+++ TODO G lles +++

Figure 4.1: Recoder wrapper and processes

./FIGURES/recoderwrapper_and_processes.eps

44 ECONET Workshop 2008

4.4 CoCoME

The CoCoME case study is used aseanchmark for each of the three subprojects. The whole benchmark is too
big to serve as support for the experimentations. In ordselect a subset of it as the experimentation field a short
working group was installed.

The constraints are:

e The selected subset must be large enough to include repatigerexamples for each subproject (concepts
and constraints for the metamodel, primitive componenttierbehaviour abstraction, primitive and also
composite components for the structural abstraction.

e The selected subset must be as small as possible to avoidainseming instanciations.

e Theslice is vertical (UML model and Java code).

«components E:l
TradingSystem::CashDeskLine::CashDesk
1 «components {l 1 «component {l 1 «COmponents E 1 «COMmponents E T «component» E 1 «components {l 1 «components {l
:CashDeskApplication :LightDisplayController :CardReaderController :CashDeskGU| :CashBoxController :ScannerController :PrinterController

-~ A A ? i\

[,
SaleStaredEvent

| PreductBarcodeScannedEvent | ringTeteiChangedEvent

op

P\NE teredEvent

CrediCardPaymentEngtledEvent Chengemeur nc loulatedEvent
CashBoxClesedEvent SeleStaredEve;

ExpreashiodeEnsbledEvent

Event
PINEnteredEvent ExpreashisdeOisabledEvent
ExpresshlzdeEnabledEvent

Runig TeiaiChangedEvert
CashamountEnered

Figure 4.2: CoCoME subset 1

We retain two included subsets related to two deadlines:
e Cluj: TheCashDesk composite component for the structural abstraction. Warétvo included subsets:

— TheCashDesk composite component for the structural abstraction.
— TheCashDeskAppl i cat i on primitive component, which is a component of tteshDesk com-
posite component that helds a dynamic behaviour.

e End of project The CashDeskLi ne composite component, which is the front-end subsystemeofifi:
plication.

4.5 Task, responsabilities, schedule
Figure4.4is a snapshot of the discussions about tasks, responigstalitd deadlines for the processes subproject.

e Metamodel (Viadiela)

— CCMM specification + special requirements (input)
— Metamodel verification

— API generation and testing

— Deadlines

x specification: 7 of june 2008
x version 1 (EMF) : 22 of june 2008
* version 2 (0AW) : end of june 2008

./FIGURES/cashdesk.eps

4.5. TASK, RESPONSABILITIES, SCHEDULE

45

«components

TradingSystem::CashDeskLine

«components

:CashDesk

]

1

1

1

«components E 1

«components {l

1 «Components {l

1 «COMmponents E

1 wcompanents E:l

:CashDeskApplication :LightDisplayController :CardReaderController :CashDeskGUI :CashBoxCantroller :ScannerController :PrinterController
1 «components @
:EvetBus
K' «components g)
| cashDeskChannel:EventChannel
/1 «components g)
| extCommChannel:EventChannel

1 wcompoenents {l

:Coordinator

Used to access the Inventory
to get the product description
of the cumrently scanned product.

e Process A (Tomas)

— Behaviour abstraction

Events for finished
sales are sent through
this interface to the Inventory.

Figure 4.3: CoCoME subset 2

— Submodel instanciation

— Deadlines: september (the last team in the dependency)chain

e Process B (Gilles)

— CCMM instance of CoCoME + EMF API + Java files (input from LCI)
— Input/Output of Java annotations

— Deadlines : begin of july 2008

— Studies for other tools of the toolbox

e Case Study (Petr)

We reminded the current (shared) set of tools and framewerlse for the project:

e Code: RECODER/APT

e OCLE/EMF/0AW/ATL

./FIGURES/cashdeskline.eps

46 ECONET Workshop 2008

v Deadlines:
Metamodel Management | - specification - 07/06
| - special requirements - Spec.
Vladiela _API -vl:22/06
L. .
-v2:end of june
Process A [Behavioural Process B I Behavioural
Deadii | Abstraction of | Abstraction of Deadlines:
eadlines: rimitive — e = rimitive -
~eluj Tomas | P | “annotation 1 Gilles |p annota.ted code
components L definition I |comp0nents - model instance
- Sub CCMM - Sub CCMM - begin of july
instanciation instanciation
* {
4
CoCoME [- subset to decide

- primitive component (A)

Petr , - composite (B)

Figure 4.4: Workshop whiteboard 3

./FIGURES/ecoTasksWN.eps

Chapter 5

Conclusion

We report many informations of the workshop in this docum&hts work has also been intended to be the tech-
nical part of the project second year report together wighnttetamodel specification documeAB0d produced
in the same period.

