
End of studies project

-

Memo

Matthieu AUBRY

Tima CAMARA

Aurélia COUVRAND

Jérémie GUIDOUX

Lydie THIERRY

Mathieu VÉNISSE

Supervisers :

Pascal ANDRÉ

Gilles ARDOUREL

Jean-Claude ROYER

March 27, 2009

Contents

1 Introduction : The Econet project and process B 3
1.1 Context of the project . 3
1.2 Preamble . 4

1.2.1 Motivations of the project 4
1.2.2 The Econet project . 5
1.2.3 Why our project ? . 6

1.3 The process B . 7
1.3.1 Introduction . 7
1.3.2 Architectural view . 7

2 Division of labor 9

3 The architecture of the Eclipse JDT 11
3.1 JDT Architecture . 11

3.1.1 Package org.eclipse.jdt.core 12
3.1.2 Package org.eclipse.jdt.core.dom 18

3.2 Using JDT in Econet . 21

4 Study of the existing project 22
4.1 Existing Plugin TESTJDT3 22

4.1.1 Structure . 22
4.1.2 Java Classes . 24
4.1.3 Eclipse integration . 24

4.2 Existing rules-based system and its properties 25
4.2.1 Introduction . 25
4.2.2 Extracting components structure rules 25
4.2.3 Research of interfaces 30
4.2.4 Properties of a rules-based system 30
4.2.5 Conclusion . 32

4.3 An experimentation : CoCoME 32
4.3.1 Introduction . 32

1

4.3.2 CoCoME . 33
4.3.3 Plug-in . 36

5 Conception 38
5.1 Detailed Conception of Econet plugin 38

5.1.1 Rules-based system . 38
5.1.2 Econet plugin structure 43

5.2 Annotations . 49
5.2.1 How will we get these annotations? 49
5.2.2 How have implemented this and why? 50

6 Bibliography 51
6.1 Rainer Koschke's thesis summary 51

6.1.1 Extraction process . 51
6.1.2 Extraction technique 53
6.1.3 Schwanke's Arch Approach 55
6.1.4 Semi-automatic techniques 59
6.1.5 Conclusion . 62

6.2 References . 64

2

Chapter 1

Introduction : The Econet project

and process B

1.1 Context of the project

[This paragraph is heavily based on the document econet_nantes.pdf, which
is on the wiki COLOSS page].

This project is an international one which includes four research teams
that have complementary knowledge and background on the econet project
domain. We present each team with its background.

• France � Nantes : COLOSS
Background : Kmelia for both the rich speci�cation model of services
and the existing analysis tools for the conformance veri�cation.

• France � Nantes :OBASCO
Background : generation of Java code from protocol speci�cations.
Some mechanisms have been identi�ed that can help to build the envi-
ronment for the component.

• Czech Republic � Prague : DSRG
Background : studied the veri�cation of Java byte code of components
against high-level speci�cations

• Romania � Cluj : LCI

Background : there are proposals and even approaches for extending
OCL in order to support action speci�cations (the Xactium tool XMF
Mosaic sees http://www.xactium.com).

3

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php
http://www.xactium.com/

The general impact of the project is to state some principles on the
�eld of consistency between component code and component speci�cations.
These principles are accompanied with techniques for code abstraction and
behavioural properties checking. A speci�cation model should extend be-
haviours to guards and assertions mechanism with OCL. Experimentation
will be led on existing code.

An interesting perspective is to abstract the code of existing component
platforms (such as .NET, EJB or CORBA) or Web services implementations
to more abstract, i.e. academic models. This perspective can lead a compar-
ison support and a benchmark for reverse engineering. A further perspective
focus on the development of a platform that implements the principles : the
move from reverse engineering theory into practice in the context of software
components. The partners plan to integrate their approaches such that ab-
straction can deal with various speci�cation models. The main bene�ts is
to reuse the existing platforms for the speci�cation and the veri�cation of
software components.

1.2 Preamble

1.2.1 Motivations of the project

Component-based software engineering is now a common approach in
many areas of software development. This approach permits to make well-
constructed software, it is based on a structural separation. A component
must be autonomous and dialog with other components through his inter-
faces.

Today, there is no solution to check if a software is well-constructed or
not. For example, we can use classes diagrams to describe an architecture,
scenarios to describe behavioral features and the Java language to implement
a solution but it is very di�cult to check if the implementation is components
oriented or not. It is di�cult to check if the components are independent
from each others. UML [0] speci�cation or academic solution like ACME [1]
are based on an abstract model when EJB [2], CCM [3], OSGi [4] or other
industrial solutions are focusing on implementation. It is di�cult to make
links between these two speci�cations.

In the next part we will explain a solution proposed by the COLOSS team
[5] to resolve this problem by using reverse engineering technologies and the
MDA approach.

4

1.2.2 The Econet project

The solution proposed is called the Econet project. First we present the
global scheme of this project.

Figure 1.1: Global scheme

This project is divided in three independents parts :

• A component metamodel, described with the EMF [6], standard per-
mits to represent components and dialogs between them without con-
cerns about implementation solutions (EJB, OSGi, ...)

• Process B : this is the part that we will study in this project, as we
can see on the scheme, plain Java code is in entry of this process and
produce a structural abstract model conforms to a component meta-
model. User informations can be added to simplify the extraction of
components.

• Process A : This process analyse the structural abstract model given
by the process B and extracts a dynamic behaviour speci�cation. We
don�t explain this part of the Econet project.

5

1.2.3 Why our project ?

An implementation of the process B was proposed by the COLOSS team
but it is just an experimental solution : all the functionalities are not imple-
mented. The result produced by this process is not yet a model conforms to
the EMF metamodel but textual informations that represents the structure
of the application studied. This implementation is an eclipse plug-in.

We have to enhance and complement this implementation and to make
possible the creation of the model that will be used by the process B in the
future. For this work, the main API is Java Development Tools (JDT). This
API is not used a lot and, therefore not documented. We have also to write
a documentation which explain and detail the structure of this API and how
to use it. This documentation is available in chapter 3 of this report.

If all this work was done we can implements a functionality that will
permit to represent component structure with a graphical representation.
We suppose that we can use the language dot [7] because it is very simple to
generate a graph with this language or the java plug-in prefuse [8] to make
prettiest graphs with more possibilities of representation.

6

1.3 The process B

1.3.1 Introduction

As we explain in the introduction, the process B permits to extract an
abstract model conforms to a component metamodel from plain Java code.
In this part we describe this process more precisely.

1.3.2 Architectural view

Figure 1.2: Scheme

Details :

A plain Java code (with possibles annotations) and a structural abstract
model (not necessary) are in entry of the process B. Annotations permit to
make links between the plain java code and the abstract model. As we can
see on the precedent scheme, the process B is an iterative process represented
by the markers i and i+1. Each iteration of this process visits one box and
completes the java code and the abstract model. The java code and the
structural abstract model are always consistent at the input and the output
of the process. The process is a Rules Based System (RBS). We describe
the RBS in section 4.2 of this report. Naturally, rules involve an order of
application of them, without this order, rules could negate the work done by
another. To resolve this problem we have to �nd the best application order
for the rules, we will explain this in the same part. It is impossible to make
the process fully automatic so, it will ask the user for additional informations
to check which rules can be applied.

7

Details of the toolbox :

• Model from annotations : permits to generate a model conforms to the
EMF metamodel with an annotated java code in entry

• Annotation writer from model : permits to annotated a plain java code
though a component model

• Clustering tool : takes a primitive abstract component based model in
entry and produce a more precise one with the notion of components
composition.

• Distribution analyser : enables the possibility to explore XML model
and makes a components based model

• Model transformations : models transformations in general, patterns
analyser or automatics transformations, etc.

Now that the context of the project is understood, we have to share out
the di�erents tasks of our work; the next chapter draws up these tasks and
the division of them between the members of the group.

The outline of this memo follows from the identi�ed tasks.

8

Chapter 2

Division of labor

The �rst work we have to do was to understand the context, the aim
and to study the tools of our project. Thus, we have beforehand analysed
the JDT architecture (cf. chapter 3), the existing plug-in TESTJDT3 (cf.
section 4.1), the existing rules-based system (cf. section 4.2), the CoCoME
experimentation (cf. section 4.3) and Rainer Koschke's thesis [11] (cf. section
6.1), what has been a transversal task during the project.

Once this study �nished, we can enter the conception phase. But, it is
not implementation time yet. Indeed, we have �rstly to de�ne the architec-
ture of the new plug-in (cf. subsection 5.1.2), to specify the rules that will
be implemented (cf. subsection 5.1.1) and to think about the annotations
process (cf. section 5.2).

We know now the structure our plug-in, the algorithm of the rules and
the way to integrate the annotations. Consequently, the implementation can
begin : on the one hand, the plug-in structure and the process that selects
and orders the rules, on the other hand, the processes of extraction of com-
ponents (rules) and annotation.

