
ECONET Project
NANTES 2008 - WORKSHOPREPORT

Pascal ANDRE1 Dan CHIOREAN2 Frantisek PLASIL3 Jean-Claude ROYER4

2008, 12-16 May

supported by

1LINA CNRS UMR 6241 - 2, rue de la Houssinière, B.P.92208, F-44322 Nantes Cedex 3, France
2Computer Science Research Laboratory, Universitatea BABES-BOLYAI Mihail Kogalniceanu nr. 1 RO- 400084 Cluj-

Napoca, Romania
3Distributed Systems Research Group, Charles University, Malostranske nam.25, 11800 Nantes 1, Czech Republic
4OBASCO - EMN/INRIA LINA FRE CNRS 2729, 4, rue Alfred Kastler F- 44307 Nantes cedex 3 France

./FIGURES/logoEgide.eps

2 ECONET Workshop 2008

Executive Summary

An Egide-sponsored workshop was held at the Nantes Laboratory for Computer Science -in french Laboratoire
dŠInformatique de Nantes-Atlantique (LINA CNRS UMR 6241)-in Nantes. This workshop was the second one in
a series of the ECONET Project Nr16293RG entitled, "Behaviour Abstraction from Code,Filling the Gap between
Component Specification and Implementation".

The LINA laboratory in "Sciences and technologies of the software" is specialized on two axes : distributed
software architectures and computerized decision-makingsystems. Associated to the CNRS, the University of
Nantes and the Mines School (EMN - Ecole des Mines de Nantes),the LINA also includes two INRIA projects.

The first workshop provided a detailed outline for the project defining the objective and means, and structuring
it in three subprojects. This second workshop is a milestonein the second year project. It should observe the
project state and refine objectives and cooperation, according to the objectives of the two years of the project. We
remind here a list of the main tracks we had to follow

• Present the current situation for each subproject (including products and problems, future work),

• Tools normalisation (compare tools and techniques of each subproject, final decisions on the tools panel,
perspectives),

• Study the interface between the parts (languages, format, filters, API...),

• Get a first prototype (source and documentations for each subproject, final decisions on the metamodel part,
extract the main open issues, applications on CoCoME)

• Draw the roadmap to the end of the year (development, documentation, workshop preparation, publication
of reports and papers)

More precisely, the aims of the workshop were (1) to get some feedbak of the current developments (2) to
share the experiences and (3) to settle interfaces and common tools. Additionally we would to take concerted
decisions on the project issues (concrete objectives, tasks, organisation, responsabilities, deliveries, planning...).

On these points the workshop put forward new advances but also some delay of subproject tasks and discus-
sions led to some decisions on both the interaction points and project organisation. The following issues have
been discussed: tools and approaches, interaction points (metamodel, annotations), shared techniques and tools,
common benchmark, etc. The working sessions enabled (1) to validate the common component metamodel (its
specification is on the way), (2) to refine the subproject objectives and context, (3) to plan the work (subproject
objectives and responsabilities) until the next milestone(Cluj’s workshop in september), (4) to draw some project
continuation (publications, projects).

The main concrete results are A project architecture was drawn after fruitful exchanges accompanied with
the definition of tasks, with balanced responsabilities andpartnerships. This project includes three distinct but
complementary parts:

• A definition of the common component metamodel.

• A new definition of the annotation language.

• A gained experience on model driven tools and code processing.

• A finer architecture understanding.

The workshop concluded with some guidelines to the next workshop that should take place in Cluj 2008.

This report relates what happened in the Nantes’s workshop (2008).

Acknowledgements The participants would like to thank Egide for its financial support of this workshop.

Contents

1 Introduction 5
1.1 The16293RG ECONET Project. 5

1.1.1 Motivations. 5
1.1.2 Partners. 7
1.1.3 Initial Plan . 7
1.1.4 Current State. 8

1.2 Report Contents. 9

2 The Workshop at the University of Nantes 10
2.1 Preparation . 10

2.1.1 Material. 11
2.1.2 Organisation. 11

2.2 Objectives. 12
2.3 Participants. 13
2.4 Program and Schedule. 13
2.5 The Workshop Sessions. 13

2.5.1 The Presentation Sessions. 14
2.5.2 The Working Sessions. 19

3 Project and Technical Presentation Sessions 23
3.1 Metamodel Abstraction Subproject. 23

3.1.1 LCI Tool Demos Summarized. 23
3.2 Process B: Structural Abstraction Subproject. 27

3.2.1 Goals . 28
3.2.2 Design . 28
3.2.3 Assessment. 30
3.2.4 Tools and techniques. 32
3.2.5 Future Work . 38

3.3 Process A: Behavioral Abstraction Subproject. 41
3.3.1 Goals . 41
3.3.2 Assessment. 41
3.3.3 Tools and techniques. 42
3.3.4 Objectives and organisation. 44

4 Working Sessions 45
4.1 Introduction. 45
4.2 Metamodel Specification. 45
4.3 Annotations and interfaces. 45

4.3.1 Annotations Update. 45
4.3.2 Interface with Recoder. 49

4.4 CoCoME . 50
4.5 Task, responsabilities, schedule. 51

5 Conclusion 53

3

4 ECONET Workshop 2008

A Collaborative Tools 57
A.1 SVN Repository. 57
A.2 Wiki . 58

B Common Tools and Interface 60
B.1 Java Tools. 60

B.1.1 Java/Annotation Tools. 60
B.1.2 Tools for Java source analysis. 60
B.1.3 Model Engineering Tools. 62

B.2 Java Annotations. 63

Chapter 1

Introduction

In this part we remind the context of the workshop, its preparation, organization and the program. This workshop
was the second one in a series of the ECONET Project Nr16293RG.

1.1 The16293RG ECONET Project

The activity described in this report is supported by Egide in the context of ECONET Projects1. This section
gathers the main features of the16293RG ECONET project.

• Title: Behaviour Abstraction from Code

• Subtitle:Filling the Gap between Component Specification and Implementation

• Type:Research and Technology Development Project

• Duration:2 years

• Domain:Sciences and Information Technology

• Partners:COLOSS (French) - DSRG (Czech) - LCI (Romanian) - OBASCO (French)

1.1.1 Motivations

The project takes place in a specific domain of Information Technology, called Component Based Software En-
gineering whose goal is to provide languages, methods, techniques and tools for software developpers. The field
of component-based software engineering (CBSE) became increasingly important in software construction ap-
proaches because it promotes the (re)use of components, also called Components Off The Shelf (COTS), coming
from third party developers to build new large systems. Components are scalable software modules (bigger units
than objects in object-oriented programming) that can be used at the high levels of abstraction (software architec-
tures, design) and the low levels (programs, frameworks).

Component-based software engineering is still challenging in both industrial and academic research. Most of
the academic approaches focus on abstract models (sometimes close to architectural description languages) with
checkable properties such as safety and liveness; some of them deal with refinement and code generation. As a
counterpart, the industrial proposals such as CORBA, EJB, OSGI or .NET are merely implementation-oriented
and also object-oriented. They define flat components (without hierarchical structures) and the model is based
on an underlying infrastructure for component repositories and communication management. They often lack of
abstraction means to promote the reuse of components. Moreover, at the implementation level of a component
based development, some implementations have nothing to dowith the above industrial standards in the sense that
there are no components at all. The main reason is that there are no true component programming languages yet (a
language such as ComponentJ is a layer on Java). In other words, there are various component models that cover
the whole software development process but there is a gap between component specifications (the academic mod-
els) and component implementations (industrial infrastructure or object-oriented implementations). The above

1http://www.egide.asso.fr/fr/programmes/econet/

5

http://www.egide.asso.fr/fr/programmes/econet/

6 ECONET Workshop 2008

mentioned problem is due to the fact that, usually, component implementation is not based on a rigorous speci-
fication. In cases when the specification precedes the implementation, the conformance between implementation
and specification is seldom realized.

A major problem is then to fill this gap. One way is to define model transformation techniques in order to
generate a code for the component with respect to the component specifications. This way can be qualified as the
engineeringway and it is similar as MDA and MDE approaches. It is quite complex since we should, in theory,
prove the correctness of the translation and also because there are various target frameworks and languages. There
are ongoing works on that direction [PNPR05, PP99].
Another way is to focus on program code analysis in order to compare component’s actual code with its high-level
(abstract) description. This way can be qualified as thereverse engineeringway. It is quite an open issue in the
current research on CBSE [BHM06, PP07]. This problem is even more complex than the one above, due tothe
following reasons :

• Often the source code of a component is not available after its deployment or even not physically available
in a remote service invocation or Web Service. However, for acomponent industry the unavailability of
source code is essential – services may even be offered on a pay-per-use basis.

• In case of OO implementations, the absence of component structures implies to find convenient and adequate
criteria to structure components.

• Many statements and message send are to be omitted for a relevant service identification.

• There are no common component model (or standard) for the component (abstract) specification – many
targets for reverse engineering.

Service clients have to properly intercat with the servicesand need to know at least the interface but in most
cases the dynamic behaviour or protocol attached to the services. From that some compatibility checking and
consistency controls may be performed to ensure a good interaction or to avoid wrong or illegal use of the services.
Both the engineering and reverse engineering approaches remain research open issues.

The goal of the project is to contribute to the reverse engineering way by developing techniques for extraction
of abstractions from code (including some component interface description) and for the verification of abstractions
against the code,e.g. to check an in-line bank service with no available code, to check that a client component is
compatible with an implemented component.

The core project is to establish a link between component codes and component specifications. The advantages
of abstraction are to check the conformance of component codes and component specifications, to statically check
various properties of the components such as safety and liveness. To be pragmatic we have to restrict this huge
mapping according to the partner’s experience.

1. The source model (implementation level) is limited to Java code. The problem of obtaining an abstract
specification of a component from its code, cannot be solved in a satisfactory manner if the code does not
contain appropriate comments, rather in well defined patterns, or if the code is not limited to a consistent
subset of concepts.

2. The target models (specification level) are abstract component models inspired from the ones of the part-
ners. Instead of studying only the structural features of the system, we plan to work onbehaviouralab-
straction from Java code. Behaviour [PV02, AAA06a, PNPR05] is related to the dynamic and functional
features of the components and services. In particular, dynamic behaviours describe the dynamic evolution
of components, connectors or services (interactions). Themechanisms used for component specifications
are grounded on different formalisms: design by contract (implemented by assertions), algebraic specifi-
cations, state machines, regular expressions and so on. Each above mentioned formalism offers a set of
advantages and has some drawbacks. Design by contract, a declarative specification only, supports an "in-
complete" behaviour specification. Algebraic specifications generally have sound semantics but are, in most
cases, difficult to understand by people working in the industry and not all kind of components can be spec-
ified. The state machines and regular expressions formalisms are suited for dynamic descriptions and have
formal semantics.

1.1. THE16293RG ECONET PROJECT 7

1.1.2 Partners

The partners are four research teams which have competenceson the project topics.

• COLOSS: COmposants et LOgiciels SûrS
Reliable Component and Software Component System Specification and Verification
http://www.lina.sciences.univ-nantes.fr/coloss/

• DSRG: Distributed Systems Research Group
SOFA model previous work = basis for the project
http://dsrg.mff.cuni.cz/

• LCI : Laboratorul de Cercetare in Informatica
Computer Science Research Laboratory OCL, MDD, Tools
http://lci.cs.ubbcluj.ro/

• OBASCO: OBjects, ASpects and COmponents
Previous work on Java and Components
http://www.emn.fr/x-info/obasco/

The four teams have complementary knowledge and backgroundon the project domain. The goal is therefore
to compare and exchange the point of view, and to integrate the new ideas and techniques in the current proposal.

1.1.3 Initial Plan

The project is established for two years. The initial planning was organised as follow:
First year:

• Determination of the field of application (boundaries of Java concepts and idioms).

• Settings of the major principles to abstract behaviours forsoftware components (intoKmelia, SOFA and
STS) from Java code.

• Experimentations on existing code.

• Studying and proposing a pattern for annotating EJB components in order to better support RE (behavior
abstraction from code).

• Integration of the verification of guards using OCL (and OCLE).

• Documentation, research report and workshop preparation.

Second year:

• Refinement and classification of the principle and techniques.

• Study of the verification of assertions with OCL.

• Reverse engineering from EJB code to EJB specification realized in JML or OCL.

• Experimentation with larger case studies.

• Documentation, research report and workshop preparation.

Once the context has been introduced, we present now the workshop itself.

http://www.lina.sciences.univ-nantes.fr/coloss/
http://dsrg.mff.cuni.cz/
http://lci.cs.ubbcluj.ro/
http://www.emn.fr/x-info/obasco/

8 ECONET Workshop 2008

Kmelia

SOFA 2.0

STSLib

plain Java
code

EJB, Corba, .NET
Specific component framework

reverse

WFR (OCL)

Behaviours

Structures

Fractal

Fractal, SOFA, Spring...

Common
Component
Metamodel

Structural
Abstract Model
flat/hierarchical

Behavioural
Abstract Model

(eEBP)

Aannotation
definition

User
informations

*

annoted Java
code

Model
checking

Model/Type
checking

B JPF

UML
diagrams

patterns
analysers
extractors

Textual
informations

Figure 1.1: Econet Architecture: final version

1.1.4 Current State

The general project organisation has been drawn during the first project workshop in prague in september 2007.
Figure1.1shows the project architecture.

The executive roadmap for reengineering program is built ona three part architecture:

• Process B: Structural abstraction from Java code.

• Process A: Behavioural abstraction from Java code.

• Metamodel definition and consistency verification.

