The STSLIB
Project

Fabricio

Fernandes,
Jean-Claude

Royer Components with N-Party Rendezvous
and Symbolic Transition Systems

Fabricio de Alexandria Fernandes'
Robin Passama?
Jean-Claude Royer!

"Ecole des Mines de Nantes
Department of Computer Science — OBASCO Group
INRIA Research Centre Rennes - Bretagne Atlantique — LINA
2DEMAR, INRIA - LIRMM, Montpellier

13/05/2008

1/40

@ WMotivations

Outline
@ lllustrating Example
The Process STS

Computing the Synchronous Product
The Fairness Controller Example
@ Examples of advanced communications

Some Smart Home Examples
Kinds of Interactions

@ Structured Product

@® Two Early Checking Properties
@ Final remarks

«O>» «F»r «=>»

<

i
v

DA

2/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

@ Motivations

@ lllustrating Example
The Process STS
Computing the Synchronous Product
The Fairness Controller Example

Outline

2/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Outline

@ Motivations

@ lllustrating Example
The Process STS
Computing the Synchronous Product
The Fairness Controller Example

@ Examples of advanced communications
Some Smart Home Examples
Kinds of Interactions

2/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Outline

@ Motivations

@ lllustrating Example
The Process STS
Computing the Synchronous Product
The Fairness Controller Example

@ Examples of advanced communications
Some Smart Home Examples
Kinds of Interactions

@ Structured Product

2/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Outline

@ Motivations

@ lllustrating Example
The Process STS
Computing the Synchronous Product
The Fairness Controller Example

@ Examples of advanced communications
Some Smart Home Examples
Kinds of Interactions

@ Structured Product

@® Two Early Checking Properties

2/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Outline

@ Motivations

@ lllustrating Example
The Process STS
Computing the Synchronous Product
The Fairness Controller Example

@ Examples of advanced communications
Some Smart Home Examples
Kinds of Interactions

@ Structured Product
@® Two Early Checking Properties
@ Final remarks

2/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

General Motivations

e Component based software engineering: To get a
formal and executable model

/40

The STSLIB
Project

General Motivations

Fabricio
Fernandes, . .
Joan Claude e Component based software engineering: To get a
formal and executable model
Hotivatons « Explicit protocols integrated into component interfaces

to describe their behaviour in a formal way

/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

General Motivations
e Component based software engineering: To get a
formal and executable model
o Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way
e Explicit protocols are often dissociated from component
code

/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

General Motivations
Component based software engineering: To get a
formal and executable model

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Explicit protocols are often dissociated from component
code

Generally only binary synchronisation are provided

/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

General Motivations
Component based software engineering: To get a
formal and executable model

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Explicit protocols are often dissociated from component
code

Generally only binary synchronisation are provided
Computing more than flat behavioural models

/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

General Motivations
Component based software engineering: To get a
formal and executable model

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Explicit protocols are often dissociated from component
code

Generally only binary synchronisation are provided
Computing more than flat behavioural models

Fill the gap between high-level formal models and
implementation of protocols

/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

General Motivations
Component based software engineering: To get a
formal and executable model

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Explicit protocols are often dissociated from component
code

Generally only binary synchronisation are provided
Computing more than flat behavioural models

Fill the gap between high-level formal models and
implementation of protocols

Formal analysis methods to verify components and
their interactions

/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

General Motivations
Component based software engineering: To get a
formal and executable model

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Explicit protocols are often dissociated from component
code

Generally only binary synchronisation are provided
Computing more than flat behavioural models

Fill the gap between high-level formal models and
implementation of protocols

Formal analysis methods to verify components and
their interactions

Tool support: an APl with parsers, and some analysis
tools
http://www.emn.fr/x-info/jroyer/WEBLIB/index.html

/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example
The Process STS

Computing the
Synchronous
Product

The Fairness
Controller Example

Examples of
advanced
communica-
tions

Structured
Product

Two Early
Checking
Properties

Final remarks

The Lamport Algorithm

e One server and several processes

4/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

lllustrating
Example

Controller Example

The Lamport Algorithm

e One server and several processes
e The server has to manage mutual exclusion of the
processes