The following Gantt diagram illustrates this allocation :
The outline of this memo respects the order of these tasks. Thus, the

chapter 3 emphasizes on the JDT architecture. Then, the study of the exist-
ing project will be explained in chapter 4. Finally, the work done during the
conception phase will detailled in chapter 5. At the end of this document,
all the references we have approached are listed in chapter 6; the summary
of Rainer Koschke's thesis is in this chapter (cf. 6.1).

9

Figure 2.1: Planning

10

Chapter 3

The architecture of the Eclipse

JDT

We did a study on JDT for two reasons : to understand the existing
plug-in TESTJDT3 and developing new plug-in Econet. In this study we
will make references to the document published by the University of Illinois
at Urbana-Champaign, entitled JDT architecture.

3.1 JDT Architecture

The Java Development Tools (JDT) plug-in of the Eclipse platform pro-
vides a rich set of functionalities to enable Java developers to use Eclipse as
a Java IDE. The JDT is actually a set of plug-ins that contributes a Java
compiler, debugger, as well many Java-speci�c user interface elements, to the
Eclipse platform.

The JDT is structured into three major components :

• JDT CORE : the headless infrastructure for compiling and manipulat-
ing Java code

• JDT UI : the user interface extensions that provide the IDE.

• JDT Debug : program launching and debug support speci�c to the
Java programming language.

The JDT was developed to make Eclipse the top IDE for developing Java
applications.

This was achieved to a great extent due to a set of JDT quality attributes
that include modularity, extensibility, usability, and portability.

11

In this document, we present a broad overview of the architecture of JDT
which JDT Core. JDT Core is the plug-in that de�nes the core Java elements
and API.

We present here some elements of package JDT Core.

3.1.1 Package org.eclipse.jdt.core

The jdt.core package contains the model used to represent the various
objects involved with Java development. It also contains the plug-in class
for JDT core.

3.1.1.1 The Java Core Plug-in Class

Each Eclipse plug-in contains one class that represents the plug-in to
the Eclipse plug-in loader. This plug-in class is responsible for accessing and
storing state information for the plug-in, as well as accessing any resources
associated with the plug-in. The plug-in class contains methods that are
run when the plug-in is loaded, as well as methods that are automatically
called when the plug-in is about to be terminated. These methods are called
start() and stop(), respectively. All plug-in classes must extend either Plugin
or AbstractUIPlugin. The former is extended by non-UI plug-ins, while the
latter is extended by UI plug-ins.

The plug-in class for JDT Core is JavaCore. It is located in the org.eclipse.
jdt.core package and extends the Plugin class, since it is not a UI-based plug-
in. The JavaCore class is usually accessed through its static methods, which
allow one to create di�erent nodes that are part of the Java model (such
as new projects, classes, folders, and �les). The JDT Core plug-in does not
maintain any state or preference information, and so does not implement the
start() or stop() methods.

3.1.1.2 Detailed Description of the Java Model

The Java model is used to represent the elements of the Java language
as a tree. When programmers need to access di�erent Java elements (such
as a source �le, or a method) they do so by using the Java model to get the
correct node in the tree.

The following description of the jdt.core package will explain the Java
model, starting from the topmost elements in the model to elements com-
prising single source �les and parts of source �les. In addition code examples
will be given to show how to get handles to these objects, as well as how to
manipulate them.

12

• IJavaElement

The Java model is represented as a tree. Each node in the tree is of
type IJavaElement. Many operations on Java model elements take in an
IJavaElement and return an IJavaElement. Some useful operations for an
IJavaElement are getParent() which return the parent of the element in the
model as an IJavaElement. To get the name of the element use getElement-
Name(). To get the type of the element use getElementType(). This method
returns an int that represents the type of the element. The int is one of
the static constants declared in the IJavaElement class. Two other useful
functions are getAncestor() and getPath(). The getAncestor() method re-
turns the closest ancestor of the element matching the speci�ed type, which
is given as a parameter to the method. The getPath() method returns an
IPath object representing the path to the parent of the element.

• IOpenable and ISourceReference

While all the elements in the Java model implement the IJavaElement in-
terface, they can all be divided based on whether they implement the IOpen-
able interface or the ISourceReference interface.

The IOpenable interface is implemented by those elements in the Java
model that must be opened before they can be manipulated. These ele-
ments are generally �les on the system. The elements in the Java model that
implement this interface are usually high up in the hierarchy, such as IPack-
ageFragmentRoot and IProject. Three operations that are very important
for elements that implement this interface are open(), close(), and save(). If
an element in the Java model that implements this interface is obtained and
accessed by a client, the Java model will automatically open the element as
needed. To open an element, all of its parent elements must also be opened.
However, this is also done automatically by the Java model. The Java model
will not open its children though, unless they are accessed by a client.

When an IOpenable element is opened, a bu�er is created in memory that
contains the contents of the corresponding �le. A client can access this bu�er
by calling the getBu�er() method on the IOpenable element, which returns
an IBu�er class. Clients may manipulate the IBu�er directly to change the
contents of the underlying �le, but it is safer to use the corresponding Java
model element instead to do so. The Java model contains a cache of opened
bu�ers. If a bu�er has been edited and not saved, it will not be removed
from the cache. Otherwise, bu�ers will be moved out in LRU order to make
room for new opened bu�ers. Therefore, clients should save bu�ers frequently
because having too many bu�ers open at the same time will use up memory
quickly.

13

In contrast to IOpenable, the ISourceReference interface is implemented
by elements that correspond to source code. They are not represented by
�les, but are contained in them. These elements are further down in the
tree that represents the Java model. The elements in the Java model that
implement this interface are IClassFile, ICompilationUnit, IPackageDecla-
ration, IImportDeclaration, IImportContainer, IType, IField, IMethod, and
Iinitializer.

• IJavaModel

The IJavaModel interface is at the root of the Java model. It acts as a
container for all the Java projects in the workspace. The following code is
used to get a handle to this object :

IWorkspace workspace = ResourcesPlugin.getWorkspace();

IJavaModel model = JavaCore.create(workspace.getRoot());

Usually, with an IJavaModel object, you will want to get a speci�c Java
project to manipulate. The getJavaProjects() method returns an array of
IJavaProject objects corresponding to all the Java projects in the workspace.
Alternatively, if you know which project you want, you can get the project
directly by calling the getJavaProject() method with the name of the project
as a parameter.

• IJavaProject

The IJavaProject interface represents a Java project. The following code
is used to get an IJavaProject object that corresponds to a Java project in
the workspace named �TESTJDT3�.

IJavaProject project = model.getJavaProject(�TESTJDT3�);

The children of an IJavaProject are IPackageFragment objects (which
represents a package in the project), IPackageFragmentRoot objects (repre-
sents jar �les in the project), and IClassPathEntry objects (representing the
values of the classpath environment variable for the project).

There are several actions one might want to perform on an IJavaProject
object. To �nd a Java element in the project, one �rst constructs an IPath
object that represents the path of the Java element. Then one calls the �nd-
Element() method with the IPath object. The method returns an IJavaEle-
ment object, or null if no object is found with the speci�ed path. IPath
objects are de�ned in the org.eclipse.core.runtime package, and describing

14

them is beyond the scope of this document. One can also �nd types in the
project by calling the �ndType() method with the fully quali�ed name of the
type as the parameter. The return value will be an object of type IType, or
null if none is found.

Another useful method in this class is newTypeHierarchy(). This method
takes in an IRegion object and an IProgressMonitor object as parameters.
It returns an ITypeHierarchy. The IProgressMonitor object can be used to
kill the operation if it is taking too long. If this feature is not needed, one
can just enter null as the parameter. An IRegion object contains a set of
IJavaElement objects, and the children of all the elements in the set.

• IPackageFragment

The IPackageFragment interface represents all or part of a package in
a project. A package can contain either class �les or source �les. Class
�les are represented by IClassFile objects, and source �les are represented
by ICompilationUnit objects. The following code can be used to get an
IPackageFragment object from an IJavaProject object :

IPath path = new Path("/TESTJDT3/packageOne");

IPackageFragment pack = project.findPackageFragment(path);

In the above code, the path can either be an absolute path, or can be
relative to the workspace of the user.

We mentioned above that we can get an ITypeHierarchy object from a
project. Here is some sample code that gets that object and represents the
type hierarchy for the package object created above :

IRegion region = JavaCore.newRegion();

region.add(pack);

ITypeHierarchy typeHierarchy = project.newTypeHierarchy(region,

null);

Normally, with an IPackageFragment object, we will want to get the class
�les and source �les that are in the given package. getCompilationUnits()
returns an array of the source �les in the package represented as ICompila-
tionUnit objects. getClassFiles() does the same thing for the class �les in the
package. If we know which source �le we want, we can call get getCompila-
tionUnit() and pass it the name of the source �le we want as a String. The
corresponding method for class �les is getClassFile(). Finally, one can cre-
ate a new source �le in the package by calling the createCompilationUnit().
This method takes in the name of the source �le to create, the contents of the

15

source �le (as a String object), a boolean value that will force an existing �le
with the same name to be overwritten if it is true, and an IProgressMonitor
that can be used to kill the operation in progress.

• ICompilationUnit

An ICompilationUnit object represents a Java source �le. The following
code gets an ICompilationUnit object representing the source �le named
�MyClass.java�.

