
CEAOP

Concurrent Event-Based AOP
Protocols: the missing link between components

and aspects?

Rémi Douence, Didier Le Botlan, Jacques Noyé
Angel Núñez, Mario Südholt

OBASCO

May 13, 2008



CEAOP

Introduction

Context

EAOP [DFS02]: sequential semantics, prototype in Java using
coroutines.

There is usually no specific support for concurrency in
“standard” AOP.

Event-based aspects as well as processes can be represented
as Labelled Transition Systems (LTSs).

What about modelling both the base program and the aspects
as LTSs and combining event-based aspects and concurrency?

Can such a model be used to synthesize aspects and facilitate
reuse?



CEAOP

Introduction

Tools

LTSA (Labelled Transition System Analyzer) [MK06].

Models finite state machines with a dual representation:

Graphical: LTS (Labelled Transition Systems).
Textual: FSP (Finite State Processes).
Synchronisation through shared actions.

Animation, checking safety and progress properties.



CEAOP

A Simple Example

Base Model

Server = Session =
( login -> Session ( checkout -> Server
| update -> Server | update -> Session
), | browse -> Session

).



CEAOP

A Simple Example

An Event-based Aspect in Pseudo-FSP

Consistency = Session =
( login -> Session ( update > skip -> log -> Session
), | checkout -> Consistency

).



CEAOP

A Simple Example

An Attempt at Weaving using Process Composition

||S = (Server || Consistency).

Issues:

The action update should still be executed outside of a
session.

It should not occur within a session.



CEAOP

Fixing the issues

Base Model Instrumentation

The event of interest is not the update but the fact that the
update is about to happen.
An aspect can then decide whether the update should be
skipped.

Server =
( login -> Session
| bUpdate -> ( skip -> Server

| proceed -> update -> Server
) ),

Session =
( checkout -> Server
| bUpdate -> ( skip -> Session

| proceed -> update -> Session
)

| browse -> Session).



CEAOP

Fixing the issues

From Pseudo-FSP to FSP

The action update is replaced by bUpdate and skip is
considered as a standard label.

Pseudo FSP Completion: in each state, all the shared events,
skippable or not skippable, have to be taken into account.

Consistency =
( login -> Session
| bUpdate -> proceed -> Consistency
| checkout -> Consistency
),

Session =
( bUpdate -> skip -> log -> Session
| checkout -> Consistency
| login -> Session
).



CEAOP

Fixing the issues

Woven LTS



CEAOP

Concurrency

Controlling concurrency between base and aspects

bUpdate ->
( bSkip -> eSkip -> eUpdate -> Server
| bProceed -> update -> eProceed -> eUpdate -> Server
)

Base

Aspect

sequential flow

bUpdate eUpdateeSkipbSkip

bUpdate bSkip eSkip log eUpdate

browse

Base

Aspect

concurrent flow

bUpdate eUpdateeSkipbSkip

bUpdate bSkip eSkip log _

browse



CEAOP

Concurrency

Summary

Input:

the base model: an LTS B
the aspect model: A

Output (a model of the woven application):
hiding(BaseTransf(B)) || hiding(AspectTransf(A))

The transformations are independent from the specific
composition.

Hiding makes it possible to control concurrency between
aspect and base.



CEAOP

Composing aspects

A Base Model with Several Clients

Server =
( login -> Session ),

Session =
( checkout -> Server
| browse -> Session
).

Admin =
( bUpdate -> ( skip -> Admin

| proceed -> update -> Admin
)

).

||Base = (c[i:0..1]:Server || Admin).



CEAOP

Composing aspects

Composing Aspects - Basic Idea

We need one aspect per server process. In case of an update, if the
update is within one session, it should be skipped.

ParAnd = ( skip[0] -> ( skip[1] -> skip -> ParAnd
| proceed[1] -> skip -> ParAnd )

| proceed[0] -> ( skip[1] -> skip -> ParAnd
| proceed[1] -> proceed -> ParAnd )

| skip[1] -> ( skip[0] -> skip -> ParAnd
| proceed[0] -> skip -> ParAnd )

| proceed[1] -> ( skip[0] -> skip -> ParAnd
| proceed[0] -> proceed -> ParAnd )

).



CEAOP

Composing aspects

A Structural View

Aspect0

proceed

skip

bEvent

Aspect1

proceed

skip

bEvent

Base

proceed skip

bEvent

ParAnd 

skip0 skip1

proceed0 proceed1



CEAOP

Composing aspects

Wiring through Renaming

||S = (ParAnd || Base || c[i:0..1]:Consistency)
/{forall[i:0..1]{

proceed[i]/c[i].proceed,
skip[i]/c[i].skip,

bUpdate/c[i].bUpdate,
log[i]/c[i].log
}

}.

||Sm = S@{c[0].login, c[1].login,
c[0].checkout, c[1].checkout,
update}.



