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General Motivations
Component based software engineering: To get a
formal and executable model

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Explicit protocols are often dissociated from component
code

Generally only binary synchronisation are provided
Computing more than flat behavioural models

Fill the gap between high-level formal models and
implementation of protocols

Formal analysis methods to verify components and
their interactions

Tool support: an APl with parsers, and some analysis
tools
http://www.emn.fr/x-info/jroyer/WEBLIB/index.html
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One server and several processes

The server has to manage mutual exclusion of the
processes

Here two processes to simplify

Several variants which use integer (bounded or not) to
control critical section

Ensures mutual exclusion, deadlock freeness, but not
fairness
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STS State Machine

Symbolic Transition System = Dynamic Part + Data Part

Dynamic Part: Guarded Input/Output finite state
machine with actions

Data Part: Might be provided as an ADT specification

The ADT to Java translation has been tested but not
integrated

Data Part = a Java interface (optional) and a Java class
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femandes, public class Process extends Data {
Royer
//The local ticket.
public int A;

The Pracess STS // Default constructor.
5 o public Process() { this.A = 0; }

// Get a ticket.
public void think(int t) { this.A =1; }

/! the check guard
public boolean check(int s)
{ return this.A == s; }

// Enter critical section.
public void use(int s) { }

/! End section.
public void end() {}

/40
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end
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Lamport
pl:Process
end think use givel
I
s:Server
I
give2

end think use
p2:Process
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The Process STS

Lamport Architecture

ROOT examples lamport
PACKAGE examples.lamport

NEED Server::
Process ::

LOCALS s:Server p1 p2 : Process
COMMUNICATIONS XOR s.givet p1.think p2.think
COMMUNICATIONS XOR s.gives pi1.use p2.use
COMMUNICATIONS XOR s.end p1.end p2.end

BINDINGS s.givet p1.think — give1
BINDINGS s.givet p2.think — give2
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Previous first communication line is equivalent to:
COMMUNICATIONS AND s.givet pl.think
COMMUNICATIONS AND s.givet p2.think

It expresses two synchronisations (here binary
rendezvous)

N-party rendezvous (AND) can involve any number of
participants

All of them execute “synchronously” their actions
It allows one way but multiple value exchanges
Communication requires compatibility offer
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Principle Summary

Computing a flat behaviour is not sufficient for
architectures

Based on the synchronous product of LTS

But need to consider guards, communications and
actions

Communications are synchronisation vectors
Guards, events and actions are structured

But it cannot takes into account a complex hierarchy
with more than one level

15/40



The STSLiB
Project
o Synchronous Product
Joan.Glaue
Royer

Motivations

lllustrating
Example

The Process STS
Computing the
Synchronous
Product

The Fairness
Controller Example

— give2 / <givet_-_think>
foc2 | <gies-_tink>

<SLE>

<end__end> / <end__enc>

T - checko] <gives - use>  <gives - use>

Examples of
advanced
communica-
tions

ivel / <givet_think >

f<-_ches

] <give s> <givs
Structured
Product

- - checko] <gives - use>/ <gives - use>

T check_>] <give_ s> <give on >
Two Early
Checking
Properties

Final remarks

16/40



The STSLIB
Project

Fabricio
Fernandes,
Jean-Claude
Royer

Motivations

lllustrating
Example
The Process STS

Computing the
Synchronous
Product

The Fairness
Controller Example

Examples of
advanced
communica-
tions

Structured
Product

Two Early
Checking
Properties

Final remarks

@ lllustrating Example

The Fairness Controller Example

Outline

17/40



The STSLIB
Project

The Fairness Controller

Fabricio
Fernandes,
Jean-Claude
Royer

l:Lamport

pliProcess

rive ane
nd I I pivel one other
2

The Fairness w—,
Controller Example Eivel
EHTVET o —#f
grves
i aivel other
I I ene

pX:Process

c:Controller
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Fairness Controller Architecture

NEED
# the controller .sts
Controller:
# the inner Lamport.comp
Inner : Lamport
LOCALS I:Inner c:Controller

COMMUNICATIONS AND c.one |.give1
COMMUNICATIONS AND c.other |.give2

# no bindings
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Event Interactions in Smart

call

check I

Home
Alarm onOff
intrusion B s:iSiren
=
pd:PresenceDetector @
5] switch
=
< e |:Light
w
block

m:Modem w—— pc: PhoneCallControl
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Some Smart Home
Examples