ICompilationUnit source =

pack.getCompilationUnit("MyClass.java");

With this object, there are many useful methods we can call. We can get
all the types in the class with a call to getTypes(), which returns an array
of all the types. If we know the type we want, we can call getType() with a
String parameter that is the name of the type. The topmost type matching
the String will be returned. We can get the package declaration with a call to
getPackageDeclarations(), which will return an array of IPackageDeclaration
objects. This array will usually be of size one, since most Java classes are
part of one package. There is also a method to get the import declarations,
as well as methods to create new import declarations for the class.

16

The following diagram shows the Java model as a tree with the topmost
elements of the tree. An arrow from one element to another means that
element being pointed to is a child element of the other element. For instance,
IJavaProject is a child element of IJavaModel and can be accessed from an
IJavaModel object.

Figure 3.1: Java Model

There are many more elements in the Java model. Some of the most
useful are IType, IField, IMethod, and IMember. These elements all have
similar operations that one can perform on them, and one is referred to the
Javadoc for more information.

17

3.1.2 Package org.eclipse.jdt.core.dom

The jdt.core.dom package comprises an Abstract Syntax Tree (AST) for
the Java language, as well as objects that perform operations on the AST.

3.1.2.1 Detailed Description

• AST class :

The AST class is the owner of the AST. Any new AST nodes created
by using an object of this class will be owned by that object.

The AST class also acts as a factory for producing ASTNode classes. A
node of any type can be created using a method of the form newXXX where
XXX is the name of the syntax element to be created. Each node that is
created in this way does not have any type name or value speci�ed. The
node also has no parent.

Finally, AST provides a utility method resolveWellKnownType(). This
method takes in a String which names a well known type. It returns an
ITypeBinding, which is an interface that represents a well known type. It
will be discussed further below.

• ASTNode class :

The ASTNode class is the superclass for the many AST node types. An
ASTNode represents a syntactic element in the Java language. Each node
has links to each of its children, as well as to its parent node. Therefore, the
AST can be traversed either from the top down, or from the bottom up. In
addition, each ASTNode object contains the range in the source �le where the
syntactic element can be found. The getStartPosition() method returns an
index into the source �le where the element starts, and the length() method
returns the number of characters that comprise the element.

There are three static variables in the class that are used as �ags. One
of particular interest is the ASTNode.MALFORMED �ag, which indicates
that the syntactic element contains a syntax error. The other static variables
are used to represent di�erent nodes. They are used in the createInstance()
method of the AST class to specify the AST node to create.

18

• ASTParser class :

The ASTParser class is responsible for converting source code into an
AST. There are no constructors to use for this class. Instead a static factory
method called newParser() is used to create a new ASTParser. The argu-
ment to this method speci�es the level of the Java Language Speci�cation
to use. The setSource() method speci�es the source to compile. There are
three overloaded versions of this method. One of them takes in an array of
characters, which will contain the source to parse. The createAST() method
will create the AST from the source that was given to the object. It returns
an object of type ASTNode, which will represent the root of the produced
AST. It also takes in an IProgressMonitor object that can be used to cancel
the operation in progress, if so desired. If this functionality is not required,
null can be passed in as the argument. A useful method that this class pro-
vides is setProject(). This method takes in an IJavaProject object that is
used to specify a Java project on the workbench. This Java project will be
used to reolve types in the source string that otherwise could not be resolved
by the compiler.

One can also specify compiler options to use to parse the source string.
The method to do this is called setCompilerOptions(). This method takes in
a Map object. All the keys and values of the Map are expected to be String
objects, where the key is a compiler option, and the value is the desired
value for that option. An argument of type null sets the options back to
their defaults.

19

• The AST hierarchy :

Figure 3.2: AST Hierarchy

• ASTVisitor class :

To perform operations on an AST, we use the ASTVisitor class. ASTVis-
itor is an abstract class. It provides two operations to be performed on every
node of an AST. The visit() method returns true if the node has children
that will be visited after the current node is visited. The endVisit() method
is similar to visit() except that the children of the node will be visited be-
fore the node itself is visited. The default implementation provided in the
ASTVisitor class does nothing in the endVisit() methods, and returns false
for the visit() methods. The developer who wishes to implement a visitor for
the AST must subclass ASTVisitor and then de�ne the operations for each
node to be visited in the appropriate method.

In addition to all the type-speci�c visit operations, there are two oper-
ations that perform work on an ASTNode in general, and not on speci�c
types within the AST hierarchy. The preVisit() method is used to visit an
ASTNode before the type-speci�c visit operation is called on that node. The
postVisit() method visits the ASTNode after the type-speci�c visit operation
on that node.

20

3.1.2.2 Patterns Used

AST uses the following patterns to perfom operations mentionned above.

• Factory Pattern :

The AST class utilizes the Factory design pattern to create new ASTNode
objects. The method createInstance() takes an integer value that represents
a certain node. The method will return an instance of that node. Each class
that it returns inherits from the ASTNode class.

The ASTParser class also uses the Factory pattern. To create a new
parser, one calls the newParser() method instead of using a constructor.
This method will create the appropriate parser based on the level of the JLS
speci�ed.

• Visitor Pattern :

The ASTVisitor class uses the Visitor pattern. The Visitor pattern is
generally used to perform operations on a structure with lots of small nodes
in them.

3.2 Using JDT in Econet

This study of JDT will enable us to understand the Eclipse development
environment, to capture the TESTJDT3 plugin structure and develop a new
Econet plugin in the sense that we will be able to transform the structure
of a Java code without modifying its logic. For illustration, we could :

• Manipulate Java classes and/or interfaces resources to extract informa-
tion regarding their structure: attributes, methods.

• Create an AST to analyze compilation units.

• Interrogate AST data on implementing extraction rules.

• Modify code in order to position annotations.

21

Chapter 4

Study of the existing project

4.1 Existing Plugin TESTJDT3

This section explains Econet project± existing plug-in. TESTJDT3 is
the plug-in used to extract the component structure of a Java code.

4.1.1 Structure

The plug-in is structured as a classic JAR �le containing in addition to
its Java classes two �les(META-INF/MANIFEST.MF and plug-in.xml)

MANIFEST.MF is the con�guration �le describing the functioning of
the plug-in Jar archive. It is used to by Eclipse kernel, Equinox, to obtain
information about the plug-in that particularly serves to manage the life
cycle and the relationship with others plug-ins.

22

The �gure below illustrates the content of the MANIFEST.MF �le of
TESTJDT3.

Figure 4.1: MANIFEST.MF

The �le syntax is described in the OSGi speci�cation, it contains infor-
mation about the plug-in regarding:

• the MANIFEST version number: 1.0

• Its own version, currently 1.00

• The MANIFEST version : 2

• The name: Plugin TESTJDT

• The symbolic name: TESTJDT3

• The name of its unit Activator used at start-up and shut-down of the
plug-in: testjdt3.Activator

• Its execution environment : J2SE-1.5

• And, login of necessary units and their version for utilisation. This
section has to contain all the plug-ins required at compilation, as well
as all the plug-ins supplying extensions points used by our plug-in.

23

The �le plug-in.xml is unique to Eclipse (it is not part of OSGi), it
serves to realised Eclipse extension functionalities. Via this , optional, �le
the plug-in declares extension points and allow other to connect to them.

4.1.2 Java Classes

The extraction process of the component structure architecture of a
Java code uses the following Java classes

• Activator : the activator class controls the plug-in life cycle.

• ASTActionDelegate : experiment with JDT to parse and extract com-
ponent boundaries.

• DisplayText : general class to simply display some texts.

• TypesTable : table for storing informations about the types.

• MyIType : auxiliary class for additional services of ItypeBinding

• GenericASTParser : A generic ASTParser which could be con�gure
with the visitor type.

• Fields : class for storing structure with full information

• Communications : class to store communications.

• InfoCom : class to store method reference from calls in the code

• Decision : class for decision.

• Provided : class to store per type name the set of required services

• Information : class for information about the types.

• Utility : simple utility class.

4.1.3 Eclipse integration

Whilst the plug-in is loaded in Eclipse, a new tab appears on the menu
bar with TESTJDT3 as a label. This menu contains an item Visit that
triggers the extraction process.

To extract Java code, the process consists of a simple click on the Visit
tab, followed by providing the name of the project to be parsed. However,
this project has to exist in the con�guration workspace or at least appears
in the project list on the project explorer window.

24

4.2 Existing rules-based system and its prop-

erties

4.2.1 Introduction

We have to study carefully the work that have been done before thinking
of new rules to implement or modifying the existing ones. Thus, we have
to understand the aim and conditions of each potential rule, and make sure
that the system is well-formed, regarding three properties that we will de�ne
later.

This report deals with the rules that allow us to extract a components-
based structure; we are going to explain each of them, detailing the code of
the ones which have already been implemented.

In the �rst subsection, we will explain each rule allowing the extraction
of a components structure. We will �nish up this section by de�ning the
properties the system has to check in a second section.

