ECONET Project
NANTES 2008 - WORKSHOPREPORT

Pascal ANDRE Dan CHIOREAN Frantisek PLASIE Jean-Claude ROYER

2008, 12-16 May

EGIDE

ILINA CNRS UMR 6241 - 2, rue de la Houssiniére, B.P.92208, B2RINantes Cedex 3, France

2Computer Science Research Laboratory, Universitatea BB\BBLYAI Mihail Kogalniceanu nr. 1 RO- 400084 Cluj-
Napoca, Romania

3Distributed Systems Research Group, Charles Universiypsranske nam.25, 11800 Nantes 1, Czech Republic

4“OBASCO - EMN/INRIA LINA FRE CNRS 2729, 4, rue Alfred Kastler-”4307 Nantes cedex 3 France

./FIGURES/logoEgide.eps

2 ECONET Workshop 2008

Executive Summary

An Egide-sponsored workshop was held at the Nantes LabgretoComputer Science -in french Laboratoire
dSinformatique de Nantes-Atlantique (LINA CNRS UMR 624ih)Nantes. This workshop was the second one in
a series of the ECONET Project NI6293RGentitled, '‘Behaviour Abstraction from Codgilling the Gap between
Component Specification and Implementation

The LINA laboratory in "Sciences and technologies of thevgafe" is specialized on two axes : distributed
software architectures and computerized decision-magystems. Associated to the CNRS, the University of
Nantes and the Mines School (EMN - Ecole des Mines de Narites) INA also includes two INRIA projects.

The first workshop provided a detailed outline for the progefining the objective and means, and structuring
it in three subprojects. This second workshop is a milestorthe second year project. It should observe the
project state and refine objectives and cooperation, araptd the objectives of the two years of the project. We
remind here a list of the main tracks we had to follow

e Present the current situation for each subproject (inoly@roducts and problems, future work),

e Tools normalisation (compare tools and techniques of eabprsject, final decisions on the tools panel,
perspectives),

e Study the interface between the parts (languages, fortatsfiAPI...),

e Get afirst prototype (source and documentations for eagbrsjdet, final decisions on the metamodel part,
extract the main open issues, applications on CoCoME)

e Draw the roadmap to the end of the year (development, doctatiem, workshop preparation, publication
of reports and papers)

More precisely, the aims of the workshop were (1) to get soeeelthak of the current developments (2) to
share the experiences and (3) to settle interfaces and cortonts. Additionally we would to take concerted
decisions on the project issues (concrete objectivess tasganisation, responsabilities, deliveries, planning

On these points the workshop put forward new advances husalsie delay of subproject tasks and discus-
sions led to some decisions on both the interaction poindspaoject organisation. The following issues have
been discussed: tools and approaches, interaction paietsanodel, annotations), shared techniques and tools,
common benchmark, etc. The working sessions enabled (Blidate the common component metamodel (its
specification is on the way), (2) to refine the subprojectcijes and context, (3) to plan the work (subproject
objectives and responsabilities) until the next milest@@iej’'s workshop in september), (4) to draw some project
continuation (publications, projects).

The main concrete results are A project architecture wasrdeter fruitful exchanges accompanied with
the definition of tasks, with balanced responsabilities padnerships. This project includes three distinct but
complementary parts:

e A definition of the common component metamodel.

e A new definition of the annotation language.

e A gained experience on model driven tools and code proagssin
e A finer architecture understanding.

The workshop concluded with some guidelines to the next slawk that should take place in Cluj 2008.

This report relates what happened in the Nantes’s workshaQs)).

Acknowledgements The participants would like to thank Egide for its financiapport of this workshop.

Contents

1 Introduction 5
1.1 Thel6293RGECONET Project o o i e e e e 5
1.1.1 Motivations. 5
1.1.2 Partners e 7
1.1.3 Initial Plan 7
1.1.4 CurrentState 8
1.2 ReportContents e 9
2 The Workshop at the University of Nantes 10
2.1 Preparation. 10
2.1.1 Material. 11
2.1.2 Organisation. 11
2.2 Objectives. e 12
2.3 Participants. 13
2.4 Programand Schedule 13
2.5 TheWorkshop Sessions. 13
2.5.1 The Presentation SESSIONS. 14
2.5.2 TheWorkingSessions 19
3 Project and Technical Presentation Sessions 23
3.1 Metamodel Abstraction Subproject L 23
3.1.1 LClToolDemos Summarized 23
3.2 Process B: Structural Abstraction Subproject. Lo 27
321 Goals. 28
3.22 Design e 28
3.2.3 ASSESSMENL e e 30
3.2.4 Toolsandtechniques. e 32
3.25 Future Work e 38
3.3 Process A: Behavioral Abstraction Subprojecto 41
331 Goals. . .. 41
3.3.2 ASSESSMENL e e 41
3.3.3 Toolsandtechniques. 42
3.3.4 Objectivesand organisation 44
4 Working Sessions 45
4.1 IntroduCtion. L e e 45
4.2 Metamodel Specification 45
4.3 Annotationsand interfaces. 45
4.3.1 AnnotationsUpdate. e 45
4.3.2 Interfacewith Recoder 49
4.4 CoCOME 50
4.5 Task, responsabilities, schedule 51
5 Conclusion 53

4 ECONET Workshop 2008

A Collaborative Tools 57
Al SVNREPOSIHOY. . . . o o o 57
A2 WK . e e 85

B Common Tools and Interface 60
B.1 JavaTools. e e e e e 60

B.1.1 Java/AnnotationTools e 60
B.1.2 ToolsforJavasourceanalysis. 60
B.1.3 Model EngineeringTools. L 62

B.2 Java Annotations. L e e e 63

Chapter 1

Introduction

In this part we remind the context of the workshop, its prapan, organization and the program. This workshop
was the second one in a series of the ECONET Projedt@293RG.

1.1 Thel6293RGECONET Project

The activity described in this report is supported by Egitl¢hie context of ECONET Projects This section
gathers the main features of th6293RGECONET project.

e Title: Behaviour Abstraction from Code

e Subtitle:Filling the Gap between Component Specification and Impieat®n

Type: Research and Technology Development Project

Duration:2 years

Domain: Sciences and Information Technology

PartnersCOLOSS (French) - DSRG (Czech) - LCI (Romanian) - OBASCO iEng

1.1.1 Motivations

The project takes place in a specific domain of Informatiochif®logy, called Component Based Software En-
gineering whose goal is to provide languages, methodshiges and tools for software developpers. The field
of component-based software engineering (CBSE) becameaisingly important in software construction ap-
proaches because it promotes the (re)use of componemigalsd Components Off The Shelf (COTS), coming
from third party developers to build new large systems. Coments are scalable software modules (bigger units
than objects in object-oriented programming) that can leel as$ the high levels of abstraction (software architec-
tures, design) and the low levels (programs, frameworks).

Component-based software engineering is still challemgirboth industrial and academic research. Most of
the academic approaches focus on abstract models (sorsetiose to architectural description languages) with
checkable properties such as safety and liveness; somemfdeal with refinement and code generation. As a
counterpart, the industrial proposals such as CORBA, EX;Ir .NET are merely implementation-oriented
and also object-oriented. They define flat components (witth@rarchical structures) and the model is based
on an underlying infrastructure for component reposi®ard communication management. They often lack of
abstraction means to promote the reuse of components. Meneat the implementation level of a component
based development, some implementations have nothingwatldéhe above industrial standards in the sense that
there are no components at all. The main reason is that ther®drue component programming languages yet (a
language such as ComponentJ is a layer on Java). In othesybade are various component models that cover
the whole software development process but there is a gagbrtcomponent specifications (the academic mod-
els) and component implementations (industrial infragtrite or object-oriented implementations). The above

1

http://www.egide.asso.fr/fr/programmes/econet/

6 ECONET Workshop 2008

mentioned problem is due to the fact that, usually, compbimgplementation is not based on a rigorous speci-
fication. In cases when the specification precedes the ingl@ation, the conformance between implementation
and specification is seldom realized.

A major problem is then to fill this gap. One way is to define mddensformation techniques in order to
generate a code for the component with respect to the compspecifications. This way can be qualified as the
engineeringvay and it is similar as MDA and MDE approaches. It is quite pter since we should, in theory,
prove the correctness of the translation and also becaeredre various target frameworks and languages. There
are ongoing works on that directioRINPRO5 PP99.

Another way is to focus on program code analysis in order togare component’s actual code with its high-level
(abstract) description. This way can be qualified asréverse engineeringiay. It is quite an open issue in the
current research on CBSBIHMO06, PPO7. This problem is even more complex than the one above, dtleeto
following reasons :

e Often the source code of a component is not available afieleiployment or even not physically available
in a remote service invocation or Web Service. However, foomponent industry the unavailability of
source code is essential — services may even be offered onpepaise basis.

e Incase of OO implementations, the absence of componentstas implies to find convenient and adequate
criteria to structure components.

e Many statements and message send are to be omitted for amesevrvice identification.

e There are no common component model (or standard) for thgpopemt (abstract) specification — many
targets for reverse engineering.

Service clients have to properly intercat with the serviaed need to know at least the interface but in most
cases the dynamic behaviour or protocol attached to thécesrvFrom that some compatibility checking and

consistency controls may be performed to ensure a googatten or to avoid wrong or illegal use of the services.

Both the engineering and reverse engineering approacimesieesearch open issues.

The goal of the project is to contribute to the reverse ergging way by developing techniques for extraction
of abstractions from code (including some component iaterfiescription) and for the verification of abstractions
against the code.g.to check an in-line bank service with no available code, ®cklthat a client component is
compatible with an implemented component.

The core project is to establish a link between componerggadd component specifications. The advantages
of abstraction are to check the conformance of componemadd component specifications, to statically check
various properties of the components such as safety antklbge To be pragmatic we have to restrict this huge
mapping according to the partner’s experience.

1. The source model (implementation level) is limited toalJaede. The problem of obtaining an abstract
specification of a component from its code, cannot be solvedsatisfactory manner if the code does not
contain appropriate comments, rather in well defined padteor if the code is not limited to a consistent
subset of concepts.

2. The target models (specification level) are abstract comapt models inspired from the ones of the part-
ners. Instead of studying only the structural features efdysstem, we plan to work domehaviouralab-
straction from Java code. Behaviol\[02 AAAO6a, PNPRO0j is related to the dynamic and functional
features of the components and services. In particulagmymbehaviours describe the dynamic evolution
of components, connectors or services (interactions). mé&ehanisms used for component specifications
are grounded on different formalisms: design by contranplémented by assertions), algebraic specifi-
cations, state machines, regular expressions and so ot dbawe mentioned formalism offers a set of
advantages and has some drawbacks. Design by contraciasatige specification only, supports an "in-
complete" behaviour specification. Algebraic specifiaagigenerally have sound semantics but are, in most
cases, difficult to understand by people working in the itiuasnd not all kind of components can be spec-
ified. The state machines and regular expressions formabsmsuited for dynamic descriptions and have
formal semantics.

1.1. THE16293RGECONET PROJECT 7

1.1.2 Partners

The partners are four research teams which have competendtles project topics.

e COLOSS: COmposants et LOgiciels SOrS
Reliable Component and Software Component System Specification and Verification

e DSRG: Distributed Systems Research Group
SOFA modek~ previous work = basis for the project

e LCI: Laboratorul de Cercetare in Informatica
Computer Science Research LaborateryOCL, MDD, Tools

e OBASCO: OBjects, ASpects and COmponents
Previous work on Java and Components

The four teams have complementary knowledge and backgmuiite project domain. The goal is therefore
to compare and exchange the point of view, and to integratadiv ideas and techniques in the current proposal.

1.1.3 Initial Plan

The project is established for two years. The initial plaignivas organised as follow:
First year:

e Determination of the field of application (boundaries ofalagncepts and idioms).

Settings of the major principles to abstract behaviourstdtware components (intémelia, SOFA and
STS) from Java code.

Experimentations on existing code.

Studying and proposing a pattern for annotating EJB commisrie order to better support RE (behavior
abstraction from code).

Integration of the verification of guards using OCL (and OGLE
e Documentation, research report and workshop preparation.
Second year:

e Refinement and classification of the principle and techriéque

Study of the verification of assertions with OCL.

Reverse engineering from EJB code to EJB specificatiornzezhln JIML or OCL.

Experimentation with larger case studies.

Documentation, research report and workshop preparation.

Once the context has been introduced, we present now theshaplitself.

http://www.lina.sciences.univ-nantes.fr/coloss/
http://dsrg.mff.cuni.cz/
http://lci.cs.ubbcluj.ro/
http://www.emn.fr/x-info/obasco/

8 ECONET Workshop 2008

SOFA 2.0 Structures
Kmelia Common Behaviours
Component
STSLib Metamodel WFR (OCL)
Fractal / ~
7 N
Zz ~
Structural Behavioural

Model/Type | Abstract Model
checking flat/hierarchical

Abstract Model
(eEBP)

Model
checking

reverse

" aotafion
| _definiion_

User
informations

*

JPF

patterns
analysers
extractors

Textual
informations

plain Java annoted Java

UML code code

diagrams

EJB, Corba, .NET
Specific component framework
Fractal, SOFA, Spring...

Figure 1.1: Econet Architecture: final version

1.1.4 Current State

The general project organisation has been drawn duringmtepfioject workshop in prague in september 2007.
Figurel.1shows the project architecture.
The executive roadmap for reengineering program is buili three part architecture:

e Process B: Structural abstraction from Java code.
e Process A: Behavioural abstraction from Java code.
e Metamodel definition and consistency verification.

The objective of the process B is to build a structural congmdimodel and a corresponding annotated Java
code. These two elements are inputs of the process A. Thelnsoaleo an instance of the metamodel that will
control its consistency. From plain Java code and userdati®n, process B should produce an annotated Java
code and a corresponding component model (both resultshausinsistent).

Process A extract a dynamic behaviour specification of tmepoments identified during the process A from
the annotated Java code. Therefore, the idea is to makewbeseeengineering as general as possible in order to
allow extraction of behaviour in any formalism. To be moredfic, the formalisms considered afenhanced
behaviour protocol¢EBP) developed by DSR@LTSdeveloped by COLOSS ar&il Sdeveloped by OBASCO.

The metamodel part is shared by the two processes and casdtite foundation API (Application Program-
ming Interface) for component model processing. A maindssiuia component metamodel is to answer to the
problem of handling several component models to get a genegngineering process. Moreover, in the context
of reengineering the metamodel must handle tightened abions to the code that implements component appli-
cations. These connection points are represented by diomstan the Java code. In order to provide a convenient
component model API, a metamodel specification is necessasgrve as reference guide.

The Prague workshop repoACPRO07 provides detailed informations on these subprojects.

./FIGURES/archiEcoTask.eps

1.2. REPORT CONTENTS 9

The current state of the project is online the wiki pages (8du?2).

1 econet:start [COLOSS] - Mozilla Firefox (= x|
Fichisr Edtion Affichage Historique: Marqus-pages Yahoo! Oubls 2
<;l"j - v @‘ ’L’l} |‘{ htkp:ffwww.lina. sciences. univ-nantes. frfcolossfwild/doku. php?id=econet: start u—'i'i D‘ “CJViGuug\e i‘--\‘
econet:start
Edit this page Qld revisions | | Recentchanges | | || Search
hide | Trace! = matarials > econst
Index o
Welcome to the COLOSS/ECONET Wiki | Table of Contents 2
This is an index over all avsilsble pages - B i i =l Vi T B A
ordered by #namespaces, i - .t COLOSS/ECONET Wik
» Project description in french Tt pdf or in english T pdf -Dm]e:t Materiale gre
-warkshops
¥ costo An Egide program : @http:/fwww egide. asso. fr/fr/pragrammes/econat/ - Cluj Workshop
= econet “Nantes Workshop
» biblio | Edit -Pragues Workshop
b e Project Materials S| esenethap
¥ nantes2008 q B |) '] i o i
¥ praguesz007
o Hr s akn = Documents, Techrical Descriptions
» behavioural_modsl = Econet SYMN
= behavioural_madel_comparison " Dietistinne
= comman_toals .
= sconet_sun Edit
» illiesirandrnidads Workshops
= java_header
= materials Edit]
#) et tdel Cluyj Workshop
= nantes2008
= ald
A The workshop will held on 21 of september - 24 of september 2008
= praguesz007
= process_s
g | The warkshop page here
u start Edit
= structural_modal Nantes Workshop :
» htach
: :(“""’If“!t 2008/05/12 - 2008/05/16 - Thanks to the COLOSS group for the iocal organisation.
melia
P miles The workshop page here
¥ playground
v wiki Edit
. stant Pragues Workshop
2007/09/03 - 2007/09/07 Thanks to the DSRG group for the local organisation.
The workshop page here
Edt
Econet Map
Terming.