4/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

lllustrating
Example
The P

The Lamport Algorithm

e One server and several processes

e The server has to manage mutual exclusion of the
processes

e Here two processes to simplify

4/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

lllustrating
Example

The Lamport Algorithm

One server and several processes

The server has to manage mutual exclusion of the
processes

Here two processes to simplify

Several variants which use integer (bounded or not) to
control critical section

4/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

lllustrating
Example

The Lamport Algorithm

One server and several processes

The server has to manage mutual exclusion of the
processes

Here two processes to simplify

Several variants which use integer (bounded or not) to
control critical section

Ensures mutual exclusion, deadlock freeness, but not
fairness

4/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example
The Process STS

Computing the
Synchronous
Product

The Fairness
Controller Example

Examples of
advanced
communica-
tions

Structured
Product

Two Early
Checking
Properties

Final remarks

@ lllustrating Example
The Process STS

Outline

5/40

The STSLIB
Project

The Process Dynamic Part

Fabricio
Fernandes,
Jean-Claude
Royer

think ?T : int
/ think

end /end

B/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the
Synchronous
Product

The Fairness
Controller Example

STS State Machine

e Symbolic Transition System = Dynamic Part + Data Part

7/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

STS State Machine

e Symbolic Transition System = Dynamic Part + Data Part

e Dynamic Part: Guarded Input/Output finite state
machine with actions

7/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS

STS State Machine

e Symbolic Transition System = Dynamic Part + Data Part

e Dynamic Part: Guarded Input/Output finite state
machine with actions

e Data Part: Might be provided as an ADT specification

7/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS

STS State Machine

Symbolic Transition System = Dynamic Part + Data Part

Dynamic Part: Guarded Input/Output finite state
machine with actions
Data Part: Might be provided as an ADT specification

The ADT to Java translation has been tested but not
integrated

7/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
omputing the

STS State Machine

Symbolic Transition System = Dynamic Part + Data Part

Dynamic Part: Guarded Input/Output finite state
machine with actions

Data Part: Might be provided as an ADT specification

The ADT to Java translation has been tested but not
integrated

Data Part = a Java interface (optional) and a Java class

7/40

The STSLIB

Project
. The Process Java Class
femandes, public class Process extends Data {
Royer
//The local ticket.
public int A;

The Pracess STS // Default constructor.
5 o public Process() { this.A = 0; }

// Get a ticket.
public void think(int t) { this.A =1; }

/! the check guard
public boolean check(int s)
{ return this.A == s; }

// Enter critical section.
public void use(int s) { }

/! End section.
public void end() {}

/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the
Synchronous
Prod

The Fairness
Controller Example

The server component

gives !S:int
/ gives

end

/ end

9/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS

Col g the

An Architecture with Two
processes

Lamport
pl:Process
end think use givel
I
s:Server
I
give2

end think use
p2:Process

10/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS

Lamport Architecture

ROOT examples lamport
PACKAGE examples.lamport

NEED Server::
Process ::

LOCALS s:Server p1 p2 : Process
COMMUNICATIONS XOR s.givet p1.think p2.think
COMMUNICATIONS XOR s.gives pi1.use p2.use
COMMUNICATIONS XOR s.end p1.end p2.end

BINDINGS s.givet p1.think — give1
BINDINGS s.givet p2.think — give2

11/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the
Synchronous
Product

The Fairness
Controller Example

N-Party Rendezvous

e Previous first communication line is equivalent to:
COMMUNICATIONS AND s.givet pl.think
COMMUNICATIONS AND s.givet p2.think

12/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

N-Party Rendezvous

e Previous first communication line is equivalent to:

COMMUNICATIONS AND s.givet pl.think
COMMUNICATIONS AND s.givet p2.think

e It expresses two synchronisations (here binary
rendezvous)