CEAOP

Composing aspects

Woven LTS



CEAOP

Composing aspects

Fun - (Simplified) Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

Fun = (skip1 -> skip -> Fun | skip2 -> skip -> Fun).

skip1 skip2

proceed1



CEAOP

Composing aspects

Fun - Control Flow

bEvent eEventeventbProceed

bEvent bProceed eProceed eEvent

Base

Aspect1

bEvent bProceed eProceed eEvent

bProceed1 eProceed1

Aspect2

eProceed

Control flow

renaming



CEAOP

Composing aspects

Composing Aspects - Summary

The aspect models are composed with the base model via
operators.

An operator is implemented as an LTS with an appropriate
renaming.



CEAOP

Implementation

Prototype in Java: Baton [NN07a]

Each process is implemented as an active object.

The base program is instrumented with pointcuts describing
the events of interest.

The transformations are used to synthesize aspects described
in an FSP-like concrete syntax.

Calls to a global monitor are used to synchronize shared
actions (näıve but guarantees correctness wrt the model).



CEAOP

Implementation

Aspect

aspect Consistency {
public void log(Client client, Admin admin) {
System.out.println(admin + " skipped:"

+ client + " is connected.");
}
behaviour {
Server = ( login(Client client) -> InSession(client) ),
InSession(client) =
( update(Admin admin) > skip, log(client, admin)

-> InSession(client)
| checkout(client) -> Server ).

}
}



CEAOP

Implementation

Connector

connector ClientConnector{
connect login(Client c) :
execution(* Client.login(..)) && this(c);

connect checkout(Client c) :
execution(* Client.checkout(..)) && this(c);

}



CEAOP

Implementation

Prototype mixing components and aspects [NN07b]

The base program is structured as components with interfaces
describing the required and provided services, as well as the
published events (this is related to open modules).

Aspect interfaces describe the events of interest, which may
be skippable, as well as required and provided services.

An application composed of aspects and components is turned
into a composition of components.



CEAOP

Implementation

Modelling Context-Aware Applications [NN08]

Context:

@InRoom = ( enter:in -> leave:out -> InRoom ).
@Connected = ( acquire:in -> release:out -> Connected ).

Rules:

+PlayDef(Cxt) = ( in => play -> out => stop -> PlayDef(Cxt) ).
+ConnDef(Cxt) = ( in => acquire ->

out => release -> ConnDef(Cxt),
| in => out -> ConnDef(Cxt) ).

+ConnRule = ConnDef(InRoom).
+PlayRule = PlayDef(Ready).



CEAOP

Conclusion

Achievements

A formal model of concurrent event-based aspects defined
using a transformation-based semantics [DLBNS06].

The base application as well as the aspects can be concurrent.
Composition operators are used to coordinate aspects and
base.

The aspects can be reused in various assemblies.

Links between (event-based) aspects, components, and
processes.

Path to concrete languages (including support at the
architectural level).



CEAOP

Conclusion

Perspectives

Play with more applications.

Improve the model (supported by an appropriate modelling
language).

Using LTSs.
Using Visibly Pushdown Automata or Symbolic Transition
Systems.

Design a language (languages, DS(A)Ls) based on this model.

Integration with a redesign of CaesarJ (applying mixin
inheritance to states, optimizations).
Integration with AWED.



CEAOP

Conclusion

Rémi Douence, Pascal Fradet, and Mario Südholt.
A framework for the detection and resolution of aspect
interactions.
In Don Batory, Charles Consel, and Walid Taha, editors,
Generative Programming and Component Engineering: ACM
SIGPLAN/SIGSOFT Conference, GPCE 2002 - Proceedings,
volume 2487 of Lecture Notes in Computer Science, pages
173–188, Pittsburgh, PA, USA, October 2002. Springer-Verlag.

Rémi Douence, Didier Le Botlan, Jacques Noyé, and Mario
Südholt.
Concurrent aspects.
In Proceedings of the 4th International Conference on
Generative Programming and Component Engineering
(GPCE’06), Portland, USA, October 2006. ACM Press.

J. Magee and J. Kramer.
Concurrency: State Models and Java.



CEAOP

Conclusion

Wiley, 2nd edition, 2006.

Angel Núñez and Jacques Noyé.
A domain-specific language for coordinating concurrent
aspects in java.
In Rémi Douence et Pascal Fradet, editor, 3ème Journée
Francophone sur le Développement de Logiciels Par Aspects
(JFDLPA 2007), Toulouse, France, March 2007.

Angel Núñez and Jacques Noyé.
A seamless extension of components with aspects using
protocols.
In Ralf Reussner, Clemens Szyperski, and Wolfgang Weck,
editors, WCOP 2007 - Components beyond Reuse - 12th
International ECOOP Workshop on Component-Oriented
Programming, Berlin, Germany, July 2007.

Angel Núñez and Jacques Noyé.



CEAOP

Conclusion

An event-based coordination model for context-aware
applications.
In 10th International Conference on Coordination Models and
Languages (Coordination’08), Oslo, Norway, June 2008.


	Introduction
	A Simple Example
	Fixing the issues
	Concurrency
	Composing aspects
	Implementation
	Conclusion