The workshop indicates the current state of the projectclvig a bit in hurry againts its planification. Small
prototypes have been produced for each subproject, bgrsgime experience on the architecture and technical
issues.

Common parts have been discussed and validated during theshvap in order to allow everyone to develop
the solutions on step further until the next workshop iné¢hreonths.

47

Bibliography

[AAAOGa]

[AAAOGD]
[ACPRO7]

[AId05]

[APOS]
[BFFDO8]

[BHMO6]

[BRO2]

[CCG*+04]

[CDH*00]

[CGJ00]

[CKSY04]

[DamO07]

[DFS02]

Christian Attiogbé, Pascal André, and Gilles Artel. Checking Component Composability. In
5th International Symposium on Software Composjt@iume 4089 ot ecture Notes in Computer
ScienceSpringer Verlag, 2006.

Christian Attiogbé, Pascal André, and Gilles Ardel. Checking Component Composability.Sth
International Symposium on Software Composition, SG/6Bime 4089 of NCS Springer, 2006.

Pascal André, Dan Chiorean, Frantisek Plasil, Jeah-Claude Royer. ECONET Project - Prague
Workshop Report, September 2007.

Jonathan Aldrich. Open modules: Modular reasorabgut advice. In Andrew P. Black, editor,
ECOOP 2005 - Object-Oriented Programming, 19th Europeanf@@ncevolume 3586 of_ecture
Notes in Computer Sciengeages 144-168, Glasgow, UK, July 2005. Springer Verlag.

Pascal André and Vladiela Petrascu. ECONET Proj€&MM Specification v. 1.1 , June 2008.

Tanguy Beneteau, Vincent Fouquet, Claire Froraibrdnd Guillaume Doux. Operationnal project:
Reverse-engineering on JAVA. Master’s thesis, MSc on So#wArchitectures, University of
Nantes, March 2008. directed by Pascal André and Gilles énelo

Tomas Barros, Ludovic Henrio, and Eric Madelaineodél-checking distributed components: The
vercors platform. Innternational Workshop on Formal Aspects of Componentodt (FACS’06)
Prague, September 2006. Electronic Notes in Theoreticalpgiber Science (ENTCS).

Thomas Ball and Sriram K. Rajamani. The slam projet#bugging system software via static
analysis. INPOPL, pages 1-3, 2002.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, aidt Veith. Modular verification of
software components in ¢EEE Trans. Softw. Eng30(6):388—402, 2004.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawobach, Corina S.&areanu, Robby,
and Hongjun Zheng. Bandera: extracting finite-state mofdets java source code. IFCSE '00:
Proceedings of the 22nd international conference on Soétwagineering pages 439-448, New
York, NY, USA, 2000. ACM Press.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan LuHmhahut Veith. Counterexample-
guided abstraction refinement. @AV '00: Proceedings of the 12th International Conferenoe o
Computer Aided Verificatigrpages 154-169, London, UK, 2000. Springer-Verlag.

Edmund Clarke, Daniel Kroening, Natasha Sharggend Karen Yorav. Predicate abstraction of
ansi-c programs using sa&torm. Methods Syst. De25(2-3):105-127, 2004.

C.W. Damus. Implementing Model Integrity in EMF wNMDT OCL, 2007. Eclipse Corner Articles,
online at:
http://www.eclipse.org/articles/article.php?file=isht-EMF-Codegen-with-OCL/index.html.

Rémi Douence, Pascal Fradet, and Mario Studholtaméwork for the detection and resolution of
aspect interactions. In Don Batory, Charles Consel, anddWaha, editorsGenerative Program-
ming and Component Engineering: ACM SIGPLAN/SIGSOFT Camée, GPCE 2002 - Proceed-
ings volume 2487 ofLecture Notes in Computer Sciengmges 173-188, Pittsburgh, PA, USA,
October 2002. Springer Verlag.

48

BIBLIOGRAPHY 49

[DLBNS06] Rémi Douence, Didier Le Botlan, Jacques Noyé, Bfatio Stdholt. Concurrent aspects. Pmo-

[Eis05]

[emf]
[MKO06]
[NNO7a]

[NNO7b]

[oaw]
[ocl]

[PNPRO5]

[PP99]

[PPOT7]

[PV02]

[VKEHO6]

ceedings of the 4th International Conference on Generaiagramming and Component Engi-
neering (GPCE’06)pages 79-88, Portland, USA, October 2006.