The objective of the process B is to build a structural component model and a corresponding annotated Java
code. These two elements are inputs of the process A. The model is also an instance of the metamodel that will
control its consistency. From plain Java code and user interaction, process B should produce an annotated Java
code and a corresponding component model (both results mustbe consistent).

Process A extract a dynamic behaviour specification of the components identified during the process A from
the annotated Java code. Therefore, the idea is to make the reverse engineering as general as possible in order to
allow extraction of behaviour in any formalism. To be more specific, the formalisms considered are:Enhanced
behaviour protocols(EBP) developed by DSRG,eLTSdeveloped by COLOSS andSTSdeveloped by OBASCO.

The metamodel part is shared by the two processes and constitues the foundation API (Application Program-
ming Interface) for component model processing. A main issue of a component metamodel is to answer to the
problem of handling several component models to get a generic reengineering process. Moreover, in the context
of reengineering the metamodel must handle tightened connections to the code that implements component appli-
cations. These connection points are represented by annotations in the Java code. In order to provide a convenient
component model API, a metamodel specification is necessaryto serve as reference guide.

The Prague workshop report [ACPR07] provides detailed informations on these subprojects.

./FIGURES/archiEcoTask.eps

1.2. REPORT CONTENTS 9

The current state of the project is online the wiki pages (figure1.2).

Figure 1.2: Project Wiki

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start

Project material and documents are downloadable from the collaborative tools (further information is given in
appendixA).

1.2 Report Contents

In the remaining of the report, we provide general informations on the workshop contents in chapter2. The
detailed information of the presentation sessions are described per subproject in chapter3. Chapter4 relates the
working sessions and results and especially the common component metamodel validation which is the main result
of the workshop.

Warning
This report has been mainly written by Pascal from his personal notes and memory of events. There may remain
english errors, misunderstanding, transcription errors,and so on. He apologise for these errors.

./FIGURES/wikiStart1.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:start

Chapter 2

The Workshop at the University of Nantes

The workshop is an intermediate milestone for the second year of the project.

2.1 Preparation

The preparation was twofold: material and organisation. The collaborative support is based on a wiki and a SVN
repository (see appendixA. In particular there are chapters for each workshop (see figure1.2).

Figure 2.1: Workshop pages on the Wiki

The URL address for the one of Nantes (see figure2.1) is:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:nantes2008:start

10

./FIGURES/wikiOrga0.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:nantes2008:start

2.1. PREPARATION 11

2.1.1 Material

Since the last workshop the contributions mainly focused onthe reports (Prague07 Workshop report, Econet
first year evaluation) and the metamodel description (Rational Rose metamodels, notes). Minutes have not been
summarised on the wiki but the results and documents are put on both the wiki (figureA.3) and the SVN repository
(figureA.1).

A special group of pages have been written for the Workshop material (figure2.2). The URL address is:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?

id=econet:nantes2008:materials

Figure 2.2: Workshop Materials on the Wiki

2.1.2 Organisation

The workshop was initially planned on the end of March. Sincewe had not the confirmation of the project
continuation we should delay to the second week of may after the Egide decision fall and reasonable time to get
transportation means.

The local organization committee included Pascal André, Gilles Ardourel, Christian Attiogbé, Isabelle Con-
dette and Anne-Françoise Quin.

Detailed information is given on the wiki site (figure2.3): venue, program, transportation, city and tourist
information, photos, maps and so on.

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?

id=econet:nantes2008:organization

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:materials
./FIGURES/wikiWork1.eps
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:organization

12 ECONET Workshop 2008

Figure 2.3: Workshop Organisation on the Wiki

2.2 Objectives

The following ’Workshop Objectives and Delivery’ statement was a first throw and kept many issues open. We
remind here a list of the main tracks we had to follow

1. Present the current situation

• for each subproject

• products and problems

• future work

2. Tools normalisation

• compare tools and techniques of each subproject

• final decisions on the tools panel

• perspectives

3. Study the interface between the parts

• format, filters, API...

• languages

4. Get a first prototype

./FIGURES/wikiOrga1.eps

2.3. PARTICIPANTS 13

• source and documentations for each subproject

• final decisions on the metamodel part

• extract the main open issues

• applications on CoCoME

5. Draw the roadmap to the end of the year

• development

• documentation

• workshop preparation

• publication (reports, papers)

2.3 Participants

The detailed list is arranged according to the alphabeticalorder of first names.

• Christian ATTIOGBE - COLOSS

• Dan CHIOREAN - LCI

• Dragos PETRASCU - LCI

• František PLÁŠIL - DSRG

• Gilles ARDOUREL - COLOSS

• Jacques NOY E - OBASCO

• Jean-Claude ROY ER - OBASCO

• Mohammed MESSABIHI - COLOSS

• Ondřej ŠERÝ - DSRG

• Pascal ANDRE - COLOSS

• Petr HNĚTY NKA - DSRG

• Tomáš POCH - DSRG

• V ladiela PETRASCU - LCI

2.4 Program and Schedule

We present here an overview of the workshop program. It was organised in two parts

• Day 1 and 2 are dedicated to workshop presentations. The durations and schedules leave time for numerous
discussions...

– Presentation of the subprojects (recent work, tools, ...)

– Technical presentations and demonstrations

• Day 3 is dedicated to the coordination issues for the project, the Cluj workshop organisation and social
events.

• Day 4 and 5 are dedicated to the project work (metamodel, interfaces, tools, sharing experience, practical
organisation and responsabilities)

Actually the schedule evolved due to some people own constraints (flighs...).
The detailed program is given on the wiki at:

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?

id=econet:nantes2008:program08n

2.5 The Workshop Sessions

This section is a quick overview of the executed program of the workshop. The detail features will be presented
in the following chapters. The workshop material is available on the wiki at:
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?

id=econet:nantes2008:materials

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:program08n
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?
id=econet:nantes2008:materials

14 ECONET Workshop 2008

We first begin by the presentation sessions where the participants presented the their technical contributions
(chapter3). Then we summarise in chapter4 the contributions of the working sessions where the participants
discussed on the project (issues, structure, tasks, technical aspects, tools...).

2.5.1 The Presentation Sessions

Monday, May 12, 2008

Time Title Speaker

14:00 Welcome Christian Attiogbé
| Workshop Introduction Pascal André
| Local Organisation COLOSS

14:30 Technical presentations about the Metamodel subproject
| CCMM the LCI proposal: from model specification -Dan Chiorean
| to repository implementation
| demo1: Metamodel Vladiela Petrascu

17:30 demo2: OCLE Vladiela Petrascu

Welcome Christian welcomed the participants in the name of the Laboratory and the COLOSS team.

Workshop Introduction Pascal introduced the workshop recalling the ECONET project context for the "new"
participants. He quickly summarised what happended duringthe first year.

Summary
Events

• March: starting the project

• September: workshop at Prague (initially planned for june)

• October: workshop report, project evaluation

• November: First Common Component Metamodel published

Results

• Workshop Report

• Project Continuation

• First Draft Common Component Meta-Model

Quick Analysis

+ Workshop organisation and result

+ Complementary background of the teams

+ Methods and collaborative tools (Wiki, SVN, email)

- Time Allocation (late start, deadlines, asynchronous working period and exchanges)

- Too few (despite fruitful) technical echanges (bibliography, metamodel, tools)

- Some Misunderstandings (due to informal definitions or varying contexts?)

2.5. THE WORKSHOP SESSIONS 15

First Year Results
Advance in

• Clear project definition (workshop results)

– Convergence on the objectives

– Convergence on the means

– Definition of the tasks

• Project Collaborative tools (Wiki, SVN)

• Toward a common component meta-model

Standby/delay for

• Collaborative field exploration: Annoted bibliography andSynthesis (components, RE, code engineering,
tools)

• A validation of the common component meta-model

• Delayed or lost activities

– Studying and proposing a pattern for annotating EJB components in order to better support RE (be-
havior abstraction from code).

– Integration of the verification of guards using OCL (and OCLE).

First Year Workshop Results
Convergence on the objectives (summary)

• Clear agreement on the "abstract" context
Abstract component models
+ Java Code
+ Reverse = from code to abstract models

• Some vision of the "concrete" context

– Java code nature
Bytecode or Plain source or Annoted Source

– Java code structure
plain Java + informations

– reengineering issues
abstraction rather than full reverse engineering
compare code and specifications (conformance)

• Benchmark =CoCoME

• Two other tracks: cross LTS extensions, WFR definitions

Convergence on the means (summary)

• Project Architecture withThree parts

1. Component Metamodelcross LTS extensions, WFR

2. Structure Abstractionuser interacted tool

3. Behavior AbstractionA-interface definition, annotations generation

• Problem Domain Restriction

– metamodel=⇒ components and behaviours

16 ECONET Workshop 2008

– A =⇒ no connections, no composition, no statement abstraction

– B =⇒ no composition, no statement abstraction, user-interactions

• Benchmark =CoCoME

Definition of the tasks (summary)

• Prototypeon the project architecture

– Metamodel

– Process A

– Process B

• Cross Contributionsa subset of

– Common Metamodel Definition

– Annotation language definition (input of process A)

– Tools Prototypes for Metamodel verification, Process A, Process B

• Synchronisation points =
A-interface, Metamodel def, B-Information def

• Planningdeadlines

– Workshop Nantes (begin of March 2008)

– Workshop Cluj (end of august 2008)

• Publications

Workshop Program The contents includes

• Participants

• Objectives (open issue !) Detail Design of the Project Architecture + Technical Issues

– Metamodel: contents and design
concepts, relations, mains issues, approaches, plateforms and tools

– Processes: interfaces and design
structure, libraries, techniques, tools

– Integration and examples
CoCoME

• Delivery workshop report + roadmap until next workshop

– Prototype

– Refine with concrete models

– Documentation, research report and workshop preparation.

– Perspectives and Publication

• Detailed Program and Schedule

Presentation Session We started by LCI because the Metamodel supports the interface between subprojects A
and B. Dan recalled the LCi tasks, mainly

• CCMM definition: Metamodel specification, constraints specification, metamodel testing, repository code
generation

• Studying and testing different tools supporting the above mentioned activities (OCLE, EMF, oAW).

Then he argued the LCO position and proposals.
There after Vladiela presented a part of the demonstration.She started with a metamodel proposal and discus-

sion and continued with the OCLE implementation.
TheMetamodel subproject if further developped in sectionmetamodel of chapter3.

2.5. THE WORKSHOP SESSIONS 17

Tuesday, May 13, 2008

The initial schedule was modified in order to continue the LCIdemonstrations.

Time Title Speaker

09:00 Technical presentations about the Metamodel subproject (contd.)
| demo2: OCLE (contd.) Vladiela Petrascu
| demo3: EMF Vladiela Petrascu
| demo4: oAW Vladiela Petrascu

12:15 Common Metamodel Validation Pascal André

13:30 Technical presentations about the Process B (structure extraction) subproject
| Process B: A first prototype Gilles Ardourel
| Composing Component with shared services in the Kmelia Model Christian Attiogbé
| Concurrent Event-Based AOP Protocols: Jacques Noyé

17:30 the missing link between components and aspects?

delayed Components with N-Party Rendezvous and Jean-Claude Royer
Symbolic Transition Systems

At the beginning Vladiela continued with the second part of the demonstration using the OCLE, EMF and
oAW implementations. TheMetamodel subproject if further developped in sectionmetamodel of chapter3.

The Common Metamodel Validation is part of the working sessions closely related to the metamodel subpro-
ject (see section2.5.2).

Technical presentations about the Process B subproject started with a short presentation of the experimenta-
tions leaded in the COLOSS team. The project was realised by agroup of students and included bith the annotation
processing and the metamodel managment (for a limit subset of the metamodel). The idea was to install a boot-
strap for the Process B machinary which is an iterative process. The goal is to link Java programs (with or without
annotations) and component models (which is assumed to be anabstraction of the Java program). The prototype
read and write annotations and instantiate models from a metamodel implementation in ATL (see sectionB.1.3).
TheProcess B subproject if further developped in section3.2of chapter3.

The other presentations are related work. The last presentation occurred on thursday due to timing constraints.
Here is a short summary of the presentations.

Composing Component with shared services in the Kmelia Model TheKmelia component model [AAA06b]
was introduced as an abstract formal component model dedicated to the specification and development of correct
components. The model is equipped with a language which is evolving together with the expressive power of the
model. In [AAA06b] we have distinguished two semantics for the link between component services. Only one,
monadic semantics, was treated in this previous article. The second one,polyadic semantics, was not treated. The
hypothesis for themonadic semanticsis: only one provided service may be associated to a requiredservice; a
component is both a component type and the unique instance ofit; a required service may be linked to at most one
provided service; only one instantiation of a service exists at any time.

In the current article we consider thepolyadic semantics: a provided service may be linked with various
required services (allowing broadcast communications); as an example, a chat system provides an interaction
service for multiple clients. In the same way a required service may be linked to various provided services. We
present the new features of ourKmelia model, the language aspects that support these features andhow these
improvements are integrated with the previous works onKmelia.

The modelling of various real life systems such as auction systems, chat systems, distributed brokers, etc
requires the use of several components of the same type or several services with identical functionalities but
coming from different components. This leads to the need of interaction means to support the assembly and the
composition w.r.t to the multiplicity of services that may be connected. The currentKmelia model and language
provide a one to one service/component interaction even if several components participate in the assembly. This
does not cover the kind of systems listed above.

The contribution of this article is the improvement of the expressivity of theKmelia component model with
shared services, multipart interaction based on synchronous n-ary communications. We extendKmelia to support
multiple connections between services. Also, we explicitly distinguish betweencomponent typesandcomponents
(as elements), hence we may use several components of the same type in an assembly. Accordingly, the interaction
betweenKmelia services is updated.