Figure 1.2: Project Wiki

Project material and documents are downloadable from thebawative tools (further information is given in
appendixA).

1.2 Report Contents

In the remaining of the report, we provide general informagi on the workshop contents in chap?er The
detailed information of the presentation sessions areritbestper subproject in chaptd8r Chapter4 relates the
working sessions and results and especially the commonaoeemy metamodel validation which is the main result
of the workshop.

Warning
This report has been mainly written by Pascal from his peakootes and memory of events. There may remain
english errors, misunderstanding, transcription eriamg, so on. He apologise for these errors.

./FIGURES/wikiStart1.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start

Chapter 2

The Workshop at the University of Nantes

The workshop is an intermediate milestone for the secondagfehe project.

2.1 Preparation

The preparation was twofold: material and organisatiore ddllaborative support is based on a wiki and a SVN
repository (see appendi. In particular there are chapters for each workshop (seesfigQ).

1) econet:nantes2008:start [COLOSS] - Mozilla Firefox |8 x|
Eichier Edtion Affichage Historique Marque-pages Yahoo! Qutls 7
e &= a5 i ose ikildak Tele| [Cll I
& - @ (05 ' hetpiflmm.ina scences univ-nantes.Frc . php?id=econet:nan ctar &jx| B [[Clajsoone 1]
COLOSS Projects Publications Softwares COLOSS wiki
Team
econet:nantes2008:start
| Editthis page 0Old revisions | Recant changes | Search
hide Trace! # wenue » econst * rnaterisls 8 syntax » materials * venue » program0Bn ¢ organization = contents ¥ nantes2008 il
Index
Workshop 2008 at Nantes Table of Contents =
This is an index ouer sll ausilable pagss =
b e e Waorkshop 2008 at Nantas
| Edit
5 0 tion
> coloc News Bt
¥ costo “workshop Materials
v econet cori 4 ” 7 “Links
¥ biblio = Please {ill in the Egide forms to start the refundings “Drajact Materisls
b Ptk (see the details in the Organization section)
¥ minutes Edit
=g Organization
= airport
= contents :
] details
a hotals Edit
3 i
e Contents
= materials
= organization
» particdpants details
* photos
= practice s Edit
» prearambih Workshop Materials
= road
. start . + x .
i e Teams and technical presentations, Working Sessions
train
= tram documents materials
» transportation
R L Workshop Report
. us
» pragues2007 Edt
P tools Links
= meta_model
= process_s
= process_b < ’ Edit
SR Project Materials
b htech
Y iinara Working Material
» kmelia
¥ miles hare
* playground —
¥ wiki
» start Bibliography
Bibliography work (project) here
Edit =l
Terming

Figure 2.1: Workshop pages on the Wiki

The URL address for the one of Nantes (see figuigis:

10

./FIGURES/wikiOrga0.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:nantes2008:start

2.1. PREPARATION 11

2.1.1 Material

Since the last workshop the contributions mainly focusedhenreports (Prague07 Workshop report, Econet
first year evaluation) and the metamodel description (Rati®Rose metamodels, notes). Minutes have not been
summarised on the wiki but the results and documents arayutih the wiki (figureA.3) and the SVN repository
(figureA.1).

A special group of pages have been written for the Workshaemad (figure2.2). The URL address is:
http://ww. | i na.sciences. univ-nantes.fr/col oss/w ki/doku. php?
i d=econet : nant es2008: mat eri al s

£ econet:nantes2008:matetials [COLOSS] - Mozilla Firefox (= x|
Fichier Edition Affichage Historique Margus-pages Yahoo! Oubils 2
@ T @ m |‘< hitp: fivvw. ina. stiences. unlv-nantes. fricok ifdoku. php?id=econet:nantes2008:materials uﬁllv} DJ |,‘_':iGuug\5 |~\J
. SIITALETN1ars |
— —_— - _— —
| Edit this pagiH Ol revisions | | Recent changes H |} Search i
hide Trace: # ComMOn_tools » Matarials » &conat_sun » STart » SConet » organization o nantes2 008 » syntax » materizls
Index.

Workshop Materials

This is an indes over all available pages
ordered by 7 namespaces,

COLOSS + OBASCO

¥ coloc
¥ costo R
~ aconet = Common Metamadel Yalidation Fascal André (Coloss) = metamodsls.pdf
® biblio = Process B: A first prototype Gilles Ardourel {Coloss)
5 "'""'h:E;ms = Composing Component with shared services in the Kmelia Model Christian Attioghé (Coloss) % coloss1.pdf
+ nantes:
i ey = Protocols: the missing link between aspects and components? Jacques Noyé (Obasco)
= contents = Concurrent Event-Based ADP Protocols: the missing link between components and aspects? Jacques Noyé (Obasca) = abasco2 pdf
= horals = Components with N-Party Rendezvous and Symbolic Transition Systems Jean-Claude Royer (Obasco) = {obascol.pdf
" maps
= materials Lot

= organization
= participants

i = ECONET - CCMM the LCI proposal Dan Chiorean (LCI) from model specification — to repository implementation @7 lci_nantes_ccmm.ppt

» practice = ECONET - CCMM the LCI proposal vladiela Fetrascu (LCI)
= Pm:mmﬂﬂn = demo 1: Metamodel g cermm_lci.zip
o » demo 2: OCLE @ ocle_demo.zip
iR = dema 3 EMF aferf_demo zip
= mm = desmo 4: oAW @josw_dema.zip
» transportation
= venue DSREG
* pragues2007
= annotations = Process A: Behavior Extraction - Current status {5 dsro_sconet-nantesis_behaviorestraction.ppt

= behauioursl_mode
= behavioural_medel_comparison
B e o Working Materials
= sconsrsun
= gilles_random_ideas
= java_header
= materials
= meta_model |
® nantes2008
= pragues2007
= process_a |
= process_ b
= ztart |
= structural_model

¥ htech

* intranet

Edi]

Drawing of the architecture introducing a recoder wrapper

¥ kmelia
* miles
¥ playground
¥ ik
. san

Blackboard Tasks

Terming.

Figure 2.2: Workshop Materials on the Wiki

2.1.2 Organisation

The workshop was initially planned on the end of March. Simeehad not the confirmation of the project
continuation we should delay to the second week of may dieeEgide decision fall and reasonable time to get
transportation means.

The local organization committee included Pascal Andr8eS&Ardourel, Christian Attioghé, Isabelle Con-
dette and Anne-Francoise Quin.

Detailed information is given on the wiki site (figuBe3): venue, program, transportation, city and tourist
information, photos, maps and so on.

http://wwu. | ina.sciences. univ-nantes.fr/col oss/w ki /doku. php?
i d=econet : nant es2008: or gani zat i on

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:materials
./FIGURES/wikiWork1.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:organization

12 ECONET Workshop 2008

.“-'—__}e|:nnet:nantesZDlJB:nrganizatiun [COLDSS] - Mozilla Firefox (= x|
Fichisr Edtion Affichage Historique: Marqus-pages Yahoo! Oubls 2
v L_b - @‘ ’L’l} |‘{ htkp:ffwww.lina sciences.univ-nantes. fricol ifdoku. php?id=econet:nantes2008:organization u—'i'i D‘ “CJViGuug\e
COLOSS Projects Publications Softwares GOLOSS Wiki
Teamn
econet:nantes2008:organization
| Editthis page Qld revisions | Recentchanges | Search |
hide Trace: #.start % econet » nantes2008 * contents ® materials # venue ® organization B N
Index I
Workshop 2008 at Nantes Ly _) LN ! i %
Thiede s index oiecall availabls pages -Warkshop 2008 st Hantes
¥ P ' Editl ~Grganization
+ coloc Organization i s
¥ costo
¥ econet
¥ biblio Dates
¥ minutes
¥ nantes2008 ~ 12 of may - 16 of may 2008
= sirport
= contents . g
i~ Local organisation
= hotels
= maps Contacts
= msterials
= organizstion ® Pascal ANDRE Edpascal.andre@univ-nantes.fr
= participants = Christian ATTIOGBE Edchristian.attiogbe@univ-nantes. fr
= phatos
= practice COLOSS + ORASCO
= program08n
= rosd ® Thanks to Gilles, Isabelle, Anne-Frangoise, Mohamed...
= taurism
u train Local information
= tram
= transportation yenue
= venus
. us 15
Participants
¥ pragues2007
= annotations —
bk onl ot Rafticinants
= behavioursl_model_comparison
= common_tools Photos
= sconet_sun
= gilles_random_idess photos
java_header
= rnsterisls N Edit .|
o meta_modsl Egide Forms
= nantes20028
Sl Sl G For fareign members B ficheeconet07e.doc
= praguesz007
= process_a Edit
= process_b -
= start
= structural_model
¥ htech
b intranet | |
Terming.

Figure 2.3: Workshop Organisation on the Wiki

2.2 Objectives

The following 'Workshop Objectives and Delivery’ staten&vas a first throw and kept many issues open. We
remind here a list of the main tracks we had to follow

1. Present the current situation

e for each subproject
e products and problems
e future work

2. Tools normalisation

e compare tools and techniques of each subproject
¢ final decisions on the tools panel
e perspectives

3. Study the interface between the parts

o format, filters, API...
e languages

4. Get a first prototype

./FIGURES/wikiOrga1.eps

2.3. PARTICIPANTS 13

5.

2.3

source and documentations for each subproject
o final decisions on the metamodel part

extract the main open issues

applications on CoCoME
Draw the roadmap to the end of the year

e development

e documentation

e workshop preparation

e publication (reports, papers)

Participants

The detailed list is arranged according to the alphabeticiér of first names.

2.4

Christian ATTIOGBE - COLOSS o Mohammed MESSABIHI - COLOSS
Dragos PETRASCU - LCI

Pascal ANDRE - COLOSS

Frantisek PLASIL - DSRG
Gilles ARDOUREL - COLOSS
Jacques NOY E - OBASCO
Jean-Claude ROY ER - OBASCO

Petr HNETYNK A - DSRG

Tomas POCH - DSRG

Viadiela PETRASCU - LCI

Program and Schedule

We present here an overview of the workshop program. It wgarased in two parts

Day 1 and 2 are dedicated to workshop presentations. Théa@hsand schedules leave time for numerous
discussions...

— Presentation of the subprojects (recent work, tools, ...)
— Technical presentations and demonstrations

Day 3 is dedicated to the coordination issues for the prpjaet Cluj workshop organisation and social
events.

Day 4 and 5 are dedicated to the project work (metamodekfates, tools, sharing experience, practical
organisation and responsabilities)

Actually the schedule evolved due to some people own cdantrdlighs...).
The detailed program is given on the wiki at:

2.5

The Workshop Sessions

This section is a quick overview of the executed program efutlorkshop. The detail features will be presented
in the following chapters. The workshop material is avdéain the wiki at:

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:program08n
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:materials

14 ECONET Workshop 2008

We first begin by the presentation sessions where the getits presented the their technical contributions
(chapter3). Then we summarise in chaptéithe contributions of the working sessions where the paditis
discussed on the project (issues, structure, tasks, wadtaspects, tools...).

2.5.1 The Presentation Sessions
Monday, May 12, 2008

[Time | Title | Speaker |
14:00 | Welcome Christian Attioghé
| Workshop Introduction Pascal André
| Local Organisation COLOSS
14:30 Technical presentations about the Metamodel subproject

| CCMM the LCI proposal: from model specification -Dan Chiorean
| to repository implementation
| demol: Metamodel Vladiela Petrascu
17:30| demo2: OCLE Vladiela Petrascu

Welcome Christian welcomed the participants in the name of the Latooy and the COLOSS team.

Workshop Introduction Pascal introduced the workshop recalling the ECONET ptajectext for the "new"
participants. He quickly summarised what happended duhiedirst year.

Summary
Events

e March: starting the project
e September: workshop at Prague (initially planned for june)
e October: workshop report, project evaluation
e November: First Common Component Metamodel published
Results
e Workshop Report
e Project Continuation
e First Draft Common Component Meta-Model
Quick Analysis
+ Workshop organisation and result
+ Complementary background of the teams
+ Methods and collaborative tools (Wiki, SVN, email)
- Time Allocation (late start, deadlines, asynchronouskiviy period and exchanges)
- Too few (despite fruitful) technical echanges (bibliggng, metamodel, tools)

- Some Misunderstandings (due to informal definitions oyiwey contexts?)

2.5. THE WORKSHOP SESSIONS 15

First Year Results
Advance in

e Clear project definition (workshop results)

— Convergence on the objectives
— Convergence on the means
— Definition of the tasks

e Project Collaborative tools (Wiki, SVN)
e Toward a common component meta-model
Standby/delay for

e Collaborative field exploration: Annoted bibliography aBgnthesis (components, RE, code engineering,
tools)

e A validation of the common component meta-model
e Delayed or lost activities

— Studying and proposing a pattern for annotating EJB compuisrie order to better support RE (be-
havior abstraction from code).

— Integration of the verification of guards using OCL (and OQLE

First Year Workshop Results
Convergence on the objectives (summary)

e Clear agreement on the "abstract" context
Abstract component models
+ Java Code
+ Reverse = from code to abstract models

e Some vision of the "concrete" context

— Java code nature
Bytecode or Plain source or Annoted Source

— Java code structure
plain Java + informations

— reengineering issues
abstraction rather than full reverse engineering
compare code and specifications (conformance)

e Benchmark =CoCoME

e Two other tracks: cross LTS extensions, WFR definitions
Convergence on the means (summary)

e Project Architecture witfThree parts

1. Component Metamodetoss LTS extensions, WFR
2. Structure Abstractionser interacted tool
3. Behavior Abstractioi-interface definition, annotations generation

e Problem Domain Restriction

— metamodel— components and behaviours

16 ECONET Workshop 2008

— A = no connections, no composition, no statement abstraction
— B = no composition, no statement abstraction, user-intenasti

e Benchmark =CoCoME
Definition of the tasks (summary)
e Prototypeon the project architecture

— Metamodel
— Process A
— Process B

e Cross Contributiona subset of

— Common Metamodel Definition
— Annotation language definition (input of process A)
— Tools Prototypes for Metamodel verification, Process AcEss B

e Synchronisation points =
A-interface, Metamodel def, B-Information def

e Planningdeadlines

— Workshop Nantes (begin of March 2008)
— Workshop Cluj (end of august 2008)

e Publications

Workshop Program The contents includes
e Participants
e Objectives ¢pen issue)!~ Detail Design of the Project Architecture + Technical Issue
— Metamodel: contents and design

concepts, relations, mains issues, approaches, platsfamd tools

— Processes: interfaces and design
structure, libraries, techniques, tools

— Integration and examples
CoCoME

e Delivery~~ workshop report + roadmap until next workshop

Prototype

Refine with concrete models

Documentation, research report and workshop preparation.
Perspectives and Publication

e Detailed Program and Schedule

Presentation Session We started by LCI because the Metamodel supports the ictelfatween subprojects A
and B. Dan recalled the LCi tasks, mainly

e CCMM definition: Metamodel specification, constraints sfieation, metamodel testing, repository code
generation

e Studying and testing different tools supporting the aboeatiwned activities (OCLE, EMF, 0AW).

Then he argued the LCO position and proposals.

There after Vladiela presented a part of the demonstraBbg.started with a metamodel proposal and discus-
sion and continued with the OCLE implementation.

TheMet anodel subproject if further developped in sectionmetamodel afptér3.

2.5. THE WORKSHOP SESSIONS 17

Tuesday, May 13, 2008

The initial schedule was modified in order to continue the H&inonstrations.

[Time [Title | Speaker |
09:00 Technical presentations about the Metamodel subprojentdc)
| demo2: OCLE (contd.) Vladiela Petrascu
| demo3: EMF Vladiela Petrascu
| demo4: 0AW Vladiela Petrascu
12:15 | Common Metamodel Validation Pascal André
13:30 Technical presentations about the Process B (structuractixin) subproject
| Process B: A first prototype Gilles Ardourel
| Composing Component with shared services in the Kmelia Modehristian Attioghé
| Concurrent Event-Based AOP Protocols: Jacques Noyé
17:30 | the missing link between components and aspects?
delayed| Components with N-Party Rendezvous and Jean-Claude Roye
Symbolic Transition Systems

At the beginning Vladiela continued with the second parthef lemonstration using the OCLE, EMF and
0AW implementations. Thi¥et anodel subproject if further developped in sectionmetamodel afptér3.

The Common Metamodel Validation is part of the working sessiclosely related to the metamodel subpro-
ject (see sectiof.5.2.

Technical presentations about the Process B subprojettdtaith a short presentation of the experimenta-
tions leaded in the COLOSS team. The project was realisedjbyusp of students and included bith the annotation
processing and the metamodel managment (for a limit sulbskbéanetamodel). The idea was to install a boot-
strap for the Process B machinary which is an iterative m®.c€he goal is to link Java programs (with or without
annotations) and component models (which is assumed to bbstraction of the Java program). The prototype
read and write annotations and instantiate models from am@del implementation in ATL (see sectiBnl.3).
ThePr ocess B subproject if further developped in secti8r of chapter3.