4.2.2 Extracting components structure rules

We are going to explain the rules that have been suggested in the doc-
uments architecture-extraction.pdf and paper.pdf. Some hypotheses have
been established to extract such a structure :

• We consider only static architectures that are created when instanti-
ated;

• we have to respect the encapsulation;

• there is no use of component factory;

• no special implementation pattern, such as EJB, is used.

25

http://www.lina.sciences.univ-nantes.fr/coloss/wiki/doku.php?id=econet:alma09

Other hypotheses have been made out regarding the Java code :

• The program is a source code;

• the code is contained in a unique project, which can import other
projects or libraries;

• there is a unique type of interest per compilation unit;

• generic types are forgotten;

• a component type in Java can be an interface, a concrete class or an
abstract one, even if it must be instantiated;

• static methods are not considered.

We have now focus our study, so we are able to propose some rules to
select the potential applicants for the role of component. Here are these
rules.

4.2.2.1 Elimination of implementation classes

This rule is the �rst step of our work; indeed, it allows us to extract what
we call the types of interest. We mean by this naming that we consider as
potential candidates only the main types de�ned in the project we study;
external and primitives data types are forgotten.

In TESTJDT3, the method getTypesOfInterest(), an ASTActionDelegate
's member, implements this rule. Let us explain its code.

Before detailing this method, we have to focus on getUnitsOfInterest()
that selects the compilation units of the analysed project to instantiate the
attribute units of the AST.

It has none parameter and returns a vector of ICompilationUnit (cf.
Eclipse documentation about the interface ICompilationUnit). It browses
each internal package fragment root of the AST (extracted by getAllPack-
ageFragmentRoots()) and selects their children. The compilation units of
each one that contains Java resources are added to the vector to return.

26

http://help.eclipse.org/stable/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/class-use/ICompilationUnit.html

Here are now the details of getTypesOfInterest().
This method takes none parameter and returns a vector of IType (cf.

Eclipse documentation about the interface IType). Each compilation units
of the AST is parsed to extract, thanks to the method getTypes() of the
interface ICompilationUnit, its main type (regarding the hypotheses that
have been made, there is a unique type of this level per compilation unit).
If the type extracted is a class or an interface, it is added to the vector of
IType that will be returned.

4.2.2.2 Respect of encapsulation or communication integrity

A component is de�ned as a deployment autonomous entity, which en-
capsulates codes and describes, by interfaces, allowed interactions with other
components. That is why we expect to respect the encapsulation or the com-
munication integrity.

Now that we have collected the types of interest, we want to �ag some of
them as data types. Thence, subrules have been de�ned to locate this kind
of type.

Identify parameter types in methods

This rule considers methods which are not constructors neither static
methods. The type of each parameter that belongs to the set of types of
interest is marked as data type. This prevents from violating the encapsula-
tion and the communication integrity.

Each subtype of a type �agged as data type has to also been marked to
ensure it is not passed as a parameter. We state that a component type can
be passed as a parameter of a constructor. Furthermore, having decided to
use none component factory, a component type cannot be the return type of
a method.

The class ASTActionDelegate provides the implementation of this rule
with the method implementR1(IType it).

Its parameter it of type IType represents an element of typesOfInterest.
It has no return type.

All the methods of it are checked to analyse the type of their parameters
and the return one. The extraction of the provided services is done here;
we will explain the instructions in the paragraph dealing with the search of
interfaces. If the method considered is not a constructor or a main method,
its signature is parsed to get the type of its parameters and the one that is
returned in order to �agged them as data types.

27

http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.jdt.doc.isv/reference/api/org/eclipse/jdt/core/class-use/IType.html

The method propagateDATA() in the class TypesTable allows to mark the
subclasses of the data types. It is called in the method run(IAction action)
of the class ASTActionDelegate on its attribute table types as TypesTable
after implementR1(IType it) is executed.

Identify parameter types in static methods

This rule is, for the moment, only a potential one. As speci�ed in the
hypotheses concerning the Java code, we do not consider static methods yet;
indeed, none opinion have been established about the connection between the
use of such a method and a components-based structure. Nevertheless, we
will give the possibility to the user to check the parameters of these methods.

Getters and setters

We estimate that a class disposing of several getters and setters has
to be marked as data type; indeed, to handle or modify an attribute of a
component breaks the encapsulation. However, it can be useful in order to
add a binding. That is why a ceiling percentage could be inserted : if the
ratio between attributes having getter(s) and/or setter(s) and those without
any is over this percentage, the type is �agged as data type; under, it is a
component.

Study the attributes types

A class is �agged as data type if its attributes refer only data types and
types that are not types of interest. This rule will be study to ensure none
serious applicant for the role of component is marked as data type; the pre-
ceding work that has been made advises us to analyse all the communications
of a system to verify if this rule is valid.

Regarding interfaces in Java meaning

A type that implements or includes �elds referring to a Java interface
can be considered as a component. This means that such types that have
been marked as data types may target not interesting interfaces regarding a
components approach.

Experiences on components-oriented projects have to be done to check
this rule.

28

Enumerations and implementation of data structures

Enumerations and classes implementing data structures are data types.

Public attributes

If a class's attributes are public, it violates the encapsulation, so the
class cannot be a component.

4.2.2.3 Composite analysis

At this stage, some data types may have not been �agged. Thus, we will
have to test by experiences if our rules and conditions are strong enough, in
order to be sure that only components are browsed to �nd their structures.

The potential composite structures will be extracted thanks to the anal-
ysis of the �elds. Each type of interest is parsed to collect recursively its
structure. The inherited �elds have to be collected too.

Another way to extract the structure of a component type consists in
analysing the instantiation of the components, from the main program, and
following the constructors calls of the components.

The extraction of these structures is implemented in the class ASTAc-
tionDelegate by the method implementP3().

It takes no parameter and does not have a return type. The types of
interest are browsed to collect the main method in order to set the root of
the AST associated with the analysed project. Then, each type which is not
�agged as data type, is parsed to extract its structure.

4.2.2.4 Extraction of communications

This rule consists in extracting the communications from the code of the
methods. We estimate that a communication exists from a type A to a type
B by the method m, if and only if m appears in the code of a method of A
and B provides the method m.

In the class ASTActionDelegate, the method implementP4 allows to iden-
tify the communications.

It takes neither parameters nor a return type. An AST parser is created
to browse the code of the methods of each type of interest.

29

4.2.3 Research of interfaces

Considering the components types have been identi�ed, we have to specify
the required and provided interfaces of each component.

The extraction of the required ones follows from the preceding analyse; the
methods such as the method m are collected as required services.

To identify the provided ones, each type of interest has to be parsed to
extract the public and default package methods.

Regarding a communication from A to B by m, we will have to check if
a required service m for A is really a provided one for B.

The extraction of the provided services is done in the method imple-
mentR1(IType it) : the methods of it are collected; those which are public
or default package are added to the set of provided services.

The required ones would have had to be collected in the method imple-
mentP5required(); �nally, we just have to look to the extracted methods for
each type by implementP4().

4.2.4 Properties of a rules-based system

Such a system cannot be functional without de�ning an order in the
application of its rules. Once de�ned, two predicates have to be checked :

• is the system consistent?

• is the completeness ensured?

Let us discuss about these properties.

30

4.2.4.1 Application order

A process will be set up to allow the user de�ning his own order. How-
ever, we have to guide him, establishing a logical order that ensures the two
next properties.

• It seems obvious that the study of a project begins with the selection
of the types of interest.

• In order to centrer the rest of the extraction on the more serious appli-
cants for the role of component, the next step that emerges is to �ag
the data types.

• Since we do not want to analyse the structure of a data type, now that
they are marked, the extraction of potential composite structures can
be launched.

• The communications between the types of interest can be extracted
now.

• The interfaces of the components can be searched and divided into the
required and provided ones.

Because the user could want to analyse only a part of a project (de�ned in a
process), such an order could be not essential; indeed, two rules can work on
di�erent subsets, so the result of one would not have any e�ect on the other.

4.2.4.2 Consistency

We mean by this term that the application of a rule does not inhibit a
preceding one. Let us discuss about the coherence of a system regarding the
de�ned rules.

After the study of the code of TESTJDT3, we notice that none of the
rules erases the e�ect of another. Thus, the consistency of the system is
ensured, regardless of the order de�ned to apply the rules.

4.2.4.3 Completeness

This property means that the de�ned rules have to consider all the possi-
bilities they could meet. Nowadays, we do not have given a ruling concerning
this predicate yet.

31

4.2.5 Conclusion

As a conclusion, we �rst emphasize on the di�culty to understand an
existing study; the �rst thought of the problem has led to constraints, ques-
tions, hypotheses, etc. that we have not consider. Thus, the existing rules
are sometimes complex to interpret. Moreover, we have to apprehend the
drawn up architecture to be able to understand the code of the methods.

That is why experiences are indispensable. Indeed, some rules have still
to be validated or have to be strengthen. Thus, one of the next steps in the
analyse of our rules-based system consists in comparing a manual study of a
project with one resulting of the execution of TESTJDT3.