12/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS

N-Party Rendezvous

e Previous first communication line is equivalent to:
COMMUNICATIONS AND s.givet pl.think
COMMUNICATIONS AND s.givet p2.think

e It expresses two synchronisations (here binary
rendezvous)

e N-party rendezvous (AND) can involve any number of
participants

12/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the

N-Party Rendezvous

Previous first communication line is equivalent to:
COMMUNICATIONS AND s.givet pl.think
COMMUNICATIONS AND s.givet p2.think

It expresses two synchronisations (here binary
rendezvous)

N-party rendezvous (AND) can involve any number of
participants

All of them execute “synchronously” their actions

12/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the

N-Party Rendezvous

Previous first communication line is equivalent to:
COMMUNICATIONS AND s.givet pl.think
COMMUNICATIONS AND s.givet p2.think

It expresses two synchronisations (here binary
rendezvous)

N-party rendezvous (AND) can involve any number of
participants

All of them execute “synchronously” their actions
It allows one way but multiple value exchanges

12/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the

N-Party Rendezvous

Previous first communication line is equivalent to:
COMMUNICATIONS AND s.givet pl.think
COMMUNICATIONS AND s.givet p2.think

It expresses two synchronisations (here binary
rendezvous)

N-party rendezvous (AND) can involve any number of
participants

All of them execute “synchronously” their actions
It allows one way but multiple value exchanges
Communication requires compatibility offer

12/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example
The Process STS

Computing the
Synchronous
Product

The Fairness
Controller Example

Examples of
advanced
communica-
tions

Structured
Product

Two Early
Checking
Properties

Final remarks

@ |lllustrating Example

Computing the Synchronous Product

Outline

13/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example
The Process STS

Computing the
Synchronous
Product

The Fairness
Controller Example

Examples of
advanced
communica-
tions

Structured
Product

Two Early
Checking
Properties

Final remarks

ive2

give2

ivel

give2

A Classic View

ivel

14/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the
Synchronous
Product

The Fairness
Controller Example

Principle Summary

e Computing a flat behaviour is not sufficient for
architectures

15/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the
Synchronous
Product

The Fairness
Controller Example

Principle Summary

e Computing a flat behaviour is not sufficient for
architectures
e Based on the synchronous product of LTS

15/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the
Synchronous
Product

The F
Controf

Principle Summary

e Computing a flat behaviour is not sufficient for
architectures

e Based on the synchronous product of LTS

e But need to consider guards, communications and
actions

15/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the
Synchronous
Product

The Fairness
Controller Example

Principle Summary

Computing a flat behaviour is not sufficient for
architectures

Based on the synchronous product of LTS

But need to consider guards, communications and
actions

Communications are synchronisation vectors

15/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Process STS
Computing the
Synchronous
Product

The Fairness
Controller Example

Principle Summary

Computing a flat behaviour is not sufficient for
architectures

Based on the synchronous product of LTS

But need to consider guards, communications and
actions

Communications are synchronisation vectors
Guards, events and actions are structured

15/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

he Process STS
Computing the
Synchronous
Product
The Fairness
Controller Example

Principle Summary

Computing a flat behaviour is not sufficient for
architectures

Based on the synchronous product of LTS

But need to consider guards, communications and
actions

Communications are synchronisation vectors
Guards, events and actions are structured

But it cannot takes into account a complex hierarchy
with more than one level

15/40

The STSLiB
Project
o Synchronous Product
Joan.Glaue
Royer

Motivations

lllustrating
Example

The Process STS
Computing the
Synchronous
Product

The Fairness
Controller Example

— give2 / <givet_-_think>
foc2 | <gies-_tink>

<SLE>

<end__end> / <end__enc>

T - checko] <gives - use> <gives - use>

Examples of
advanced
communica-
tions

ivel / <givet_think >

f<-_ches

] <give s> <givs
Structured
Product

- - checko] <gives - use>/ <gives - use>

T check_>] <give_ s> <give on >
Two Early
Checking
Properties

Final remarks

16/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example
The Process STS

Computing the
Synchronous
Product

The Fairness
Controller Example

Examples of
advanced
communica-
tions

Structured
Product

Two Early
Checking
Properties

Final remarks

@ lllustrating Example

The Fairness Controller Example

Outline

17/40

The STSLIB
Project

The Fairness Controller

Fabricio
Fernandes,
Jean-Claude
Royer

l:Lamport

pliProcess

rive ane
nd I I pivel one other
2

The Fairness w—,
Controller Example Eivel
EHTVET o —#f
grves
i aivel other
I I ene