The other presentations are related work. The last preg@mtaccurred on thursday due to timing constraints.
Here is a short summary of the presentations.

Composing Component with shared services in the Kmelia Mode TheKmelia component mode{AA06D]
was introduced as an abstract formal component model deditathe specification and development of correct
components. The model is equipped with a language whicholyierg together with the expressive power of the
model. In AAAO6b] we have distinguished two semantics for the link betweenmanent services. Only one,
monadic semanti¢svas treated in this previous article. The second pobjadic semanticsvas not treated. The
hypothesis for thenonadic semanticis: only one provided service may be associated to a reqsiedce; a
componentis both a component type and the unique instangeagequired service may be linked to at most one
provided service; only one instantiation of a service exagtany time.

In the current article we consider thpolyadic semanticsa provided service may be linked with various
required services (allowing broadcast communications)ara example, a chat system provides an interaction
service for multiple clients. In the same way a requiredisermay be linked to various provided services. We
present the new features of okimelia model, the language aspects that support these featurdsomanthese
improvements are integrated with the previous work&aorelia.

The modelling of various real life systems such as auctigtesys, chat systems, distributed brokers, etc
requires the use of several components of the same type eraseervices with identical functionalities but
coming from different components. This leads to the needtefraction means to support the assembly and the
composition w.r.t to the multiplicity of services that mag onnected. The currekinelia model and language
provide a one to one service/component interaction evesvéral components participate in the assembly. This
does not cover the kind of systems listed above.

The contribution of this article is the improvement of thg@ressivity of theKmelia component model with
shared services, multipart interaction based on synclusnery communications. We exteKthelia to support
multiple connections between services. Also, we expjidistinguish betweenomponent typesndcomponents
(as elementshence we may use several components of the same type ineamtagsAccordingly, the interaction
betweerKmelia services is updated.

18 ECONET Workshop 2008

Concurrent Event-Based AOP Protocols Concurrent Event-based AOP (CEAOPR)LBNSO0€ is based on the
seminal work by Douence, Fradet, and Sudhiok$03 on Event-based AOP. Event-based AOP extends “standard
AOP” (& la AspectJ) withstatefulor event-basedspects, which, instead of associating additional belayen
advice to an atomic execution point {ain point), associate behaviour to a sequence of execution poirgs, se
aseventsmonitored by the aspect. Whereas the initial semantics @EAvas sequential, CEAOP defines a
concurrent semantics of stateful aspects. It does so bydsrirgy abstract aspects defined by regular sequences
of events to which advices can be associated. These aspecibsract as events are plain labels and advices
are simply sequences of actions, including the predefingdrecski p andpr oceed, to specify whether an
event should be skipped or not. The semantics of such an taispien defined by two transformations, an
aspect transformation turning the aspect into a FiniteeSeabcess (FSPMKO064], and a base transformation
“instrumenting” the FSP representing thaseprogram with which the aspect should be composed, suchthtbat t
parallel composition of both the aspect FSP and the instniedd=SP behaves as expected.

For instance, if we compose the base applicailenver and the aspec@onsi st ency (where the operator
> and the keyworgki p are constructs specific to CEAOP), we expect the eupdiat e not to happen during
server sessions.

Server = Session =
(login -> Session (checkout -> Server
| update -> Server | update -> Session
), | browse -> Session
).
Consi stency = Session =
(login -> Session (update > skip -> log -> Session
), | checkout -> Consistency
).
||S = (Server || Consistency).

The instrumentation scheme makes it possible to contrathsymization between the aspect and the base
program whereas additional composition operators (whichatso be translated into plain FSP) make it possible
to deal with the synchronization of several aspects.

We have used this model as the execution model of a concrietestan of Java, BatomNNO074d, which com-
bines concurrent and aspect-oriented programming. InrBdtase programs are composition of active objects.
These objects are instrumented withintcutsdescribing the events of interest whereas the aspect tranafion
of CEAOP is used to synthesized aspects described in a sgotakining FSP and Java traits. As part of in-
strumenting the base program and synthesizing the aspeetspmpiler also generates calls to a global monitor,
which is responsible for performing synchronization asc#je by the model.

This has been extended in order to support a simple compaomeael NNO7H, whereby the base is struc-
tured as components with static interfaces describingaheiredandprovidedservices, as well as thpublished
events (this is related to the notionagen modulepAld05]) and dynamic interfaces describing the corresponding
behaviour. On the aspect side, the staipect interfacedescribe the events of interest, which mayskgpable
as well agequiredandprovidedservices. In the same way as a composition of aspects anddaBi® turned
into a mere composition of FSPs, a composition of aspectEamponents can be turned into a composition of
mere components.

Finally, we have considered, on top of CEAOP, abstractibas facilitate the modelling of context-aware
applications NNO74.

We think that this work give an interesting perspective oa lihks between processes, components, and
aspects and paves the way to concrete languages that sthms@tnotions, including support at the architectural
level, in a more integrated way.

Components with N-Party Rendezvous Component software engineering has been used to improtensys
modularisation and artefact reuse. However, most of theentiproposals are restricted to binary communications.
They are often suitable, but there exist some applicatiansains, like controller synthesis, where they are not
sufficient enough. We argue that more complex interactioesieeded, and we designed a component language
with explicit symbolic protocols and N-party rendezvousihis context, we introduce sophisticated bindings to
control component behaviour in a black box way, and we addrescomputation of a global protocol associated
to component assemblies. We define an extension of the symahs product adapted to our protocols which

2.5. THE WORKSHOP SESSIONS 19

keeps inside states and transitions, the structure of timpaesite and enables four kinds of bindings In a second
step, we formalise our model and define behavioural comipstibNVe further introduce a new property called
event strictness, and we prove some preliminary resultstabe checking of these properties.

Wednesday, May 14, 2008

The initial schedule was modified in order to discuss abaiptioject itself and the workshop of Clu;.

[Time | Title | Speaker |

09:00 | Technical presentations about the Process A (behavioraatixin) subprojec
| Econet process A: Reengineering behaviour specificgtidomas Poch

11:30 ECONET Project discussions

13:00 | Social

18:30| Events

Tomas presented the work leaded by DSRG about the Processhaviour extraction) subproject. The
goal is to extract the behaviour specification of a primitbeenponent implemented by a set of Java classes.
Only primitive components behaviour will be abstracted. Composite components adaithe scope of the
subproject. Additional information is still needed whicte rovided by the process B in form of annotations
(e.g. which classes implement the component, which are ringions and requirements, which are the data
abstraction...). The strategy is to stick with Java as lagassible, make transformations over the Java AST and
perform the transformation to the target behavioural mai#te last step. The transformation chain should be
configurable. An experimentation is shown on a toy example.

ThePr ocess A subproject if further developped in secti8r8 of chapter3.

We also discussed about the organisation of the next wopkshthree months (budget, dates, people). A
two-week period is fixed that takes into account various aitalle constraints. It has been precised after the
workshop. It will held or21 of september - 24 of september 2008

2.5.2 The Working Sessions

This section summarises the discussions and contribubioithe working sessions.

Working Session Roadmap

The initial Working Session program was proposed as follow:

1. Common Component Metamodel

e Materials
e Discussions and Decisions

— Concepts and relations

— Architectural choices (core, concepts, specialisatianaptations, management, instances)
— Tools

— APl and tools

e Others: Roundtrip
e Specification document

Goal of days 2,4 = Clear agreement on the "common" metamodel
2. Tools and techniques

e Discussions offools and techniques

— Experience feedback
— Tools coordination

e Model Management

20

ECONET Workshop 2008

EMF, OCLE, 0AW...
Rule based systems, checking
Compatibility

e Re-engineering techniques

Java Compilers and Analysers
Patterns, rule based systems
Used notations and Intermediate layers (models)

(optimistic) Goal of day 4 = organize the implementation mea
3. Definition of the tasks

e What to do ?on the project architecture
— Metamodel
— Process A
— Process B
e Contributions 7a subset of
— Common Metamodel definition
— Annotation language definition (input of process A)
— Tools Prototypes for Metamodel verification, Process AcBss B

e Synchronisation points =
A-interface, Metamodel def, B-Information def

e Planningdeadlines
— Workshop Nantes report
— Workshop Cluj (end of august 2008)
— Project Evaluation (november 2007)
— Publications

(optimistic) Goal of day 5 = each participant has a somewleatrédea of what he will do

4. Production

e Workshop Report

— Collect paper and slideRlease send them to me
— Summary of the discussions

+ Bibliographical Notes

= project plan for year 2 anBvaluation

Fix the participants objectives

Documentation, research reports

e Intermediate results—=- Thirsd Workshop

Publications (?)

see also the initial 'Second year objectives’

2.5. THE WORKSHOP SESSIONS 21

Thursday, May 15, 2008

The initial schedule was modified in order to include the técal presentation of Jean-Claude and also a discus-
sion on tasks, responsabilities and delivery schedule.

[Time | Title | Speaker |
09:00 | Technical presentations about the Process B (Structuraatixin) subprojec
| Components with N-Party Rendezvous andean-Claude Royer
| Symbolic Transition Systems
| ECONET Project discussions
12:00 | Task, schedules |

14:00 | Working session Il
17:00 | Metamodel, annotations

Tasks and Scheduled The discussions started with some interrogations of Dantabe metamodel specifica-
tion and some doubts LCI had about CCMM v1.0 (big model, nough constraints and informations...). LCI
also worried about including the behavioural aspects andtations management in the metamodel. The answer
is twofold :

e Distinction between a specification metamodel and an impteation metamodel which is a subset of the
primer metamodel. Behaviours (too specific concepts), @amgintation language (java concepts), strong
model management, additional concepts (specific to oneathanconcrete component metamodel) are not
in the scope of the implementation.

¢ Validation of the metamodel (selection and definition of a@pts and their relations, constraints and exam-
ples) is one goal of this workshop.

We also discussed about modelling methodology (to repteseiation on concepts in a metamodey. using
gen/spec relations, attributes, associations)randel transformations using ATL, AW or EMF - for example
to get a CCMM instance frorextended Behavior Protocols (EBB) (Extented) Labelled Transitions Systems
(LTS)

Thereafter we discussed about tasks, responsabilitiedeattlines for the metamodel subproject.

e Tasks

— CCMM specification + special requirements (input)
— Metamodel verification

— API generation and testing
e Deadlines

— specification: 7 of june 2008
— version 1 (EMF) : 22 of june 2008
— version 2 (0AW) : end of june 2008

Discussions on process A and B, prototypes, case studynuatations and publications are delayed. We also
discussed again on the dates for the Cluj Workshop.

Working session Il One group worked on the metamodel validation (see sedti®n
The other one on annotation refinement (see sedtidn).

Friday, May 16, 2008

The initial schedule was modified in order to discuss abaiptioject itself and the workshop of Clu;.

22

ECONET Workshop 2008

[Time | Title

| Speaker |

09:00

|
12:00

ECONET Project discussions

Task, schedules

Working session IlI

Metamodel, interfaces, architecture, recoder wrappei@ark

At first we discussed about tasks, responsabilities andideador the processes subproject. Figdréis a
shapshot of the discussions.

Working session llI

One group worked on the case study selection (see setdhn

One group worked on the metamodel validation (see sedt@)n
The other one on annotation refinement and interfaces (stersé.3.1).

Chapter 3

Project and Technical Presentation
Sessions

The contents of this chapter presents a detailed snapslhio¢ @urrent state of the three subprojects, defined in
the workshop of Prague.

3.1 Metamodel Abstraction Subproject

Writer: Vladiela Petrascu

3.1.1 LCI Tool Demos Summarized
Objectives and Goals

The LCI tool demos aimed at analysing and comparing theiti@silprovided by different CASE tools for meta-
models’ representation (including Well Formedness Rul&-Rs, and observers - query operations) and gen-
eration of the associated repository code. We have corsidbe following tools: Object Constraint Language
Environment (OCLE)¢cl], Eclipse Modeling Framework (EMFemf], and openArchitectureWare (0AVWD&W,

and the following criteria for differentiating among them:

(1) support offered for integrating metamodel WFRs and nfgss, counting the ease of writing and compiling
constraints (code completion was taken into account);

(2) ease of evaluating these constraints on concrete m¢gtepshots) and assistance provided by the tool in
locating a possible validation error and correcting it ialtme;

(3) completeness of the generated repository code, inutlie code corresponding to WFRs and observers;

(4) generated code’s simplicity and intelligibility (essial in case additions and/or changes are required on it),
as well as the amount of dependencies required when rurtroigside of its generator environment.

The presentation’s ultimate goal was for the partners t@sb@ne or several of these tools to be used within
the current ECONET project.

The LCI proposal for a starting version of the Common CompoiMetaModel (CCMM) was the metamodel
used throughout the OCLE, EMF, and 0AW tool demos. SeveraR¥Wvere specified on it, including name
unigueness constraints inside namespaces (hame unigwéimgpes,| nt er f aceTypesandConponent Types
inside aReposi t ory; name uniqueness of @nponent Type’'s | nt er f aces; name uniqueness of an
Ar chi t ect ur e’'sConponent s; name uniqueness of @per at i on’s Par anet er s), valid component bind-
ings constraints (compatiblent er f aceTypes of | nt er f aces linked through &i ndi ng; Assenbl y /
Del egat i onBi ndi ng semantics encapsulating constraints), or non-cyclic dieimof composed component
instances. An operation that selects@hponent Types that provide a certainnt er f aceType, from within
aReposi t ory, was taken as an observer example.

The three tool demos are summarized below, following thev@lbeentioned four criteria.

23

24 ECONET Workshop 2008

B ocle 2.0 - OCL Environment Q@E‘

File Model Project Edit Tools Options Help
B & Bl & 5 55 @

[0 s ISR OTSG I 11 S ALE | Tail| 3 m .

B [CashDeskline : ComponentType | Q @ . BB M

[EE Debit; Type © | [2g] TradingSystem o)
EH Inventory - ComponentType g =) ‘l
B [ProductiithStockitemTo Type - D:MadilC i ONET i BET o B i

&l B 8aleTO: Type
[String : Type s
B [TradingSystern | ComponentType o
[EH TrangactionlD : Type
archTradingSystem : Architecture

brafl—— ANY BINDING MUST CONE

sidering the comcept of subi

il s inv invCompatibleInterfaces: self.from.interfaceTyps = self.to.interfaceTypd al
[EH bindBankif : DelegationBinding L . 9 . .
il e i i ne e st g - sssembly hindings comnsct requirsd to provided imterfacss (of the same imtsrfacs iy
na

to ded

= bookSale : Operation . -
F_an ASSEMALY ATNOTNG MIST BE AN TNTERFACE BEOTRED BY A COMPONENT B
]

= cardinformation ; Parameter
(&8 cashDeskLine - Component

B [cashDeskLineBankif: Interface aref T s e o o et
[[cashDeskLineCashDeskConnectorr : Interface 1 S 3 TS Y S
@ dabilcard ; Oparation T — . " nisme = cashDaskLineCsshDeskConnector

i

=

= getProductiithStockltem : Operation bindCashDeskeonnectorlfAssemblyBinding
= EH int: Type

[invantan: - Comnonant

F———_JinventoryCashDeskConnector F:Interface
3| inventory:Companent leashDaskline: Componant e i sy Ll

name = inwertary

i A A

niame = inventoryC sshDesk Connector T

-
Project Userdodel
Ohject properties

name = imventory

Hame bindCashDeskConnectorlf =
Namespace Collzbaration E: fowentorsComnoneri Tune] [ashiesk inesComnnnent Tome) -
L L + | DiWladiiCercetare\Proiecte\ECONETworkshop _project: WHFR et =
B B User modeliconmy =
B B oo
B Basic
B core

B InterfaceSpecification
B B Architecture
B Binding
B self from interfaceType=selfto interfaceType

& Rule failed for contert "bindCashDeskConnectarl:Ohject

B " =l
LOG | Messages OCLoutput Evaluation "_ Search results
‘Model checking finished. ~ 21925KB / 195136KB

Figure 3.1: Model checking in OCLE

OCLE Demo summarized

(1) In OCLE, the CCMM metamodel is represented as a UML 1.5ehodoth WFRs and observers are
included inside .bcr (business constraint rules) files; \WRBRe specified aisiv («invariant» stereotyped)
constraints, while metamodel level queries are repredamang the OCLdef mechanism («definition»
stereotyped constraints). OCLE .bcr files can be compilel] drthe case, meaningful error messages
are displayed inside the Messages tab, including the exace phe error occurred in. Code completion
facilities are not yet provided by the tool.