18 ECONET Workshop 2008

Concurrent Event-Based AOP Protocols Concurrent Event-based AOP (CEAOP) [DLBNS06] is based on the
seminal work by Douence, Fradet, and Südholt [DFS02] on Event-based AOP. Event-based AOP extends “standard
AOP” (à la AspectJ) withstatefulor event-basedaspects, which, instead of associating additional behaviour (an
advice) to an atomic execution point (ajoin point), associate behaviour to a sequence of execution points, seen
aseventsmonitored by the aspect. Whereas the initial semantics of EAOP was sequential, CEAOP defines a
concurrent semantics of stateful aspects. It does so by considering abstract aspects defined by regular sequences
of events to which advices can be associated. These aspects are abstract as events are plain labels and advices
are simply sequences of actions, including the predefined actionsskip andproceed, to specify whether an
event should be skipped or not. The semantics of such an aspect is then defined by two transformations, an
aspect transformation turning the aspect into a Finite State Process (FSP) [MK06a], and a base transformation
“instrumenting” the FSP representing thebaseprogram with which the aspect should be composed, such that the
parallel composition of both the aspect FSP and the instrumented FSP behaves as expected.

For instance, if we compose the base applicationServer and the aspectConsistency (where the operator
> and the keywordskip are constructs specific to CEAOP), we expect the eventupdate not to happen during
server sessions.

Server = Session =
(login -> Session (checkout -> Server
| update -> Server | update -> Session
), | browse -> Session

).
Consistency = Session =
(login -> Session (update > skip -> log -> Session
), | checkout -> Consistency

).
||S = (Server || Consistency).

The instrumentation scheme makes it possible to control synchronization between the aspect and the base
program whereas additional composition operators (which can also be translated into plain FSP) make it possible
to deal with the synchronization of several aspects.

We have used this model as the execution model of a concrete extension of Java, Baton [NN07a], which com-
bines concurrent and aspect-oriented programming. In Baton, base programs are composition of active objects.
These objects are instrumented withpointcutsdescribing the events of interest whereas the aspect transformation
of CEAOP is used to synthesized aspects described in a syntaxcombining FSP and Java traits. As part of in-
strumenting the base program and synthesizing the aspects,the compiler also generates calls to a global monitor,
which is responsible for performing synchronization as specified by the model.

This has been extended in order to support a simple componentmodel [NN07b], whereby the base is struc-
tured as components with static interfaces describing therequiredandprovidedservices, as well as thepublished
events (this is related to the notion ofopen modules[Ald05]) and dynamic interfaces describing the corresponding
behaviour. On the aspect side, the staticaspect interfacesdescribe the events of interest, which may beskippable,
as well asrequiredandprovidedservices. In the same way as a composition of aspects and FSPscan be turned
into a mere composition of FSPs, a composition of aspects andcomponents can be turned into a composition of
mere components.

Finally, we have considered, on top of CEAOP, abstractions that facilitate the modelling of context-aware
applications [NN07b].

We think that this work give an interesting perspective on the links between processes, components, and
aspects and paves the way to concrete languages that supportthese notions, including support at the architectural
level, in a more integrated way.

Components with N-Party Rendezvous Component software engineering has been used to improve system
modularisation and artefact reuse. However, most of the current proposals are restricted to binary communications.
They are often suitable, but there exist some applications domains, like controller synthesis, where they are not
sufficient enough. We argue that more complex interactions are needed, and we designed a component language
with explicit symbolic protocols and N-party rendezvous. In this context, we introduce sophisticated bindings to
control component behaviour in a black box way, and we address the computation of a global protocol associated
to component assemblies. We define an extension of the synchronous product adapted to our protocols which

2.5. THE WORKSHOP SESSIONS 19

keeps inside states and transitions, the structure of the composite and enables four kinds of bindings In a second
step, we formalise our model and define behavioural compatibility. We further introduce a new property called
event strictness, and we prove some preliminary results about the checking of these properties.

Wednesday, May 14, 2008

The initial schedule was modified in order to discuss about the project itself and the workshop of Cluj.

Time Title Speaker
09:00 Technical presentations about the Process A (behaviour extraction) subproject
| Econet process A: Reengineering behaviour specificationTomas Poch

11:30 ECONET Project discussions

13:00 Social
18:30 Events

Tomas presented the work leaded by DSRG about the Process A (behaviour extraction) subproject. The
goal is to extract the behaviour specification of a primitivecomponent implemented by a set of Java classes.
Only primitive components behaviour will be abstracted. Composite components are outside the scope of the
subproject. Additional information is still needed which are provided by the process B in form of annotations
(e.g. which classes implement the component, which are the provisions and requirements, which are the data
abstraction...). The strategy is to stick with Java as long as possible, make transformations over the Java AST and
perform the transformation to the target behavioural modelis the last step. The transformation chain should be
configurable. An experimentation is shown on a toy example.
TheProcess A subproject if further developped in section3.3of chapter3.

We also discussed about the organisation of the next workshop in three months (budget, dates, people). A
two-week period is fixed that takes into account various unavailable constraints. It has been precised after the
workshop. It will held on21 of september - 24 of september 2008.

2.5.2 The Working Sessions

This section summarises the discussions and contributionsof the working sessions.

Working Session Roadmap

The initial Working Session program was proposed as follow:

1. Common Component Metamodel

• Materials

• Discussions and Decisions

– Concepts and relations

– Architectural choices (core, concepts, specialisations,annotations, management, instances)

– Tools

– API and tools

• Others: Roundtrip

• Specification document

Goal of days 2,4 = Clear agreement on the "common" metamodel

2. Tools and techniques

• Discussions onTools and techniques

– Experience feedback

– Tools coordination

• Model Management

20 ECONET Workshop 2008

– EMF, OCLE, oAW...

– Rule based systems, checking

– Compatibility

– ...

• Re-engineering techniques

– Java Compilers and Analysers

– Patterns, rule based systems

– Used notations and Intermediate layers (models)

– ...

(optimistic) Goal of day 4 = organize the implementation means

3. Definition of the tasks

• What to do ?on the project architecture

– Metamodel

– Process A

– Process B

• Contributions ?a subset of

– Common Metamodel definition

– Annotation language definition (input of process A)

– Tools Prototypes for Metamodel verification, Process A, Process B

• Synchronisation points =
A-interface, Metamodel def, B-Information def

• Planningdeadlines

– Workshop Nantes report

– Workshop Cluj (end of august 2008)

– Project Evaluation (november 2007)

– Publications

(optimistic) Goal of day 5 = each participant has a somewhat clear idea of what he will do

4. Production

• Workshop Report

– Collect paper and slidesPlease send them to me

– Summary of the discussions

+ Bibliographical Notes

=⇒ project plan for year 2 andEvaluation

• Fix the participants objectives

• Documentation, research reports

• Intermediate results=⇒ Thirsd Workshop

• Publications (?)

see also the initial ’Second year objectives’

2.5. THE WORKSHOP SESSIONS 21

Thursday, May 15, 2008

The initial schedule was modified in order to include the technical presentation of Jean-Claude and also a discus-
sion on tasks, responsabilities and delivery schedule.

Time Title Speaker

09:00 Technical presentations about the Process B (Structure extraction) subproject
| Components with N-Party Rendezvous andJean-Claude Royer
| Symbolic Transition Systems
| ECONET Project discussions

12:00 Task, schedules

14:00 Working session II
17:00 Metamodel, annotations

Tasks and Scheduled The discussions started with some interrogations of Dan about the metamodel specifica-
tion and some doubts LCI had about CCMM v1.0 (big model, not enough constraints and informations...). LCI
also worried about including the behavioural aspects and annotations management in the metamodel. The answer
is twofold :

• Distinction between a specification metamodel and an implementation metamodel which is a subset of the
primer metamodel. Behaviours (too specific concepts), implementation language (java concepts), strong
model management, additional concepts (specific to one or another concrete component metamodel) are not
in the scope of the implementation.

• Validation of the metamodel (selection and definition of concepts and their relations, constraints and exam-
ples) is one goal of this workshop.

We also discussed about modelling methodology (to represent variation on concepts in a metamodele.g. using
gen/spec relations, attributes, associations) andmodel transformations using ATL, oAW or EMF - for example
to get a CCMM instance fromExtended Behavior Protocols (EBP)or (Extented) Labelled Transitions Systems
(LTS).

Thereafter we discussed about tasks, responsabilities anddeadlines for the metamodel subproject.

• Tasks

– CCMM specification + special requirements (input)

– Metamodel verification

– API generation and testing

• Deadlines

– specification: 7 of june 2008

– version 1 (EMF) : 22 of june 2008

– version 2 (oAW) : end of june 2008

Discussions on process A and B, prototypes, case study, documentations and publications are delayed. We also
discussed again on the dates for the Cluj Workshop.

Working session II One group worked on the metamodel validation (see section4.2).
The other one on annotation refinement (see section4.3.1).

Friday, May 16, 2008

The initial schedule was modified in order to discuss about the project itself and the workshop of Cluj.

22 ECONET Workshop 2008

Time Title Speaker
09:00 ECONET Project discussions
| Task, schedules
| Working session III

12:00 Metamodel, interfaces, architecture, recoder wrapper, benchmark

At first we discussed about tasks, responsabilities and deadlines for the processes subproject. Figure4.4 is a
snapshot of the discussions.

Working session III One group worked on the case study selection (see section4.4).
One group worked on the metamodel validation (see section4.2).
The other one on annotation refinement and interfaces (see section4.3.1).

Chapter 3

Project and Technical Presentation
Sessions

The contents of this chapter presents a detailed snapshot ofthe current state of the three subprojects, defined in
the workshop of Prague.

3.1 Metamodel Abstraction Subproject

Writer: Vladiela Petrascu

3.1.1 LCI Tool Demos Summarized

Objectives and Goals

The LCI tool demos aimed at analysing and comparing the facilities provided by different CASE tools for meta-
models’ representation (including Well Formedness Rules -WFRs, and observers - query operations) and gen-
eration of the associated repository code. We have considered the following tools: Object Constraint Language
Environment (OCLE) [ocl], Eclipse Modeling Framework (EMF) [emf], and openArchitectureWare (oAW) [oaw],
and the following criteria for differentiating among them:

(1) support offered for integrating metamodel WFRs and observers, counting the ease of writing and compiling
constraints (code completion was taken into account);

(2) ease of evaluating these constraints on concrete models(snapshots) and assistance provided by the tool in
locating a possible validation error and correcting it in real time;

(3) completeness of the generated repository code, including the code corresponding to WFRs and observers;

(4) generated code’s simplicity and intelligibility (essential in case additions and/or changes are required on it),
as well as the amount of dependencies required when running it outside of its generator environment.

The presentation’s ultimate goal was for the partners to choose one or several of these tools to be used within
the current ECONET project.

The LCI proposal for a starting version of the Common Component MetaModel (CCMM) was the metamodel
used throughout the OCLE, EMF, and oAW tool demos. Several WFRs were specified on it, including name
uniqueness constraints inside namespaces (name uniqueness ofTypes,InterfaceTypes andComponentTypes
inside aRepository; name uniqueness of aComponentType’s Interfaces; name uniqueness of an
Architecture’sComponents; name uniqueness of anOperation’sParameters), valid component bind-
ings constraints (compatibleInterfaceTypes of Interfaces linked through aBinding; Assembly /
DelegationBinding semantics encapsulating constraints), or non-cyclic definition of composed component
instances. An operation that selects allComponentTypes that provide a certainInterfaceType, from within
aRepository, was taken as an observer example.

The three tool demos are summarized below, following the above mentioned four criteria.

23

24 ECONET Workshop 2008

Figure 3.1: Model checking in OCLE

OCLE Demo summarized

(1) In OCLE, the CCMM metamodel is represented as a UML 1.5 model. Both WFRs and observers are
included inside .bcr (business constraint rules) files; WFRs are specified asinv («invariant» stereotyped)
constraints, while metamodel level queries are represented using the OCLdef mechanism («definition»
stereotyped constraints). OCLE .bcr files can be compiled and, if the case, meaningful error messages
are displayed inside the Messages tab, including the exact place the error occurred in. Code completion
facilities are not yet provided by the tool.

(2) In OCLE, constraints’ evaluation is performed on shaphots. These are object diagrams containing (meta)class
instances (having slots corresponding to attributes’ values) and links among them (instances of associations
specified in the (meta)model). The evaluation process can encompass either all specified constraints or a
particular one, chosen by the user. Single constraint evaluation involves two steps: (a) selection of a contex-
tual instance among the existing snapshot objects, and (b) evaluation of the different constraint constituents
(in particular, the whole contraint), using the Evaluate Selection option. Evaluation results are displayed
inside the OCL Output Tab. Observers can be evaluated by following a similar scheme. Evaluation of all
specified constraints is triggered by a Check Model menu option. All errors are reported inside the Evalu-
ation tab in a tree-like manner: eack broken constraint is denoted by a node having as a direct ancestor its
context (meta)class and as direct descendants rule failuremessages pointing at the “responsible” instances.
Selecting such a message makes the corresponding object to be automatically set as the constraint’s contex-
tual instance (simultaneously with selecting it in the browser and object diagram, respectively), therefore
single constraint evaluation can be done, which significantly helps in identifying the cause of the error. A
snapshot of the model checking activity in OCLE is illustrated in Figure3.1.1.