Cindy Eisner. Formal verification of software scaicode through semi-automatic modelirgpft-
ware and System Modeling(1):14-31, 2005.

EMF website. http://www.eclipse.org/modeling/émf
J. Magee and J. Krame€oncurrency: State Models and Jawiley, 2nd edition, 2006.

Angel Nufiez and Jacques Noyé. A domain-specificdagg for coordinating concurrent aspects in
java. In Rémi Douence et Pascal Fradet, edBéme Journée Francophone sur le Développement
de Logiciels Par Aspects (JFDLPA 20Q0Tpulouse, France, March 2007.

Angel NUfiez and Jacques Noyé. A seamless extensmongponents with aspects using protocols.
In Ralf Reussner, Clemens Szyperski, and Wolfgang WeckoresgivVCOP 2007 - Components be-
yond Reuse - 12th International ECOOP Workshop on Compebeanted ProgrammingBerlin,
Germany, July 2007.

0AW website. http://www.openarchitectureware/org
OCLE website. http://Ici.cs.ubbcluj.ro/ocle/indatm.

Sebastian Pavel, Jacques Noyé, Pascal PoizaleandClaude Royer. A java implementation of a
component model with explicit symbolic protocols. Pnoceedings of the 4th International Work-
shop on Software Composition (SC'08plume 3628 ot ecture Notes in Computer Scienpages
115-125. Springer-Verlag, 2005.

Radek Pospisil and Frantisek Plasil. Describind-tlnectionality of EJB using the Behavior Proto-
cols, 1999.

Pavel Parizek and FrantiSek Plasil. Modeling emwitent for component model checking from hi-
erarchical architecture. Ifhird International Workshop on Formal Aspects of Compaoisarftware
(FACS 2006) volume 182 ofElectronic Notes in Theoretical Computer Scienpages 139-153.
Elsevier B.V., 2007.

F. Plasil and S. Visnovsky. Behavior protocols foftaare components, 2002. IEEE Transactions
on SW Engineering, 28 (9), 2002.

M. Voelter, B. Kolb, S. Efftinge, and A. Haase. Frdmont End To Code - MDSD in Practice, 2006.
Eclipse.org, online at:
http://www.eclipse.org/articles/Article-FromFrontEiloCode-MDSDInPractice/article.html.

Appendix A

Collaborative Tools

In this appendix chapter we provide informations on the 8ufion repository and the wiki tools.

A.1 SVN Repository

The Subversion (SVN in short) repository was set up at DSR@vg@Jsity of Prague) in october 2007. Reports,
specifications and developments can be updated on this S¥sitery.

E)econetzeconet_svn [COLOSS] - Mozilla Firefox -10f x|
Fichier Edition Affichage Historigue Marque-pages ¥ahoo! Outlls 2
@ - _ " @ ﬂl’ i{ hitkp: v lina, sciences, univ-nantes, frfcoloss wikifdolo, php?id=econet:econet_svn ;_Il"‘ }‘ “E]_'iGocgle | -._|
econet:econet_svn
| Editthis page | | Old revisions | | Recentchanges | | ' Search |
hide Trace: # start # cormmon_tools # econet # materials » eronet_sun
Index o
Econet Collaborative Tools
This is an index over all zvailable Y . TN
pages ordered by (#namespaces, o
. | Edit|
¥cune SVYN Repository
¥ et cituleth BLE o el ol T L | - - L v« S—
* econet
+ biblio Restructured on the 19 of may 2008
¥ minutes
¥ nantes2008 =1 5w | @processﬂu
¥ pragues2éd? BB cconer f) processt
= annotations F-_] .sen [tools
. :e:awnura:_mn:e: L Bl casesrciy Sreports
= behavioural_model_comparisan =
2 ST = ig] metamodels fgdcasestudy
= common_tools o i I
= econet_sun [ﬂ [_1 5N 1.
= gilles_random_ideas -+l commt 1 dmetamodsls
= java_header =] F,J concreke
= mriaterials B0 svn
= mata_modsl E-2] Kmefia
= nantes2008 g soFA
2007 e
g =g drafts
= process_a o
= process b L;:j] -
= start i ceTml;
= structural_model g emm_dsrg
¥ htech E] cmmi.0
* intranet [z others
b kmelia ~lg] implementations
b miles Iy specfications
> playground 2] processh
ok] processa
= start L
[—H;] reports
&0 .svn b
6_1 nantes2008
& Q] pragus2007 -
-4zl tools
& .svn
=g econet
1 s
~fg] annatations =114 _I
%
Terming 7

Figure A.1: Project SVN Repository

DSRG has set up a SVN repository for the project and put thertépit (in the directory reports/Prague2007).