pX:Process

c:Controller

18/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Fairness
Controller Example

Fairness Controller Architecture

NEED
the controller .sts
Controller:
the inner Lamport.comp
Inner : Lamport
LOCALS I:Inner c:Controller

COMMUNICATIONS AND c.one |.give1
COMMUNICATIONS AND c.other |.give2

no bindings

19/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude

Royer }“

P Py ey —

The Resulting Behaviour
|

<c5_LI>_On>_ccSenvee MAXINT= 4T =05 =

ErEverw——

— —
e “geroteo

<8 T Tur < MAXINT 4T

0 Clent A=0 Contoler > 2520C-0 Clent A=1 Client A=1> Contoller >

Motivations

<5 s > One <cerver NAXINT =
e

P I

llustrating Py YRS | prrrr——————————
Example [o —
The Process STS [565 1 15 Onr <chrar WAINT =413 1620 ot A0 Gl .
Comptitinglthe — . <o
Synchronous - —
s [0 <o AT =725 €= 1 A0 Clim A >G> | [<8 55> T < MAXINT =4 T25 €0 Gl A3 oA~ 1> Conli |
ihe\Fress) l«m . —— lm.,m .
Controller Example [<651 v s MAXINT =4 72520120 et A= i A=15 o > | [<8 175 T <ctmar MAKINT <813 521C1 ot <2 Gl A=1> Gl >
el e

Examples of ‘ = |

<5 B b T << MAXINT 4T =35 =2C 20l A=2 Clia A= » Couali >
advanced — —— — »
e N s o [P
- b S AT 738261 e A~ Cl - o | | <5 < MO -08 30 Gl A2 A |

— -

}qmm,w . JR— e
Structured <L TS MAXINT 423323 =0_Clnt A=2_Clln A= > Coolic > | <5150« MAXINT = 4T=05 2= |_Clko_p =2l A=3>_Coml> |
Product ot ezt N

<c5_LLE>_Oos>_<cServer MAXINT = 4T=05 =3C =0_Cliat A

Two Early - -
Checking
Properties

TS —

s>

<5 > T <<Servr MAXINT =4T =153 C=0_Clien_\=0_Cliea_A =3>_Commle > | | <51

- Ores_ceServer MAXINT=47=05 23 C=1_Clen_A=2_Cleri A =35> Gontoler >

‘l«,.m,,_,,) i }qm,,m,,)

PP — T YWy —
e

Final remarks

<<su>,uw,«sm,w\m1:n:ns:nc:n,&m:”,ﬂm;\:b,wu)‘/

- [-

€=0_Clien_A=0_Client_A= 35 Conoler>

}qmm _—

.

<6511 Twos_<cServer MAXINT =415 1C.20_Cien A=0_Client

20/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Fairness
Controller Example

Our Needs

e To synchronise complex state machines with guard,
communication and actions

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

The Fairness
Controller Example

Our Needs

e To synchronise complex state machines with guard,
communication and actions

e To allow N-party rendezvous

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Product

The Fairness
Controller Example

Our Needs

e To synchronise complex state machines with guard,
communication and actions

e To allow N-party rendezvous
e To keep the structure of the composite in the result

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Product

The Fairness
Controller Example

Our Needs

To synchronise complex state machines with guard,
communication and actions

To allow N-party rendezvous
To keep the structure of the composite in the result
To hide, export or rename events

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Product

The Fairness
Controller Example

Our Needs

To synchronise complex state machines with guard,
communication and actions

To allow N-party rendezvous

To keep the structure of the composite in the result
To hide, export or rename events

To allow various bindings connections:

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Product
The Fairness
Controller Example

Our Needs

To synchronise complex state machines with guard,
communication and actions

To allow N-party rendezvous
To keep the structure of the composite in the result
To hide, export or rename events

To allow various bindings connections:
e What to export outside ?

