
DISTRIBUTED SYSTEMS RESEARCH GROUP

http://dsrg.mff.cuni.cz

CHARLES UNIVERSITY PRAGUE

Faculty of Mathematics and Physics

CoCoME in SOFA 2.0

Tomáš Bureš, Martin Děcký, Petr Hnětynka, Jan Kofroň, Pavel Parízek,
František Plášil, Tomáš Poch, Ondřej Šerý, Petr Tůma

Distributed Systems Research Group

• 3 key research topics

 Components

• SOFA, SOFA 2.0

 Performance evaluation

• Regression benchmarking

• Performance modeling

 Formal methods

• Behavior modeling

 Behavior Protocols (BP, EBP)

• Code model checking

 against BP

Dagstuhl CoCoME Meeting

SOFA 2.0

• Hierarchical component model
 Primitive and composite components

• ADL includes
 behavior spec (EBP)

 utility interfaces (accessing services)

 Connectors
• communication styles ( distribution)

 Run time support
• SOFANode

 SOFA meta-model (using MOF)
• Automated generation of

 a repository

 editing tools

Dagstuhl CoCoME Meeting

Dagstuhl CoCoME Meeting

Static view

• Key abstractions

 Component frame

• Black-box view – no internal structure visible (type)

 Component architecture

• Glass-box view – first level subcomponents (instances)
visible

Dagstuhl CoCoME Meeting

Dagstuhl CoCoME Meeting

Behavior view I. – an example

component LightDisplay {

types {

STATES = { LIGHT_ENABLED,
LIGHT_DISABLED }

}

vars {

STATES state = LIGHT_ENABLED

}

Dagstuhl CoCoME Meeting

behavior {

?LDispCtrlEventHandlerIf.onEvent(STATES e) {

switch (e) {

LIGHT_ENABLED:

{state <- LIGHT_ENABLED }

LIGHT_DISABLED:

{state <- LIGHT_DISABLED }

}

}*

}

}

Behavior view II.

EBP (SOFA 2.0):

component LightDisplay {

types {

STATES = { LIGHT_ENABLED, LIGHT_DISABLED }

}

vars {

STATES state = LIGHT_ENABLED

}

behavior {

?LDispCtrlEventHandlerIf.onEvent(STATES e) {

switch (e) {

LIGHT_ENABLED :

{state <- LIGHT_ENABLED }

LIGHT_DISABLED :

{state <- LIGHT_DISABLED }

}

}*

}

}

Dagstuhl CoCoME Meeting

BP (SOFA, Fractal):

(

?LDispCtrlEventHandlerIf.
onEvent_ENABLE

+

?LDispCtrlEventHandlerIf.
onEvent_DISABLE

)*

Enter author name

Enter event name

Recall: original BP

• Behavior protocol
 Expression describing the behavior of a software component

• Infinite set of finite event traces

• Events:
 Emitting a method call request: !interface.method↑
 Accepting a method call request: ?interface.method↑
 Emitting a method call response: !interface.method↓
 Accepting a method call response: ?interface.method↓

• Operators:
 Sequence: ;
 Alternative: +
 Repetition: *
 And-parallel interleaving |
 Or-parallel interleaving: | |
 Consent 

= parallel composition (interleaving + )
indicating communication errors

no activity (deadlock)
bad activity (! cannot be responded)

• Syntactic abbreviations (to express method calls)
 ?i.m = ?i.m↑ ; !i.m↓
 ?i.m{prot } = ?i.m↑ ; prot ; !i.m↓

Enter author name

Enter event name

Recall: original BP

• Behavior protocol
 Expression describing the behavior of a software component

• Infinite set of finite event traces

• Events:
 Emitting a method call request: !interface.method(arg_list)↑
 Accepting a method call request: ?interface.method(par_list)↑
 Emitting a method call response: !interface.method↓
 Accepting a method call response: ?interface.method↓
 Assignment to a variable var  value

 Multisynchronization event @sync

• Operators:
 Sequence: ;
 Alternative: +
 Repetition: *
 And-parallel interleaving |
 Or-parallel interleaving: | |
 Consent 

= parallel composition (interleaving + )
indicating communication errors

no activity (deadlock)
bad activity (! cannot be responded)

• Syntactic abbreviations (to express method calls)
 ?i.m = ?i.m↑ ; !i.m↓
 ?i.m{prot } = ?i.m↑ ; prot ; !i.m↓

Behavior view III - features

• Extended Behavior Protocol (EBP)
 Expression defining the desired finite sequences (traces) of

• Atomic Events
 method call request and response

 assignment to a local variable, multisynchro event.