4.3 An experimentation : CoCoME

4.3.1 Introduction

CoCoME is the abbreviation of Common Component Modeling Example.
This is a program representing a sell system. We won't detail how it

works because it's not what we need. We will focus on the architecture of
the program, we want to analyze components, interfaces and other elements
we need, in order to have a base example to use and to see what will give us
the result of the plug-in we are working on.

32

4.3.2 CoCoME

The major component is TradingSystem.
At the base of the program we have tow major components named Inven-

tory and CashDeskLine. Inventory and CashDeskLine are connected with
two interfaces:

• CashDeskConnectorIf is the provided interface of Inventory and re-
quired by CashDeskLine;

• SaleRegisteredEvent is provided by CashDeskLine and required by In-
ventory.

Bank is provided by CashDeskLine and is the external interface of the
complete program.

This is the global architecture of the program :

Figure 4.2: Global program architecture

We won't show other diagram of the program as this is not the goal of
this document. We only remember major details of the program.

33

4.3.2.1 Inventory

This component contains four components:

• Gui, this is the global user interface which require the informations
provided through the interfaces StoreIf and ReportingIf provided by
the Application component.

• Application, it makes the link between Inventory and the other con-
tained components. That's why it has the interfaces SaleRegisteredE-
vent and CashDeskConnectorIf. It needs informations from Data, so
it has three interfaces required, those are named EnterpriseQueryIf,
PersistenceIf, StoreQueryIf.

• Data has the required interface JDBC

• DataBase.

4.3.2.2 Data

• Enterprise provide EnterpriseQueryIf

• Persistence provide PersistenceIf

• Store provide StoreQueryIf

These three components manage informations from their name (the com-
ponent Enterprise manage information from the enterprise, ...).

Each of the components contains base classes. As for the component
Enterprise :

• TradingEnterprise

• ProductSupplier

• Product

34

4.3.2.3 Application

• Reporting

• Interface provided → ReportingIf (for Gui)

• Interface Required → EnterpriseQueryIf, PersistenceIf, StoreQueryIf

• Store

• Interface provided→ CashDeskConnectorIf (for Inventory), StoreIf (for
Gui)

• Interface Required→ PersistenceIf, StoreQueryIf, SaleRegisteredEvent

• ProductDispatcher

• Interface provided → ProductDispatcherIf

• Interface Required → EnterpriseQueryIf, PersistenceIf, StoreQueryIf

4.3.2.4 Gui

• Reporting

• Store

For the rest of the program we will not focus on the part about the
CashDesk, but we'll see major components.

4.3.2.5 CashDeskLine

• CashDesk

• EventBus

• Coordinator

We will not detail all of the components present in CashDesk, they are
principally components used for controllers like ScannerController, CardRead-
erController.

35

4.3.3 Plug-in

Now we will talk about the result we are having by passing the CoCoME
in the plug-in, and we will check if results seems correct to our previous
analyze of the architecture.

After we've used the plug-in, we obtain : around 59 components for all of
the program, which is really more important than we should have. Moreover
we have some components like Store which are not detected as components
by the plug-in and this for every classes that composes his package. There are
some other component identi�ed but some should not be, like some classes
used for tests of the database in order to �ll it. They are also tag as ROOT
component and we don't think it's could be true event if they were compo-
nents.

We've just take these examples, maybe they aren't relevant, but they are
chosen to point on incoherences in the plug-in. So we must take the rules
and determines why we have those results and correct them.

We did not �nd any cycle in the program, this should be good, maybe we
could make an example with a cycle in order to test the rules why manage
this point.

Most of the binding are not resolved.

Seems that most of the interfaces are identi�ed, for the whole program,
the plug-in has identi�ed 120 interface, but due to the result, we probably
have more than we have really, 120 seems to be pretty huge, but it certainly
is coherent if we take in consideration the number of components identi�ed.
But has we only need to see the key �interface� in the program, this should
be strange to identify other interfaces.

In the same way, communication are few in comparison with the number
of interfaces but most of them are pertinents.

To �nish with this, we will simply say that most of the plug-in identify
what we need, but it needs to be re�ned in order to match everything we
need and correctly.

36

What have we get?

First of all, we have 9 elements which are not present in the results, mainly
they are enumeration classes. 6 are sure to be enumeration.

Then we have around 45% of the interfaces which are �agged as DataType,
this implies that the �rst version of the rule about DataType is not accurate.
We also have 9 elements not identi�ed that are interfaces. An example is :

application.productdispatcher.ProductDispatcherIf -> Data type

application.productdispatcher.OptimisationSolverIf -> undefined

After reading each of these interface, the only major di�erence between
them is the presence of a �public� before the method of the Optimisation-
SolverIf. But after reading the other interfaces, we think it is because the
�rst element of the contained methods is a DataType or not.

For the component, we �nd too much component, we have not a value,
but we have all of the exception classes, or elements of the interfaces that
are marked as component. But it is not what we want, we should have get
a �agged component for each of the implementation like StoreImpl for the
Store component.

Around 50% of the elements does not have any binding found.

Our study is now in the conception phase. We will have to think about
the architecture of the plugin again, to allow an evolution in a hierarchical
system.

37

Chapter 5

Conception

5.1 Detailed Conception of Econet plugin

In this section, the di�erent stages of the Econet plug-in conception will
be explained. Firstly, the rule-based system will be explained , entities used
in the process, then UML conception that concluded with the realization of
the �rst version of itself;

5.1.1 Rules-based system

The plug-in architecture is built, so we have to specify the rules which
permit us to extract a components structure from a plain java code.

5.1.1.1 Speci�cation of the rules

• Get the types of interest
Name : GetTypesOfInterest
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : set of IType
Explanations : this rule corresponds to the method getTypesOfInterest
of the existing plug-in. It uses the method getUnitsOfInterest from the
class ASTActionDelegate to �nd the compilation units of the project.
This rule returns a vector of IType and will allow the instantiation of
the attribute typesOfInterest of the class ASTActionDelegate, browsing
each compilation unit of a project which is analysed and by recovering
the high-level type of this unit.

38

• Flag data types
Name : FlagDataTypes
Extends : GroupOfRules
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables the recognition of the data types. Its
sub-rules are detailed below.

� From no static method parameters (without constructor)
Name : FlagMethodsParametersType
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables to parse the methods, other than
the constructors and the static methods, of the set typesOfInterest
and to �ag as data types the type of their parameters.

� From static methods parameters
Name : FlagStaticMethodsParametersType
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables to parse the static methods of
the project. Note that the relashionship between static methods
and a component approach is not de�ned yet ; the method will be
implemented in case of the user need it.

� From getters and setters
Name : FlagFromGettersAndSetters
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables to �ag as data type a class which
contains more than 70% of attributes having getter(s) and/or set-
ter(s).The value of 70% is not a �nal choice, experimentations will
show us if we have to modify it.

39

� From the types of the attributes
Name : FlagFromNonComponentAttributes
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables to �ag as data type classes with
attributes referencing only implementation classes or data types.
To valid this rule, we have to study the communications in an
experimentation.

� From enumerations
Name : FlagEnumerations
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables to �ag enumerations as data
types.

� From the visibility of the attributes
Name : FlagFromAttributesVisibility
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : as the rule about getters and setters, a threshold
is introduced. If the percentage of public attributes is higher than
this threshold, the type is �ag as a data type. The value is ini-
tialized with the value of 70%. This value will be modify if the
experimentations are not satisfying.

40

• Flag components
Name : FlagComponents
Extends : GroupOfRules
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : This rule enables to �ag the components. Its details
are below.

� Flag components from Java interfaces
Name : FlagFromJavaInterfaces
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : This rule enables to �ag as component a type
which implements a Java interfaces or contains �elds that refer to
such an interface.

� From the type declaration
Name : FlagFromTypeDeclaration
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule has been extracted from the composite
structures extraction rule of the plug-in TESTJDT3 : types of
typesOfInterest that are still unresolved are browsed; if they are
declared as classes, they are �agged as components. The experi-
mentation on CoCoME has not been conclusive, that is why this
rule may be modi�ed, or even disappear.

• Extraction of composite structures
Name : AnalyseCompositeStructures
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables the study of components complex
structures. From the main program, this rule follows the constructors
calls and �nds components which are in other component. Of course
this rule only follows the constructor of the components types.

41

• Extraction of the communications between components
Name : FindComponentsLinks
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables the analysis of sent messages. We
consider that a component A communicates with a component B if
A provides a method m and B calls it in one of its methods. This
rule makes the di�erent links between the identi�ed components. As
the previous rule, the one that recovers the types of interest has to be
executed before.

• Identi�cation of equired and provided interfaces
Name : FindInterfaces
Extends : SimpleRule
In parameter(s) : ASTActionDelegate
Out paramter(s) : void
Explanations : this rule enables to �nd the required and provided in-
terfaces of the components. It browses the ASTActionDelegate and the
methods of the components, and study the methods with the visibility
public or package.

42

5.1.2 Econet plugin structure

So far, the system's rules have been de�ned. However, entities necessary
for the extraction process of a Java component structure have to be de�ned.

After re�ection, the extraction program has been broken down in a num-
ber of classes.