(2) In OCLE, constraints’ evaluation is performed on shaphbhese are object diagrams containing (meta)class
instances (having slots corresponding to attributes’egland links among them (instances of associations
specified in the (meta)model). The evaluation process caamepass either all specified constraints or a
particular one, chosen by the user. Single constraint atialuinvolves two steps: (a) selection of a contex-
tual instance among the existing snapshot objects, andéh)aion of the different constraint constituents
(in particular, the whole contraint), using the Evaluatée8ton option. Evaluation results are displayed
inside the OCL Output Tab. Observers can be evaluated bywilfy a similar scheme. Evaluation of all
specified constraints is triggered by a Check Model menwaptll errors are reported inside the Evalu-
ation tab in a tree-like manner: eack broken constraint itk by a node having as a direct ancestor its
context (meta)class and as direct descendants rule failessages pointing at the “responsible” instances.
Selecting such a message makes the corresponding objexatddmatically set as the constraint’s contex-
tual instance (simultaneously with selecting it in the bsewand object diagram, respectively), therefore
single constraint evaluation can be done, which signifigdrelps in identifying the cause of the error. A
snapshot of the model checking activity in OCLE is illustchin Figure3.1.1

(3) OCLE code generator uses the Apache Velocity templatgnen For each metamodel class, a corre-
sponding Java repository class is created, containingpésiied attributes and references, a default con-
structor, and get/set or get/add/remove methods (depgrmadirthe multiplicity) for references’ manage-
ment. In case WFRs were specified in the context of a (mets)cthen its generated code includes a
Const r ai nt Checker class with validation methods corresponding to each WFR fftlethod’s code
represents the Java translation of the WFR’s OCL consjra@anstraint breaking is indicated by a mes-
sage displayed on the standard output, pointing out thaté@dlinvariant’s name, as well as the responsible

FIGURES/OCLEsnapshot.eps

3.1. METAMODEL ABSTRACTION SUBPROJECT 25

(4)

object. Calling theConst r ai nt Checker methods is left on behalf of the user.

The generated CCMM repository code is simple, easy terstand and manage. Using it within a Java
project only requires importing the small OCLFrameworkaity.

EMF Demo summarized

@)

)

®3)

In EMF, a metamodel (CCMM, in particular) is represerdasdn Ecore model. WFRs are specified in OCL
(with minor "dialect" differences compared to OCLE, eogl | sUndef i ned() vs.i sUndefi ned())
and attached to their context metaclasses in the form oftations Pam07. Metamodel level observers are
given as metaclass operations, having their body defined Gl expression. The expression is attached
to the observer operation in the form of an annotation, tgpaschild a Details Entry of the fornb@dy,
<bodyOclExpression>) - see Figusel.1 Therefore, EMF constraints and observers directly "pellthe
metamodel as annotations, unlike in OCLE or oAW, where thieyspecified in separate files. Compilation
facilities are not provided at this level. In order to ensareorrect syntax of WFRs and observers, the
corresponding OCL expressions should be copy-pasted ahdated inside the OCL Interpreter tool. The
interpreter compiles the OCL before evaluating it, sigmalny syntax errors. Code completion facilities
are provided. Still, we find this compilation alternativersgshow cumbersome.

EMF model checking can be done interactively, by chapsirvalidate option from a popup menu on the
root element of a model. The model can be constructed ussgRrhF tree-like editor. Validation results
are displayed inside a message box. If validation problesws been identified, then their details may be
consulted, each detail line indicating both the violatedstmint's name and the model element responsible
for breaking it. Theoretically, selecting such a detaifeelshould automatically point to the responsible
object on the tree, but unfortunately this only works catlyefor the first line. We signal this as a bug.
Apart from checking the entire model by validating its raibis also possible to individually check any
of its branches (children), in a similar manner. If the vatidn fails because a constraint is broken by a
certain model object, discovering the error’s cause isiplesthrough partial evaluations. This resumes to
copying different parts of the OCL expression into the OCletpreter and evaluating them on the selected
object, which is assumed to be the contextual instance. Migiais is not as straightforward as in OCLE,
since it involves manually going back to the constraint dedin inside the metamodel file and copy-pasting
different parts of it inside the interpreter. Thus, the dtieg facilities implemented in OCLE are indeed
quite helpful and time-saving.

EMF code generation uses JET (Java Emitter Templatesjemplate language having a JSP-like syntax.
The code generator uses as input a .genmodel file, which atesothe initial .ecore file containing the
metamodel with additional generation related informatidfor each of the metamodel packages, three
corresponding code packages are generated: an interfekagea an implementation package and an util
one.

For each metaclass, one interface and one implementatiariijfes are generated, inside the interface and
implementation packages corresponding to the metamod&bga to which the metaclass pertains. The
interface contains get/set methods for attributes andiptialty-one references, and only get methods for
multiplicity-many references (returning ELists). Metag$ operations’ signature is also included into the
generated interface file. Within implementation files, atases’ notification is handled appropriately. More-
over, for eack metamodel package, corresponding factbat éllows the instantiation of model objects)
and package (that allows metadata management) interfaden@tementation files are created.

The package validator class (from within the generatedp#idkage) contains validate methods for all
repository classes contained in that package. For eackfigpeiavariant, a corresponding validate method
is created. By default (using only the default code genematemplates), its body must be filled in by
the programmer (only the body skeleton in generated, the émdevaluating the constraint is missing).
Generating code for evaluating invariants, observers amiyetl attributes and references requires using
dynamic templates and modifying some .genmodel propefsies the approach proposed Dam07).
OCL expressions are not translated directly to the javadagg, as in OCLE. Instead, their evaluation is
delegated to MDT OCL.

Apart from the metamodel repository code, a test projectatektual model editor project can also be
generated..

26 ECONET Workshop 2008

(4) The generated repository code is quite complex, inolgidich functionality (e.g. notification management,
metadata management, factories, several List implemensataylored to specific needs, etc.). However,
using it within a new Java project involves several depenigsn

& Java - CCMMRepository/mode /CCMM.ecore - Eclipse SDK
File Edit Refactor Mavigate Search Project Run Sample Ecore Editor Window Help

T'g Higrarchy % Package Explor ©7

= .-:‘j CCMMRepositary

B0 Q-
==

: [CRs

G &> 9 - 55 | & 2ava

& CCMM.ecore < ComponentRepository. repository O

= ¢ architecture ~
4 Architecture

Col = |

P Caompanent -> NamedElement
.. #E I . d
- comm, architecture i Ehditg
&+ comm, architecture,impl = fi Ecore
E i - (551 constraints -= compatibleInterfaces
1 cemm. architecture, ukil
+ (40 comm,basic = laoa
; e ccmmlhaswc mpl = compatiblelnt to.interfaceTipe. ..
L& : : # 5* architecture | Architecture
0 cemm, basic, uel e
il e 5 From: Interface
@ cemm.core.impl + 5* to ! Interface
.1-_ : ccmmlcorelutil + 1 AssemblyBinding - > Binding
@ b comm.interfacespecification ; - Dz.alegatlonﬂwndlng +> Binding
£ 1 cemminterfacespecification.impl rapusltury.
+ 1 comminterfacespeciication,util = - R;DDsltory . - . ; ,
{5 comm.repository getcoocnlponenﬂypeswt Providedinterface Type(InterfaceType) : EEList<?>
® o cemm.repositary. impl -
% # comm. repository.uti (50 body - = self.companent Types- =select{ct iComponentType | ct.providedInterfaces interface Type- mincludes(it))
4 = IRE System Library [irel.5.0_05] s ﬁ"“mefacewpe
: =
™ Plug-in Dependencies £ () EEList<?> v
@ Meidche | Problems @ Javadoc = Declaration [Properties Bl console i =L
=i mode| -
Interactive OCL & -
& CCMM,.ecore @ Ecore = MZ o~ Hea®R B>
B CCMM.genmodel Evaluating: =
& ComponentRepositary repository celf From.intetfaceType = seff to.interfaceType
B templates
oo build. properties
=| plugin.properties Results:
<l plagin,zml true -

& COMMRepasitory . edit
1= COMMRepasitory.editr
== 1DJ CCMMRepositary tests

£l Selected Object: compatibleInterfaces - = self from.interfaceType = self ko interfaceTyps..,

Figure 3.2: An Ecore metamodel including WFRs and observers

oAW Demo summarized

(1) Since oAW 4 supports EMF based metamodels (among otpestgf metamodels), this tool demo has
used the same metamodel representation as the previousdoria dAW, metamodel level invariants are
isolated in .chk files and are defined using the declarativstcaint language Check/KEHO06]. Check
is an OCL-like language, thus it has an OCL similar syntaxwkoch it adds the possibility of defining
custom error or warning messages to be displayed whenewrsdraint is violated. With the intention of
keeping metamodels as simple and clear as possible, in oktiditional properties are defined externally
in .ext files, using the 0AW Xtend language. This has been thiscase with our CCMM observers. In
order to be able to refer to the metamodel classes withinxtpeessions contained in Check and Xtend
files, a line importing the metamodel should be included atlibginning of these files. This makes the
text editors metamodel-aware. The editors provide syntdaring and code completion facilities to the
user. Compilation of constraint and extension files is auattically done at the moment they are saved, and
appropriate error messages are displayed, if the case.

In 0AW, all model operations are coordinated by means wbeflow. As shown in Figure3.1.1, such

a workflow consists of an ordered collection of workflow coments, each component executing a well
defined model related task. There are some standard workfilmpanents offering functionalities such as:
reading (loading) a model from a file, checking the modehsfarming it, persisting (writing) the transfor-
mation, or generating code based on it, but user defined coemp®are allowed as well. Within a workflow

)

FIGURES/EMFsnapshot.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT

27

run, the check component verifies a model against the Chatitreints specified at the metamodel level.
related

to the name of the constraint’s context metaclass, the ndithe nstance that breakes the constraint, plus
roris

If validation errors occur, these are reported on the cenddie error messages contain information

the error/warning message specified by the user. No othgosufor identifying and correcting the er
provided, such as automatic object selection and part&uations.

(3) oAW includes a generator workfow component, that allovesating code in a programming language (e.g.
Java) starting from a model file and some code generationl&esp This is actually a model-to-text trans-
formation. The template definitions are written using theaXg language and contained in .xpt files. We
have used this facility in order to simulate a forward engiimgy approach, by generating component inter-
faces’ code, starting from a model. Generating a metamegalsitory using oAW requires thus defining

our own templates. This seems as a quite flexible alterndtivtdt has not been materialized yet.

(4) The shape of the code, its simplicity and inteligibilitiyectly depends on the way templates are written by

the user.

& openhrchitectureWare - CCMMRepository/sre/workflowsworkflow.oaw - Eclipse SDK
File Edit Refactor Mawigste Search Project Run ‘Window Help

-~ QG HE G- o - |l openarchitect...
1% Package Exp e Herarchy 1 | workflow.oaw £ 2
&
= L <workf low:> a o—

B iau CCMMRepositary
<property file="workflow/workflow.properties"/>

=t & src
= 2 metamodel
\Ej CCMI\;'_EKTENSIONS.ext £!-=~ set up ENF for standalons sxecution -->
1G4 COMM_WFR.chi <bean class="org.eclipse.mwe.emf.Standalone3etup™>
- CCMMTecove <platformlri value=".."/>
= mﬁdel </hean>
o [5 ;é:n;:;ponenmeposwtory.xm; €l== lpad model and store it in slot 'model' --»>
Ti template.xpt <component id="reader” class="org.eclipse.mwe.ewf.Reader">
BB e <uri wvalue="platform:/resource/§{modelFile}"/>
- warkflow.oaw <modelSlot value="model"/>
= workflow. properties <f component>
= JRE System Library [jrel.6.0_05]
<!== pheck wodel >

= Plug-in Dependencies
META-INF
src-gen

lord build. properties

<component id="validator™ class="oaw.check.CheckComponent™>
<wetaModel id="mm" class="org.eclipae.m2t.type.emf.EmfRegistryletalodel™/>
<checkFile value="metamodel: :CCHIN WFR"/>
<ewfAllChildrenSlot wvalue="model"/»
<abortOnError value="trus"/>
</component:>

HoEE

[* Problems @ Javadac |G Dedlaration B Consale T Properties X R w L0 EE = B> =0
<terminated:s workFlow, naw [Java Application] C:\Program Files) Javaljre1,6,0_0S\bin|javaw. exe (18,06,2008 21:59:54)

594 INFQ StandaloneSetup — Registering platform uri 'D:%\Vladi)Cercetare)ProiectelECor™
703 INFO CompositeComponent - Reader (reader): Loading model from platform:/resource/CCH]

875 INFQ CompositeComponent - CheckComponent (validstor):! slot model check file(s): metsr

1219 ERROR WorkflowRunner — Workflow interrupted. BReason: Errors during validation.
1219 ERROR WorkflowRunner — [ccwm: :Type, int] There mwust be no neme clashes inside a ke
1219 ERROR WorkflowRunner = [ccmm: : Type, int] There must be no newe clashes inside a ke

w
< »

»

Figure 3.3: 0AW workflow run

3.2 Process B: Structural Abstraction Subproject

Writer: Pascal André

Process B provides structural informations to process 4.(Eil): an instance of the component metamodel
with a corresponding annotated Java code. More preciselgeps B is to build a couple (structural component
model, annotated Java code) from a plain Java code and efeedinformation. The two elements of the couple

should be consistent.

FIGURES/oAWsnapshot.eps

28 ECONET Workshop 2008

In this section, we recall the initial goals and desigrpaicess Bpresent an assessment of the subproject,
technical elements and future work.

3.2.1 Goals

The main goal of Process B was to abstract a component steyciomponents and architectures) from Java code
and additional user-defined information. The goals statethe Prague 2008 Workshop are recapitulated in the
rest of this section.

A general view of the process B is given in figu8el; from plain Java code and user interaction, process B
should produce an annotated Java code and a correspondipgrent model (both results must be consistent).
Some restrictions apply to the first program release:

e Input

— Annotations are those related to the Common Component MetzeMCCMM) but do not include
other component models yet (Fractal, Sofa, ...). The latikbe calledextended annotation

— UML models are not accepted as direct inputs but are readebygér.
e Output

— Only flat component models are targetted.

— Process B is not directly responsible of the consistenoyéxt a model and the corresponding Java
annotated code.

— The conformance of the produced component model is chedkbd enetamodel level.

| anmoamon 1 | &omm 1
| _definition | | _definition__|

Annoted code plain Java

Structural

code i ;
Fractal, SOFA, Abstract Model hierarchical
Kml... flat
Structure .
User Abstraction consistent
informations (process B)
(interactive)
annoted Java
? code
Textual
informations \
‘\\\7 UML _//
diagrams
Figure 3.4: A general view of the process B
3.2.2 Design

The process B was designed as an iterative process3E)g.This process is architectured around a toolbox (Fig.
3.6). One step in the process is the application of one of thes f@wle transformation). External tools can be used
to process the transformations.

e Inputs are

(1) Aninput model which is a couple em, jac > wherecm is a component model (an instance of the
common component meta-model) afid: is a java annotated source code.

(2) User informations from any kind (textual, annotatidd®]L, user interactions...)

./FIGURES/processB.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 29

consistent

[annotated]

Java code
i

Structural
Abstract Model

| "annotation 1

| _definition | | _definition |
Structure External Tools
User Abstraction - » (parsers, graphs,
informations (process B) XMl...)

interactive)

consistent

[annotated]

Java code
i+1

Structural
Abstract Model
i+1

Figure 3.5: An iterative view of the process B

The inputjac may be plain Java only. The inpat: may be empty or disconnected from ajay.

e The outputis a new couple cm/, jac’ >.

consistent

[annotated]

Java code
i

Structural

Abstracjt Model
i

[" annotation [ceMv |
| _definiion _ | _definition_ |
. '\;'ode' ATigﬂta | Eis,"i' Model External Tools
User Sche- - from | ey | Clusterbution 1y pngo | .. |e—= (parsers, graphs,

: : duler | annotat ing tool | analy- :

informations ions from ser | Mation XMLI...)

(interactive) model

|:| Input filter
consistent

|:| Output filter

[annotated]

Java code
i+1

Structural

Abstract Model
i+1

Figure 3.6: An architectural view of the process B

The idea is to combine primitive transformations and dgveleustomised (or human driven) process B. Here
are some of the primitive transformations:

(1) Annotate a Java program from user information.

(2) Build a component model from an annotated Java source.

(3) Build a component model from a plain Java source.

(4) Analyse a distributed program to detect componentsdgepent).

(5) Extract cluster using graph tools (grouping class imimponents, or grouping components into composite).

(6) Process model transformations such as fusion, setectan the couple (code, model).

./FIGURES/processBiter.eps
./FIGURES/processBbox.eps

30 ECONET Workshop 2008

(7) Property Verification

e Check the consistency of a couptecm, jac > .
e Check the completeness of a couglem, jac > .

e Check special system properties (various kind of compayipi.)