Kinds of Interactions

Smart Home Architecture

# Internal Alarm assembly
NEED Light:
Siren:
AlarmControl:
PresenceDetector:

LOCALS pd:PresenceDetector |:Light
s:Siren a:AlarmControl

COMMUNICATIONS AND pd.intrusion a.intrusion
COMMUNICATIONS AND a.onOff s.onOff
COMMUNICATIONS AND a.switch |.switch

# duplicated port

BINDINGS pd.intrusion —> check

# branch port

BINDINGS pd.intrusion a.intrusion —> block
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Kinds of Interactions

Merged Port Example

count unlock
open
[ ]
d:Detector l:Lock

T A

- 0:DoorOpener
disable I enable

s:Security
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Some Smart Home
Examples

Kinds of Interactions

DoorOpener

# DoorOpener definition
ROOT test fr emn stslib SH doorOpener
PACKAGE fr.emn. stslib .SH.doorOpener

NEED Detector:
Lock:

LOCALS d: Detector |:Lock
COMMUNICATIONS AND d.open |.open

# two simple ports

BINDINGS | .unlock — unlock

BINDINGS d.count —> count

# two merged ports

BINDINGS d.disable |.disable —> disable
BINDINGS d.enable |.enable — enable
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Some Smart Home
Examples

Kinds of Interactions

DoorOpener and Security

# DoorOpener + Security definition
ROQOT test fr emn stslib SH doorOpener
PACKAGE fr.emn. stslib .SH.doorOpener

NEED DoorOpener:
Security :

LOCALS o: DoorOpener s:Security

COMMUNICATIONS AND o.enable s. off
COMMUNICATIONS AND o.disable s.on
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Some Smart Home
Examples
Kinds of Interactions

Interactions Descriptions

COMMUNICATIONS: responsible to define the internal
rendezvous

BINDINGS: defines and exports events to outside
Explicit optional renaming:

BINDINGS s.gives pl.use —-> enteringl
Export an event:

e Simple port: non connected port exported outside

o Duplicated port: connected port exported outside

¢ Branch port: connection point on an existing
synchronisation

e Merged port: new synchronisation between internal
ports and export it outside

Communication offer: ! or * if any
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More sophisticated than usual synchronous product of
automata

Complex transitions with guard, communication offers
and actions

Keep inside states, transitions and other elements the
structure of the system

N-party rendezvous and complex bindings, and
renaming

Global semantics for a composite: synchronous
product at each level + some additional computation to
manage bindings and renaming
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¢ Algorithm to compute the global semantics:

e ifitis a simple STS then return it
e if it is a composite then
e recursively compute the global semantics of each
subcomponent,
e update the synchronisation list to cope with duplicated
and merged,
If connected outside left bindings are added as new
synchronisations
e compute the synchronous product,
e and rename the events according to bindings

e Need a notion of Nary — STS
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Component Compatibility

A component is compatible with an assembly iff the
composite is deadlock free

Build a composite with the components, compute the
structured product, and check for deadlocks

Undecidable: It covers more than simple behavioural
compatibility since STS are a general model of
computation

Decidable in case of bounded system or I/O STS
components

Problem: there is neither sufficient nor necessary
criterion thus the property is difficult to check on real
examples with guards
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s.end p1.end -> entering2): we cannot observe
synchronisations with the first process but it is still
compatible !

Event strict architecture: at each level, each
synchronisation declared in the COMMUNTCATIONS
clauses occurs at least once in the behaviour

Checking undecidable but decidable with bounded
system or I/O STS components

Static checking: if the structured product is not event
strict then the system is not event strict

First check event strictness then compatibility
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guards

e Use of N-party rendezvous: required to control
component behaviour keeping a black box approach

e Tools to compute the global protocol associated to
assemblies and also to analyze and check syntactic
and behavioural properties

e Necessary support to analyze the communications and
the compatibility of components

e Turing complete notion as STS and N-party
rendezvous: control any kind of components in a truly
compositional way
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Final remarks

Future work

e Implementation of GUI to allow edition and visualization
of STS and composite

e More complete set of verifications, specific attention will
be on abstraction methods and bisimulation

e Enrich our set of interactions and to assist the user in
the choice and the use of these interactions
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