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CEAOP

Introduction

Context

EAOP [DFS02]: sequential semantics, prototype in Java using
coroutines.

There is usually no specific support for concurrency in
“standard” AOP.

Event-based aspects as well as processes can be represented
as Labelled Transition Systems (LTSs).

What about modelling both the base program and the aspects
as LTSs and combining event-based aspects and concurrency?

Can such a model be used to synthesize aspects and facilitate
reuse?
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Introduction

Tools

LTSA (Labelled Transition System Analyzer) [MK06].

Models finite state machines with a dual representation:

Graphical: LTS (Labelled Transition Systems).
Textual: FSP (Finite State Processes).
Synchronisation through shared actions.

Animation, checking safety and progress properties.
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A Simple Example

Base Model

Server = Session =
( login -> Session ( checkout -> Server
| update -> Server | update -> Session
), | browse -> Session

).
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A Simple Example

An Event-based Aspect in Pseudo-FSP

Consistency = Session =
( login -> Session ( update > skip -> log -> Session
), | checkout -> Consistency

).



CEAOP

A Simple Example

An Attempt at Weaving using Process Composition

||S = (Server || Consistency).

Issues:

The action update should still be executed outside of a
session.

It should not occur within a session.
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Fixing the issues

Base Model Instrumentation

The event of interest is not the update but the fact that the
update is about to happen.
An aspect can then decide whether the update should be
skipped.

Server =
( login -> Session
| bUpdate -> ( skip -> Server

| proceed -> update -> Server
) ),

Session =
( checkout -> Server
| bUpdate -> ( skip -> Session

| proceed -> update -> Session
)

| browse -> Session).
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Fixing the issues

From Pseudo-FSP to FSP

The action update is replaced by bUpdate and skip is
considered as a standard label.

Pseudo FSP Completion: in each state, all the shared events,
skippable or not skippable, have to be taken into account.

Consistency =
( login -> Session
| bUpdate -> proceed -> Consistency
| checkout -> Consistency
),

Session =
( bUpdate -> skip -> log -> Session
| checkout -> Consistency
| login -> Session
).
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Fixing the issues

Woven LTS
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Concurrency

Controlling concurrency between base and aspects

bUpdate ->
( bSkip -> eSkip -> eUpdate -> Server
| bProceed -> update -> eProceed -> eUpdate -> Server
)

Base

Aspect

sequential flow

bUpdate eUpdateeSkipbSkip

bUpdate bSkip eSkip log eUpdate

browse

Base

Aspect

concurrent flow

bUpdate eUpdateeSkipbSkip

bUpdate bSkip eSkip log _

browse
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Concurrency

Summary

Input:

the base model: an LTS B
the aspect model: A

Output (a model of the woven application):
hiding(BaseTransf(B)) || hiding(AspectTransf(A))

The transformations are independent from the specific
composition.

Hiding makes it possible to control concurrency between
aspect and base.
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Composing aspects

A Base Model with Several Clients

Server =
( login -> Session ),

Session =
( checkout -> Server
| browse -> Session
).

Admin =
( bUpdate -> ( skip -> Admin

| proceed -> update -> Admin
)

).

||Base = (c[i:0..1]:Server || Admin).
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Composing aspects

Composing Aspects - Basic Idea

We need one aspect per server process. In case of an update, if the
update is within one session, it should be skipped.

ParAnd = ( skip[0] -> ( skip[1] -> skip -> ParAnd
| proceed[1] -> skip -> ParAnd )

| proceed[0] -> ( skip[1] -> skip -> ParAnd
| proceed[1] -> proceed -> ParAnd )

| skip[1] -> ( skip[0] -> skip -> ParAnd
| proceed[0] -> skip -> ParAnd )

| proceed[1] -> ( skip[0] -> skip -> ParAnd
| proceed[0] -> proceed -> ParAnd )

).
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Composing aspects

A Structural View

Aspect0

proceed

skip

bEvent

Aspect1

proceed

skip

bEvent

Base

proceed skip

bEvent

ParAnd 

skip0 skip1

proceed0 proceed1
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Composing aspects