(3) OCLE code generator uses the Apache Velocity template engine. For each metamodel class, a corre-
sponding Java repository class is created, containing its specified attributes and references, a default con-
structor, and get/set or get/add/remove methods (depending on the multiplicity) for references’ manage-
ment. In case WFRs were specified in the context of a (meta)class, then its generated code includes a
ConstraintChecker class with validation methods corresponding to each WFR (the method’s code
represents the Java translation of the WFR’s OCL constraint). Constraint breaking is indicated by a mes-
sage displayed on the standard output, pointing out the violated invariant’s name, as well as the responsible

FIGURES/OCLEsnapshot.eps

3.1. METAMODEL ABSTRACTION SUBPROJECT 25

object. Calling theConstraintCheckermethods is left on behalf of the user.

(4) The generated CCMM repository code is simple, easy to understand and manage. Using it within a Java
project only requires importing the small OCLFramework library.

EMF Demo summarized

(1) In EMF, a metamodel (CCMM, in particular) is representedas an Ecore model. WFRs are specified in OCL
(with minor "dialect" differences compared to OCLE, e.g.oclIsUndefined() vs.isUndefined())
and attached to their context metaclasses in the form of annotations [Dam07]. Metamodel level observers are
given as metaclass operations, having their body defined by an OCL expression. The expression is attached
to the observer operation in the form of an annotation, having as child a Details Entry of the form (body,
<bodyOclExpression>) - see Figure3.1.1. Therefore, EMF constraints and observers directly "pollute" the
metamodel as annotations, unlike in OCLE or oAW, where they are specified in separate files. Compilation
facilities are not provided at this level. In order to ensurea correct syntax of WFRs and observers, the
corresponding OCL expressions should be copy-pasted and evaluated inside the OCL Interpreter tool. The
interpreter compiles the OCL before evaluating it, signaling any syntax errors. Code completion facilities
are provided. Still, we find this compilation alternative somehow cumbersome.

(2) EMF model checking can be done interactively, by choosing a Validate option from a popup menu on the
root element of a model. The model can be constructed using the EMF tree-like editor. Validation results
are displayed inside a message box. If validation problems have been identified, then their details may be
consulted, each detail line indicating both the violated constraint’s name and the model element responsible
for breaking it. Theoretically, selecting such a details line should automatically point to the responsible
object on the tree, but unfortunately this only works correctly for the first line. We signal this as a bug.
Apart from checking the entire model by validating its root,it is also possible to individually check any
of its branches (children), in a similar manner. If the validation fails because a constraint is broken by a
certain model object, discovering the error’s cause is possible through partial evaluations. This resumes to
copying different parts of the OCL expression into the OCL Interpreter and evaluating them on the selected
object, which is assumed to be the contextual instance. Again, this is not as straightforward as in OCLE,
since it involves manually going back to the constraint definition inside the metamodel file and copy-pasting
different parts of it inside the interpreter. Thus, the checking facilities implemented in OCLE are indeed
quite helpful and time-saving.

(3) EMF code generation uses JET (Java Emitter Templates), the template language having a JSP-like syntax.
The code generator uses as input a .genmodel file, which decorates the initial .ecore file containing the
metamodel with additional generation related information. For each of the metamodel packages, three
corresponding code packages are generated: an interface package, an implementation package and an util
one.

For each metaclass, one interface and one implementation java files are generated, inside the interface and
implementation packages corresponding to the metamodel package to which the metaclass pertains. The
interface contains get/set methods for attributes and multiplicity-one references, and only get methods for
multiplicity-many references (returning ELists). Metaclass operations’ signature is also included into the
generated interface file. Within implementation files, observers’ notification is handled appropriately. More-
over, for eack metamodel package, corresponding factory (that allows the instantiation of model objects)
and package (that allows metadata management) interface and implementation files are created.

The package validator class (from within the generated utilpackage) contains validate methods for all
repository classes contained in that package. For eack specified invariant, a corresponding validate method
is created. By default (using only the default code generation templates), its body must be filled in by
the programmer (only the body skeleton in generated, the code for evaluating the constraint is missing).
Generating code for evaluating invariants, observers and derived attributes and references requires using
dynamic templates and modifying some .genmodel properties(see the approach proposed in [Dam07]).
OCL expressions are not translated directly to the java language, as in OCLE. Instead, their evaluation is
delegated to MDT OCL.

Apart from the metamodel repository code, a test project anda textual model editor project can also be
generated..

26 ECONET Workshop 2008

(4) The generated repository code is quite complex, including rich functionality (e.g. notification management,
metadata management, factories, several List implementations taylored to specific needs, etc.). However,
using it within a new Java project involves several dependencies.

Figure 3.2: An Ecore metamodel including WFRs and observers

oAW Demo summarized

(1) Since oAW 4 supports EMF based metamodels (among other types of metamodels), this tool demo has
used the same metamodel representation as the previous one did. In oAW, metamodel level invariants are
isolated in .chk files and are defined using the declarative constraint language Check [VKEH06]. Check
is an OCL-like language, thus it has an OCL similar syntax, towhich it adds the possibility of defining
custom error or warning messages to be displayed whenever a constraint is violated. With the intention of
keeping metamodels as simple and clear as possible, in oAW all additional properties are defined externally
in .ext files, using the oAW Xtend language. This has been alsothe case with our CCMM observers. In
order to be able to refer to the metamodel classes within the expressions contained in Check and Xtend
files, a line importing the metamodel should be included at the beginning of these files. This makes the
text editors metamodel-aware. The editors provide syntax coloring and code completion facilities to the
user. Compilation of constraint and extension files is automatically done at the moment they are saved, and
appropriate error messages are displayed, if the case.

(2) In oAW, all model operations are coordinated by means of aworkflow. As shown in Figure3.1.1, such
a workflow consists of an ordered collection of workflow components, each component executing a well
defined model related task. There are some standard workflow components offering functionalities such as:
reading (loading) a model from a file, checking the model, transforming it, persisting (writing) the transfor-
mation, or generating code based on it, but user defined components are allowed as well. Within a workflow

FIGURES/EMFsnapshot.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 27

run, the check component verifies a model against the Check constraints specified at the metamodel level.
If validation errors occur, these are reported on the console. The error messages contain information related
to the name of the constraint’s context metaclass, the name of the instance that breakes the constraint, plus
the error/warning message specified by the user. No other support for identifying and correcting the error is
provided, such as automatic object selection and partial evaluations.

(3) oAW includes a generator workfow component, that allowscreating code in a programming language (e.g.
Java) starting from a model file and some code generation templates. This is actually a model-to-text trans-
formation. The template definitions are written using the Xpand language and contained in .xpt files. We
have used this facility in order to simulate a forward engineering approach, by generating component inter-
faces’ code, starting from a model. Generating a metamodel repository using oAW requires thus defining
our own templates. This seems as a quite flexible alternative, but it has not been materialized yet.

(4) The shape of the code, its simplicity and inteligibilitydirectly depends on the way templates are written by
the user.

Figure 3.3: oAW workflow run

3.2 Process B: Structural Abstraction Subproject

Writer: Pascal André

Process B provides structural informations to process A (Fig. 1.1): an instance of the component metamodel
with a corresponding annotated Java code. More precisely, process B is to build a couple (structural component
model, annotated Java code) from a plain Java code and user-defined information. The two elements of the couple
should be consistent.

FIGURES/oAWsnapshot.eps

28 ECONET Workshop 2008

In this section, we recall the initial goals and design ofprocess B, present an assessment of the subproject,
technical elements and future work.

3.2.1 Goals

The main goal of Process B was to abstract a component structure (components and architectures) from Java code
and additional user-defined information. The goals stated on the Prague 2008 Workshop are recapitulated in the
rest of this section.

A general view of the process B is given in figure3.4; from plain Java code and user interaction, process B
should produce an annotated Java code and a corresponding component model (both results must be consistent).
Some restrictions apply to the first program release:

• Input

– Annotations are those related to the Common Component Meta Model (CCMM) but do not include
other component models yet (Fractal, Sofa, ...). The latterwill be calledextended annotation.

– UML models are not accepted as direct inputs but are read by the user.

• Output

– Only flat component models are targetted.

– Process B is not directly responsible of the consistency between a model and the corresponding Java
annotated code.

– The conformance of the produced component model is checked at the metamodel level.

Annoted code
Fractal, SOFA,
Kml...

Structure
Abstraction
(process B)

annotation
definition

User
informations
(interactive)

UML
diagrams

Textual
informations

plain Java
code Structural

Abstract Model
flat

hierarchical

CCMM
definition

annoted Java
code

consistent

Figure 3.4: A general view of the process B

3.2.2 Design

The process B was designed as an iterative process (Fig.3.5). This process is architectured around a toolbox (Fig.
3.6). One step in the process is the application of one of the tools (one transformation). External tools can be used
to process the transformations.

• Inputs are

(1) An input model which is a couple< cm, jac > wherecm is a component model (an instance of the
common component meta-model) andjac is a java annotated source code.

(2) User informations from any kind (textual, annotations,UML, user interactions...)

./FIGURES/processB.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 29

Structure
Abstraction
(process B)

annotation
definition

User
informations
(interactive)

[annotated]
Java code

Structural
Abstract Model

CCMM
definition

consistent

External Tools
(parsers, graphs,

XMI…)

ii

[annotated]
Java code

Structural
Abstract Model

consistent

i+1i+1

Figure 3.5: An iterative view of the process B

The inputjac may be plain Java only. The inputcm may be empty or disconnected from anyjac.

• The output is a new couple< cm′, jac′ >.

annotation
definition

User
informations
(interactive)

[annotated]
Java code

Structural
Abstract Model

CCMM
definition

consistent

External Tools
(parsers, graphs,

XMI…)

ii

[annotated]
Java code

Structural
Abstract Model

consistent

i+1i+1

Model
from

annotat
ions

Annota
tion

writer
from

model

Cluster
ing tool

Distri-
bution
analy-

ser

Model
transfo
rmation

. . .

Input filter

Output filter

Sche-
duler

Figure 3.6: An architectural view of the process B

The idea is to combine primitive transformations and develop a customised (or human driven) process B. Here
are some of the primitive transformations:

(1) Annotate a Java program from user information.

(2) Build a component model from an annotated Java source.

(3) Build a component model from a plain Java source.

(4) Analyse a distributed program to detect components (deployment).

(5) Extract cluster using graph tools (grouping class into components, or grouping components into composite).

(6) Process model transformations such as fusion, selection... on the couple (code, model).

./FIGURES/processBiter.eps
./FIGURES/processBbox.eps

30 ECONET Workshop 2008

(7) Property Verification

• Check the consistency of a couple< cm, jac > .

• Check the completeness of a couple< cm, jac > .

• Check special system properties (various kind of compatibility, ...)

(8) ...

Important remarks:

(1) Note that combining transformation 1 and 2 provides a first result of process B which can be reusable in
process A.

(2) Note also that input and outputs need format filters (reader, writer) which are common to all subprojects.

(3) Note also that some of these transformations ought to be used in the other subprojects.

3.2.3 Assessment

A first prototype of the toolbox was implemented by a group of four students of a Master of computer Science
the University of Nantes. A compressed archive of their workis available on the SVN repository on directory
processB namedMasterOpProjectFinal.zip. This files include the source programs and the docu-
mentation. The work overpassed the context of process B because it also required and implemented a simple
metamodel management (using the CMM 1.0 specification). Theexperimentations were led with a small subset
of the CoCoME case study. A report relates their work [BFFD08]. Here are some rewrited pieces of this report.

Project Goals

The goal of this master project is to contribute in the conception and in the implementation of the collective toolbox
(Fig. 3.6). Our work contains several steps. In the first part we shouldunderstand the concept of components
architecture, the global architecture of the reverse-engineering application and the components metamodel. In a
second part, we should understand how the annotation language and the Java code management tools works. In
the last part, we must implement the tool which instantiate the model from annotations and generate code from
models.

Project Organisation

To be as productive as possible, we divided the development stage in two parts, each of them are realised by a
couple of students.

• The management of annotations :
This work was also divided in two parts :

(1) The reading of annotations :
We have to create the library of annotations. Afterwards, itwill be necessary to write a grammary with
differents annotations for read them in a JAVA code. When this work is satisfied, we can extract the
structure of the Java code in a Component Model.

(2) The writing of annotations :
To do that, we need the Component Model. Thanks to the last andthe library of annotation, we can
give a Java code annotated, which respect the structure of Model given.

• The management of models :
As following, we have divided this part in two steps.

(1) The models transform :
If we give a description of a model in XMI, for exemple, we can transform it in SOFA or Kmelia. In
this step, it have to write the transform rules.

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 31

Figure 3.7: Process B: Master Project Organisation

(2) The instantiation of model :
If the user gives a Component MetaModel and complementary informations, this part allows to obtain
a Component Model.

Both parts are relatively distinct. The management of annotations was realised by Tanguy and Claire and the
management of models was realised by Guillaume and Vincent.

Integration

The whole process was implemented by an Eclipse Plugin (see section3.2.4).

Experimentations

The experimentations were led with a small subset of the CoCoME case study. We use for the tests the three
following components present the CoCoME case study::CashBoxController, :PrinterController,
:ScannerController. These three components are contained in the component:CashDesk (Fig. 3.8).

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

1 11

Figure 3.8: Process B:Master Project: CoCoME subset

Each component has a package name beginning withorg.cocome.tradingsystem. The package name
is hierarchised according to the composition of the name of the composite components which contain the compo-
nent. There are a Java interface for the component and also a folder namedimpl which contains the java classes
that implement the interface (Fig.3.9).

At first, we tested a single class that contained all the annotation. This class allowed to generate the structure
that is required for the generation of the model. In a second part, this structure is used to instantiate the metamodel.
After, the structure is exported to another structure to thepart that writes the annotations. In the part that manages
the writing of the annotation, we write the annotation corresponding to the intanciated model in Java classes that
are not annotated. We check that the automatic annotated classes are exacly the same that the clesses that we
annotated manually.