One needs:

• A main class that instructs start command to the others;it initially
collects the project whose component structure is to be extracted and
calls upon the rules manager to apply in order rules provided by the
user. This class will contain information regarding data types of Java
code and an AST whose structure will be used for the extraction rules

• A class that will be play the rules manager, applying rules chosen by
the user and provided by extraction policy on the process. These rules
are of type simple and/or complex.

• A policy rules extracting class that collects rules to be applied during
process in the rules manager.

• A component class that will model a component, its type and structure.

The following class diagram was then established :

Figure 5.1: Plug-in class diagram

43

Class names were chosen as follows:

• ASTActionDelegate : The main class.

• TypesTables : Class containing persistent data names and informa-
tion.

• Information : Class detailing information about a type of persistent
data structure

• RuleManager : Class acting as the rules manager

• ExtractionPolicy : Class that collects in a �le the order of the rules
as de�ned by the user.

• Rule : Abstract class de�ning extraction rule.

• SimpleRule : A Rule subclass representing a simple rule. .

• GroupRule : ARule subclass representing a set of rules simple and/or
complex.

• Component : Class de�ning a component associated with a compo-
nent type ComponentType , that holds attributes Attribute , oper-
ations Operation interfaces interfaces and whose structure could
be composite Composite .

The following �gure illustrates the ins and outs of the extraction program.

Figure 5.2: Ins and outs of the extraction program

44

The program must:

• Take as an argument the name of a Java project existing in the workspace
environment and a �le containing order of the rules to apply in the pro-
cess chosen by the user.

• Supply an annotated Java code as well as a work structure in return.
The work structure will contain information about the extraction pro-
cess on rules applied throughout the process, their results, temporary
elements (classes, types, interfaces, methods) with their appearance
level (stage in the process) and veri�cation of the structure result.

Our renamed Econet project, is a plug-in intended to work on Eclipse.
It will therefore be implemented in Java, and will comply to inherent con-
struction norms of plug-ins.

5.1.2.1 Eclipse

Eclipse is an IDE: Integrated Development Environment. Eclipse is the
project principal tool and is a very powerful development platform.

Eclipse kernel is actually composed of :

• A base capable of loading modules (plug-ins)

• Integrated modules enabling management of a set of resources (projects,
�les, folders,...)

• Modules enabling creation of coherent graphical interfaces. Using this
library, plug-ins keeps a homogeneous aspect.

The Java development part is indeed a set of plug-ins that constitute
the �rst usage of the base. Their principal characteristic is to be delivered
with Eclipse. Note that plug-ins forming C++ development environment are
also available, although not in Eclipse standard version, it requires a separate
download.

Eclipse could therefore be used as the basis of any given development
tool, no matter the language and the �le formats supported.

Eclipse is found in di�erent guides, workbench user guide, Java devel-
opment user guide, Platform plug-in developer guide, JDT plug-in developer
guide, PDE guide, Eclipse UML plug-in user guide.

45

5.1.2.2 Plugin integration in Eclipse environment

This section discusses the integration of the plug-in in Eclipse. Similarly
to former TESTJDT3 plug-in, the new plug-in named �Econet� is displayed
on Eclipse menu bar in its integration.

However, the process procedure is di�erent; it was designed to facilitate
its operation. In order to simplify several actions, Eclipse o�ers a wizards
system. Thus, one of the newest features of the plug-in is the use of wizard
to de�ne the extraction process.

These wizards are built like a sequence of dialogs providing all required
options. Four new wizards were created.

• LoadWizard : Retrieve the Java project whose component structure is
to be extracted.

The �gure belows illustrates LoadWizard class.

Figure 5.3: LoadWizard class

46

• RuleWizard : Provide the choice for the rules applied during the ex-
traction process.

The �gure belows illustrates RuleWizard class.

Figure 5.4: RuleWizard class

47

• ExtractionProcessWizard: Launch the extraction process.

The �gure belows illustrates ExtractionProcessWizard class.

Figure 5.5: ExtractionProcessWizard class

The wizard structure enable the user to select the project name to be
analysed and extraction rules directly instead of having to type it in a
dialog.

To install the plug-in one,simply copy � Econet � folder in Eclipse �
plugins � folder. Finally, running Eclipse will complete the installation.

The plug-in re-used was functioning, although its was greatly modi�ed
and enhanced in order to improve its structure, implement the rules, and its
utilisation.

Classes such as ASTActionDelegate, TypesTables strongly inspired the
�nal version of the plug-in. Features have been added over the earlier version:
integration of Econet wizard,choice of rules, generation of Java annoted code.

48

5.2 Annotations

5.2.1 How will we get these annotations?

After some re�exion, we were thinking about two way of getting them:

• Getting all informations after all of the rules were done, and then get-
ting each of the informations we needed in order to make a logical
structure of the program.

• Getting informations while we are using the rules, in order to catch
each element as soon as they are analyzed and make the structure in
�real-time�.

We will describe each of them, this way we will be able to choose which
one would correspond the most with our methodology, and what we really
need.

1. In this method, we �rst will need to get all of the components which
were �agged. So that we could do the �rst step of the annotation @In-
Component(annotationSrc,componentName) and @InitMethod(annotationSrc,
componentName). We should identify each of the interface used, and
match them with the components that used them in order to do the
link between a component and his interfaces. This will perform the
�ll of the annotation @provided(...) and @required(...). After that, as
we have the rule �composite� we can �nd each sub-component of each
components, and then �nish with the annotation @InComponent to
modify the last part componentName in order to match the composite.

2. In this method, the principle is yo �ag each element that we are check-
ing with its proper annotation and then, each time there is a new
information we modify each annotation related with the newly element
checked. In this method we need to care about the possibility of being
incoherent. This should not happened if each of our rule are coherent.

After re�exion, we think that the �rst method is better for our project,
because �rst, if this method is running after all rules were being applied, this
implies that this method is independent of the rules, so that we don't have
to modify our method if the rules changes. Then, another point is that each
rules are connected, we could not have a directly a good result if we use only
one rule, so if we were including part of the method inside rules, we would
have been blocked in the system of annotation if the user was not choosing
one rule.

49

5.2.2 How have implemented this and why?

We have done a new class that contains each of these methods, to works
it only need the ASTActionDelegate were every informations are contains.
First as there is no information about the Ipath of each element contained
in the AST, we will use the directory of the system. So �rst we get the
root directory of the project in a string, then we append it the system �le
separator. When we've done that we are ready to do each method for the
annotations.

doComponent which will see in the table attribute of the AST if each of
the element is a component, and if the current element checked is a compo-
nent then it will modify it in order to get the annotation @InComponent,
and @InitMethod. We can only make the match with string, because we
can't check the structure of the component, as we've said before we don't
have the IPath so that we can't have more information about the component
(like the matching with IMethod, or other element we would have needed).

The procedure for the other method are quite the same so we won't de-
velop them.

50

Chapter 6

Bibliography

6.1 Rainer Koschke's thesis summary

Meanwhile, in order to better understand the concepts of software archi-
tecture and components, and to achieve our system of rules extraction, we
need a study on a thesis.

This thesis, entitled � Atomic Architectural Component Recovery for Pro-
gram Understanding and Evolution - Evaluation of Automatic Re-Modularization
Techniques and Their Integration in a Semi-Automatic Method � is struc-
tured into two main parts. The �rst part deals with automatic techniques
and the second part with a semi-automatic method for atomic component
detection.

6.1.1 Extraction process

One of the main work of this thesis is that on the extraction of a structure
consisting of a source code.

There are basically two kinds of static components that are to be de-
tected by architecture recovery: Subsystems and atomic components. The
two of them di�er in their level of granularity: Subsystems may comprise ar-
chitectural quarks, atomic components, and lower-level subsystems whereas
atomic components consist of related global constants, variables, subpro-
grams, and/or user-de�ned types only.

51

• Atomic Components
An atomic component can be seen as a named set of architectural
quarks. In our relational model introduced in the previous section, we
can capture this as follows :

� atomic components are represented by a new entity type

� the fact that an entity E belongs to an atomic component AC is
expressed by a part-of relationship: E is a part of AC.

• Subsystems
Subsystems are a means to represent hierarchical sets of related el-
ements (architectural quarks, atomic components, and other subsys-
tems) whereas atomic components can be thought of as �at sets of
related architectural quarks. Subsystems must contain at least one
atomic component three quarters a component with architectural quarks
only is considered an atomic component.

The model below shows the extract of the extraction process :

Figure 6.1: Extraction process

52

6.1.2 Extraction technique

Two types of techniques used techniques automatic and semi-automatic.

6.1.2.1 Automatic Techniques

Basic Techniques

Algorithm For Global Object Reference, we can use the generic algorithm,
which will also be used for other methods that produce disjoint clusters. The
algorithm iterates over the subprograms and groups them with their relevant
connected entities. What a relevant connected entity is depends upon the
respective technique; in terms of the algorithm, this is decided by a generic
parameter that yields for each subprogram all entities that have to be part
of the same atomic component as the subprogram. This function could also
exclude frequently used objects as proposed by Yeh et al. for the Global
Object Reference heuristic.