50

./FIGURES/wikiTools.eps

A.2. WIKI 51

The repository is running &t In a separated email, | will send
you login and password required to access the repository.

You can obtain svn from Also, the svn documentation is available
from the same site (direct url is).

A brief overview of the most important commands:

svn checkout svn://logi n@iya.ns.nff.cuni.cz/econet directory
Initial check out of the repository content to the specified
directory.

svn comi t
Commits local changes to the repository

svn add <nane_of file_or_directory>
Adds new file or conplete directory to the repository.
The command shoul d be follow by "conmmit" (the "add" comrand
just schedules files/directories to be added and "comit" really
commits them and they beconme visible for others).

svn update
Updat es your (previously checked out) copy of repository
by commts nade by others.

svn help
Overvi ew of all conmands

svn hel p <command>
Detai |l ed hel p about a particul ar comand.

If you prefer a GUI client, you can use TortoiseSVN clieni {)

A.2 Wiki

This wiki was installed at LINA (University of Nantes, EMN) iapril 2007. It includes discussions, a repository
for project and workshop material, etc. The history of thejgct will be found on this wiki. In particular there
are chapters for each workshop (see fighi2a

Project material and documents are downloadable from tattwiki (figure A.3) and the SVN repository
(figureA.1).

svn://aiya.ms.mff.cuni.cz/econet
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://tortoisesvn.tigris.org/
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:materials:start

ECONET Workshop 2008

“econet:start [COLOSS] - M fox 8] x|
Fichier Ediion Affichage Historique Marque-pages Yahoo! Qutls 2
@ - @ ”: m ET lina, sciences. univ-nartes.fr il hptid=econekistart &)
econet:start
| Editthis page || oldrevisions | Recentchanges | | | search |
hide Trace! # materials econet
Index s
Welcome to the COLOSS/ECONET Wiki LR
This is an index over all svailable pages e Eorre
ordered by # namespaces,
s ' g Project description in french % pdf er in english 7jpdf COLOSECONE Tk
~Warkshops
» costo An Egide program | ©http://www,egide. assa. fr/fr/programmes/econet/ i Workshep
* econet ~Nantes Workshop
¥ bi -Pragues Waorkshop.
» minutes Project Materials “Ecanat Map
b nantes2008
» pragues2007
lcicenia = Documents, Technical Descriptions
» behavioural_model = Econet SVN
= behavisural_model_comparizon = Discussions
= common_tools
——_ [Eat]
v lidsarmndnrmiidass Workshops
® java_header
= materials 1 [
= mets_model Cluj Workshop
o nantes2008
b The warkshop will held an 21 of september - 24 of september 2008
b SZEZEE?Z || The workshop page here
= start ¥
= structural_mods! Nantes Workshop
* htech
: :“"‘Ij‘“ 2008/05/12 - 2008/05/16 - Thanks to the COLOSS group for the local organisation.
> miles | The workshop page here
+ playground
¥ wriki Edit.
. start | Pragues Workshop
| 2007/09/03 - 2007/09/07 Thanks to the DSRG group for the local organisation.
The workshop page here

Econet Map (eal

Terming

start [COLOSS] - Mozilla Firefox 8] x|
Fichier Ediion Affichage Historique Marque-pages Yahoo! Qutls 2

@ 2-¢ L hRY

iences.uriv-nantes. fr i hp?id=

15

econet:materials:start

| Editthis page || 0ld revisions | Recent changes | | | search |
hide | Trace:» 7 rnatetials » E3 7 % » rnaterials » 7 ® venue » econet » matetials
Index 5 : e s