./FIGURES/roundTripOp.eps
./FIGURES/cashdeskop.eps

32 ECONET Workshop 2008

Figure 3.9: Process B:Master Project: One class of CoCoME annoted

Then, we tested the three CoCoME components. The previous approach has been used on the classes of
these three components, we checked that the classes annotated by our program were the same than the classes we
annotated manually.

3.2.4 Tools and techniques

In this section we provide technical elements for the Masterproject. The detailed documentation is available on
the SVN repository in folderprocessB.

a) Annotation Management

This subtask was again divided in two parts:Reading/Writing annotations.

Reading annotations Reading annotations is designed using the APT tool (see section B.1 of chapterB). APT
is a read-only source file preprocessor using the reflexive Java API tools.jar. At first we need to describe
every annotation in an annotation libraryannotations.jar to be imported in the Java project.

Annotation processing was quite fuzzy for us since APT is young and not very documented on the Web. Our
APT processor is implemented usingFactory andVisitor patterns. During the launching, APT searches for a
factoryAnnotationProcessorFactory which is the entry point to analyse the Java sources. This factory
create a processor implementing theAnnotationProcessor interface and especially a methodprocess
that looks for all declarations in the source code and accepts a visitor (DeclarativeVisitor) associated to
the declarations. This visitor have 4 methods :

• visitClassDeclaration(ClassDeclaration d) (Fig.3.12)

./FIGURES/codecocome.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 33

Figure 3.10: Process B:Master Project:Extract of the Annotated Class and the CoCoME generated model

Figure 3.11: Annotation Provided

• visitMethodDeclaration(MethodDeclaration methodDeclaration)

• visitConstructorDeclaration(ConstructorDeclaration d)

• visitFieldDeclaration(FieldDeclaration d)

In fact, to run a APT application, we implemented this diagramm :

And to execute this programm we write the following online command :

./FIGURES/modelCocomeVince.eps
./FIGURES/apt_provided.eps
./FIGURES/apt_vueglobale.eps

34 ECONET Workshop 2008

apt -factory annotation.Factory -classpath ../../annotation.jar classes/*.java

It was integrated later.

Figure 3.12: Visitor for theclass annotation

Generating annotations We implemented a simple solution in a single class calledGenerateJavaFile
with query and modifier methods.

private boolean existClass (String className)
private boolean existMethodOrAttribute (String className)
private void addClass (String packageName, String className, List String annotationList)
private void addAttribute (String location, String annotationList List)
private void addMethod (String location, String annotationList List)
private void addAnnotationOnMethod (String location, String annotationList List)
private void addAnnotationOnClass (String className, List String annotationList)
private void addAnnotationOnAttribute (String location, String annotationList List)

./FIGURES/apt_visitor.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 35

These methods are used to add elements (annotations, classes, methods and attributes). For all methods except
addClass, the principle is the following: the java file is read line by line and copied in a temporary file together
with the annotations. TheaddClass method create a java file with a skeleton for the class and its annotations.
At the end the original file is overridden by the the contents of the temporary file.

Processing occurs at the class, attribute and method levels. Different cases occur:

• The class and the method don’t exist

• The class exist but not the method

• The class and the method exist but there is no annotations on this method

• The class and the method exist, the method is already annoted

These situations are almost the same when adding annotationon class or attribute. Annotations are managed us-
ing HashMap<String,LinkedList<Annotation». The key is a string which represents the name of the
source element where annotations are applied. For example,a key can be in this format :
"packageName.className::public void method ()" is associated to
" @Initmethod(annotation_scr="Manual", name_of_the_component="composantTest") ". When
we add an element to this HashMap, we specify the key and the list of annotations associated. For example we
add an element in the HashMap (the key and the associated list):

HashMap String,List String methodArray = new HashMap String, List String ();
LinkedList String annotationListMethod= new LinkedList String ();
annotationListMethod.add("@Initmethod(annotation_scr=\"Manuel\",

name_of_the_component=\"composantTest\")");
methodArray.put("TestClass::public void methFournis ()", annotationListMethod);

b) CCM Model Management

This part of the project consists in instantiating CMM models from the informations given by the annotation
processor and also to query models in order to inject annotations into Java code. Those informations are stored
in a structure that we use like a commonresourcebetween the annotation processor and the model management
class. The resource structure contains three parts: information on classes, on methods and on attributes. Each part
stores the annnotations related to its type together with their localisation.

Figure 3.13: Process B:Master Project: CCM Subset

./FIGURES/metaccmpa.eps

36 ECONET Workshop 2008

Figure 3.14: Process B:Master Project: Code for model instantiation

instantiation of models The instantiation process parse sequencially, first on the classes (mainly about compo-
nents), then the methods (component operations), and finally on the attributes (component states and links).

At first the component metamodel is loaded with EMF from an Ecore file (see the next section). Then the
metamodel is registered and an empty instance model is created. After the program parses the annotation and
localisation strings in order to get the information about the model entity that it creates. For example an entry
point is created from its operation location and its operation (Fig.3.15).

Figure 3.15: Process B:Master Project: Creating the entry point

The generated model for a sample class is showed in figure3.16.

Once the model is instantiated, it is exported as an Ecore file. So it can be managed by any other tools that use
ecore files as interchange files (Fig.3.17).

After external modifications the instance model can be imported in our tool in order to generate the code from
the model. This code is generated by calling the writer of ourtool. The in-memory model is loaded in the same
structure as the structure created with APT.

./FIGURES/codeConstructor.eps
./FIGURES/entrypointCode.eps

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 37

Figure 3.16: Process B:Master Project: Annotations Trial

Figure 3.17: Process B:Master Project: Model exportation

Tools used In order to use EMF, we need the CCMM metamodel in the Ecore format. So we write the CCMM
metamodel in KM3, a DSL for Metamodel Specification [JB06], which is a meta-model description language
invented at the University of Nantes by the ATLAS team (see also sectionB.1.3of chaptercommontools). Then
we have export this meta-model in Ecore to use it with EMF.

For the instantiation of the models, we generate the EMF reflexive API from the meta-model of CCMM. And
then, we used this API to produce the model elements. Once a model is instantiated, it become easy to iterate,
modify or export it.

Reading models Three different structures are exported: one for the classes, one for the attributes and one for
the methods. Export deals with the annotation and the localisation of the annotation. All the model elements (com-

./FIGURES/essaiAnnotation.eps
./FIGURES/exportModel.eps

38 ECONET Workshop 2008

ponents, attributes, methods, entru points) are scanned todiscover what kind of annotation we will be exported.
Once re-built, the annotations can be exported with their localisation.

c) Integration

The integration is a very simplified version of the toolbox itself (Fig. 3.6). It has been designed as an Eclipse
plugin with input/output of annotations and models.

Integration of the annotation processor To incorporate this part to our project, we had to modify the processor.
In the beginning of this project, the annotations writing isexecuted with a command line, but the model manager
uses EMF, which is used only in Eclipse. When we add APT pluginin Eclipse to use our program, the shared
resource was reinitialized by the processor when it started. But, the Eclipse builder creates a new processor for
building each file so we lost information in the resource. In order to correct this, we first tried to modify the
processor factory to share the same instance of the processor. It was not a correct solution because, in this case,
the processor works only for the first built of the program. After it crashes and the build continues without the
management of our annotations. So we have decided to correctit by another way. We decided to declare our
plugin as a "compilation participant", then our program wasnotified when a build started. So we can re-initialise
the resource before starting the build and restore the factory to the previous version. It solved all our problems on
it. With this correction, the lone condition to use the tool is to start a complete building, with a "clean", before
launching the generation of the model.

Integration of the model generator In order to add the model generator, we added an extension point to our
plugin. This extension point is defined by the typeorg.eclipse.ui.actionSets. It allows to add a menu
in the top of the Eclipse window and a button on the toolbar. This menu is calledRoundTrip and contains an
entryGenerate Model. The action performs a method call that creates the model from the informations given
by the annotation processor during the built. The button on the toolbar is a shortcut of this action. When the code
is generated, an in-memory model of the code is created and the ecore file corresponding to the model is written
in the model directory of the current project. If there is no model directory it creates one. After the generation, a
pop-up message informs the user of the success. This functionality was added by modifying the class generated
by theactionSets wizard.

The generation work correctly if the meta-model ecore fileisput at the root of the workspace folder. If not
the plugin can’t load it. We have also created a factory for the shared resource wich allows all the classes which
access to it to share the same instances.

Integration of the code generator This functionality is inserted in the same way as for the model genera-
tor. We added an entryGenerate Code in theRoundTrip menu. The action performs a generation of the
informations which are written into the Java classes.

Integration of the import CCM model function A new extension point is defined using the
org.eclipse.ui.importWizards: adding a new file import wizard wich is configurable by the Eclipse
user interface, call a method of our plugin that uses the loadresource function given by EMF. This function
allow to load a CCM model contained in an ecore file in the project by using the import function of Eclipse and
automatically load it in the memory. It adds an entry "ImportEcore CCM model File"to the import wizard of
Eclipse.

Combining this instructions The combination of the differents functions explained above allow to extract a
model from annoted code. Then export it into an ecore file. Modify this model by editing the ecore file with the
user preference editor. After that, user can import its modified model and then generate the modification in its
JAVA source code. With this combination we realised the "roundtrip".

3.2.5 Future Work

This task is led by the COLOSS group; the OBASCO group also contribute significantly to the toolbox; the LCI
team will bring its experience on reverse-engineering tools. WE propose to work on three boxes (Fig.3.6): full
annotation management (transformation 1 and 2), cluster exploration (transformation 5). A study should also be

3.2. PROCESS B: STRUCTURAL ABSTRACTION SUBPROJECT 39

Figure 3.18: Process B:Master Project: Plugin Menu

Figure 3.19: Process B:Master Project: Importation Wizard

led on exploiting informations of a UML component model to discover components from the plain Java program.
Results on extraction back-ends are expected till the thirdworkshop (Cluj 2008).

Full Annotation Management

The student project is on the Econet SVN repository. This release does not include the (new) multi source anno-
tations, problems remains with automatic build and the codegeneration is not working correctly. A new release
should be available in august, written using RECODER ratherthan APT.

The annotation language and component metamodel have been refined and validated (ses sections4.3and4.2
of chapter4).

+++ TODO: GA +++

./FIGURES/projetopmenu.eps
./FIGURES/importWizard.eps

40 ECONET Workshop 2008

Metamodel API integration and experimentation

Process B requires user-defined informations. These informations can be delivered interactively (answering to
questions, drawing or selecting graphical elements...), or by some text files. One of the option, which is quite
convenient for the CoCoME Case Sudy is to extract informations from any existing UML (Component) model.
This implies using UML transformation tools to read UML diagrams and extract or abstract useful informations.
The goal of this subtask is to search how to extract gainful structural informations from UML models.

Clustering Java Classes into Components

Writer: Jean-Claude Royer

For re-engineering Java applications into component assemblies several questions have to be raised. First,
it means to identify the boundaries of components and for each of them the interfaces or the public services.
Furthermore we are interesting in producing a component model with dynamic behaviour, that is each primitive
component has an explicit protocol. Protocols can also be associated to composite but it may be done, either
from the knowledge of primitive protocols and architecture, or by a similar extracting process as for primitive
components. This extracting process depends strongly fromthe hypotheses related to the Java applications we
consider and also the kind of component models with protocols we want to extract. Here we consider plain Java
objects without additional hypothesis. For protocols, we are interested in simple ones like Labelled Transition
Systems but more advanced ones like process algebras, FSP [MK06b] or Symbolic Transition Systems [PRS06]
are also relevant.

To summarize the main questions, we need to identify or extract:

• the boundaries of components, for primitive and composite,this result in a tree structure describing the
architecture;

• the interfaces of each components, here we can consider onlyone interface which is a set of method call.
An important point is about communication which is usually,in such applications, reduced to binary com-
munications. In most of the component models or languages weclassify them into required and provided
services;

• the communications between the different components in thearchitecture;

• for each primitive component, the leaves in the tree architecture, we want to extract a protocol, which can
be an LTS or an STS.

We here summarize some previous work which have been done in this area. In their technical paper [BGH99]
the authors study the various ways to extract some models informations from Java code. In fact it can be done
with three different approaches: parsing the source code, disassembling the byte code or profiling the application
execution. They found that these three techniques have complementary advantages. Parsing the source code,
using the classic grammar ware technology, is the most complex to implement and it can lead to detailed models.
Disassembling Java byte code gives similar results than parsing but since the language is simpler it is technically
less complex. Profiling consists in getting some feedback from application execution, it strongly depends from the
precise context of execution but it is easy to do and provide accurate information about polymorphic call, dynamic
types of objects and informations related to the use of the reflective Java API. The model used in [BGH99] is a
simple entity relationship model but it is not too far from a component model. The main difference is architecture
which is rather flat in this case and it does not consider protocols. The paper describes a complete study with
implementation of three tools, experiments on real-size examples (Jigsaw web server and javacc) and result com-
parisons. Nevertheless, in some applications using the reflective API, profiling is more accurate about the dynamic
types of objects and the service calls.

The conclusion from [BGH99] is that: if static analysis is sufficient thus disassembling is probably the best
choice. However, if we want to exploit some comments and codeannotations, it is only possible with source code.
These comments and annotations may be really important to help the extraction of the structure and architecture
for components. If we need really accurate informations source code analysis is better, since compilation may
omit some relations which could be important from a more abstract point of view. For instance, we can imagine
that an internal communication between internal parts may be optimized with direct function call and removing
some intermediate computations. The problem is still open since, for instance [GM01] considers that runtime
analysis or profiling is needed since types and objects may bedynamically created.