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Product
The Fairness
Controller Example

Our Needs

To synchronise complex state machines with guard,
communication and actions

To allow N-party rendezvous
To keep the structure of the composite in the result
To hide, export or rename events

To allow various bindings connections:

e What to export outside ?
e What kind of connection are allowed ?

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Product
The Fairness
Controller Example

Our Needs

To synchronise complex state machines with guard,
communication and actions

To allow N-party rendezvous

To keep the structure of the composite in the result
To hide, export or rename events

To allow various bindings connections:

e What to export outside ?
e What kind of connection are allowed ?
e What are the communication rules ?

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Product
The Fairness
Controller Example

To synchronise complex state machines with guard,

Our Needs

communication and actions

To allow N-party rendezvous

To keep the structure of the composite in the result

To hide, export or rename events
To allow various bindings connections:

What to export outside ?
What kind of connection are allowed ?
What are the communication rules ?

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example

Examples of
advanced
communica-
tions

Some Smart Home
Examples

Kinds of Interactions

Structured
Product

Two Early
Checking
Properties

Final remarks

Outline

@® Examples of advanced communications
Some Smart Home Examples

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example

Examples of
advanced
communica-
tions

Some Smart Home
Examples

Kinds of Interactions

Structured
Product

Two Early
Checking
Properties

Final remarks

Event Interactions in Smart

call

check I

Home
Alarm onOff
intrusion B s:iSiren
=
pd:PresenceDetector @
5] switch
=
< e |:Light
w
block

m:Modem w—— pc: PhoneCallControl

23/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Some Smart Home
Examples

Kinds of Interactions

Smart Home Architecture

Internal Alarm assembly
NEED Light:
Siren:
AlarmControl:
PresenceDetector:

LOCALS pd:PresenceDetector |:Light
s:Siren a:AlarmControl

COMMUNICATIONS AND pd.intrusion a.intrusion
COMMUNICATIONS AND a.onOff s.onOff
COMMUNICATIONS AND a.switch |.switch

duplicated port

BINDINGS pd.intrusion —> check

branch port

BINDINGS pd.intrusion a.intrusion —> block

24/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Some Smart Home
Examples

Kinds of Interactions

Merged Port Example

count unlock
open
[]
d:Detector l:Lock

T A

- 0:DoorOpener
disable I enable

s:Security

25/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Some Smart Home
Examples

Kinds of Interactions

DoorOpener

DoorOpener definition
ROOT test fr emn stslib SH doorOpener
PACKAGE fr.emn. stslib .SH.doorOpener

NEED Detector:
Lock:

LOCALS d: Detector |:Lock
COMMUNICATIONS AND d.open |.open

two simple ports

BINDINGS | .unlock — unlock

BINDINGS d.count —> count

two merged ports

BINDINGS d.disable |.disable —> disable
BINDINGS d.enable |.enable — enable

26/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Some Smart Home
Examples

Kinds of Interactions

DoorOpener and Security

DoorOpener + Security definition
ROQOT test fr emn stslib SH doorOpener
PACKAGE fr.emn. stslib .SH.doorOpener

NEED DoorOpener:
Security :

LOCALS o: DoorOpener s:Security

COMMUNICATIONS AND o.enable s. off
COMMUNICATIONS AND o.disable s.on

27140

The STSLIB
Project .
Fabricio Outline
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example