Econet Project Materials ESLC T

This is an index aver all available pages

ordered by Fnamespaces. S -E(-\':)rvr;:i;mcic:’m::sna\s
* coloc ~Technical points
Py Subprojacts

cost - - +CoCeME Benchmark
& e Project Overview Syt b

» biblio Iormon Thols

v materials

= snnotations >
= behavioural_model_cormparizon
= gilles_random_ideas
= java_header
= old_annotations
= =Bt Technical points
» minutes
» nantes2008 o
inaiy] = Annotation language defirition annotations
> tools = Behavioural Model Comparison behavioural_model_comparison
= meta_modsl = Metamodel definition meta_modal
: mme s = header to bs defined for the project files java_headsr
= process. ; :)
s = Put your randam Ideas and discussion pages here 1 gilles_random_ideas

intranat Subprojects

;
e [Metamodels Process a process B|
weiki
start

2
R

|meta_model |Process A |Process B |

CoCoME Benchmark

= CoCoME example assignment: © Z2IF
| = CoCoME solution in SOFA: @POF

Bibliography

Bibliography work {project) here

Commoan Tools

A page describing the common tools and alternatives common_tools

Logaed in ast COLOSS Taam

Terming

Figure A.3: Project material on the Wiki

./FIGURES/wikiStart1.eps
./FIGURES/wikiMat.eps

Appendix B

Common Tools and Interface

In this appendix chapter we provide informations on the rhadd language tools. Interface between subprojects
can be text files or XML files but this quite poor and each groulpneed to develop tools on Java and Models.
In order to get a standard vision of the usable technologees&ed to agree on the model and metamodel tools
used in each subproject.

B.1 Java Tools

Java tools include annotation management and java codgsanal

B.1.1 Java/Annotation Tools

Several tools will be used in more than one subproject.

Tools Webography
(1) JavaCcC|
(2) Java Development Kit)
(3) ANTLR,
(4) Java CUP;
(5) SableCC|
(6) Recoder|

B.1.2 Tools for Java source analysis

Having the Java sources properly annotated, the questlomvofo extract the annotations and analyze the sources
comes up. There is quite a choice of tools to be used for thizgse.
Possible options are:

e JavaC P]l—standard Java compiler from Sun—is a natural first optisntas standard part of the Java
development kit (JDK) and features a reasonable interfaceither annotation processing alone or to
obtain the complete abstract syntax trees.

e JavaCC (Java Compiler Compilefl) s a generator of parsers. To create a parser, it uses a gkgmmar.
e ANTLR [3] is another parser generator which also uses LL(n) grammars
e Java CUP{] is also a parser generator, but in comparison to the prevaoes it uses LALR(1) grammars.

It is quite similar to the standard YACC and Bison tools. Imtast, it is written in Java.

53

https://javacc.dev.java.net/
http://java.sun.com/
http://www.antlr.org/
http://www2.cs.tum.edu/projects/cup/
http://sablecc.org/
http://recoder.sourceforge.net/

54 ECONET Workshop 2008

e SableCC 5] is another LALR(1) parser generator.

In a case, the chosen parser generator does not providecallaralyser, a usage of tools like JLex and JFlex
has to be considered.

Choosing the suitable tool will require deeper exploratiad in-depth analysis of all features provided by the
tools. The preferred option is to use JavaC, as it alwaysaguiees to parse the current (and also older) version of
the Java languages and also it does not introduce any thitgi4ool dependencies.

RECODER Thecurrent choicds the Recoder tool, available on a sourceforge project

RECODER is a Java framework for source code metaprogramanimed to deliver a sophisticated infrastructure
for many kinds of Java analysis and transformation tools.

Program ™
Parser & Metamodel
Analyzer — '/

—>
—

Figure B.1: Recoder Metaprogramming Cycle

The following table gives a short description of the differéayers of RECODER features as well as the
application perspectives that these layers offer:

e Parsing and unparsing of Java sources

In addition to abstract model elements, RECODER also suppohighly detailed syntactic model - no
information is lost. Comments and formatting informatiaga eetained. The pretty printer is customizable
and will be able to reproduce the code (possibly improvingruip, but retaining given code structures) and
to embed new code seamlessly.

Possible applicationsSimple preprocessors, simple code generators, souresbaaitification tools

e Name and type analysis for Java programs

RECODER can infer types of expressions, evaluate comipile-tonstants, resolve all kinds of references
and maintain cross reference information.

Possible applicationsSoftware visualization tools, software metrics, Lirkeisemantic problem detection
tools, design problem detection tools (anti-patterng)ssireferencing tools

e Transformation of Java sources

RECODER contains a library of small analyses, code snippeégators and frequently used transforma-
tions.