 BP like: Behavior spec. of communicating components
• composed via (extended) consent operator
• detection of composition errors

 Bad activity – a request cannot be accepted

 No activity – deadlock

 Models component modes
• Method parameters and component-local variables of

enumeration types

 Allow synchronization of events from more than two EBPs
– multisynchronization

• Not specifically used in CoCoME

Dagstuhl CoCoME Meeting

Behavior view III - compliance

• Two compatibility relations are verified

 Horizontal compliance ~ absence of
communication errors within the consent
composition of EBP of all first-level
subcomponents of a composite components

 Vertical compliance ~ absence of
communication errors in composition of the
inverted frame and architecture protocols

 Verified by a tool chain
• ebp2prom – transforming EBP into Promela

• Spin – model checking the Promela specification

Dagstuhl CoCoME Meeting

Behavior view III (example)

Dagstuhl CoCoME Meeting

EBP Benefits

• EBP are a concise specification platform for component
behavior:
 EBP spec integrates information from

• Code

• Component diagram (UML)

• Use cases

• Sequence diagrams (UML)
 These not that useful (all info in the UC and code)

 EBP enable:
• Detecting composition errors at design time

• Verification against code
 Work in progress

• Listing of all traces corresponding to a single request
 Work in progress

• Verification whether a use case is actually implemented in the code
 Work in progress

 EBP spec respect the component hierarchy
• Sequence diagrams do not

Dagstuhl CoCoME Meeting

Deployment view

• Distributed runtime environment (SOFAnode)
 a repository

• Storage for metadata and code

 deployment docks
• Container for components’ instantiation and run

• Component lifecycle
1. Creation and upload to the repository

2. Assembly of components

3. Deployment and launching

• Deployment spec: deployment plan

Dagstuhl CoCoME Meeting

Performance view (Overview)

Dagstuhl CoCoME Meeting

Behavior

Model

Deployment

Model

Resource

Model

Performance

Modelresource

demand

annotations

component

benchmarks

performance

estimates

call

chain

who

resides

where

adjusted action

durations

resource

contention

primitive action

durations

CoCoME in SOFA 2.0

• Focused on

 Modeling behavior:

• Extended Behavior Protocols

 Verification of vertical and horizontal compliance

 Input to performance modeling

 Modeling performance:

• Layered Queuing Networks

• Resource model

 Prediction of components’ resource usage attributes

Dagstuhl CoCoME Meeting

• Complies ~ with UML assignment
 External hierarchical bus replaced by

independent buses inside components
• Better reflects the orthogonal activities of

CashDeskLine and Coordinator

• The number of CashDesks and CashDeskBuses is
equal
 Not visible from UML spec (*)

 Added: Interface and bindings to support UC8
• Adding EnterpriseServer and StoreServer

 Modification of Inventory
• Application and GUI replaced by StoreApplication and

ReportingApplication
 Better captures independence of Store and Reporting

SOFA 2.0: Static view ~ UML assignment

Dagstuhl CoCoME Meeting

SOFA 2.0: Static view ~ UML assignment

Dagstuhl CoCoME Meeting

Dagstuhl CoCoME Meeting

SOFA 2.0: Behavior view

• Modeled in EBP

 Based on the provided reference implementation,
UCs, and sequence diagrams

• Inconsistencies between UCs adjusted according to the
reference implementation

 Behavior of each component: its frame protocol
• Integrates effect of a set of sequence diagrams

 All possible interplays of calls (accepted and issued) captured

 Actors (Customer, Cashier, …) modeled indirectly
• inside GUI components

 Multiplicity
• Two CashDesks inside each CashDeskLine

• Two CashDeskLines inside the TradingSystem

Dagstuhl CoCoME Meeting

Results – Behavior modeling I.