Examples of
advanced
communica-
tions

Some Smart Home
Examples

o e @ Examples of advanced communications

Structured
Product

Kinds of Interactions

Two Early
Checking
Properties

Final remarks

28/40

The STSLIB
Project

Interactions Descriptions

Fabricio
Fernandes,
Jean-Claude
Royer

e COMMUNICATIONS: responsible to define the internal
rendezvous

Some Smart Home
Examples

Kinds of Interactions

29/40

The STSLIB
Project

Interactions Descriptions

Fabricio
Fernandes,
Jean-Claude
Royer

e COMMUNICATIONS: responsible to define the internal
rendezvous

e BINDINGS: defines and exports events to outside

e Smart Home
Examples

Kinds of Interactions

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Kinds of Interactions

Interactions Descriptions

e COMMUNICATIONS: responsible to define the internal
rendezvous

e BINDINGS: defines and exports events to outside
o Explicit optional renaming:
BINDINGS s.gives pl.use —-> enteringl

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Smart Home
Examples

Kinds of Interactions

Interactions Descriptions

COMMUNICATIONS: responsible to define the internal
rendezvous

BINDINGS: defines and exports events to outside
Explicit optional renaming:

BINDINGS s.gives pl.use —-> enteringl
Export an event:

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Kinds of Interactions

Interactions Descriptions

COMMUNICATIONS: responsible to define the internal
rendezvous

BINDINGS: defines and exports events to outside
Explicit optional renaming:
BINDINGS s.gives pl.use —-> enteringl
Export an event:

e Simple port: non connected port exported outside

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Kinds of Interactions

Interactions Descriptions

COMMUNICATIONS: responsible to define the internal
rendezvous

BINDINGS: defines and exports events to outside
Explicit optional renaming:

BINDINGS s.gives pl.use —-> enteringl
Export an event:

e Simple port: non connected port exported outside
o Duplicated port: connected port exported outside

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Some Smart Home
Examples

Kinds of Interactions

Interactions Descriptions

COMMUNICATIONS: responsible to define the internal
rendezvous

BINDINGS: defines and exports events to outside
Explicit optional renaming:

BINDINGS s.gives pl.use —-> enteringl
Export an event:

e Simple port: non connected port exported outside

o Duplicated port: connected port exported outside

¢ Branch port: connection point on an existing
synchronisation

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Some Smart Home
Examples
Kinds of Interactions

Interactions Descriptions

COMMUNICATIONS: responsible to define the internal
rendezvous
BINDINGS: defines and exports events to outside
Explicit optional renaming:
BINDINGS s.gives pl.use —-> enteringl
Export an event:

e Simple port: non connected port exported outside

o Duplicated port: connected port exported outside

e Branch port: connection point on an existing

synchronisation

e Merged port: new synchronisation between internal
ports and export it outside

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Some Smart Home
Examples
Kinds of Interactions

Interactions Descriptions

COMMUNICATIONS: responsible to define the internal
rendezvous

BINDINGS: defines and exports events to outside
Explicit optional renaming:

BINDINGS s.gives pl.use —-> enteringl
Export an event:

e Simple port: non connected port exported outside

o Duplicated port: connected port exported outside

¢ Branch port: connection point on an existing
synchronisation

e Merged port: new synchronisation between internal
ports and export it outside

Communication offer: ! or * if any

209/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product

e More sophisticated than usual synchronous product of
automata

20/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product

» More sophisticated than usual synchronous product of
automata

e Complex transitions with guard, communication offers
and actions

20/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product

» More sophisticated than usual synchronous product of
automata

e Complex transitions with guard, communication offers
and actions

e Keep inside states, transitions and other elements the
structure of the system

20/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product

More sophisticated than usual synchronous product of
automata

Complex transitions with guard, communication offers
and actions

Keep inside states, transitions and other elements the
structure of the system

N-party rendezvous and complex bindings, and
renaming

20/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product

More sophisticated than usual synchronous product of
automata

Complex transitions with guard, communication offers
and actions

Keep inside states, transitions and other elements the
structure of the system

N-party rendezvous and complex bindings, and
renaming

Global semantics for a composite: synchronous
product at each level + some additional computation to
manage bindings and renaming