Wiring through Renaming

||S = (ParAnd || Base || c[i:0..1]:Consistency)
/{forall[i:0..1]{

proceed[i]/c[i].proceed,
skip[i]/c[i].skip,

bUpdate/c[i].bUpdate,
log[i]/c[i].log
}

}.

||Sm = S@{c[0].login, c[1].login,
c[0].checkout, c[1].checkout,
update}.
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Composing aspects

Woven LTS
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Composing aspects

Fun - (Simplified) Structural View

Aspect1

proceed

skip

bEvent

Aspect2

proceed

skip

bEvent

Base

proceed skip

bEvent

Fun = (skip1 -> skip -> Fun | skip2 -> skip -> Fun).

skip1 skip2

proceed1
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Composing aspects

Fun - Control Flow

bEvent eEventeventbProceed

bEvent bProceed eProceed eEvent

Base

Aspect1

bEvent bProceed eProceed eEvent

bProceed1 eProceed1

Aspect2

eProceed

Control flow

renaming
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Composing aspects

Composing Aspects - Summary

The aspect models are composed with the base model via
operators.

An operator is implemented as an LTS with an appropriate
renaming.
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Implementation

Prototype in Java: Baton [NN07a]

Each process is implemented as an active object.

The base program is instrumented with pointcuts describing
the events of interest.

The transformations are used to synthesize aspects described
in an FSP-like concrete syntax.

Calls to a global monitor are used to synchronize shared
actions (näıve but guarantees correctness wrt the model).
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Implementation

Aspect

aspect Consistency {
public void log(Client client, Admin admin) {
System.out.println(admin + " skipped:"

+ client + " is connected.");
}
behaviour {
Server = ( login(Client client) -> InSession(client) ),
InSession(client) =
( update(Admin admin) > skip, log(client, admin)

-> InSession(client)
| checkout(client) -> Server ).

}
}
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Implementation

Connector

connector ClientConnector{
connect login(Client c) :
execution(* Client.login(..)) && this(c);

connect checkout(Client c) :
execution(* Client.checkout(..)) && this(c);

}
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Implementation

Prototype mixing components and aspects [NN07b]

The base program is structured as components with interfaces
describing the required and provided services, as well as the
published events (this is related to open modules).

Aspect interfaces describe the events of interest, which may
be skippable, as well as required and provided services.

An application composed of aspects and components is turned
into a composition of components.
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Implementation

Modelling Context-Aware Applications [NN08]

Context:

@InRoom = ( enter:in -> leave:out -> InRoom ).
@Connected = ( acquire:in -> release:out -> Connected ).

Rules:

+PlayDef(Cxt) = ( in => play -> out => stop -> PlayDef(Cxt) ).
+ConnDef(Cxt) = ( in => acquire ->

out => release -> ConnDef(Cxt),
| in => out -> ConnDef(Cxt) ).

+ConnRule = ConnDef(InRoom).
+PlayRule = PlayDef(Ready).
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Conclusion

Achievements

A formal model of concurrent event-based aspects defined
using a transformation-based semantics [DLBNS06].

The base application as well as the aspects can be concurrent.
Composition operators are used to coordinate aspects and
base.

The aspects can be reused in various assemblies.

Links between (event-based) aspects, components, and
processes.

Path to concrete languages (including support at the
architectural level).
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Conclusion

Perspectives

Play with more applications.

Improve the model (supported by an appropriate modelling
language).

Using LTSs.
Using Visibly Pushdown Automata or Symbolic Transition
Systems.

Design a language (languages, DS(A)Ls) based on this model.

Integration with a redesign of CaesarJ (applying mixin
inheritance to states, optimizations).
Integration with AWED.
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Südholt.
Concurrent aspects.
In Proceedings of the 4th International Conference on
Generative Programming and Component Engineering
(GPCE’06), Portland, USA, October 2006. ACM Press.

J. Magee and J. Kramer.
Concurrency: State Models and Java.



CEAOP

Conclusion

Wiley, 2nd edition, 2006.
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Angel Núñez and Jacques Noyé.
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