53

Generic algorithm to detect disjoint atomic components

Generic parameter :

• function connected_entities : Entity R© set of Entities

Input :

• input view V

Output :

• disjoint clusters

Algorithm :

1. put each base entity in V into a set of its own :

for each entity E in V loop

new_set (E);

end loop;

2. clustering :

for each entity E in V where subprogram (E) loop

for each entity E' in connected_entities (E) loop

union (find (E), find (E'));

end loop;

end loop;

3. results :

each remaining disjoint set is a cluster

• new_set (e) de�nes a new set { e}.
• union (s1, s2) unites the two sets s1 and s2 ; after the call, the two set

identi�ers denote the same set, i.e., s1∪s2 .
• �nd (e) yields the set that contains e; since all entities will be initially

put into a set and since the sets are disjoint, there is exactly one such set.

In the ideal situation, i.e., when the system is properly decomposed, each
module contains one single atomic component. When we count on good
design, we can group all declarations of a module together to an atomic
component which represents the abstract functionality of the module. This
is the underlying clustering criterion of the Same Module heuristic.

54

6.1.3 Schwanke's Arch Approach

The techniques described above compare pairs of entities by their direct
relationships in order to decide whether they belong to the same atomic com-
ponent. However, a complementary source of information is the environment
of the compared entities as stated by Schwanke (1991) :

�If two procedures use several of the same unit-names, they are likely to
be sharing signi�cant design information, and are good candidates for placing
in the same module.�

And not only what kind of entities (unit-names) they commonly use in-
creases their relatedness but also by which common entities they are used.
For example, the implementations of a sine and a cosine function will both
have a �oat parameter and result type, but they also will likely be used in
the same context, i.e., have common callers. Schwanke's approach takes this
into account.

Schwanke's work is aimed at module detection. Subprograms are clus-
tered into modules based on a similarity metric.

Similarity Clustering algorithm

place each routine in a group by itself

repeat

identify the two most similar groups

combine them

until the existing groups are satisfactory

Clustering criterion. In each iteration, the most similar groups are
combined using the similarity metric described below.

55

Similarity between subprograms. The group similarity used to com-
bine groups in this algorithm is based on a similarity between subprograms.
Given two subprograms A and B, the similarity metric used during clustering
is de�ned as follows:

Sim(A, B) = (Common(A,B)+k∗Linked(A,B))
(n+Common(A,B)+d∗Distinct(A,B))

wherein Common (A,B) re�ects the common features of A and B and
Distinct(A,B) re�ects the distinct features. Linked (A, B) is 1 if A calls B
or B calls A, otherwise it is 0. The two parameters k [20?]≥[20?]0 and
d [20?]≥[20?]0 are weights given to Linked and Distinct in Similitude have
to be ascertained by experiments on a sample of the subject system. The
parameter n[20?]≥[20?]0 is used for normalization purposes; it will be
considered 0 in the following.

Group similarity. Based on the similarity between subprograms, the
similarity for groups is de�ned as the maximum similarity between any pair
of group members one from each):

GSim(A, B) = max (Similitude(a, b))|a ∈ Aetb ∈ B

Extensions. An extension to this approach was proposed by Schwanke
himself in joint work with Hanson in 1994. In the extension, they use a
nearest neighbor approach to classify components.

In order to distinguish the original approach from 1991 from the exten-
sion of 1994, the former approach is called the Arch approach and the
latter the iArch approach following the terminology Schwanke used in his
papers. The original Arch approach was extended to detect atomic compo-
nents by Jean-François Girard, Georg Schied, and me in many ways. The
enhancements are so manifold that the extension can be considered a new
approach.

56

6.1.3.1 Similarity Clustering

Similarity Clustering is the most general approach described in the thesis. It
can detect abstract data types (ADT), abstract data objects (ADO), hybrid
components, as well as groups of related routines. All connection-based tech-
niques can be subsumed under Similarity Clustering. Similarity Clustering
goes beyond other approaches in that it also considers relations to common
third entities and informal aspects.

Similarity Clustering can be used in two di�erent modes :

• search for speci�c user-de�ned patterns

• search for similar patterns of already found atomic components

Whereas connection-based techniques always yield the same candidates,
Similarity Clustering can be adjusted by the maintainer to di�erent search
patterns by changing its edge weights. The adjustable parameters of Similar-
ity Clustering o�er more �exibility. On the other hand, when the maintainer
wants to search for atomic components similar to those already found, these
parameters can be automatically calibrated by the set of known components
using traditional optimization techniques, such as simulated annealing or
Gauÿ-Seidel optimization. The sample used to calibrate Similarity Cluster-
ing can be ascertained with other techniques or withments have been applied.
Experiments with calibration methods for the subject systems used in this
thesis indicate that a sample of 20-30% of the groupable base entities of a sys-
tem grouped to atomic components is a su�cient training set (a base entity is
said to be groupable if it actually belongs to an atomic component; recall that
not all base entities were grouped to components by the software engineers
for our subject systems). However, the data have not shown that one could
improve the recall rate of Similarity Clustering by using larger samples. This
is probably because of the diversity of characteristics among atomic compo-
nents. For example, some atomic components may be properly encapsulated
such that high weights for record components and variables references will
yield good results. Some others may be permissive atomic components for
which higher weights for record components and variables references will also
add many nonaccessor functions that break the information hiding principle.
Similarity Clustering after speci�c user-de�ned adjustments have been ap-
plied. Experiments with calibration methods for the subject systems used in
the thesis indicate that a sample of 20-30% of the groupable base entities of
a system grouped to atomic components is a su�cient training set (a base

57

entity is said to be groupable if it actually belongs to an atomic component;
recall that not all base entities were grouped to components by the software
engineers for our subject systems). However, the data have not shown that
one could improve the recall rate of Similarity Clustering by using larger
samples. This isprobably because of the diversity of characteristics among
atomic components. For example, some atomic components may be properly
encapsulated such that high weights for record components and variables
references will yield good results. Some others may be permissive atomic
components for which higher weights for record components and variables
references will also add many nonaccessor functions that break the informa-
tion hiding principle.

Similarity Clustering is one of the most e�ective techniques as far as the
recall rate is concerned. On the other hand, it has also more false positives
than other approaches (except for Arch which has more false positives). In
earlier variants, the number of false positives was even worse (Girard et al.
1997c). Rainer Koschke additions resulted in a substantial reduction of the
false positives in comparison to results previously published.

Another advantage of Similarity Clustering, as a hierarchical clustering
method, is that it yields a dendrogram of clustered entities instead of a set of
�at candidates. This is in particular useful for validation. In the quantitative
evaluation of Similarity Clustering, branches of the dendrogram were cut and
converted into candidates using the same similarity threshold. However, this
assumes that the same threshold is suitable for all components. Using a single
threshold was necessary in a fair comparison to other automatic techniques;
in an interactive approach, one does not need a threshold at all. Hence, less
false positives can be expected for a hierarchical view.

There are also some drawbacks of Similarity Clustering. For all tech-
niques other than Similarity Clustering, there is one single criterion used for
clustering. Hence, the reason why a technique has grouped entities together
is obvious. This is less obvious for Similarity Clustering when the similarity
metric considers several aspects at the same time. This complicates valida-
tion of candidates proposed bySimilarity Clustering.

When Similarity Clustering considers informal information, it may hap-
pen that entities are clustered that are not even transitively connected to
each other just because they have similar names. This may be useful when
groups of related subprograms are to be detected. However, for ADT and
ADO detection, the entities are always at least transitively connected via
call, type, or reference relationships. Fortunately, unconnected entities can

58

be easily �ltered from candidates if this is necessary. In the quantitative
comparison reported in this chapter, a �lter for candidates with unconnected
entities was not used. Using such a �lter will probably lead to less false pos-
itives. Furthermore, future extensions of Similarity Clustering should try to
use informal information only for nodes that are either �rst or second-degree
neighbors. Then, informal information would only be an additional hint but
not a su�cient criterion for two nodes to be in the same component. This
would also reduce the time complexity for computing the similarity matrix
as discussed next.

The computational e�ort needed for Similarity Clustering is higher than
for all other techniques. This is mainly due to establishing the similarities
among the entities while clustering as such is comparatively fast. Rainer
Koschke give hints on how the complexity can be reduced. It turned out
that time and space complexity for Similarity Clustering is basically linear to
the number of entities, n, when informal information is excluded (assuming
an upper constant limit of neighbors an entity can have). However, when
informal information is used, each entity has to be compared to any other
entity resulting in a time complexity of O(n²). If the proposal above to use
informal information only for �rst and second-degree neighbors is put into
action, however, the complexity can be reduced to O(n).

6.1.4 Semi-automatic techniques

6.1.4.1 Combined and Incremental Techniques

In the �rst part of the thesis, the basic techniques and their evaluation
have been described. The evaluation found that showed basic techniques fail
to match the quality of its people. Therefore, improvements can be expected
by combining these basic techniques. In addition, new techniques can be
added to these existing techniques. On the other hand, the di�erent basic
techniques are appropriate for certain types of atomic elements, but not for
others (for example, to detect ADO: Abstract Data Object). They can also
be re�ned by means of control and analysis of data streams. In all cases it
is important that the responsible action.