@) ..
Important remarks:

(1) Note that combining transformation 1 and 2 provides & fesult of process B which can be reusable in
process A.

(2) Note also that input and outputs need format filters (@eamriter) which are common to all subprojects.

(3) Note also that some of these transformations ought tsbd in the other subprojects.

3.2.3 Assessment

A first prototype of the toolbox was implemented by a groupafrfstudents of a Master of computer Science
the University of Nantes. A compressed archive of their wisrkvailable on the SVN repository on directory
pr ocessB namediVast er OpPr oj ect Fi nal . zi p. This files include the source programs and the docu-
mentation. The work overpassed the context of process Bubedaalso required and implemented a simple
metamodel management (using the CMM 1.0 specification). eKiperimentations were led with a small subset
of the CoCoME case study. A report relates their wBKkIFD0]. Here are some rewrited pieces of this report.

Project Goals

The goal of this master project is to contribute in the cotioe@nd in the implementation of the collective toolbox
(Fig. 3.6). Our work contains several steps. In the first part we shaanlderstand the concept of components
architecture, the global architecture of the reverse+egging application and the components metamodel. In a
second part, we should understand how the annotation lgeguad the Java code management tools works. In
the last part, we must implement the tool which instantibeerhodel from annotations and generate code from
models.

Project Organisation

To be as productive as possible, we divided the developntagé sn two parts, each of them are realised by a
couple of students.

e The management of annotations :
This work was also divided in two parts :

(1) The reading of annotations :
We have to create the library of annotations. Afterwardsilitbe necessary to write a grammary with
differents annotations for read them in a JAVA code. Whes thork is satisfied, we can extract the
structure of the Java code in a Component Model.

(2) The writing of annotations:
To do that, we need the Component Model. Thanks to the lastrenlibrary of annotation, we can
give a Java code annotated, which respect the structure déMven.

e The management of models:
As following, we have divided this part in two steps.

(1) The models transform :
If we give a description of a model in XMlI, for exemple, we caartsform it in FA or Kmelia. In
this step, it have to write the transform rules.

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 31

Java
Annoted

Reading annotations Resource

Models Manager

Generating annotations Resource

Annotations Manager Models Manager

Figure 3.7: Process B: Master Project Organisation

(2) The instantiation of model :
If the user gives a Component MetaModel and complementéoyrirations, this part allows to obtain
a Component Model.

Both parts are relatively distinct. The management of aatiwis was realised by Tanguy and Claire and the
management of models was realised by Guillaume and Vincent.

Integration

The whole process was implemented by an Eclipse Plugin &#i®83.2.4).

Experimentations

The experimentations were led with a small subset of the G&Eoase study. We use for the tests the three
following components present the CoCoME case studjashBoxControl | er,: Printer Control |l er,
: Scanner Cont r ol | er. These three components are contained in the compo@asthDesk (Fig. 3.8).

1 «component» ﬂ 1 «component» @ 1 «component» @

:CashBoxController :ScannerController :PrinterController

Figure 3.8: Process B:Master Project: CoCoME subset

Each component has a package name beginningaxith cocome. t r adi ngsyst em The package name
is hierarchised according to the composition of the namb®tbmposite components which contain the compo-
nent. There are a Java interface for the component and atddex hamed npl which contains the java classes
that implement the interface (Fig.9).

At first, we tested a single class that contained all the atiwot. This class allowed to generate the structure
that is required for the generation of the model. In a secand this structure is used to instantiate the metamodel.
After, the structure is exported to another structure tqotme that writes the annotations. In the part that manages
the writing of the annotation, we write the annotation cep@nding to the intanciated model in Java classes that
are not annotated. We check that the automatic annotateseslare exacly the same that the clesses that we
annotated manually.

./FIGURES/roundTripOp.eps
./FIGURES/cashdeskop.eps

32 ECONET Workshop 2008

@InCDmpDnent[annntation_scr = {"Hanual"}, component_name = "CashDesk")
public class CashBoxControllerEventHandlerImpl implements Messagelistener,

CashBoxControllerEventHandlerIf {
final 3tring CHANNEL CCNMNECTION FACTORY = "ChannelConnectionFactory™;
private 3tring topicHName:
private Context JjndiContext:
private TopicPublisher cashBoxPublisher:
private Topiclession topicSession:

private Logger log = Logger
getLogger(CashBoxControllerEventHandlerInpl.class) ;

BBusinessattribute (annotation ser = {"Manual"})
private CashBox cashbox:

@Initmethad(annatation_scr = {"Manual"}, name of the component = "CashBox'™)
protected CashBoxControllerEventHandlerImpl (CashBox cashbhox,
Ftring eventchannel) {
try |
this.cashbox = cashhox:

topicName = eventchannel:

JndiContext = new InitialContexti():;
Figure 3.9: Process B:Master Project: One class of CoCoMiGtad

Then, we tested the three CoCoME components. The previqueagh has been used on the classes of
these three components, we checked that the classes athmyadur program were the same than the classes we
annotated manually.

3.2.4 Tools and techniques

In this section we provide technical elements for the Magteject. The detailed documentation is available on
the SVN repository in foldepr ocessB.

a) Annotation Management

This subtask was again divided in two pafeading/Writing annotations

Reading annotations Reading annotations is designed using the APT tool (se®ad®tl of chapteB). APT
is a read-only source file preprocessor using the reflexive &1t ool s. j ar. At first we need to describe
every annotation in an annotation libraaginot at i ons. j ar to be imported in the Java project.

Annotation processing was quite fuzzy for us since APT isngpand not very documented on the Web. Our
APT processor is implemented usifgctory and Visitor patterns. During the launching, APT searches for a
factory Annot at i onPr ocessor Fact or y which is the entry point to analyse the Java sources. Thisrfac
create a processor implementing #enot at i onPr ocessor interface and especially a methpdocess
that looks for all declarations in the source code and ascepisitor Decl ar at i veVi si t or) associated to
the declarations. This visitor have 4 methods :

e visitClassDeclaration(ClassDeclaration d) (F3gl2)

./FIGURES/codecocome.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 33

| cocome.ecore i _‘
platform; fresource/Essaifnnotation{Model/cocome score
4 architecture
< Component CashDesk
<+ Interface org.cocometradingsystem. cashdeskline, cashdesk. printercantraller impl, PrinterContrallerEventHandlet Impl
“4 Interface org.cocome.tradingsystem.cashdeskline. cashdesk. cashboxcontroller impl. CashBoxControllerEventHandlerImpl
< Provided Operation sendPaymentModeEwvent
< Provided Operation sendCashfmountEnteredEvent
- < Required Operation onEvent
< Pravided Operation sendSaleFinishedEvent
<+ Provided Operation sendExpressModeDisabledEvent
< Provided Operation sendCashBoxClosedEvent
i < Provided Cperation sendSaleStartedEvent
= 4 Interface org.cocome tradingsystem.cashdeskline. cashdesk. scannercontraller .impl. ScannerControllerEventHandler Impl
4 Attribuke cashbo:
S Attribube jndiConbext
< Attribute scannerContraller
4 Attribube cashBoxControllerEventHandler
4> attribute total
e attribuke First
[4 Operation ScannerController
£ 4 Cperation CashBox
(¥ <4 Operation PrinterContraller
+J 4 Operation PrinterControllerEventHandler Impl
[+ 4 Operation ScannerControllerEventHandlerImpl
. l#-+ Operation CashBoxControllerEventHandlerImpl
&< Binding

i
|

Figure 3.10: Process B:Master Project:Extract of the Aatsat Class and the CoCoME generated model

Target of anmotation.
Here, this annotation can be put in a declaration of method or in

atype.
@rarget({ElementType.TYPE, ElementType.METHOD}))
public @interface Provided {-- Name of annotation
3T rang (] annotation_scr(); - Atfributes of annotation
String model_iface_name();[
String java_iface_name() default ""; .4 Attributes with defaut values.

Figure 3.11: Annotation Provided

¢ visitMethodDeclaration(MethodDeclaration methodDegadi@n)
e visitConstructorDeclaration(ConstructorDeclaratipn d
e visitFieldDeclaration(FieldDeclaration d)

In fact, to run a APT application, we implemented this diagna.:

Tools APT [OurProject]
ainterfaces
AnnotationProcessorFactory Factory
bt -4 ----
ainterfaces
AnnotationProcessor Processor
<} -4 ----
ainterfaces —
DeclarativeVisitor Visitor
k- - -+ - -4

And to execute this programm we write the following onlinertoand :

./FIGURES/modelCocomeVince.eps
./FIGURES/apt_provided.eps
./FIGURES/apt_vueglobale.eps

34 ECONET Workshop 2008

apt -factory annotation. Factory -classpath ../../annotation.jar classes/=*.java

It was integrated later.

J//when there 1s a class' declaration, this method 1s called
public woid visitClassDeclaration(ClassDeclaration d) {
String annotation = d.getAnnotationMirrors().toString(]);

//name of the class
String location = d.getQualifiedname() ;

J/fannotation without []
String ann= annotation.substring(l, annotation.length()-1};

string[] list_annotations = ann.split("@");

for{int 1 = 1;1<list_annotations.length;i++)

{
String annot = treaténnotation(list_annotations[i]);
// It there 1s this annotation, all methods of this class are provided
/7 It should treat all method of this class as provided
if (annot.contains("Provided"))
{
J/return all methods of this class
Collection=MethodDeclaration= list methods = d.getMethods();
treatallMethods(annot, location, list_methods);
ks
else{
/7 If there 1s this annotation, all methods of this class are required
/7 It should treat all method of this class as required
if (annot.contains("Required"))
{
J/return all methods of this class
Collection=MethodDeclaration= list _methods = d.getMethods();
treatAllMethods{annot, location, list methods);
i
else{
/71T the annotation 1s not empty
if (! (annot.equals("[]1")))
{res.addClass (location, annot) ;
I
1
T

Figure 3.12: Visitor for thel ass annotation

Generating annotations We implemented a simple solution in a single class calteder at eJavaFi | e
with query and modifier methods.

private bool ean existC ass (String cl assNane)

private bool ean exi st MethodOrAttribute (String cl assNane)

private void addd ass (String packageNanme, String classNanme, List String annotationList)
private void addAttribute (String location, String annotationList List)

private void addMethod (String | ocation, String annotationLi st List)

private void addAnnot ati onOnMet hod (String | ocation, String annotationLi st List)

private void addAnnot ati onOnCl ass (String classNane, List String annotationList)
private void addAnnotati onOnAttribute (String location, String annotationList List)

./FIGURES/apt_visitor.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 35

These methods are used to add elements (annotations sglaetbods and attributes). For all methods except
addd ass, the principle is the following: the java file is read line liyd and copied in a temporary file together
with the annotations. TheaddCl ass method create a java file with a skeleton for the class anditstations.

At the end the original file is overridden by the the contelfithe temporary file.

Processing occurs at the class, attribute and method ld¥idflsrent cases occur:

e The class and the method don'’t exist
e The class exist but not the method
e The class and the method exist but there is no annotatiorrs®method

e The class and the method exist, the method is already annoted

These situations are almost the same when adding annotatiolass or attribute. Annotations are managed us-
ing HashMap<St ri ng, Li nkedLi st <Annot at i on». The key is a string which represents the name of the
source element where annotations are applied. For examkés, can be in this format :
"packageNane. cl assNane: : public void nmethod ()" is associated to

@ ni t net hod(annot ati on_scr="Manual ", name_of t he_conponent ="conposant Test") ".When
we add an element to this HashMap, we specify the key andgheflannotations associated. For example we
add an element in the HashMap (the key and the associated list

HashMap String, List String net hodArray = new HashMap String, List String ();
Li nkedLi st String annotationListMthod= new LinkedList String ();
annot at i onLi st Met hod. add(" @ ni t net hod(annot ati on\ _scr=\"Manuel \ ",
nane\ _of\ _the\ _conponent=\"conposant Test\")");
nmet hodArray. put ("Test C ass: : public void nmethFournis ()", annotationLi stMethod);

b) CCM Model Management

This part of the project consists in instantiating CMM madfbm the informations given by the annotation
processor and also to query models in order to inject anpatinto Java code. Those informations are stored
in a structure that we use like a commm@sourcebetween the annotation processor and the model management
class. The resource structure contains three parts: iafitwmon classes, on methods and on attributes. Each part
stores the annnotations related to its type together wilin kbcalisation.

@ Aflement c] 'I;UarnIng
a LIGCE|I$FII".DH 1 = o Seventy
| =@ Source

i3 Type = (& Operation + {7, > G Component
sy e T nas\e | winterfaces & Attribute | 1 [= g L | & Contraintes |
o 5 type [" = ©'s method @ Interface | o name it < o 5 classes [2l definition
o s sart | - b T = 5 interface |1 + o type [=

L TRy

M .

* 3 Es Koy : 1
& Business o [I & EntryPoint
o nama A Sk T o 5 ¢la
3 Provid .rati) i ; o5 met
edOperation (& RequiredOperation
},. ; 1
& Binding ¥ 1| (@ Architecture {5 Composite
. . 1 . 13 i

Figure 3.13: Process B:Master Project: CCM Subset

./FIGURES/metaccmpa.eps

36 ECONET Workshop 2008

public LoadingMetalModel (String hsmme) {

try Loading of the meta-madel froth ecare file
resourceiet = new FesourcefetImpl(]:;
® resourcelet.getResourceFactoryRegistry ()] .getExtensionToFactorytap () . put ("ecore™,
new EcoreRescourceFactoryImpl()):
IWMorkspaceRoot workspace = ResourcesPlugin. getiorkspace() .getRoot ()
CHMMA = resourcelet.createResource (URI. cregteFilelET (workspace.getlocation() . to033tring ()
+File.separator+"CHM Architecture.ecore")):
CHMA, load (null) ;
Tor (EULject epack @ CHNL.getContents (1) 1
EESGRAME PAR = IERGSRRACY chHAcK: Registration of the meta-models
resourcedet.getPackageRegistry () .put (pak.getNsURI (], pak)! |package and intialisstion of the
EPackage.Fegistry. INSTANCE . put (pak.getHNsURI(), pak): factories used for instanciation

i
CHMAPack = this.findEPackage ("CHHM Architecture™, CMMA);
CHMMAFactory = CMMAPack.getEFactoryInstance () ;
CHMHMPack = this.findEPackage ("CHH Meta™, CMMA):
CHMMFactory = CHMMPack.getEFactoryInstance() !
[CHMAiInstance = resourceSet.createResource (URI. createFilel’
archi = this.findEClazs("irchitecture™)
architecture = CMMMFactorvy.create (archi);
CHMMAiInstance.getContents () .add (architecture) ;
|[filenamwe = "CHMAInstanhcoe.ecore™;
componentlist = new HashMap<String, EObjects():
interfacelist = new HashMap<String, Edhject>():
} catch (IOException =)
e.printicackTrace () ;

Figure 3.14: Process B:Master Project: Code for model imistion

instantiation of models The instantiation process parse sequencially, first onldsses (mainly about compo-
nents), then the methods (component operations), andy/fimalihe attributes (component states and links).

At first the component metamodel is loaded with EMF from anrEdide (see the next section). Then the
metamodel is registered and an empty instance model iseckedtfter the program parses the annotation and
localisation strings in order to get the information abdwe model entity that it creates. For example an entry
point is created from its operation location and its operafFig. 3.15).

private void createEntryPoint (3tring element, EChject operation) {
EClass entry = this.findEClass ("EntryPoint™)
Edbiject entrypoint = CHMMMFactory.createlentry):

EftructuralFeature sclass = this.findESF("s_cla™, entry):;
Entrypoint.eSeti(sclass, element.split(™:™)[0]1:
EtructuralFeaturs smethod = this.findE3F ("s met”, entry):
entrypoint.efSet (smethod, element.aplit(M:")[1]):

EStructuralFeature ope = this.findESF ("op™, entry):
Eentrypoint.eSet (ope, operation);

EitructuralFeature comp = this.LindESF ("component', entry):
entrypoint.eSet (comwmp, this.getComponentielement)) ;
CHMMATn=stance.getContents () .add (entrypoint) ;

Figure 3.15: Process B:Master Project: Creating the ertirytp

The generated model for a sample class is showed in fiRja

Once the model is instantiated, it is exported as an EcoreSdét can be managed by any other tools that use
ecore files as interchange files (F&y17).

After external modifications the instance model can be irigubin our tool in order to generate the code from
the model. This code is generated by calling the writer oftoat. The in-memory model is loaded in the same
structure as the structure created with APT.