20/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product Algorithm

¢ Algorithm to compute the global semantics:

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product Algorithm

¢ Algorithm to compute the global semantics:
e if it is a simple STS then return it

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product Algorithm

¢ Algorithm to compute the global semantics:

e if it is a simple STS then return it
e if it is a composite then

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product Algorithm

¢ Algorithm to compute the global semantics:
e if it is a simple STS then return it
e if it is a composite then
e recursively compute the global semantics of each
subcomponent,

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product Algorithm

e Algorithm to compute the global semantics:
e if it is a simple STS then return it
e if it is a composite then
e recursively compute the global semantics of each

subcomponent,
e update the synchronisation list to cope with duplicated

and merged,
If connected outside left bindings are added as new

synchronisations

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product Algorithm

¢ Algorithm to compute the global semantics:

e ifitis a simple STS then return it
e if it is a composite then
e recursively compute the global semantics of each
subcomponent,
e update the synchronisation list to cope with duplicated
and merged,
If connected outside left bindings are added as new
synchronisations
e compute the synchronous product,

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product Algorithm

¢ Algorithm to compute the global semantics:

e ifitis a simple STS then return it
e if it is a composite then
e recursively compute the global semantics of each
subcomponent,
e update the synchronisation list to cope with duplicated
and merged,
If connected outside left bindings are added as new
synchronisations
e compute the synchronous product,
e and rename the events according to bindings

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Structured
Product

Structured Product Algorithm

¢ Algorithm to compute the global semantics:

e ifitis a simple STS then return it
e if it is a composite then
e recursively compute the global semantics of each
subcomponent,
e update the synchronisation list to cope with duplicated
and merged,
If connected outside left bindings are added as new
synchronisations
e compute the synchronous product,
e and rename the events according to bindings

e Need a notion of Nary — STS

21/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Two Early
Checking
Properties

Component Compatibility

e A component is compatible with an assembly iff the
composite is deadlock free

29/40

The STSLIB
Project

Component Compatibility

Fabricio
Fernandes,

Jean-Claude
Royer
e A component is compatible with an assembly iff the
composite is deadlock free
¢ Build a composite with the components, compute the
structured product, and check for deadlocks
Two Early
Checking

Properties

29/40

The STSLIB
Project

Component Compatibility

Fabricio
Fernandes,
Jean-Claude
Royer

e A component is compatible with an assembly iff the

composite is deadlock free

¢ Build a composite with the components, compute the
structured product, and check for deadlocks

e Undecidable: It covers more than simple behavioural
compatibility since STS are a general model of

Two Early Computat|on

Checking
Properties

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Two Early
Checking
Properties

Component Compatibility

A component is compatible with an assembly iff the
composite is deadlock free

Build a composite with the components, compute the
structured product, and check for deadlocks
Undecidable: It covers more than simple behavioural

compatibility since STS are a general model of
computation

Decidable in case of bounded system or I/O STS
components

29/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Two Early
Checking
Properties

Component Compatibility

A component is compatible with an assembly iff the
composite is deadlock free

Build a composite with the components, compute the
structured product, and check for deadlocks

Undecidable: It covers more than simple behavioural
compatibility since STS are a general model of
computation

Decidable in case of bounded system or I/O STS
components

Problem: there is neither sufficient nor necessary
criterion thus the property is difficult to check on real
examples with guards

29/40

The STSLIB
Project

Event Strictness

Fabricio
Fernandes,
Jean-Claude
Royer
¢ With the controller example (exports entering1 and
s.end p1.end -> entering2): we cannot observe
synchronisations with the first process but it is still
compatible !
Two Early
Checking

Properties

23/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Two Early
Checking
Properties

Event Strictness

¢ With the controller example (exports entering1 and
s.end p1.end -> entering2): we cannot observe
synchronisations with the first process but it is still
compatible !

o Event strict architecture: at each level, each

synchronisation declared in the COMMUNTCATIONS
clauses occurs at least once in the behaviour

23/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Two Early
Checking
Properties

Event Strictness

With the controller example (exports entering1 and
s.end p1.end -> entering2): we cannot observe
synchronisations with the first process but it is still
compatible !