Several combinations are possible through a combination of some oper-
ators such as union, intersection, and di�erence. The information provided
by the user can be captured and used to enrich the analysis. The thesis also
describes a method of voting, as an addition to the combination of operators,
in which the agreement of each technique with a given element, the underly-
ing is expressed in metric units. An atomic component candidates can then

59

be evaluated by adding the various measures.
To validate a candidate, the user has several choices: he or she may add

to, accept, and reject partially and completely. All this information is re-
tained for the next iteration.

To distinguish the candidates reference components, a graphical view of
resource use can be valuable. A view that shows the breakdown of the com-
ponents is called point of view. All results of the basic techniques can also
be represented by components views. There are essentially two types of in-
formation contained in these respects: the positive and negative information.
Positive information results from a decision of the user that some elements
are consistent, while the negative information occurs when the user decides
that certain elements are not compatible or mutually exclusive.

Finally, the user can manipulate a component as follows :

• creation : create a new component

• award : add an entity to a component

• rejection: delete a related entity from its components (which does not
imply that the entity and its components are mutually exclusive from
now on)

• exclusion : mark two mutually exclusive

• con�rmation: con�rmation of the information is added to a user

6.1.4.2 Semi-automatic techniques for the detection

Some techniques introduced above are fully automatic, which is desirable
especially for large systems. However, the evaluation revealed that none of
them has the quality of human detection. There are basically two ways to
improve the quality of the detection process. We can look for more sophisti-
cated techniques or include the user in the process.

However, despite this, the user remains the �nal judge. Because of the
complexity, vagueness, and to a certain degree of subjectivity, it is question-
able whether we can always �nd speci�c techniques that correspond to all
cases. The semi-automatic method is that the process can be divided into
tasks for the computer or the person responsible. The results of each task
performed by one of two partners, human or computer is used for the other
partner in the next task. The user controls the detection process by the
selection of analysis and metrics, and validation of candidates proposed by
the automatic technique.

60

The task of the computer analysis includes automatic calculation of pa-
rameters of the proposed candidates, presentation of results, and the accounts
of the user decisions. Candidates are ranked according to parameters selected
by the user, the candidates are presented to the user for acceptance. The
presentation is a crucial and non-trivial, it must be so that the validation
of the user as quickly as possible. In each iteration, the user selects and
combines di�erent analysis to �nd areas that could not be found by previous
studies.

Several tests may be selected and applied in parallel. Then the intersec-
tion, union, and the analysis of these di�erences can be established automat-
ically and the user can review and validate them.

Rigi in the thesis is used for the presentation and user interaction (Müller,
1994). Rigi is a customizable graph editor developed for reverse engineering
and o�ers many features.

The analysis can be selected from Rigi through lists, menus and easily
done with simple mouse clicks, so that the user does not need to learn a
complex language. The result of the analysis is represented by a single node
of the hierarchical analysis that is the root of the number of candidates.

Data are used to evaluate and rank the candidates who were proposed
by the analysis. The metric used for classi�cation is a composite of normal
during the weighted sum of various parameters.

The composite metric is used to guide the user through the large number
of candidates. The user can navigate by clicking on the candidates on the
nodes or view the entire hierarchy of the node as a whole. In this way, the
user can see all the candidates at once and still immediately �nd promising
candidates.

Candidates may be accepted or refused, returned, either individually or
as a whole by direct manipulation. The atomic elements can be renamed by
the user to give them a meaningful name.

The strategy for recovery of components consists of two main parts: the
detection of atomic elements and identify relationships between components
of these elements. In the �rst phase of the above method, various techniques
are combined using the combination of the operators described above.

Once the components of atoms detected, their relationships can be ana-
lyzed by the application of component analysis. The recovered components
are documented by the responsible and saved for future maintenance. They
can be used to explain the system to a higher level of abstraction. Ideally,
the module decomposition of the system will be restructured to conform to
the atomic structure of the component, ie, a module contains exactly one
atomic element. If entities are extracted from a component, the technique of
voting may be used to determine whether the system should be restructured.

61

6.1.5 Conclusion

Beyond the structure-based techniques, there are other automated tech-
niques based on data �ow information and domain information. The semi-
automatic methods include the user in the process. Most semi-automatic
techniques are bottom-up approaches that begin at the global level down to
the code.

The evaluation revealed the following :

• The e�ectiveness of a technique depends on the characteristics of the
system, such as hidden information, the decomposition into modules,
etc.

• None of the investigative techniques at a rate su�cient to recall, the
highest point, we obtained was 75% of abstract data objects. In the
worst case, the best technique is only a reminder of 34%.

Extended the technique called "Similarity Clustering" can detect all kinds
of atomic elements. It can be used to �nd the styles de�ned by the user and
search for models of components already found. The settings of "Similar-
ity Clustering" provides great �exibility. Another way to combine technol-
ogy was introduced as the vote in which the agreement of each technique is
probed, weighted, and all these data are summarized in total agreement on
whether a group is a promising candidate. Analysis, selected by the user,
are used to nominate candidates who are then validated by the user. The
information added by the user is used by the techniques of the next iteration.

62

The recovery of the information architecture from source code is not only
necessary for the understanding of the system. It is also necessary to validate
the architectural speci�cations, unless the code is generated automatically
from the speci�cation and generation itself is reliable. A software architect
may specify certain aspects like the structure of the system (atomic elements,
subsystems, hidden etc), protocols, components, or con�gurations, such as
design patterns. To validate these speci�cations, it is necessary to recover
the architecture as construction and compare it with the speci�cation. Thus,
three major aspects must be addressed by research in the architecture of
compliance :

• Speci�cations :

What is to be speci�ed in a software architecture?
What are the methods, notations and tools to specify a software
architecture?
What type of analysis are supported by these methods and notations?

• Recovery :

How can we retrieve information architecture that needs to be
validated?

• Validation :

How can architecture be built to verify compliance with the
speci�cation?

This thesis describes the architecture recovery of components by the as-
sessment, improvement, and the combination of techniques in an interactive
and progressive process. The information collected by the methods and tech-
niques described in this thesis are useful for understanding the program, re-
verse engineering and reengineering techniques, and the validation software.

63

6.2 References

[0] � http://fr.wikipedia.org/wiki/Uni�ed_Modeling_Language
[1] � http://www.cs.cmu.edu/�acme/
[2] � http://fr.wikipedia.org/wiki/Enterprise_JavaBeans
[3] � http://www.ibm.com/developerworks/webservices/library/co-cjct6/
[4] � OSGi Service Platform Core Speci�cation release 4, August 2005, The
OSGi Alliance
[5] � http://www.sciences.univ-nantes.fr/info/perso/permanents/attiogbe/
COLOSS/
[6] � http://www.eclipse.org/modeling/emf/
[7] � http://www.graphviz.org/
[8] � http://prefuse.org/
[9] � Eclipse Home Page : http://www.eclipse.org/
[10] � David Boxer, Ashutosh Galande, Thuc Si Mau Ho of University of
Illinois at Urbana-Champaign : JDT Architecture, Publication 2004 41p.
[11] � Rainer Koschke : Atomic Architectural Component Recovery for
Program Understanding and Evolution - Evaluation of Automatic
Re-Modularization Techniques and Their Integration in a Semi-Automatic
Method

64

http://fr.wikipedia.org/wiki/Unified_Modeling_Language
http://www.cs.cmu.edu/~acme/
http://fr.wikipedia.org/wiki/Enterprise_JavaBeans
http://www.ibm.com/developerworks/webservices/library/co-cjct6/
http://www.sciences.univ-nantes.fr/info/perso/permanents/attiogbe/COLOSS/
http://www.sciences.univ-nantes.fr/info/perso/permanents/attiogbe/COLOSS/
http://www.eclipse.org/modeling/emf/
http://www.graphviz.org/
http://prefuse.org/
http://www.eclipse.org/

	Introduction : The Econet project and process B
	Context of the project
	Preamble
	Motivations of the project
	The Econet project
	Why our project ?

	The process B
	Introduction
	Architectural view

	Division of labor
	The architecture of the Eclipse JDT
	JDT Architecture
	Package org.eclipse.jdt.core
	Package org.eclipse.jdt.core.dom

	Using JDT in Econet

	Study of the existing project
	Existing Plugin TESTJDT3
	Structure
	Java Classes
	Eclipse integration

	Existing rules-based system and its properties
	Introduction
	Extracting components structure rules
	Research of interfaces
	Properties of a rules-based system
	Conclusion

	An experimentation : CoCoME
	Introduction
	CoCoME
	Plug-in

	Conception
	Detailed Conception of Econet plugin
	Rules-based system
	Econet plugin structure

	Annotations
	How will we get these annotations?
	How have implemented this and why?

	Bibliography
	Rainer Koschke's thesis summary
	Extraction process
	Extraction technique
	Schwanke's Arch Approach
	Semi-automatic techniques
	Conclusion

	References