./FIGURES/codeConstructor.eps
./FIGURES/entrypointCode.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 37

{@ Eszsidnnotation. ecore. S@‘-\“
| = Eﬂ platform: fresource/Essaifinnotation/Model/Essaidnnotation. ecore
(= Architecture
. =4 Component composantTest

+ < Interface classes. Test
o< Attribute verif
“oode Atkribuke atkr
o Component secondTest

S attribute boba
|4 Binding
-+ Required Operation donneln
<4y Binding
4 Required Operation methodSansParam
Binding
-4 Required Operation methodRequired
Binding
< Required Operation methoddvecParam
Binding
< Required Operation methFournis
4 Entry Paint :J:l,'-:isses;"l?est:

)
4
i
R
)
4
i+

[problems | = Properties 22 __

Property Yalue
| Cornponent U= Component composantTest
op equired Operation methadavecParan
Scla lasses. Test
Smet

U= private void methodfvyecParamiint param)

Figure 3.16: Process B:Master Project: Annotations Trial

public veoid exportModelZEcoreFile (3tcring name) {

try
System. err.println (URI. createFilalET (name)) ;
URT uri = CHMMAInstance.getURI():
CMMAInstance.setURI(URI. cregteFileURT (natme) | &
CHMMAInstance.save (null) ;
CMMAInstance.setURI (uri) ;

+ catch [(I0Exception e)
e.printStackTrace () ;

Figure 3.17: Process B:Master Project: Model exportation

Tools used In order to use EMF, we need the CCMM metamodel in the Ecomadior So we write the CCMM
metamodel in KM3, a DSL for Metamodel SpecificatiaiBPg, which is a meta-model description language
invented at the University of Nantes by the ATLAS team (sese akctiorB.1.3 of chaptercommontools). Then
we have export this meta-model in Ecore to use it with EMF.

For the instantiation of the models, we generate the EMFxigleAPI from the meta-model of CCMM. And

then, we used this API to produce the model elements. Oncedelnwinstantiated, it become easy to iterate,
modify or export it.

Reading models Three different structures are exported: one for the ctags®e for the attributes and one for
the methods. Export deals with the annotation and the kedidin of the annotation. All the model elements (com-

./FIGURES/essaiAnnotation.eps
./FIGURES/exportModel.eps

38 ECONET Workshop 2008

ponents, attributes, methods, entru points) are scanndidd¢over what kind of annotation we will be exported.
Once re-built, the annotations can be exported with thealisation.

c) Integration

The integration is a very simplified version of the toolbcself (Fig. 3.6). It has been designed as an Eclipse
plugin with input/output of annotations and models.

Integration of the annotation processor To incorporate this part to our project, we had to modify thecpssor.

In the beginning of this project, the annotations writing@xecuted with a command line, but the model manager
uses EMF, which is used only in Eclipse. When we add APT plugiGclipse to use our program, the shared
resource was reinitialized by the processor when it starBed, the Eclipse builder creates a new processor for
building each file so we lost information in the resource. tdew to correct this, we first tried to modify the
processor factory to share the same instance of the pracésa@s not a correct solution because, in this case,
the processor works only for the first built of the programteift crashes and the build continues without the
management of our annotations. So we have decided to cartecanother way. We decided to declare our
plugin as a "compilation participant", then our program wasfied when a build started. So we can re-initialise
the resource before starting the build and restore therfatidhe previous version. It solved all our problems on
it. With this correction, the lone condition to use the taoté start a complete building, with a "clean”, before
launching the generation of the model.

Integration of the model generator In order to add the model generator, we added an extension tpodur
plugin. This extension point is defined by the tygreg. ecl i pse. ui . acti onSet s. It allows to add a menu
in the top of the Eclipse window and a button on the toolbaiis Tilkenu is calledRoundTr i p and contains an
entryGener at e Mbdel . The action performs a method call that creates the model fin@ informations given
by the annotation processor during the built. The buttorhertdolbar is a shortcut of this action. When the code
is generated, an in-memory model of the code is created a&necibre file corresponding to the model is written
in the model directory of the current project. If there is nodal directory it creates one. After the generation, a
pop-up message informs the user of the success. This faatitipwas added by modifying the class generated
by theact i onSet s wizard.

The generation work correctly if the meta-model ecore fifris at the root of the workspace folder. If not
the plugin can't load it. We have also created a factory ferghared resource wich allows all the classes which
access to it to share the same instances.

Integration of the code generator This functionality is inserted in the same way as for the nhagmera-
tor. We added an entr@gener at e Code in theRoundTri p menu. The action performs a generation of the
informations which are written into the Java classes.

Integration of the import CCM model function A new extension point is defined using the

org. eclipse. ui.inmportW zards: adding a new file import wizard wich is configurable by theifs
user interface, call a method of our plugin that uses the leadurce function given by EMF. This function
allow to load a CCM model contained in an ecore file in the gy using the import function of Eclipse and
automatically load it in the memory. It adds an entry "ImpBcore CCM model File"to the import wizard of
Eclipse.

Combining this instructions The combination of the differents functions explained aballow to extract a
model from annoted code. Then export it into an ecore file. ifddis model by editing the ecore file with the
user preference editor. After that, user can import its fiediimodel and then generate the modification in its
JAVA source code. With this combination we realised the tatup".

3.2.5 Future Work

This task is led by the COLOSS group; the OBASCO group alsdritarie significantly to the toolbox; the LCI
team will bring its experience on reverse-engineeringoWVE propose to work on three boxes (F&6): full
annotation management (transformation 1 and 2), clusf@poeation (transformation 5). A study should also be

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 39

= Java - Eclipse SDK

File Edit Source Refackor Mawvigate Search Project RoundTrip Rum Window Help

.
& . ~ R ma] - . ¥ menerate Model
J B i W] W O Q|

tert
& Generate Code

i

==
fé Package 0 . WiMavigat |1

==

=12 [cacome
[erc
= JRE System Library [jrel.6.0_0
=, Referenced Libraries
= lib
== Madel
#] cocome.ecare
LT Essaifnnotation

The "RoundTrig" menu

Figure 3.18: Process B:Master Project: Plugin Menu

r% Import = @\

Select \
Import a file From the local File system into the workspace, I E - 5

Select an import source:

type filter besxt

(= General

= cvs

== Ecore CCM model File Import
fe3 Import Ecore M model File:

(= Plug-in Development

= Team

Figure 3.19: Process B:Master Project: Importation Wizard

led on exploiting informations of a UML component model teativer components from the plain Java program.

Results on extraction back-ends are expected till the thindkshop (Cluj 2008).

Full Annotation Management

The student project is on the Econet SVN repository. Thisast does not include the (new) multi source anno-
tations, problems remains with automatic build and the agfeeration is not working correctly. A new release

should be available in august, written using RECODER rattizm APT.

The annotation language and component metamodel have &fgesdrand validated (ses sectigh8and4.2
of chapterd).

+++ TODO GA +++

./FIGURES/projetopmenu.eps
./FIGURES/importWizard.eps

40 ECONET Workshop 2008

Metamodel APl integration and experimentation

Process B requires user-defined informations. These itioms can be delivered interactively (answering to
qguestions, drawing or selecting graphical elementsr.pycsome text files. One of the option, which is quite
convenient for the CoCoME Case Sudy is to extract infornmatiwom any existing UML (Component) model.
This implies using UML transformation tools to read UML diagis and extract or abstract useful informations.
The goal of this subtask is to search how to extract gainfutsiiral informations from UML models.

Clustering Java Classes into Components

Writer: Jean-Claude Royer

For re-engineering Java applications into component asigesnseveral questions have to be raised. First,
it means to identify the boundaries of components and foh edidhem the interfaces or the public services.
Furthermore we are interesting in producing a componenteineih dynamic behaviour, that is each primitive
component has an explicit protocol. Protocols can also becéted to composite but it may be done, either
from the knowledge of primitive protocols and architectiuse by a similar extracting process as for primitive
components. This extracting process depends strongly fihenmypotheses related to the Java applications we
consider and also the kind of component models with protoa@ want to extract. Here we consider plain Java
objects without additional hypothesis. For protocols, we iaterested in simple ones like Labelled Transition
Systems but more advanced ones like process algebrasMISIBb] or Symbolic Transition System®RS06
are also relevant.

To summarize the main questions, we need to identify or eitra

e the boundaries of components, for primitive and compo#itis, result in a tree structure describing the
architecture;

¢ the interfaces of each components, here we can consideoarlynterface which is a set of method call.
An important point is about communication which is usudhysuch applications, reduced to binary com-
munications. In most of the component models or languagedassify them into required and provided
services;

e the communications between the different components iaittigtecture;

e for each primitive component, the leaves in the tree archite, we want to extract a protocol, which can
be an LTS or an STS.

We here summarize some previous work which have been dohesiarea. In their technical pap&8GH99
the authors study the various ways to extract some modelsniations from Java code. In fact it can be done
with three different approaches: parsing the source cadassembling the byte code or profiling the application
execution. They found that these three techniques have leomptary advantages. Parsing the source code,
using the classic grammar ware technology, is the most aantplimplement and it can lead to detailed models.
Disassembling Java byte code gives similar results thasingabut since the language is simpler it is technically
less complex. Profiling consists in getting some feedbawk fpplication execution, it strongly depends from the
precise context of execution but it is easy to do and provideiate information about polymorphic call, dynamic
types of objects and informations related to the use of tiieatéze Java APIl. The model used iBGH9Y is a
simple entity relationship model but it is not too far fromamponent model. The main difference is architecture
which is rather flat in this case and it does not consider paito The paper describes a complete study with
implementation of three tools, experiments on real-sizmles (Jigsaw web server and javacc) and result com-
parisons. Nevertheless, in some applications using trectaf API, profiling is more accurate about the dynamic
types of objects and the service calls.

The conclusion fromBGH99 is that: if static analysis is sufficient thus disassentpi probably the best
choice. However, if we want to exploit some comments and eot®tations, it is only possible with source code.
These comments and annotations may be really importantpaiine extraction of the structure and architecture
for components. If we need really accurate informationg@gode analysis is better, since compilation may
omit some relations which could be important from a moreralbsipoint of view. For instance, we can imagine
that an internal communication between internal parts neaggiimized with direct function call and removing
some intermediate computations. The problem is still opeces for instance GMO01] considers that runtime
analysis or profiling is needed since types and objects malybamically created.

3.3. PROCESS A: BEHAVIORAL ABSTRACTION SUBPROJECT 41

In our future study we expect to get an overall understandirige challenges and the solutions related to our
initial problem of extracting component informations frandava application. At least some previous work have
to be analyzed, for instanc&MO01, BBM04, BHM05, BCMRO07] and especially some work from our partners
from DRSG PKP05 PPK0G§ BHPOF. One important and preliminary study is to analyze the alestructure
and to identify the communications in a set of classes. Thd#yais of rules to extract an STS from a Java class is
also a relevant task.

3.3 Process A: Behavioral Abstraction Subproject
Writer: Ondrej Sery, Tomas Poch

The goal of Process A was to analyze options of reverse eadingebehavior specification from Java code and
additional architectural information in the form of Javanatations. The architectural information is the expected
outcome of Process B. Moreover, prototype implementatfosm Generic analysis tool (GAL) was anticipated.
The goals stated on the Prague 2008 Workshop are recapdtuathe next section.

3.3.1 Goals

Three of the groups participating in the project have dgwedtheir own formalism for behavior specification.
Therefore, in order to allow extraction of behavior in anytloé formalisms, the goal is to design the behavior
reverse engineering process as general as possible.

To be more specific, the formalisms considered are:

e Enhanced behavior protocols (EBP) developed by DSRG,
e eLTS developed by COLOSS,
e STS developed by OBASCO.

The individual behavior specification formalisms differa, lwhich makes creation of a general tool a chal-
lenging task. However, steps common to extraction of anyabien specifications (in particular behavior protocols
and LTS-based formalisms eLTS and STS) might be identifigtusTthe general approach is to divide all nec-
essary steps of behavior extraction into two parts: (i)stEpnmon to all formalisms, and (ii) steps specific to a
particular formalism.

The first part will be implemented in a General analysis taiije the second part will be performed by back-
ends specific to a particular formalism. To prevent reiniendf the wheel, the analysis tool is to be implemented
using existing libraries/tools/platforms (for parsingaaources and annotation extraction, etc.). To sum it @, th
goals of reverse engineering behavior specification arelksvs:

(1) Find a suitable libraries/tools/platforms for anasysf Java sources.

(2) Create a generic Java analysis tool which produces amietiate representation of behavior suitable for
subsequent creation of concrete behavior specificatioashosen formalism.

(3) Create formalism-specific back-ends for extractioneffdvior specification from the intermediate specifi-
cation.

3.3.2 Assessment

So far, a prototype implementation of the GAL—caljabistractor—has been created. The use a Recoder library
[6] to parse Java source codes and then employs a set of tnanasions over the abstract syntax trees (AST).
Figure3.20depicts the transformation process from Java sources toradbeither LTS or regular expression.
The LTS form is designed to preserve as much information fteoriginal sources as possible. This is essential
for further transformation into other formalisms (e.g.,S5dnd eLTS). However, these transformations are out of
the scope of the project.

42 ECONET Workshop 2008

o
_|
wn

LTS | i J

AST2LTS Preserving ,:\ ——————————— 1

Recoder Inlining Merged @ AST data \._\:: | |
Recder - :

Java |:> |:> Class ! STS !
AST asT | Y | i

Q ; AST2BP BP e :

AST transformations

Figure 3.20: Workflow of the process A

3.3.3 Tools and techniques

The input of the jabstractor tool is a set of annotated Jaueces, a name of a component and a specification of
intended usage of the primitive component (Big@1). The annotations were defined KEPRO7. The sources
are parsed using the Recoder tool which results iatzstract syntax treAST) of the involved Java classes. As
the Recorder tool is specialized for Java, it provides massful features; e.g., resolving references, side-effect
removal and so on. Moreover, it provides a framework fording user defined transformations based on the
visitor pattern.

Aa public class A{
Ve ™ @businessboolean cond;
B _b =new B();
@provided
e ? public void a(){
) for (int i = 0; i<10; i++)

e } {b():b();}
public void b(){

if (cond) hp();

_ Co Y, } else d();
public class B{ public void hp(){
@required C c;
public void x(){c.c();} }
} public void d(){_b.x();}
}

Figure 3.21: Example input of the process A. There is onaircs of the A class and one instance of the B class
within the instance of the component

In the next step, Recoder transformations are applied teertiekoriginal Java code closer to the capabilities
of target formalisms. The result is still a parse tree of aJXaxde. The strategy is to stick with Java parse tree
as long as possible and perform the transformation intoatget formalism as the last step. The motivation is
reuse of transformations independently on the target fisma The target formalisms have the power of finite
automatons, while Java is Turing complete. However, asdatget formalisms are intended to capture just the
behavior on a component boundary, internal computatioherethe complexity is often hidden, may be omitted.
In particular, the omitting works in terms of following deifions:

Definition 1 Letaandbbe AST nodes. We say tltds reachable fronaif
e bisinthe subtree oaor

e there is a method declaration, such that nodeall f is reachable frona, andb is reachable from method
declaration

FIGURES/process_a.eps
FIGURES/input.eps

3.3. PROCESS A: BEHAVIORAL ABSTRACTION SUBPROJECT 43

The omitting transformation the s&tp,.,,,, all AST nodes reachable fronpaovidedmethod declaration, and
Rpeq, all AST nodes, such thatrequired or businessnember variable reference is reachable from it. The sets
of provided methods, required and business member fielddedireed in source codes by annotations. Finally,
an intersectiol = Rpreq N Rproy iS computed. Then all statements (AST nodes) that are nbieirset/ are
removed together with all declarations which are not refeeel any more. There are also other transformations,
which can be applied at this point, depending on the targehdtism (side effect elimination, removing of a
method parameters, removing of recursion).

public class A{ if (cond) NULL;
@businessboolean cond; else d();

B _b =new B();

@provided
public void a(){

for (int i = 0; i<10; i++)
} {b():b();}

public void b(){

}

public void d(){_b.x()}
}

public class B{
@required C c;
public void x(){c.c()}
}

Figure 3.22: Example after omitting an internal behavior

The result of transformations is a set of simplified JavasdagFig.3.22). In the next step, these classes are
merged into single one, roughly corresponding to a compiidre merged class contains:

e Method declaration for each method provided by the compionen
e Constructors, thread definitions
e Field for each required interface
e Field for each business member

A method of the merged class may only access a business fizld\arke methods on required fields. Merging
of classes involves method and member fields inlining. Tieeenumber of issues regarding both control flow
(recursion, method overloading, inheritance, virtualmels) and data (points-to-analysis, method parameters).
Typically, these are often related to the halting problemsuch cases, overspecification is applied.

public class Merged{
@required C c;
@businessboolean cond;
bool _b _mode;

@provided
public void a(){
for (int i = 0; i<10; i++){

if (cond)NULL;

else if (_b_mode) c.c()
if (cond)NULL;

else if (_b_mode) c.c()

}

?a{
{
swi t ch(cond) {
case TRUE:
case FALSE: !c.c;
};
swi t ch(cond) {
case TRUE:
case FALSE: !c.c;

}
}*
}

Figure 3.23: The merged class and the result in EBP

Having the merged class in hand, the final step—transfoomatito a particular target formalism—can be
done (Fig3.23.