3.3. PROCESS A: BEHAVIORAL ABSTRACTION SUBPROJECT 41

In our future study we expect to get an overall understandingof the challenges and the solutions related to our
initial problem of extracting component informations froma Java application. At least some previous work have
to be analyzed, for instance [GM01, BBM04, BHM05, BCMR07] and especially some work from our partners
from DRSG [JKP05, PPK06, BHP06]. One important and preliminary study is to analyze the overall structure
and to identify the communications in a set of classes. The analysis of rules to extract an STS from a Java class is
also a relevant task.

3.3 Process A: Behavioral Abstraction Subproject

Writer: Ondrej Sery, Tomas Poch

The goal of Process A was to analyze options of reverse engineering behavior specification from Java code and
additional architectural information in the form of Java annotations. The architectural information is the expected
outcome of Process B. Moreover, prototype implementation of a Generic analysis tool (GAL) was anticipated.
The goals stated on the Prague 2008 Workshop are recapitulated in the next section.

3.3.1 Goals

Three of the groups participating in the project have developed their own formalism for behavior specification.
Therefore, in order to allow extraction of behavior in any ofthe formalisms, the goal is to design the behavior
reverse engineering process as general as possible.

To be more specific, the formalisms considered are:

• Enhanced behavior protocols (EBP) developed by DSRG,

• eLTS developed by COLOSS,

• STS developed by OBASCO.

The individual behavior specification formalisms differ a lot, which makes creation of a general tool a chal-
lenging task. However, steps common to extraction of any behavior specifications (in particular behavior protocols
and LTS-based formalisms eLTS and STS) might be identified. Thus, the general approach is to divide all nec-
essary steps of behavior extraction into two parts: (i) steps common to all formalisms, and (ii) steps specific to a
particular formalism.

The first part will be implemented in a General analysis tool,while the second part will be performed by back-
ends specific to a particular formalism. To prevent reinvention of the wheel, the analysis tool is to be implemented
using existing libraries/tools/platforms (for parsing Java sources and annotation extraction, etc.). To sum it up, the
goals of reverse engineering behavior specification are as follows:

(1) Find a suitable libraries/tools/platforms for analysis of Java sources.

(2) Create a generic Java analysis tool which produces an intermediate representation of behavior suitable for
subsequent creation of concrete behavior specifications ina chosen formalism.

(3) Create formalism-specific back-ends for extraction of behavior specification from the intermediate specifi-
cation.

3.3.2 Assessment

So far, a prototype implementation of the GAL—calledjabstractor—has been created. The use a Recoder library
[6] to parse Java source codes and then employs a set of transformations over the abstract syntax trees (AST).
Figure3.20depicts the transformation process from Java sources to a form of either LTS or regular expression.
The LTS form is designed to preserve as much information fromthe original sources as possible. This is essential
for further transformation into other formalisms (e.g., STS and eLTS). However, these transformations are out of
the scope of the project.

42 ECONET Workshop 2008

Figure 3.20: Workflow of the process A

3.3.3 Tools and techniques

The input of the jabstractor tool is a set of annotated Java sources, a name of a component and a specification of
intended usage of the primitive component (Fig3.21). The annotations were defined in [ACPR07]. The sources
are parsed using the Recoder tool which results in anabstract syntax tree(AST) of the involved Java classes. As
the Recorder tool is specialized for Java, it provides many useful features; e.g., resolving references, side-effect
removal and so on. Moreover, it provides a framework for building user defined transformations based on the
visitor pattern.

p u b l i c c l a s s B{
@requi red C c ;
p u b l i c void x () { c . c () ; }

}

p u b l i c c l a s s A{
@business boolean cond ;
B _b = new B () ;
@provided
p u b l i c void a () {

f o r (i n t i = 0 ; i <10; i ++)
{b () ; b () ; }

}
p u b l i c void b () {

i f (cond) hp () ;
e l s e d () ;

}
p u b l i c void hp () {

/ / h a l t i n g problem
}
p u b l i c void d () { _b . x () ; }

}

Figure 3.21: Example input of the process A. There is one instance of the A class and one instance of the B class
within the instance of the component

In the next step, Recoder transformations are applied to make the original Java code closer to the capabilities
of target formalisms. The result is still a parse tree of a Java code. The strategy is to stick with Java parse tree
as long as possible and perform the transformation into the target formalism as the last step. The motivation is
reuse of transformations independently on the target formalism. The target formalisms have the power of finite
automatons, while Java is Turing complete. However, as the target formalisms are intended to capture just the
behavior on a component boundary, internal computations, where the complexity is often hidden, may be omitted.
In particular, the omitting works in terms of following definitions:

Definition 1 Let aandb be AST nodes. We say thatb is reachable froma if

• b is in the subtree ofa or

• there is a methodf declaration, such that nodecall f is reachable froma, andb is reachable from methodf
declaration

FIGURES/process_a.eps
FIGURES/input.eps

3.3. PROCESS A: BEHAVIORAL ABSTRACTION SUBPROJECT 43

The omitting transformation the setRProv, all AST nodes reachable from aprovidedmethod declaration, and
RReq , all AST nodes, such that arequiredor businessmember variable reference is reachable from it. The sets
of provided methods, required and business member fields aredefined in source codes by annotations. Finally,
an intersectionI = RReq ∩ RProv is computed. Then all statements (AST nodes) that are not in the setI are
removed together with all declarations which are not referenced any more. There are also other transformations,
which can be applied at this point, depending on the target formalism (side effect elimination, removing of a
method parameters, removing of recursion).

p u b l i c c l a s s A{
@business boolean cond ;
B _b = new B () ;

@provided
p u b l i c void a () {

f o r (i n t i = 0 ; i <10; i ++)
{b () ; b () ; }

}

p u b l i c void b () {

i f (cond) NULL;
e l s e d () ;

}

p u b l i c void d () { _b . x () }
}

p u b l i c c l a s s B{
@requi red C c ;
p u b l i c void x () { c . c () }

}

Figure 3.22: Example after omitting an internal behavior

The result of transformations is a set of simplified Java classes (Fig.3.22). In the next step, these classes are
merged into single one, roughly corresponding to a component. The merged class contains:

• Method declaration for each method provided by the component

• Constructors, thread definitions

• Field for each required interface

• Field for each business member

A method of the merged class may only access a business field and invoke methods on required fields. Merging
of classes involves method and member fields inlining. Thereis a number of issues regarding both control flow
(recursion, method overloading, inheritance, virtual methods) and data (points-to-analysis, method parameters).
Typically, these are often related to the halting problem. In such cases, overspecification is applied.

p u b l i c c l a s s Merged {
@requi red C c ;
@business boolean cond ;
boo l _b_mode ;

@provided
p u b l i c void a () {

f o r (i n t i = 0 ; i <10; i ++){
i f (cond)NULL;

e l s e i f (_b_mode) c . c ()
i f (cond)NULL;

e l s e i f (_b_mode) c . c ()
}

}

}

?a{
{

switch(cond){
case TRUE:
case FALSE: !c.c;

};
switch(cond){

case TRUE:
case FALSE: !c.c;

}
}*

}

Figure 3.23: The merged class and the result in EBP

Having the merged class in hand, the final step—transformation into a particular target formalism—can be
done (Fig3.23).

44 ECONET Workshop 2008

3.3.4 Objectives and organisation

In order to proceed and provide a working tool chain, following tasks must be done. First, annotations used by
the process A and process B should be synchronized. Also, thejabstractor tool should be improved to use method
parameters. At the Nantes workshop, opportunities for use of the Recoder tool also in process B emerged. In order
to minimize effort, a wrapper encapsulating the Recoder functionality used by both processes should be created.

Tasks related to the jabstractor tool (and process A) are to be carried out by the DSRG team. Synchronization
of annotations is to be done in cooperation with COLOSS.

Chapter 4

Working Sessions

This chapter relates the working sessions.

4.1 Introduction

The goals of the working sessions are mainly to capitalise the experience and to fix a roadmap for the project
continuation. This means to clarify the common issues:

(1) Metamodel: validate the metamodel in order to benefit from an aggreed one for the end of the project.

(2) Interface: define better requirements and provision of the subprojects including annotation definition, tools
sharing, special requirements, API...

(3) Case study: define a convenient subset of the benchmark used by all subprojects.

From the organisation point of view the objective of the working sessions is to refine the task initial definition and
planning (the detailed objectives in a feasible manner, to define clearly the concrete and coordinated contribution
of each partner, to define task, products and results, to organise tasks (responsibilities, contributors, schedule...)
until the next workshop. Last, everyone was invited to think about a project continuation and valorisation by
publishing results.

4.2 Metamodel Specification

Chapter 1 and 2 of [AP08] are a detailed explanation on the work leaded in this working group. The reader is
invited to consult these chapters. The whole document [AP08] is the result of the validation process leaded by this
group in the working sessions.

4.3 Annotations and interfaces

A working group was build upon the interface between processes it included annotations, tools and special re-
quirements.

4.3.1 Annotations Update

The annotations defined in the workshop of Prague have been refined in order to take into account experience
gained from the work on processes A and B, and also to allow arrays of sources.

Component - Class Relation

45

46 ECONET Workshop 2008

/∗ ∗
∗ One or more Java c l a s s e s can be a s s i g n e d t o a s i n g l e component. Such an
∗ ass ignment i s s p e c i f i e d by t h i s a n n o t a t i o n .
∗ /

@Target (E lementType . TYPE)
p u b l i c @ i n t e r f a c e InComponent {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g component
∗ Names which t h e a n n o t a t e d c l a s s i s a s s i g n e d t o . I f a s i n g l e
∗ s o u r c e d e c l a r e s t h e c l a s s t o p a r t i c i p a t e i n s e v e r a l components ,
∗ i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f component name
∗ /

S t r i n g [] componentName () ;
}

Entry points

/∗ ∗
∗ This c l a s s i s t h e f i r s t i n s t a n t i a t e d and i s r e s p o n s i b l e (i t sc o n s t r u c t o r) f o r
∗ t h e i n s t a n t i a t i o n and i n i t i a l i z a t i o n of t h e component ’ s c on t e n t .
∗ /

@Target (E lementType . TYPE)
/ / Should be j u s t a c l a s s
p u b l i c @ i n t e r f a c e I n i t C l a s s {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g component
∗ Names f o r which t h e a n n o t a t e d c l a s s p r o v i d e s t h e i n i t i a l i z at i o n .
∗ I f a s i n g l e s o u r c e d e c l a r e s t h e c l a s s t o p a r t i c i p a t e i n s e v e ra l
∗ components , i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f
∗ component name
∗ /

S t r i n g [] componentName () ;
}

/∗ ∗
∗ The component c o n t e n t i s i n s t a n t i a t e d and i n i t i a l i z e d by a method (i t can be
∗ a c o n s t r u c t o r , a s t a t i c method or an i n i t i a l i z a t i o n method to be c a l l e d a f t e r
∗ t h e d e f a u l t c o n s t r u c t o r) .
∗ /

@Target ({ E lementType .CONSTRUCTOR, ElementType .METHOD})
p u b l i c @ i n t e r f a c e In i tMe thod {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g component

4.3. ANNOTATIONS AND INTERFACES 47

∗ Names f o r which t h e a n n o t a t e d method p r o v i d e s t h e i n i t i a l i za t i o n .
∗

∗ /
S t r i n g [] componentName () ;

}

Interfaces

Provided

/∗ ∗
∗ In Java sources , a p rov ided i n t e r f a c e might be i n a form of a c la s s
∗ a t t r i b u t e . The a t t r i b u t e s t o r e s a r e f e r e n c e t o a c l a s s implement ing t h e
∗ prov ided i n t e r f a c e .
∗

∗ /
@Target (E lementType . FIELD)
p u b l i c @ i n t e r f a c e P rov ided {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e i n t e r f a c e r e p r e s e n t e d by t h i s f i e l d
∗ /

S t r i n g [] model I faceName () ;
}

/∗ ∗
∗ A l l methods of t h e s p e c i f i e d Java i n t e r f a c e (which t h e a n n o ta t e d c l a s s has t o
∗ implement) a r e marked as a p a r t o f t h e prov ided i n t e r f a c e of th e component
∗

∗ /
@Target (E lementType . TYPE)
p u b l i c @ i n t e r f a c e P r o v i d e d I f {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e component i n t e r f a c e r e p r e s e n t e d by t h i s t ype
∗ /

S t r i n g [] model I faceName () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e j a v a i n t e r f a c e which i s d e f i n i n g one component I n t e r fa c e
∗ I f a s i n g l e s o u r c e d e c l a r e s t o p a r t i c i p a t e i n s e v e r a l components ,
∗ i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f j a v a i n t e r f a c e
∗ names (f o r i n s t a n c e {" A c t i o n L i s t e n e r , WindowListener "}
∗ /

S t r i n g [] java I faceName () d e f a u l t { " " } ;

48 ECONET Workshop 2008

}

/∗ ∗
∗ The method i s a p a r t o f t h e p rov ided i n t e r f a c e of t h e component
∗

∗ /
@Target (E lementType .METHOD)
p u b l i c @ i n t e r f a c e ProvidedMethod {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e component i n t e r f a c e which t h e a n n o t a t e d method i s p a rt o f .
∗ I f a s i n g l e s o u r c e d e c l a r e s t o t h e method p a r t i c i p a t e i n s e v er a l
∗ i n t e r f a c e s , i t s e n t r y shou ld be a comma−s e p a r a t e d l i s t o f
∗ i n t e r f a c e names
∗ /