• Specification in EBP takes about 1500 LOC (42kB)
 Verifying horizontal and vertical compliance:

EBP Promela C source Result

• Tools:
 ebp2prom – transformation EBP  Promela

• A frame protocol transformed into a finite automaton

• Compliance checking  assertion checking

 Spin – verification of the Promela model
• Error trace provided in EBP

• Running on
 PC 2x Intel Core2 Duo (dual core), 4GB RAM, Gentoo

Linux

Dagstuhl CoCoME Meeting

ebp2prom Spin gcc

Results – Behavior modeling II.

• Demo – verification of StoreApplication

Dagstuhl CoCoME Meeting

Results – Behavior modeling III.

• Total time = ebp2prom + Spin + gcc time +
verifier

Dagstuhl CoCoME Meeting

ebp2prom Verifier Total

Performance view

• Goals
 Estimate performance during design

• Very rough take at absolute numbers

• Good approximation of scalability

 Model implicitly shared resources

• Issues
 Complexity of performance models

 Presence of black box components

• Solution
 Multiple sources of information

• Behavior model tracks resource demand

• Deployment model tracks component placement

• Resource model provides resource usage information

• Component benchmarks provide action duration information

 Iterative model solution

Dagstuhl CoCoME Meeting

SOFA 2.0: Performance view I.

• Assumptions
 Cash desk performance not an issue
 Central server performance vital

• No scalability support in architecture
• Sustainable peak performance of interest

• Component Benchmarks
 Database the major black box component
 Query duration for selected queries
 Scalability investigation

• Database size irrelevant
• Cache behavior significant
• Memory consumption significant

 Resource consumption investigation

Dagstuhl CoCoME Meeting

SOFA 2.0: Performance view II.

• Resource Model
 Database cache usage

• Ratio of cache to database size
• Requires formula for database size

 System memory usage
• Store instance related consumption
• Query processing related consumption

 Output
• Query duration for database queries
• Adjusted based on cache usage and memory usage

• Performance Model
 Layered queuing network
 Average durations considered
 Multiple customers aggregated
 Output

• Throughput and roundtrip estimates
• Concurrency for database queries

Dagstuhl CoCoME Meeting

LQN model

Dagstuhl CoCoME Meeting

Results of modeling

Enter author name

Enter event name

Measured results

Enter author name

Enter event name

Evaluation I.

• EBP are a concise specification platform for component
behavior:
 EBP spec integrates information from

• Use cases

• Code

• Component diagram (UML)

• Sequence diagrams (UML)
 These not that useful (all info in the UC and code)

 EBP enable:
• Detecting composition errors at design time

• Verification against code
 Work in progress

• Listing of all traces corresponding to a single request
 Work in progress

• Verification whether a use case is actually implemented in the code
 Work in progress

 EBP spec respect the component hierarchy
• Sequence diagrams do not

Dagstuhl CoCoME Meeting

Evaluation II.

• EBP vs. BP comparison

 EBP – more detailed

• modeling of method (some) parameters and

component states (modes)

 EBP spec more readable and easier to

“debug”

 Both verified in reasonable time (minutes)

• Compared to CoCoME in Fractal

 Specification in EBP shorter (1500 vs. 2700

LOC) and more readable

Conclusion

• Behavior:

 Both vertical and horizontal compliance

verified in reasonable time

• Performance

 Simple models with reasonably precise

output

• Available at

http://dsrg.mff.cuni.cz/cocome/sofa

Dagstuhl CoCoME Meeting

Future Work

• Behavior view

 Checking of EBP spec against Java code
• Taking advantage of data in spec

 Support for sessions

 Support for other properties
• E.g. enhancing data relations

• Performance view
 Additional behavioral information needed to

generate model automatically

 Potential for automating resource modeling
• Component benchmarking

• Knowledge of typical resources

Dagstuhl CoCoME Meeting