Possible applicationsPreprocessors for language extensions, semantic maspes;t weavers, source code
obfuscation tools, compilers

e Incremental analysis and transformation of Java sources

Transformations change the underlaying program modeinfoemental and iterative use, this model has
to be updated accordingly. Transformations have to take @bdependencies by updating their local data

http://recoder.sourceforge.net/
./FIGURES/MetaprogrammingCycle-small.eps

B.2. JAVA ANNOTATIONS 55

and setting back matching positions when necessary; hayRE€ODER will analyze change impacts for
its model and perform updates automatically.

Possible applications Source code optimization, refactoring tool, software maiigpn programs (Smart
Patches), design pattern, clichés and idiom synthesikitectural connector synthesis, adaptive program-
ming environments, invasive software composition

B.1.3 Model Engineering Tools

We need tools for model management, preferably on Eclipse.aWéady discussed on a modeling tool around
Eclipse technologies (Ecore, XML, EMF, MOF...) that alloiws

(1) describe and check component metamodels CMM (with stralcand behavioural features, with a model
that links to Java code)

(2) describe and check component models CM
(3) provide an API to navigate on and query models, to addatdjwers and processing on models
4) ...

LCI should maintain this (CMM-CM) layer since it relates tetamodels.

At first sight OCLE can provide the main elements on pointsd Zbut it doesn’t provide an API usable in
process A (structure) and B (behaviour).

Other tools exist that can help to use Ecore without handfidectly:

e Kermeta (IRISA)

e ATL (LINA)

e ArgoUML tool (OpenSource)
e others...

Information on this aspect can be found here:

o Generalities

Eclipse Modeling Tools

Kermeta (IRISA)

ATL (LINA)

Tools

It would be helpful to compare tools

B.2 Java Annotations

In this appendix section we ould provide the Java definitioihe annotations.
See sectiod.3.1

http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://argouml.tigris.org/
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language
http://www.eclipse.org/modeling/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47

List of Figures

1.1 Econet Architecture: finalversion 8
1.2 ProjectWiKi. o e 9
2.1 WorkshoppagesontheWiki e 10
2.2 Workshop Materialsonthe Wiki 11
2.3 Workshop Organisationonthe Wiki 12
3.1 Modelcheckingin OCLE e 24
3.2 An Ecore metamodel including WFRs and observers 26
3.3 oAWworkflowrun 27
3.4 AgeneralviewoftheprocessB 28
3.5 Aniterative view oftheprocessB 29
3.6 Anarchitectural view of the processB. 30
3.7 Process B: Master Project Organisation. 31
3.8 Process B:Master Project: CoOCOME subset, 31
3.9 Process B:Master Project: One class of CoCoME annoted. 32
3.10 Process B:Master Project: Extract of COCoOME genematede! 33
3.11 Workflow ofthe process A 36
3.12 Example input of the process A. There is one instanckeoftclass and one instance of the B
class within the instance of the component, . 37
3.13 Example after omitting an internal behavior. oL 0oL 37
3.14 Themergedclassandtheresultin EBP., 38
4.1 Recoderwrapper and ProCeSSES. v« v v v e e e e e 43
4.2 CoCoMEsubsetl. 44
4.3 CoCOMESUbSEt2. 45
4.4 Workshopwhiteboard 3. 46
A.l Project SVN RepOSItOry o 50
A2 Project WIiKi. o 52
A.3 Projectmaterialonthe Wiki. 52
B.1 Recoder Metaprogramming Cycle 54

56

	Introduction
	The 16293RG ECONET Project
	Motivations
	Partners
	Initial Plan
	Current State

	Report Contents

	The Workshop at the University of Nantes
	Preparation
	Material
	Organisation

	Objectives
	Participants
	Program and Schedule
	The Workshop Sessions
	The Presentation Sessions
	The Working Sessions

	Project and Technical Presentation Sessions
	Metamodel Abstraction Subproject
	ECONET CCMM - From Model Specification to Repository Implementation
	LCI Tool Demos Summarized

	Process B: Structural Abstraction Subproject
	Goals
	Design
	Assessment
	Tools and techniques
	B transformations and tools
	Interface
	Organisation

	Process A: Behavioral Abstraction Subproject
	Goals
	Assessment
	Tools and techniques
	Objectives and organisation

	Working Sessions
	Introduction
	Metamodel Specification
	Annotations and interfaces
	Annotations Update
	Interface with Recoder

	CoCoME
	Task, responsabilities, schedule

	Conclusion
	Collaborative Tools
	SVN Repository
	Wiki

	Common Tools and Interface
	Java Tools
	Java/Annotation Tools
	Tools for Java source analysis
	Model Engineering Tools

	Java Annotations