S t r i n g [] model I faceName () ;
}

Required

/∗ ∗
∗ In Java sources , a r e q u i r e d i n t e r f a c e i s p r e s e n t i n a form of ac l a s s
∗ a t t r i b u t e . The a t t r i b u t e s t o r e s a r e f e r e n c e t o a n o t h e r component , whose
∗ prov ided i n t e r f a c e i s bound t o t h i s r e q u i r e d i n t e r f a c e s . The re fo re , t h e
∗ t a r g e t o f t h e a n n o t a t i o n f o r r e q u i r e d i n t e r f a c e i s an a t t r i bu t e of a Java
∗ c l a s s
∗ /

@Target (E lementType . FIELD)
p u b l i c @ i n t e r f a c e Requi red {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;

/∗ ∗
∗ @return t h e a r r a y (one e n t r y pe r a n n o t a t i o n s o u r c e) c o n t a i ni n g t h e name
∗ of t h e i n t e r f a c e r e p r e s e n t e d by t h i s f i e l d
∗ /

S t r i n g [] model I faceName () ;
}

Business elements

/∗ ∗
∗ a l l t h e i n s t a n c e s of such t ype a r e i m p o r t a n t f o r a component behav iou r .
∗ /

@Target (E lementType . TYPE)
p u b l i c @ i n t e r f a c e Bus inessType {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

4.3. ANNOTATIONS AND INTERFACES 49

/∗ ∗
∗ Marks p a r t i c u l a r Java c l a s s a t t r i b u t e s as i m p o r t a n t f o r b u si n e s s l o g i c .
∗ /

@Target (E lementType . FIELD)
p u b l i c @ i n t e r f a c e B u s i n e s s F i e l d {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

/∗ ∗
∗ Marks p a r t i c u l a r method paramete r as i m p o r t a n t f o r b u s i n e ss l o g i c .
∗

∗ /
@Target (E lementType .PARAMETER)
p u b l i c @ i n t e r f a c e B u s i n e s s P a r a m e t e r {

/∗ ∗
∗ @return t h e a r r a y of s o u r c e s f o r t h i s a n n o t a t i o n
∗ /

S t r i n g [] a n n o t a t i o n S r c () ;
}

4.3.2 Interface with Recoder

+++ TODO: Gilles +++

Figure 4.1: Recoder wrapper and processes

./FIGURES/recoderwrapper_and_processes.eps

50 ECONET Workshop 2008

4.4 CoCoME

The CoCoME case study is used as abenchmark for each of the three subprojects. The whole benchmark is too
big to serve as support for the experimentations. In order toselect a subset of it as the experimentation field a short
working group was installed.

The constraints are:

• The selected subset must be large enough to include representative examples for each subproject (concepts
and constraints for the metamodel, primitive component forthe behaviour abstraction, primitive and also
composite components for the structural abstraction.

• The selected subset must be as small as possible to avoid timeconsuming instanciations.

• The slice is vertical (UML model and Java code).

We retain two included subsets related to two deadlines:

• Cluj: TheCashDesk composite component for the structural abstraction. We retain two included subsets:

– TheCashDesk composite component for the structural abstraction.

– TheCashDeskApplication primitive component, which is a component of theCashDesk com-
posite component that helds a dynamic behaviour.

• End of project: TheCashDeskLine composite component, which is the front-end subsystem of the ap-
plication.

«component»

TradingSystem::CashDeskLine::CashDesk

«component»

:CardReaderController

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

«component»

:CashDeskGUI

«component»

:LightDisplayController

«component»

:CashDeskApplication

1 1 1 1 1 11

SaleStartedEvent
SaleFinishedEvent
CreditCardPaymentEnabledEvent
CashBoxClosedEvent

ChangeAmountCalculatedEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
ExpressModeDisabledEvent
ExpressModeEnabledEvent
InvalidCreditCardEvent
CreditCardScanFailedEvent

ExpressModeEnabledEvent

CreditCardScannedEvent
PINEnteredEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
SaleStartedEvent
SaleFinishedEvent

ProductBarcodeScannedEvent

RunningTotalChangedEvent
CashAmountEnteredEvent
ChangeAmountCalculatedEvent
SaleRegisteredEvent

SaleStartedEvent
ProductBarcodeScannedEvent
SaleFinishedEvent
CashAmountEnteredEvent
CashBoxClosedEvent
CreditCardPaymentEnabledEvent
CreditCardScannedEvent
PINEnteredEvent
ExpressModeEnabledEvent

ExpressModeEnabledEvent
ExpressModeDisabledEvent

Figure 4.2: CoCoME subset 1

./FIGURES/cashdesk.eps

4.5. TASK, RESPONSABILITIES, SCHEDULE 51

«component»

TradingSystem::CashDeskLine

«component»

:EventBus

«component»

cashDeskChannel:EventChannel

«component»

extCommChannel:EventChannel

«component»

:Coordinator

«component»

:CashDesk

«component»

:CardReaderController

«component»

:CashBoxController

«component»

:PrinterController

«component»

:ScannerController

«component»

:CashDeskGUI

«component»

:LightDisplayController

«component»

:CashDeskApplication

1 1 1 1 1 1 1

*

*

1

1

1

Used to access the Inventory
to get the product description
of the currently scanned product.

Events for finished
sales are sent through
this interface to the Inventory.

Figure 4.3: CoCoME subset 2

4.5 Task, responsabilities, schedule

Figure4.4is a snapshot of the discussions about tasks, responsabilities and deadlines for the processes subproject.

• Metamodel (Vladiela)

– CCMM specification + special requirements (input)

– Metamodel verification

– API generation and testing

– Deadlines

∗ specification: 7 of june 2008
∗ version 1 (EMF) : 22 of june 2008
∗ version 2 (oAW) : end of june 2008

• Process A (Tomas)

– Behaviour abstraction

– Submodel instanciation

– Deadlines: september (the last team in the dependency chain)

• Process B (Gilles)

– CCMM instance of CoCoME + EMF API + Java files (input from LCI)

– Input/Output of Java annotations

– Deadlines : begin of july 2008

./FIGURES/cashdeskline.eps

52 ECONET Workshop 2008

Vladiela

annotation
definition

- specification
- special requirements
- API

Metamodel Management
Deadlines:
- spec : 07/06
- v1 : 22/06
- v2 : end of june

- Behavioural
Abstraction of
primitive
components
- Sub CCMM
instanciation

Tomas

Process A - Behavioural
Abstraction of
primitive
components
- Sub CCMM
instanciation

Gilles

Process B
Deadlines:
- annotated code
- model instance
- begin of july

Deadlines:
- cluj

Petr

- subset to decide
- primitive component (A)
- composite (B)

CoCoME

Figure 4.4: Workshop whiteboard 3

– Studies for other tools of the toolbox

• Case Study (Petr)

We reminded the current (shared) set of tools and framework we use for the project:

• Code: RECODER/APT

• OCLE/EMF/oAW/ATL

./FIGURES/ecoTasksWN.eps

Chapter 5

Conclusion

We report many informations of the workshop in this document. This work has also been intended to be the tech-
nical part of the project second year report together with the metamodel specification document [AP08] produced
in the same period.

The workshop indicates the current state of the project, which is a bit in hurry againts its planification. Small
prototypes have been produced for each subproject, bringing some experience on the architecture and technical
issues.

Common parts have been discussed and validated during the workshop in order to allow everyone to develop
the solutions on step further until the next workshop in three months.

53

Bibliography

[AAA06a] Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking Component Composability. In
5th International Symposium on Software Composition, volume 4089 ofLecture Notes in Computer
Science. Springer Verlag, 2006.

[AAA06b] Christian Attiogbé, Pascal André, and Gilles Ardourel. Checking Component Composability. In5th
International Symposium on Software Composition, SC’06, volume 4089 ofLNCS. Springer, 2006.

[ACPR07] Pascal André, Dan Chiorean, Frantisek Plasil, andJean-Claude Royer. ECONET Project - Prague
Workshop Report, September 2007.

[Ald05] Jonathan Aldrich. Open modules: Modular reasoningabout advice. In Andrew P. Black, editor,
ECOOP 2005 - Object-Oriented Programming, 19th European Conference, volume 3586 ofLecture
Notes in Computer Science, pages 144–168, Glasgow, UK, July 2005. Springer Verlag.

[AP08] Pascal André and Vladiela Petrascu. ECONET Project -CCMM Specification v. 1.1 , June 2008.

[BBM04] Tomás Barros, Rabéa Boulifa, and Eric Madelaine. Parameterized models for distributed java ob-
jects. In David de Frutos-Escrig and Manuel Núñez, editors,FORTE, volume 3235 ofLecture Notes
in Computer Science, pages 43–60. Springer, 2004.

[BCMR07] Tomás Barros, Antonio Cansado, Eric Madelaine, and Marcela Rivera. Model-checking distributed
components: The vercors platform.Electronic Notes in Theoretical Computer Science, 182:3–16,
2007.

[BFFD08] Tanguy Beneteau, Vincent Fouquet, Claire Fromonteil, and Guillaume Doux. Operationnal project:
Reverse-engineering on JAVA. Master’s thesis, MSc on Software Architectures, University of
Nantes, March 2008. directed by Pascal André and Gilles Ardourel.

[BGH99] Ivan T. Bowman, Michael W. Godfrey, and Richard C. Holt. Extracting source models from java
programs: Parse, disassemble, or profile? http://plg.uwaterloo.ca/ itbowman/pub/paste99.pdf, 1999.

[BHM05] T. Barros, L. Henrio, and E. Madelaine. BehaviouralModels for Hierarchical Components. InProc.
of SPIN’05, volume 3639 ofLNCS, pages 154–168. Springer-Verlag, 2005.

[BHM06] Tomas Barros, Ludovic Henrio, and Eric Madelaine. Model-checking distributed components: The
vercors platform. InInternational Workshop on Formal Aspects of Component Software (FACS’06),
Prague, September 2006. Electronic Notes in Theoretical Computer Science (ENTCS).

[BHP06] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. SOFA 2.0: Balancing advanced features in a
hierarchical component model. InSERA, pages 40–48. IEEE Computer Society, 2006.

[BR02] Thomas Ball and Sriram K. Rajamani. The slam project:debugging system software via static
analysis. InPOPL, pages 1–3, 2002.

[CCG+04] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Modular verification of
software components in c.IEEE Trans. Softw. Eng., 30(6):388–402, 2004.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, ShawnLaubach, Corina S. P̆as̆areanu, Robby,
and Hongjun Zheng. Bandera: extracting finite-state modelsfrom java source code. InICSE ’00:
Proceedings of the 22nd international conference on Software engineering, pages 439–448, New
York, NY, USA, 2000. ACM Press.

54

BIBLIOGRAPHY 55

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, andHelmut Veith. Counterexample-
guided abstraction refinement. InCAV ’00: Proceedings of the 12th International Conference on
Computer Aided Verification, pages 154–169, London, UK, 2000. Springer-Verlag.

[CKSY04] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav. Predicate abstraction of
ansi-c programs using sat.Form. Methods Syst. Des., 25(2-3):105–127, 2004.

[Dam07] C.W. Damus. Implementing Model Integrity in EMF with MDT OCL, 2007. Eclipse Corner Articles,
online at:
http://www.eclipse.org/articles/article.php?file=Article-EMF-Codegen-with-OCL/index.html.

[DFS02] Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection and resolution of
aspect interactions. In Don Batory, Charles Consel, and Walid Taha, editors,Generative Program-
ming and Component Engineering: ACM SIGPLAN/SIGSOFT Conference, GPCE 2002 - Proceed-
ings, volume 2487 ofLecture Notes in Computer Science, pages 173–188, Pittsburgh, PA, USA,
October 2002. Springer Verlag.

[DLBNS06] Rémi Douence, Didier Le Botlan, Jacques Noyé, andMario Südholt. Concurrent aspects. InPro-
ceedings of the 4th International Conference on GenerativeProgramming and Component Engi-
neering (GPCE’06), pages 79–88, Portland, USA, October 2006.

[Eis05] Cindy Eisner. Formal verification of software source code through semi-automatic modeling.Soft-
ware and System Modeling, 4(1):14–31, 2005.

[emf] EMF website. http://www.eclipse.org/modeling/emf/.

[GM01] Juan Gargiulo and Spiros Mancoridis. Gadget: A Tool for Extracting the Dynamic Structure of Java
Programs. InSEKE: Software Engineering and Knowledge Engineering, pages 244–251, 2001.

[JB06] Frédéric Jouault and Jean Bézivin. Km3: A dsl for metamodel specification. In Roberto Gorrieri
and Heike Wehrheim, editors,FMOODS, volume 4037 ofLecture Notes in Computer Science, pages
171–185. Springer, 2006.

[JKP05] Pavel Jezek, Jan Kofron, and Frantisek Plasil. Model Checking of Component Behavior Specifi-
cation: A Real Life Experience.Electronic Notes in Theoretical Computer Science, 160:197–210,
2005.

[MK06a] J. Magee and J. Kramer.Concurrency: State Models and Java. Wiley, 2nd edition, 2006.

[MK06b] Jeff Magee and Jeff Kramer.Concurrency: State Models and Java Programs. Wiley, 2 nd edition,
2006.

[NN07a] Angel Núñez and Jacques Noyé. A domain-specific language for coordinating concurrent aspects in
java. In Rémi Douence et Pascal Fradet, editor,3ème Journée Francophone sur le Développement
de Logiciels Par Aspects (JFDLPA 2007), Toulouse, France, March 2007.

[NN07b] Angel Núñez and Jacques Noyé. A seamless extension of components with aspects using protocols.
In Ralf Reussner, Clemens Szyperski, and Wolfgang Weck, editors,WCOP 2007 - Components be-
yond Reuse - 12th International ECOOP Workshop on Component-Oriented Programming, Berlin,
Germany, July 2007.

