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Distributed Systems Research Group

• 3 key research topics

 Components

• SOFA, SOFA 2.0

 Performance evaluation

• Regression benchmarking

• Performance modeling

 Formal methods

• Behavior modeling 

 Behavior Protocols (BP, EBP)

• Code model checking 

 against BP
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SOFA 2.0

• Hierarchical component model
 Primitive and composite components

• ADL includes 
 behavior spec (EBP)

 utility interfaces (accessing services)

 Connectors
• communication styles ( distribution)

 Run time support
• SOFANode

 SOFA meta-model (using MOF)
• Automated generation of

 a repository

 editing tools
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Static view

• Key abstractions

 Component frame

• Black-box view – no internal structure visible (type)

 Component architecture

• Glass-box view – first level subcomponents (instances) 
visible
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Behavior view I. – an example

component LightDisplay {

types {

STATES = { LIGHT_ENABLED, 
LIGHT_DISABLED }

}

vars {

STATES state = LIGHT_ENABLED

}
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behavior {

?LDispCtrlEventHandlerIf.onEvent(STATES e) {

switch (e) {

LIGHT_ENABLED: 

{state <- LIGHT_ENABLED }

LIGHT_DISABLED: 

{state <- LIGHT_DISABLED }

}

}*

}

}



Behavior view II.

EBP (SOFA 2.0):

component LightDisplay {

types {

STATES = { LIGHT_ENABLED, LIGHT_DISABLED }

}

vars {

STATES state = LIGHT_ENABLED

}

behavior {

?LDispCtrlEventHandlerIf.onEvent(STATES e) {

switch (e) {

LIGHT_ENABLED : 

{state <- LIGHT_ENABLED }

LIGHT_DISABLED : 

{state <- LIGHT_DISABLED }

}

}*

}

}
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BP (SOFA, Fractal):

(

?LDispCtrlEventHandlerIf.
onEvent_ENABLE

+

?LDispCtrlEventHandlerIf.
onEvent_DISABLE

)*



Enter author name

Enter event name

Recall: original BP

• Behavior protocol
 Expression describing the behavior of a software component  

• Infinite set of finite event traces

• Events:
 Emitting a method call request: !interface.method↑
 Accepting a method call request: ?interface.method↑
 Emitting a method call response: !interface.method↓
 Accepting a method call response: ?interface.method↓

• Operators:
 Sequence: ;
 Alternative: +
 Repetition: *
 And-parallel interleaving      |
 Or-parallel interleaving: | |
 Consent 

= parallel composition ( interleaving + ) 
indicating communication errors

no activity (deadlock)
bad activity (! cannot be responded)

• Syntactic abbreviations (to express method  calls)
 ?i.m =   ?i.m↑ ; !i.m↓
 ?i.m{prot }  =   ?i.m↑ ; prot ; !i.m↓



Enter author name

Enter event name

Recall: original BP

• Behavior protocol
 Expression describing the behavior of a software component  

• Infinite set of finite event traces

• Events:
 Emitting a method call request: !interface.method(arg_list)↑
 Accepting a method call request: ?interface.method(par_list)↑
 Emitting a method call response: !interface.method↓
 Accepting a method call response: ?interface.method↓
 Assignment to a variable var  value

 Multisynchronization event @sync

• Operators:
 Sequence: ;
 Alternative: +
 Repetition: *
 And-parallel interleaving     |
 Or-parallel interleaving: | |
 Consent 

= parallel composition ( interleaving + ) 
indicating communication errors

no activity (deadlock)
bad activity (! cannot be responded)

• Syntactic abbreviations (to express method  calls)
 ?i.m =   ?i.m↑ ; !i.m↓
 ?i.m{prot }  =   ?i.m↑ ; prot ; !i.m↓



Behavior view III - features

• Extended Behavior Protocol (EBP)
 Expression defining the desired finite sequences (traces) of

• Atomic Events
 method call request and response

 assignment to a local variable, multisynchro event.

 BP like: Behavior spec. of communicating components 
• composed via (extended) consent operator
• detection of composition errors

 Bad activity – a request cannot be accepted

 No activity – deadlock

 Models component modes
• Method parameters and component-local variables of 

enumeration types

 Allow synchronization of events from more than two EBPs 
– multisynchronization

• Not specifically used in CoCoME
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Behavior view III - compliance

• Two compatibility relations are verified

 Horizontal compliance ~ absence of 
communication errors within the consent 
composition of EBP of all first-level 
subcomponents of a composite components

 Vertical compliance ~ absence of 
communication errors in composition of the 
inverted frame and architecture protocols

 Verified by a tool chain
• ebp2prom – transforming EBP into Promela

• Spin – model checking the Promela specification
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Behavior view III (example)
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EBP Benefits

• EBP are a concise specification platform for component 
behavior:
 EBP spec integrates information from

• Code

• Component diagram (UML)