44 ECONET Workshop 2008

3.3.4 Objectives and organisation

In order to proceed and provide a working tool chain, follegviasks must be done. First, annotations used by
the process A and process B should be synchronized. Als@ltsractor tool should be improved to use method
parameters. At the Nantes workshop, opportunities for ifeedRkecoder tool also in process B emerged. In order
to minimize effort, a wrapper encapsulating the Recodectionality used by both processes should be created.

Tasks related to the jabstractor tool (and process A) are talried out by the DSRG team. Synchronization
of annotations is to be done in cooperation with COLOSS.

Chapter 4

Working Sessions

This chapter relates the working sessions.

4.1 Introduction

The goals of the working sessions are mainly to capitaliseettperience and to fix a roadmap for the project
continuation. This means to clarify the common issues:

(1) Metamodel: validate the metamodel in order to benefinfem aggreed one for the end of the project.

(2) Interface: define better requirements and provisiomefstubprojects including annotation definition, tools
sharing, special requirements, API...

(3) Case study: define a convenient subset of the benchmedkaysall subprojects.

From the organisation point of view the objective of the wogksessions is to refine the task initial definition and
planning the detailed objectives in a feasible manner, to define tiehe concrete and coordinated contribution
of each partner, to define task, products and results, to misgatasks (responsibilities, contributors, schedyle...
until the next workshap Last, everyone was invited to think about a project cortiimn and valorisation by
publishing results.

4.2 Metamodel Specification

Chapter 1 and 2 ofAP0g are a detailed explanation on the work leaded in this warkjroup. The reader is
invited to consult these chapters. The whole docun®ROf is the result of the validation process leaded by this
group in the working sessions.

4.3 Annotations and interfaces

A working group was build upon the interface between proeedsincluded annotations, tools and special re-
quirements.

4.3.1 Annotations Update

The annotations defined in the workshop of Prague have béi@eddn order to take into account experience
gained from the work on processes A and B, and also to alloayaiwf sources.

Component - Class Relation

45

46 ECONET Workshop 2008

@Target (ElementType . TYPE)
public @interface InComponent {

String [] annotationSrc ();

String [] componentName ();

}

Entry points

@Target (ElementType . TYPE)

public @interface InitClass {

String [] annotationSrc ();

String [] componentName ();

}

@Target({ ElementType.CONSTRUCTOR, ElementType.METHOD
public @interface InitMethod {

String [] annotationSrc ();

4.3. ANNOTATIONS AND INTERFACES

a7

String [] componentName ();

}

Interfaces

Provided

@Target (ElementType .FIELD)
public @interface Provided {

String [] annotationSrc ();

String [] modellfaceName();

}

@Target (ElementType.TYPE)
public @interface ProvidedIf {

String [] annotationSrc ();

String [] modellfaceName ();

String [] javalfaceName ()default { "" };

48 ECONET Workshop 2008

@Target (ElementType .METHOD)
public @interface ProvidedMethod {

String [] annotationSrc ();

String [] modellfaceName ();

}

Required

@Target(ElementType.FIELD)
public @interface Required {

String [] annotationSrc ();

String [] modellfaceName();

}

Business elements

@Target (ElementType.TYPE)
public @interface BusinessType {

String [] annotationSrc ();

}

4.3. ANNOTATIONS AND INTERFACES 49

[* %
x Marks particular Java class attributes as important for imess logic.
x/

@Target (ElementType.FIELD)
public @interface BusinessField {

[% %

x+ @return the array of sources for this annotation
*/

String [] annotationSrc ();

}

x Marks particular method parameter as important for busine®gic.
.
*/
@Target (ElementType . PARAMETER)
public @interface BusinessParameter {
[% %
x+ @return the array of sources for this annotation
x/
String [] annotationSrc ();

}

4.3.2 Interface with Recoder

+++ TODO G lles +++

Figure 4.1: Recoder wrapper and processes

./FIGURES/recoderwrapper_and_processes.eps

50 ECONET Workshop 2008

4.4 CoCoME

The CoCoME case study is used aseaachmark for each of the three subprojects. The whole benchmark is too
big to serve as support for the experimentations. In ordselect a subset of it as the experimentation field a short
working group was installed.

The constraints are:

e The selected subset must be large enough to include repa&gerxamples for each subproject (concepts
and constraints for the metamodel, primitive componenttierbehaviour abstraction, primitive and also
composite components for the structural abstraction.

e The selected subset must be as small as possible to avoidainseming instanciations.

e The slice is vertical (UML model and Java code).

We retain two included subsets related to two deadlines:

e Cluj: TheCashDesk composite component for the structural abstraction. Warétvo included subsets:

— TheCashDesk composite component for the structural abstraction.
— TheCashDeskAppl i cat i on primitive component, which is a component of tteshDesk com-
posite component that helds a dynamic behaviour.

e End of project The CashDeskLi ne composite component, which is the front-end subsystemefiz
plication.

«component» 8]

TradingSystem::CashDeskLine::CashDesk

1 «component» EI 1 «component» EI 1 «component» EI 1 «component» EI 1 «component» EI 1 «component» EI 1 «component» {l

:CashDeskApplication :LightDisplayController :CardReaderController :CashDeskGUI CashBoxController :ScannerController :PrinterController

A A N fi\ ™ % ~

SaleStartedEvent RunningTotalChangedEvent

.

CrediCardPaymeniEnabledEvent

CreditCardPaymentEnabledEvent CashBoxClosedEvent SaleStartedEvent
CreditC: dEvent ExpresshodeEnabledEvent SaleFinishedEvent
PINEnteredEvent ExpressModeDisabledEvent RunningTotalChangedEvent

2

Figure 4.2: CoCoME subset 1

./FIGURES/cashdesk.eps

4.5. TASK, RESPONSABILITIES, SCHEDULE 51

«component» 8]

TradingSystem::CashDeskLine

* «component» {l

:CashDesk

1 «component» {l 1 «component» {l 1 «component» {l 1 «component» {l 1 «component» {l 1 «component> {l 1 «component» {l

:CashDeskApplication :LightDisplayController :CardReaderController :CashDeskGUI CashBoxController :ScannerController :PrinterController

1 «component» @

EvelitBus

* «component» @
(cashDeskChannel:EventChannel
/1 «component» D
t extCommChannel:EventChannel

1 «component» @]

:Coordinator

Events for finished
sales are sent through
this interface to the Inventory.

Used to access the Inventory
to get the product description
of the currently scanned product.

Figure 4.3: CoCoME subset 2

4.5 Task, responsabilities, schedule

Figure4.4is a snapshot of the discussions about tasks, responigstlitd deadlines for the processes subproject.
e Metamodel (Viadiela)

— CCMM specification + special requirements (input)
— Metamodel verification

— API generation and testing

— Deadlines

x specification: 7 of june 2008
x version 1 (EMF) : 22 of june 2008
x version 2 (0AW) : end of june 2008

e Process A (Tomas)

— Behaviour abstraction
— Submodel instanciation
— Deadlines: september (the last team in the dependency)chain

e Process B (Gilles)

— CCMM instance of CoCoME + EMF API + Java files (input from LCI)
— Input/Output of Java annotations
— Deadlines : begin of july 2008

./FIGURES/cashdeskline.eps

52 ECONET Workshop 2008

— Deadlines:
Metamodel Management | - specification - 07/06
|- special requirements - Spec.
Vladiela _API -vl:22/06
L -v2 :end of june
Process A [Behavioural Process B B Behavioural
i | Abstraction of | Abstraction of
Dela' ines: Tomas | primitive | “annotation 1 Gilles | primitive
- cly) components - components
| |__ definition | |
- Sub CCMM - Sub CCMM
instanciation instanciation
t\ !4
4 »
CoCOME [- subset to decide

- primitive component (A)
| - composite (B)

Petr

Figure 4.4: Workshop whiteboard 3

— Studies for other tools of the toolbox

e Case Study (Petr)

We reminded the current (shared) set of tools and framewerlse for the project:
e Code: RECODER/APT
e OCLE/EMF/0AW/ATL

Deadlines:

- annotated code
- model instance
- begin of july

./FIGURES/ecoTasksWN.eps

Chapter 5

Conclusion

We report many informations of the workshop in this docum&hts work has also been intended to be the tech-
nical part of the project second year report together wighnttetamodel specification documeAB0d produced
in the same period.

The workshop indicates the current state of the projectclvig a bit in hurry againts its planification. Small
prototypes have been produced for each subproject, bgrsgime experience on the architecture and technical
issues.

Common parts have been discussed and validated during theshvap in order to allow everyone to develop
the solutions on step further until the next workshop iné¢hreonths.

53

Bibliography

[AAAOGa]

[AAAOGD]

[ACPRO7]

[AId05]

[APOS]
[BBMO4]

[BCMRO7]

[BFFDOS]

[BGH99]

[BHMO5]

[BHMO6]

[BHPOB]

[BRO2]

[CCG*+04]

[CDH*00]

Christian Attiogbé, Pascal André, and Gilles Artel. Checking Component Composability. In
5th International Symposium on Software Composjt@iume 4089 ot ecture Notes in Computer
ScienceSpringer Verlag, 2006.

Christian Attiogbé, Pascal André, and Gilles Atdel. Checking Component Composability.Sth
International Symposium on Software Composition, SG/0kime 4089 of. NCS Springer, 2006.

Pascal André, Dan Chiorean, Frantisek Plasil, Jeah-Claude Royer. ECONET Project - Prague
Workshop Report, September 2007.

Jonathan Aldrich. Open modules: Modular reasorabgut advice. In Andrew P. Black, editor,
ECOOP 2005 - Object-Oriented Programming, 19th Europeanf@@ncevolume 3586 of ecture
Notes in Computer Sciengeages 144-168, Glasgow, UK, July 2005. Springer Verlag.

Pascal André and Vladiela Petrascu. ECONET Proj€&€MM Specification v. 1.1, June 2008.

Tomas Barros, Rabéa Boulifa, and Eric MadelaineraReeterized models for distributed java ob-
jects. In David de Frutos-Escrig and Manuel Nufiez, edite@RTE volume 3235 of ecture Notes
in Computer Scienc@ages 43—60. Springer, 2004.

Tomas Barros, Antonio Cansado, Eric Madelaing, kliarcela Rivera. Model-checking distributed
components: The vercors platforrilectronic Notes in Theoretical Computer Scient@2:3-16,
2007.

Tanguy Beneteau, Vincent Fouquet, Claire Froraibrend Guillaume Doux. Operationnal project:
Reverse-engineering on JAVA. Master’s thesis, MSc on So#wArchitectures, University of
Nantes, March 2008. directed by Pascal André and Gilles énelo

Ivan T. Bowman, Michael W. Godfrey, and Richard C.ltddExtracting source models from java
programs: Parse, disassemble, or profile? http://plgeneat.ca/ itbowman/pub/paste99.pdf, 1999.

T. Barros, L. Henrio, and E. Madelaine. Behaviouvddels for Hierarchical Components. Rroc.
of SPIN’05 volume 3639 of NCS pages 154-168. Springer-Verlag, 2005.

Tomas Barros, Ludovic Henrio, and Eric Madelaineodél-checking distributed components: The
vercors platform. Innternational Workshop on Formal Aspects of Component\soét (FACS’06)
Prague, September 2006. Electronic Notes in Theoreticalpgtiber Science (ENTCS).

Tomas Bures, Petr Hnetynka, and Frantisek PlasdFA2.0: Balancing advanced features in a
hierarchical component model. 8ERA pages 40-48. IEEE Computer Society, 2006.

Thomas Ball and Sriram K. Rajamani. The slam projet#bugging system software via static
analysis. INPOPL, pages 1-3, 2002.

Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, aidt Veith. Modular verification of
software components in ¢EEE Trans. Softw. Eng30(6):388—402, 2004.

James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawobach, Corina S.&areanu, Robby,
and Hongjun Zheng. Bandera: extracting finite-state moideis java source code. IICSE '00:
Proceedings of the 22nd international conference on Soéwagineering pages 439-448, New
York, NY, USA, 2000. ACM Press.

54

BIBLIOGRAPHY 55

[CGJ00]

[CKSY04]

[Dam07]

[DFS02]

[DLBNSO06]

[Eis05]

[emf]

[GMO1]

[JBO6]

[JKPO5]

[MKO63a]
[MKOGb]

[NNO73a]

[NNO7b]

[oaw]
[ocl]

[PNPRO5]

[PP99]

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan LuHahahut Veith. Counterexample-
guided abstraction refinement. @AV '00: Proceedings of the 12th International Conferenoe o
Computer Aided Verificatigrpages 154-169, London, UK, 2000. Springer-Verlag.

Edmund Clarke, Daniel Kroening, Natasha Sharggand Karen Yorav. Predicate abstraction of
ansi-c programs using sa&torm. Methods Syst. De25(2-3):105-127, 2004.

C.W. Damus. Implementing Model Integrity in EMF wMDT OCL, 2007. Eclipse Corner Articles,
online at:
http://www.eclipse.org/articles/article.php?file=isht-EMF-Codegen-with-OCL/index.html.

Rémi Douence, Pascal Fradet, and Mario Studholtaméwork for the detection and resolution of
aspect interactions. In Don Batory, Charles Consel, anddWaha, editorsGenerative Program-
ming and Component Engineering: ACM SIGPLAN/SIGSOFT Camée, GPCE 2002 - Proceed-
ings volume 2487 ofLecture Notes in Computer Sciengmges 173-188, Pittsburgh, PA, USA,
October 2002. Springer Verlag.

Rémi Douence, Didier Le Botlan, Jacques Noyé, Btadio Stidholt. Concurrent aspects. Fno-
ceedings of the 4th International Conference on Generairagramming and Component Engi-
neering (GPCE’06)pages 79-88, Portland, USA, October 2006.

Cindy Eisner. Formal verification of software scaicode through semi-automatic modelirgpft-
ware and System Modeling(1):14-31, 2005.

EMF website. http://www.eclipse.org/modeling/émf

Juan Gargiulo and Spiros Mancoridis. Gadget: A TaolExtracting the Dynamic Structure of Java
Programs. I'SEKE: Software Engineering and Knowledge Engineefisges 244-251, 2001.

Frédéric Jouault and Jean Bézivin. Km3: A dsl for maidel specification. In Roberto Gorrieri
and Heike Wehrheim, editorBMOODS volume 4037 of_ecture Notes in Computer Scienpages
171-185. Springer, 2006.

Pavel Jezek, Jan Kofron, and Frantisek Plasil. Maiecking of Component Behavior Specifi-
cation: A Real Life ExperienceElectronic Notes in Theoretical Computer Sciegnt@0:197-210,
2005.

J. Magee and J. KrameConcurrency: State Models and Jawdiley, 2nd edition, 2006.

Jeff Magee and Jeff KrameConcurrency: State Models and Java Prograriéiley, 2 nd edition,
2006.

Angel Nufez and Jacques Noyé. A domain-specificdagg for coordinating concurrent aspects in
java. In Rémi Douence et Pascal Fradet, edBéme Journée Francophone sur le Développement
de Logiciels Par Aspects (JFDLPA 20Q0Tpulouse, France, March 2007.

Angel Nafez and Jacques Noyé. A seamless extensmmngponents with aspects using protocols.
In Ralf Reussner, Clemens Szyperski, and Wolfgang WeckpresgivVCOP 2007 - Components be-
yond Reuse - 12th International ECOOP Workshop on Compebgahted ProgrammingBerlin,
Germany, July 2007.

0AW website. http://www.openarchitectureware/org
OCLE website. http://Ici.cs.ubbcluj.ro/ocle/indatm.

Sebastian Pavel, Jacques Noyé, Pascal PoizaleandClaude Royer. A java implementation of a
component model with explicit symbolic protocols. Pnoceedings of the 4th International Work-
shop on Software Composition (SC'08plume 3628 ot ecture Notes in Computer Scienpages
115-125. Springer-Verlag, 2005.

Radek Pospisil and Frantisek Plasil. Describind-ilnectionality of EJB using the Behavior Proto-
cols, 1999.

56

ECONET Workshop 2008

[PPOT7]

[PPKO6]

[PRS06]

[PV02]

[VKEHO06]

Pavel Parizek and FrantiSek PIasil. Modeling emwitent for component model checking from hi-
erarchical architecture. Ifhird International Workshop on Formal Aspects of CompaoiSarftware
(FACS 2006) volume 182 ofElectronic Notes in Theoretical Computer Scienpages 139-153.
Elsevier B.V., 2007.