Event strict architecture: at each level, each
synchronisation declared in the COMMUNTCATIONS
clauses occurs at least once in the behaviour

Checking undecidable but decidable with bounded
system or I/O STS components

23/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Two Early
Checking
Properties

Event Strictness

With the controller example (exports entering1 and
s.end p1.end -> entering2): we cannot observe
synchronisations with the first process but it is still
compatible !

Event strict architecture: at each level, each
synchronisation declared in the COMMUNTCATIONS
clauses occurs at least once in the behaviour

Checking undecidable but decidable with bounded
system or I/O STS components

Static checking: if the structured product is not event
strict then the system is not event strict

23/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Two Early
Checking
Properties

Event Strictness

With the controller example (exports entering1 and
s.end p1.end -> entering2): we cannot observe
synchronisations with the first process but it is still
compatible !

Event strict architecture: at each level, each
synchronisation declared in the COMMUNTCATIONS
clauses occurs at least once in the behaviour

Checking undecidable but decidable with bounded
system or I/O STS components

Static checking: if the structured product is not event
strict then the system is not event strict

First check event strictness then compatibility

23/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Final remarks

Conclusions

¢ A hierarchical component model based on STS, a
N-party rendezvous and sophisticated protocols with
guards

24/40

The STSLIB
Project

Fabricio Conclusions
Fernandes,
Jean-Claude

Royer

¢ A hierarchical component model based on STS, a

N-party rendezvous and sophisticated protocols with
guards

e Use of N-party rendezvous: required to control
component behaviour keeping a black box approach

Final remarks

24/40

The STSLIB
Project

Conclusions

Fabricio
Fernandes,
Jean-Claude
Royer . .

¢ A hierarchical component model based on STS, a
N-party rendezvous and sophisticated protocols with

guards

e Use of N-party rendezvous: required to control
component behaviour keeping a black box approach

e Tools to compute the global protocol associated to
assemblies and also to analyze and check syntactic
and behavioural properties

Final remarks

24/40

The STSLiB
Project C | .
Fabricio OnC US|OnS
Fernandes,
Jean-Claude
Royer

A hierarchical component model based on STS, a
N-party rendezvous and sophisticated protocols with
guards

e Use of N-party rendezvous: required to control
component behaviour keeping a black box approach

e Tools to compute the global protocol associated to
assemblies and also to analyze and check syntactic
and behavioural properties

e Necessary support to analyze the communications and
the compatibility of components

Final remarks

24/40

The STSLiB
Project .
o Conclusions
abricio
Fernandes,
Jean-Claude
Royer

A hierarchical component model based on STS, a
N-party rendezvous and sophisticated protocols with
guards

e Use of N-party rendezvous: required to control
component behaviour keeping a black box approach

e Tools to compute the global protocol associated to
assemblies and also to analyze and check syntactic
and behavioural properties

e Necessary support to analyze the communications and
the compatibility of components

e Turing complete notion as STS and N-party
rendezvous: control any kind of components in a truly
compositional way

Final remarks

24/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Final remarks

Future work

e Implementation of GUI to allow edition and visualization

of STS and composite

25/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Final remarks

Future work

e Implementation of GUI to allow edition and visualization
of STS and composite

e More complete set of verifications, specific attention will
be on abstraction methods and bisimulation

25/40

The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Final remarks

Future work

e Implementation of GUI to allow edition and visualization
of STS and composite

e More complete set of verifications, specific attention will
be on abstraction methods and bisimulation

e Enrich our set of interactions and to assist the user in
the choice and the use of these interactions

25/40

	Motivations
	Illustrating Example
	The Process STS
	Computing the Synchronous Product
	The Fairness Controller Example

	Examples of advanced communications
	Some Smart Home Examples
	Kinds of Interactions

	Structured Product
	Two Early Checking Properties
	Final remarks