[oaw] oAW website. http://www.openarchitectureware.org/.

[ocl] OCLE website. http://lci.cs.ubbcluj.ro/ocle/index.htm.

[PNPR05] Sebastian Pavel, Jacques Noyé, Pascal Poizat, andJean-Claude Royer. A java implementation of a
component model with explicit symbolic protocols. InProceedings of the 4th International Work-
shop on Software Composition (SC’05), volume 3628 ofLecture Notes in Computer Science, pages
115–125. Springer-Verlag, 2005.

[PP99] Radek Pospisil and Frantisek Plasil. Describing theFunctionality of EJB using the Behavior Proto-
cols, 1999.

56 ECONET Workshop 2008

[PP07] Pavel Parízek and František Plášil. Modeling environment for component model checking from hi-
erarchical architecture. InThird International Workshop on Formal Aspects of Component Software
(FACS 2006), volume 182 ofElectronic Notes in Theoretical Computer Science, pages 139–153.
Elsevier B.V., 2007.

[PPK06] Pavel Parizek, Frantisek Plasil, and Jan Kofron. Model checking of software components: Combin-
ing java pathfinder and behavior protocol model checker.Software Engineering Workshop, 0:133–
141, 2006.

[PRS06] Pascal Poizat, Jean-Claude Royer, and Gwen Salaün.Bounded Analysis and Decomposition for
Behavioural Description of Components. In Springer Verlag, editor,FMOODS, number 4037 in
Lecture Notes in Computer Science, pages 33–47, 2006.

[PV02] F. Plasil and S. Visnovsky. Behavior protocols for software components, 2002. IEEE Transactions
on SW Engineering, 28 (9), 2002.

[VKEH06] M. Voelter, B. Kolb, S. Efftinge, and A. Haase. FromFront End To Code - MDSD in Practice, 2006.
Eclipse.org, online at:
http://www.eclipse.org/articles/Article-FromFrontendToCode-MDSDInPractice/article.html.

Appendix A

Collaborative Tools

In this appendix chapter we provide informations on the Subversion repository and the wiki tools.

A.1 SVN Repository

The Subversion (SVN in short) repository was set up at DSRG (University of Prague) in october 2007. Reports,
specifications and developments can be updated on this SVN repository.

Figure A.1: Project SVN Repository

DSRG has set up a SVN repository for the project and put the report to it (in the directory reports/Prague2007).

57

./FIGURES/wikiTools.eps

58 ECONET Workshop 2008

The repository is running atsvn://aiya.ms.mff.cuni.cz/econet In a separated email, I will send
you login and password required to access the repository.

You can obtain svn fromhttp://subversion.tigris.org/Also, the svn documentation is available
from the same site (direct url ishttp://svnbook.red-bean.com/).

A brief overview of the most important commands:

svn checkout svn://login@aiya.ms.mff.cuni.cz/econet directory
Initial check out of the repository content to the specified
directory.

svn commit
Commits local changes to the repository

svn add <name_of_file_or_directory>
Adds new file or complete directory to the repository.
The command should be follow by "commit" (the "add" command
just schedules files/directories to be added and "commit" really
commits them and they become visible for others).

svn update
Updates your (previously checked out) copy of repository
by commits made by others.

svn help
Overview of all commands

svn help <command>
Detailed help about a particular command.

If you prefer a GUI client, you can use TortoiseSVN client (http://tortoisesvn.tigris.org/)

A.2 Wiki

This wiki was installed at LINA (University of Nantes, EMN) in april 2007. It includes discussions, a repository
for project and workshop material, etc. The history of the project will be found on this wiki. In particular there
are chapters for each workshop (see figureA.2.

Project material and documents are downloadable from both the wiki (figureA.3) and the SVN repository
(figureA.1).

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:materials:start

svn://aiya.ms.mff.cuni.cz/econet
http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://tortoisesvn.tigris.org/
http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:materials:start

A.2. WIKI 59

Figure A.2: Project Wiki

Figure A.3: Project material on the Wiki

./FIGURES/wikiStart1.eps
./FIGURES/wikiMat.eps

Appendix B

Common Tools and Interface

In this appendix chapter we provide informations on the model and language tools. Interface between subprojects
can be text files or XML files but this quite poor and each group will need to develop tools on Java and Models.
In order to get a standard vision of the usable technologies we need to agree on the model and metamodel tools
used in each subproject.

B.1 Java Tools

Java tools include annotation management and java code analysis.

B.1.1 Java/Annotation Tools

Several tools will be used in more than one subproject.

Tools Webography

(1) JavaCC,https://javacc.dev.java.net/

(2) Java Development Kit,http://java.sun.com/

(3) ANTLR, http://www.antlr.org/

(4) Java CUP,http://www2.cs.tum.edu/projects/cup/

(5) SableCC,http://sablecc.org/

(6) Recoder,http://recoder.sourceforge.net/

B.1.2 Tools for Java source analysis

Having the Java sources properly annotated, the question ofhow to extract the annotations and analyze the sources
comes up. There is quite a choice of tools to be used for this purpose.

Possible options are:

• JavaC [2]—standard Java compiler from Sun—is a natural first option as it is standard part of the Java
development kit (JDK) and features a reasonable interface for either annotation processing alone or to
obtain the complete abstract syntax trees.

• JavaCC (Java Compiler Compiler) [1] is a generator of parsers. To create a parser, it uses a LL(n)grammar.

• ANTLR [3] is another parser generator which also uses LL(n) grammars.

• Java CUP [4] is also a parser generator, but in comparison to the previous ones it uses LALR(1) grammars.
It is quite similar to the standard YACC and Bison tools. In contrast, it is written in Java.

60

https://javacc.dev.java.net/
http://java.sun.com/
http://www.antlr.org/
http://www2.cs.tum.edu/projects/cup/
http://sablecc.org/
http://recoder.sourceforge.net/

B.1. JAVA TOOLS 61

• SableCC [5] is another LALR(1) parser generator.

In a case, the chosen parser generator does not provide a lexical analyser, a usage of tools like JLex and JFlex
has to be considered.

Choosing the suitable tool will require deeper explorationand in-depth analysis of all features provided by the
tools. The preferred option is to use JavaC, as it always guarantees to parse the current (and also older) version of
the Java languages and also it does not introduce any third-party tool dependencies.

RECODER Thecurrent choiceis the Recoder tool, available on a sourceforge project
http://recoder.sourceforge.net/.
RECODER is a Java framework for source code metaprogrammingaimed to deliver a sophisticated infrastructure
for many kinds of Java analysis and transformation tools.

Figure B.1: Recoder Metaprogramming Cycle

The following table gives a short description of the different layers of RECODER features as well as the
application perspectives that these layers offer:

• Parsing and unparsing of Java sources

In addition to abstract model elements, RECODER also supports a highly detailed syntactic model - no
information is lost. Comments and formatting information are retained. The pretty printer is customizable
and will be able to reproduce the code (possibly improving upon it, but retaining given code structures) and
to embed new code seamlessly.

Possible applications: Simple preprocessors, simple code generators, source code beautification tools

• Name and type analysis for Java programs

RECODER can infer types of expressions, evaluate compile-time constants, resolve all kinds of references
and maintain cross reference information.

Possible applications: Software visualization tools, software metrics, Lint-like semantic problem detection
tools, design problem detection tools (anti-patterns), cross-referencing tools

• Transformation of Java sources

RECODER contains a library of small analyses, code snippet generators and frequently used transforma-
tions.

Possible applications: Preprocessors for language extensions, semantic macros,aspect weavers, source code
obfuscation tools, compilers

• Incremental analysis and transformation of Java sources

Transformations change the underlaying program model; forincremental and iterative use, this model has
to be updated accordingly. Transformations have to take care of dependencies by updating their local data

http://recoder.sourceforge.net/
./FIGURES/MetaprogrammingCycle-small.eps

62 ECONET Workshop 2008

and setting back matching positions when necessary; however, RECODER will analyze change impacts for
its model and perform updates automatically.

Possible applications: Source code optimization, refactoring tool, software migration programs (Smart
Patches), design pattern, clichés and idiom synthesis, architectural connector synthesis, adaptive program-
ming environments, invasive software composition

B.1.3 Model Engineering Tools

We need tools for model management, preferably on Eclipse. We already discussed on a modeling tool around
Eclipse technologies (Ecore, XML, EMF, MOF...) that allowsto

(1) describe and check component metamodels CMM (with structural and behavioural features, with a model
that links to Java code)

(2) describe and check component models CM

(3) provide an API to navigate on and query models, to add operations and processing on models

(4) ...

LCI should maintain this (CMM-CM) layer since it relates to metamodels.
At first sight OCLE can provide the main elements on points 1 and 2 but it doesn’t provide an API usable in

process A (structure) and B (behaviour).
We mainly decided to work withe EMF. The Eclipse EMF1 plugin ”is a modeling framework and code genera-

tion facility for building tools and other applications based on a structured data model”). EMF is an open-source
framework wich provides APIs and tools (code generator, a serialization-deserialization tool, and a reflexive API
to manage models). EMF contains also a specific implementation of the meta-metamodel MOF from the OMG.
This one is called Ecore and it is used for the descriptions ofmeta-models. EMF can import model from a large
range of source, like JAVA code, XML documents, XML Schema, or every other source that can be translated in
the Ecore format. The Ecore format is a sub-type of XMI files standard wich is used in Eclipse. In order to use
EMF, we need the CCMM metamodel in the Ecore format. Other tools exist that can help to use Ecore without
handling it directly:

• Kermeta (IRISA)http://www.kermeta.org/

• ATL/KM3 (LINA) http://www.eclipse.org/m2m/atl/

• ArgoUML tool (OpenSource)http://argouml.tigris.org/

• others...

Information on this aspect can be found here:

• Generalities
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language

• Eclipse Modeling Tools
http://www.eclipse.org/modeling/

• Kermeta (IRISA)
http://www.kermeta.org/

• ATL (LINA)
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/atlTransformations/

• Tools
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47

It would be helpful to compare tools.

1http://www.eclipse.org/modeling/emf/

http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://argouml.tigris.org/
http://en.wikipedia.org/wiki/Model-driven_architecture
http://en.wikipedia.org/wiki/Model_Transformation_Language
http://www.eclipse.org/modeling/
http://www.kermeta.org/
http://www.eclipse.org/m2m/atl/
http://www.eclipse.org/m2m/atl/atlTransformations/
http://planet-mde.org/index.php?option=com_xcombuilder&cat=Tool&Itemid=47
http://www.eclipse.org/modeling/emf/

B.2. JAVA ANNOTATIONS 63

B.2 Java Annotations

In this appendix section we ould provide the Java definition of the annotations.
See section4.3.1.

List of Figures

1.1 Econet Architecture: final version. 8
1.2 Project Wiki . 9

2.1 Workshop pages on the Wiki. 10
2.2 Workshop Materials on the Wiki. 11
2.3 Workshop Organisation on the Wiki. 12

3.1 Model checking in OCLE. 24
3.2 An Ecore metamodel including WFRs and observers. 26
3.3 oAW workflow run . 27
3.4 A general view of the process B. 28
3.5 An iterative view of the process B. 29
3.6 An architectural view of the process B. 29
3.7 Process B: Master Project Organisation. 31
3.8 Process B:Master Project: CoCoME subset. 31
3.9 Process B:Master Project: One class of CoCoME annoted. 32
3.10 Process B:Master Project:Extract of the Annotated Class and the CoCoME generated model. . . 33
3.11 Annotation Provided. 33
3.12 Visitor for theclass annotation. 34
3.13 Process B:Master Project: CCM Subset. 35
3.14 Process B:Master Project: Code for model instantiation . 36
3.15 Process B:Master Project: Creating the entry point. 36
3.16 Process B:Master Project: Annotations Trial. 37
3.17 Process B:Master Project: Model exportation. 37
3.18 Process B:Master Project: Plugin Menu. 39
3.19 Process B:Master Project: Importation Wizard. 39
3.20 Workflow of the process A. 42
3.21 Example input of the process A. There is one instance of the A class and one instance of the B

class within the instance of the component. 42
3.22 Example after omitting an internal behavior. 43
3.23 The merged class and the result in EBP. 43

4.1 Recoder wrapper and processes. 49
4.2 CoCoME subset 1. 50
4.3 CoCoME subset 2. 51
4.4 Workshop whiteboard 3. 52

A.1 Project SVN Repository . 57
A.2 Project Wiki . 59
A.3 Project material on the Wiki . 59

B.1 Recoder Metaprogramming Cycle. 61

64

	Introduction
	The 16293RG ECONET Project
	Motivations
	Partners
	Initial Plan
	Current State

	Report Contents

	The Workshop at the University of Nantes
	Preparation
	Material
	Organisation

	Objectives
	Participants
	Program and Schedule
	The Workshop Sessions
	The Presentation Sessions
	The Working Sessions

	Project and Technical Presentation Sessions
	Metamodel Abstraction Subproject
	LCI Tool Demos Summarized

	Process B: Structural Abstraction Subproject
	Goals
	Design
	Assessment
	Tools and techniques
	Future Work

	Process A: Behavioral Abstraction Subproject
	Goals
	Assessment
	Tools and techniques
	Objectives and organisation

	Working Sessions
	Introduction
	Metamodel Specification
	Annotations and interfaces
	Annotations Update
	Interface with Recoder

	CoCoME
	Task, responsabilities, schedule

	Conclusion
	Collaborative Tools
	SVN Repository
	Wiki

	Common Tools and Interface
	Java Tools
	Java/Annotation Tools
	Tools for Java source analysis
	Model Engineering Tools

	Java Annotations