Pavel Parizek, Frantisek Plasil, and Jan Kofrond®8ehecking of software components: Combin-
ing java pathfinder and behavior protocol model checlsafttware Engineering Workshop:133—
141, 2006.

Pascal Poizat, Jean-Claude Royer, and Gwen SaBaumnded Analysis and Decomposition for
Behavioural Description of Components. In Springer Verladitor, FMOODS number 4037 in
Lecture Notes in Computer Science, pages 33—-47, 2006.

F. Plasil and S. Visnovsky. Behavior protocols foftaare components, 2002. IEEE Transactions
on SW Engineering, 28 (9), 2002.

M. Voelter, B. Kolb, S. Efftinge, and A. Haase. Frdfnont End To Code - MDSD in Practice, 2006.
Eclipse.org, online at:
http://www.eclipse.org/articles/Article-FromFrontEiloCode-MDSDInPractice/article.html.

Appendix A

Collaborative Tools

In this appendix chapter we provide informations on the 8ufion repository and the wiki tools.

A.1 SVN Repository

The Subversion (SVN in short) repository was set up at DSR@vg@Jsity of Prague) in october 2007. Reports,
specifications and developments can be updated on this S¥sitery.

E)econetzeconet_svn [COLOSS] - Mozilla Firefox -10f x|
Fichier Edition Affichage Historigue Marque-pages ¥ahoo! Outlls 2
@ - _ " @ ﬂl’ i{ hitkp: v lina, sciences, univ-nantes, frfcoloss wikifdolo, php?id=econet:econet_svn ;_Il"‘ }‘ “E]_'iGocgle | -._|
econet:econet_svn
| Editthis page | | Old revisions | | Recentchanges | | ' Search |
hide Trace: # start # cormmon_tools # econet # materials » eronet_sun
Index o
Econet Collaborative Tools
This is an index over all zvailable Y . TN
pages ordered by (#namespaces, o
. | Edit|
¥cune SVYN Repository
¥ et cituleth BLE o el ol T L | - - L v« S—
* econet
+ biblio Restructured on the 19 of may 2008
¥ minutes
¥ nantes2008 =1 5w | @processﬂu
¥ pragues2éd? BB cconer f) processt
= annotations F-_] .sen [tools
. :e:awnura:_mn:e: L Bl casesrciy Sreports
= behavioural_model_comparisan =
2 ST = ig] metamodels fgdcasestudy
= common_tools o i I
= econet_sun [ﬂ [_1 5N 1.
= gilles_random_ideas -+l commt 1 dmetamodsls
= java_header =] F,J concreke
= mriaterials B0 svn
= mata_modsl E-2] Kmefia
= nantes2008 g soFA
2007 e
g =g drafts
= process_a o
= process b L;:j] -
= start i ceTml;
= structural_model g emm_dsrg
¥ htech E] cmmi.0
* intranet [z others
b kmelia ~lg] implementations
b miles Iy specfications
> playground 2] processh
ok] processa
= start L
[—H;] reports
&0 .svn b
6_1 nantes2008
& Q] pragus2007 -
-4zl tools
& .svn
=g econet
1 s
~fg] annatations =114 _I
%
Terming 7

Figure A.1: Project SVN Repository

DSRG has set up a SVN repository for the project and put thertépit (in the directory reports/Prague2007).

57

./FIGURES/wikiTools.eps

58 ECONET Workshop 2008

The repository is running &t In a separated email, | will send
you login and password required to access the repository.

You can obtain svn from Also, the svn documentation is available
from the same site (direct url is).

A brief overview of the most important commands:

svn checkout svn://logi n@iya.ns.nff.cuni.cz/econet directory
Initial check out of the repository content to the specified
directory.

svn comi t
Commits local changes to the repository

svn add <nane_of file_or_directory>
Adds new file or conplete directory to the repository.
The command shoul d be follow by "conmmit" (the "add" comrand
just schedules files/directories to be added and "comit" really
commits them and they beconme visible for others).

svn update
Updat es your (previously checked out) copy of repository
by commts nade by others.

svn help
Overvi ew of all conmands

svn hel p <command>
Detai |l ed hel p about a particul ar comand.

If you prefer a GUI client, you can use TortoiseSVN clieni {)

A.2 Wiki

This wiki was installed at LINA (University of Nantes, EMN) iapril 2007. It includes discussions, a repository
for project and workshop material, etc. The history of thejgct will be found on this wiki. In particular there
are chapters for each workshop (see fighi2a

Project material and documents are downloadable from tattwiki (figure A.3) and the SVN repository
(figureA.1).

svn://aiya.ms.mff.cuni.cz/econet
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://tortoisesvn.tigris.org/
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:materials:start

A.2. WIKI

59

“econet:start [COLOSS] - M fox

Fichier Ediion Affichage Historique Marque-pages Yahoo! Qutls 2

=181x

€0 -@ L @R

iences.uriv-nantes. fr i hp?id=econet start

15

econet:start
| Editthis page || oldrevisions | Recentchanges | | | search |
hide Trace [mabe RSl & a¢aat
Index

This is an index aver all available pages
ordered by #namespaces,

b coloc

» costo

* aconet

g

minutes
nantes2008

pragues2007

annatations
behauiaural_modal
behavioural_modal_comparizan
cormmon_tools

cconat_sun

»
»

»

= gilles_random_ideas
= java_header

= materials

= meta_madel

* nantes2008

= old_annotations

= pragues2007

= process_a

= process b

u start

structural_model

htech

playground
wiki

2
1

Welcome to the COLOSS/ECONET Wiki

Table of Contents

Project description in french 5 pdf er in english 7 pd§

An Egide program | @http:/fwww,egide. assa. fr/f/programmes/econet/

Project Materials

-Walcome to the
COLOSS/ECONET Wiki
“Project Materials
-Warkshaps
+€lu Workshop
“Nantes Warkshop
-Praguzs Warkshop
“Econat Map

= Documents, Technical Descriptions
= Econet SYN
= Discussians

Workshops

Cluj Workshop

The workshop will held on 21 of september - 24 of september 2008

Nantes Workshop

2008/05/12 - 2008/05/16 - Thanks t0 the COLOSS group for the focal arganisation.

The workshop page here

Pragues Workshop

2007/09/03 - 2007/09/07 Thanks to the DSRG qroup for the local organisation

The workshop page here

Econet Map

LEdh

Edit

=T

Terming

start [[OL0SS] - Mozilla Firefox

Fichier Ediion Affichage Historique Marque-pages Yahoo! Qutls 2

=181x

@ 2-¢ L hRY

iences.uriv-nantes. fr i hp?id=

15

econet:materials:start

| Editthis page || 0ld revisions |

Fiecentchanges | | | Search |

hide
Index

This is an index aver all available pages
orderad by Znamespaces,

coloc
costo
aconet

» biblio

v materials

= annotatians
= behavioural_model_camparisen
= gilles_randam_ideas

= jova_header

= old_annatations

- start

minutes

nantes2008

pragues2007

playground
wiki
start

2
R

[Tracer = 7 » materials » > 70 » matanials »

Econet Project Materials

7 > venua » econct * materials

start

Project Overview

Technical points

= Annotation language definition annotations

= Behavioural Madsl Comparison behavioural_mods|_comparison
= MetaModel definition meta_model

= header to be defined for the project files java_headsr

= Put your random Ideas and discussion pages hers : gilles_randam_ideas

Subprojects

+Econst Projact Materials
~Project Gueriiew
~Technical points

-Subprojects

+CoCoME Benchmark

‘ -Bibliegraphy

+Camman Tasls

[Metamodels Process a process B|

|meta_model |Process A |Process B |

CoCoME Benchmark

= CoCoME example assignment: © Z2IF
= CoCoME solution in SOFA: @POF

Bibliography

Bibliography work {project) here

Commoan Tools

A page describing the common tools and alternatives common_tools

Logaed in ast COLOSS Taam

Terming

Figure A.3: Project material on the Wiki

./FIGURES/wikiStart1.eps
./FIGURES/wikiMat.eps

Appendix B

Common Tools and Interface

In this appendix chapter we provide informations on the rhadd language tools. Interface between subprojects
can be text files or XML files but this quite poor and each groulpneed to develop tools on Java and Models.
In order to get a standard vision of the usable technologees&ed to agree on the model and metamodel tools
used in each subproject.

B.1 Java Tools

Java tools include annotation management and java codgsanal

B.1.1 Java/Annotation Tools

Several tools will be used in more than one subproject.

Tools Webography
(1) JavaCcC|
(2) Java Development Kit)
(3) ANTLR,
(4) Java CUP;
(5) SableCC|
(6) Recoder|

B.1.2 Tools for Java source analysis

Having the Java sources properly annotated, the questlomvofo extract the annotations and analyze the sources
comes up. There is quite a choice of tools to be used for thizgse.
Possible options are:

e JavaC P]l—standard Java compiler from Sun—is a natural first optisntas standard part of the Java
development kit (JDK) and features a reasonable interfaceither annotation processing alone or to
obtain the complete abstract syntax trees.

e JavaCC (Java Compiler Compilefl) s a generator of parsers. To create a parser, it uses a gkgmmar.
e ANTLR [3] is another parser generator which also uses LL(n) grammars
e Java CUP{] is also a parser generator, but in comparison to the prevaoes it uses LALR(1) grammars.

It is quite similar to the standard YACC and Bison tools. Imtast, it is written in Java.

60

https://javacc.dev.java.net/
http://java.sun.com/
http://www.antlr.org/
http://www2.cs.tum.edu/projects/cup/
http://sablecc.org/
http://recoder.sourceforge.net/

B.1. JAVATOOLS 61

e SableCC 5] is another LALR(1) parser generator.

In a case, the chosen parser generator does not providecallaralyser, a usage of tools like JLex and JFlex
has to be considered.

Choosing the suitable tool will require deeper exploratiad in-depth analysis of all features provided by the
tools. The preferred option is to use JavaC, as it alwaysaguiees to parse the current (and also older) version of
the Java languages and also it does not introduce any thitgi4ool dependencies.

RECODER Thecurrent choicds the Recoder tool, available on a sourceforge project

RECODER is a Java framework for source code metaprogramanimed to deliver a sophisticated infrastructure
for many kinds of Java analysis and transformation tools.

Program ™
Parser & Metamodel
Analyzer — '/

—>
—

Figure B.1: Recoder Metaprogramming Cycle

The following table gives a short description of the differéayers of RECODER features as well as the
application perspectives that these layers offer:

e Parsing and unparsing of Java sources

In addition to abstract model elements, RECODER also suppohighly detailed syntactic model - no
information is lost. Comments and formatting informatiaga eetained. The pretty printer is customizable
and will be able to reproduce the code (possibly improvingruip, but retaining given code structures) and
to embed new code seamlessly.

Possible applicationsSimple preprocessors, simple code generators, souresbaaitification tools

e Name and type analysis for Java programs

RECODER can infer types of expressions, evaluate comipile-tonstants, resolve all kinds of references
and maintain cross reference information.

Possible applicationsSoftware visualization tools, software metrics, Lirkeisemantic problem detection
tools, design problem detection tools (anti-patterng)ssireferencing tools

e Transformation of Java sources

RECODER contains a library of small analyses, code snippeégators and frequently used transforma-
tions.

Possible applicationsPreprocessors for language extensions, semantic maspes;t weavers, source code
obfuscation tools, compilers

e Incremental analysis and transformation of Java sources

Transformations change the underlaying program modeinfoemental and iterative use, this model has
to be updated accordingly. Transformations have to take @bdependencies by updating their local data

http://recoder.sourceforge.net/
./FIGURES/MetaprogrammingCycle-small.eps

62 ECONET Workshop 2008

and setting back matching positions when necessary; hayRE€ODER will analyze change impacts for
its model and perform updates automatically.

Possible applications Source code optimization, refactoring tool, software naign programs (Smart
Patches), design pattern, clichés and idiom synthesisitactural connector synthesis, adaptive program-
ming environments, invasive software composition

B.1.3 Model Engineering Tools

We need tools for model management, preferably on Eclipse.aWéady discussed on a modeling tool around
Eclipse technologies (Ecore, XML, EMF, MOF...) that alloiws

(1) describe and check component metamodels CMM (with &tratand behavioural features, with a model
that links to Java code)

(2) describe and check component models CM
(3) provide an API to navigate on and query models, to addatdjwers and processing on models

@) ...

LCI should maintain this (CMM-CM) layer since it relates t@tamodels.

At first sight OCLE can provide the main elements on pointsd Zbut it doesn’t provide an API usable in
process A (structure) and B (behaviour).

We mainly decided to work withe EMF. The Eclipse EM#tugin "is a modeling framework and code genera-
tion facility for building tools and other applications bed on a structured data modgl EMF is an open-source
framework wich provides APIs and tools (code generatorrialsgation-deserialization tool, and a reflexive API
to manage models). EMF contains also a specific implementafithe meta-metamodel MOF from the OMG.
This one is called Ecore and it is used for the descriptiomaeth-models. EMF can import model from a large
range of source, like JAVA code, XML documents, XML Schenragwery other source that can be translated in
the Ecore format. The Ecore format is a sub-type of XMl filemdiard wich is used in Eclipse. In order to use
EMF, we need the CCMM metamodel in the Ecore format. Othdsterist that can help to use Ecore without
handling it directly:

e Kermeta (IRISA)

e ATL/KM3 (LINA)

e ArgoUML tool (OpenSource)

e others...

Information on this aspect can be found here:

o Generalities

Eclipse Modeling Tools

Kermeta (IRISA)

ATL (LINA)

Tools

It would be helpful to compare tools.

1

http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://argouml.tigris.org/
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language
http://www.eclipse.org/modeling/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/atlTransformations/
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47
http://www.eclipse.org/modeling/emf/

B.2. JAVA ANNOTATIONS

63

B.2 Java Annotations

In this appendix section we ould provide the Java definiticthe annotations.
See sectiod.3.1

List of Figures

11
1.2

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

3.22
3.23

4.1
4.2
4.3
4.4

Al
A.2
A.3

B.1

Econet Architecture: finalversion 8
Project Wiki. e 9
Workshop pagesonthe Wiki 10
Workshop Materialsonthe Wiki 11
Workshop Organisationonthe Wiki o 12
Model checkingin OCLE e e e 24
An Ecore metamodel including WFRs and observers 26
OAW WOrKFIOW rUN o o 27
A generalviewoftheprocessB L 28
Aniterative view of the process B 29
An architectural view of the processB. 29
Process B: Master Project Organisation. 31
Process B:Master Project: CoOCoME subset 31
Process B:Master Project: One class of CoCoME annoted. 32
Process B:Master Project:Extract of the Annotated<Cémd the CoCoME generated model. . 33
Annotation Provided. 33
Visitor for thecl ass annotation. 34
Process B:Master Project: CCM Subset o 35
Process B:Master Project: Code for model instantiatio 36
Process B:Master Project: Creatingtheentrypoint 36
Process B:Master Project: Annotations Trial, 37
Process B:Master Project: Model exportation 37
Process B:Master Project: PluginMenu. 39
Process B:Master Project: ImportationWizard. 39
Workflow of the process A e 42
Example input of the process A. There is one instanckeftclass and one instance of the B
class within the instance of the component 42
Example after omitting an internal behavior. o o oL 43
The merged classandtheresultinEBP. 43
Recoder wrapper and proCEeSSES. . . . v v v v v i i i e e e e e e 49
CoCoME subset 1. 50
CoCoME subset2. 51
Workshop whiteboard 3. 52
Project SVN Repository 57
Project WiKi. 59
Projectmaterialonthe Wiki. 59
Recoder Metaprogramming Cycle e 61

64

	Introduction
	The 16293RG ECONET Project
	Motivations
	Partners
	Initial Plan
	Current State

	Report Contents

	The Workshop at the University of Nantes
	Preparation
	Material
	Organisation

	Objectives
	Participants
	Program and Schedule
	The Workshop Sessions
	The Presentation Sessions
	The Working Sessions

	Project and Technical Presentation Sessions
	Metamodel Abstraction Subproject
	LCI Tool Demos Summarized

	Process B: Structural Abstraction Subproject
	Goals
	Design
	Assessment
	Tools and techniques
	Future Work

	Process A: Behavioral Abstraction Subproject
	Goals
	Assessment
	Tools and techniques
	Objectives and organisation

	Working Sessions
	Introduction
	Metamodel Specification
	Annotations and interfaces
	Annotations Update
	Interface with Recoder

	CoCoME
	Task, responsabilities, schedule

	Conclusion
	Collaborative Tools
	SVN Repository
	Wiki

	Common Tools and Interface
	Java Tools
	Java/Annotation Tools
	Tools for Java source analysis
	Model Engineering Tools

	Java Annotations