• Use cases

• Sequence diagrams (UML)
 These not that useful (all info in the UC and code)

 EBP enable:
• Detecting composition errors at design time

• Verification against code
 Work in progress

• Listing of all traces corresponding to a single request
 Work in progress

• Verification whether a use case is actually implemented in the code
 Work in progress

 EBP spec respect the component hierarchy
• Sequence diagrams do not
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Deployment view

• Distributed runtime environment (SOFAnode)
 a repository

• Storage for metadata and code

 deployment docks
• Container for components’ instantiation and run

• Component lifecycle
1. Creation and upload to the repository

2. Assembly of components

3. Deployment and launching

• Deployment spec: deployment plan
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Performance view (Overview)
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CoCoME in SOFA 2.0

• Focused on

 Modeling behavior: 

• Extended Behavior Protocols

 Verification of vertical and horizontal compliance

 Input to performance modeling

 Modeling performance: 

• Layered Queuing Networks

• Resource model

 Prediction of components’ resource usage attributes
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• Complies ~ with UML assignment
 External hierarchical bus replaced by 

independent buses inside components
• Better reflects the orthogonal activities of 

CashDeskLine and Coordinator

• The number of CashDesks and CashDeskBuses is 
equal
 Not visible from UML spec (*)

 Added: Interface and bindings to support UC8
• Adding EnterpriseServer and StoreServer

 Modification of Inventory
• Application and GUI replaced by StoreApplication and 

ReportingApplication
 Better captures independence of Store and Reporting

SOFA 2.0: Static view ~ UML assignment
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SOFA 2.0: Static view ~ UML assignment
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SOFA 2.0: Behavior view

• Modeled in EBP

 Based on the provided reference implementation, 
UCs, and sequence diagrams

• Inconsistencies between UCs adjusted according to the 
reference implementation

 Behavior of each component: its frame protocol
• Integrates effect of a set of sequence diagrams

 All possible interplays of calls (accepted and issued) captured

 Actors (Customer, Cashier, …) modeled indirectly
• inside GUI components

 Multiplicity
• Two CashDesks inside each CashDeskLine

• Two CashDeskLines inside the TradingSystem

Dagstuhl CoCoME Meeting



Results – Behavior modeling I.

• Specification in EBP takes about 1500 LOC (42kB)
 Verifying horizontal and vertical compliance:

EBP Promela              C source              Result

• Tools:
 ebp2prom – transformation EBP  Promela

• A frame protocol transformed into a finite automaton

• Compliance checking  assertion checking

 Spin – verification of the Promela model
• Error trace provided in EBP

• Running on
 PC 2x Intel Core2 Duo (dual core), 4GB RAM, Gentoo 

Linux

Dagstuhl CoCoME Meeting

ebp2prom Spin gcc



Results – Behavior modeling II.

• Demo – verification of StoreApplication
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Results – Behavior modeling III.

• Total time = ebp2prom + Spin + gcc time + 
verifier
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ebp2prom Verifier Total



Performance view

• Goals
 Estimate performance during design

• Very rough take at absolute numbers

• Good approximation of scalability

 Model implicitly shared resources

• Issues
 Complexity of performance models

 Presence of black box components

• Solution
 Multiple sources of information

• Behavior model tracks resource demand

• Deployment model tracks component placement

• Resource model provides resource usage information

• Component benchmarks provide action duration information

 Iterative model solution
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SOFA 2.0: Performance view I.

• Assumptions
 Cash desk performance not an issue 
 Central server performance vital

• No scalability support in architecture
• Sustainable peak performance of interest

• Component Benchmarks
 Database the major black box component
 Query duration for selected queries
 Scalability investigation

• Database size irrelevant
• Cache behavior significant
• Memory consumption significant

 Resource consumption investigation
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SOFA 2.0: Performance view II.

• Resource Model
 Database cache usage

• Ratio of cache to database size
• Requires formula for database size

 System memory usage
• Store instance related consumption
• Query processing related consumption

 Output
• Query duration for database queries
• Adjusted based on cache usage and memory usage

• Performance Model
 Layered queuing network
 Average durations considered
 Multiple customers aggregated
 Output

• Throughput and roundtrip estimates
• Concurrency for database queries
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LQN model
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Results of modeling

Enter author name

Enter event name



Measured results

Enter author name

Enter event name



Evaluation I.

• EBP are a concise specification platform for component 
behavior:
 EBP spec integrates information from

• Use cases

• Code

• Component diagram (UML)

• Sequence diagrams (UML)
 These not that useful (all info in the UC and code)

 EBP enable:
• Detecting composition errors at design time

• Verification against code
 Work in progress

• Listing of all traces corresponding to a single request
 Work in progress

• Verification whether a use case is actually implemented in the code
 Work in progress

 EBP spec respect the component hierarchy
• Sequence diagrams do not

Dagstuhl CoCoME Meeting



Evaluation II.

• EBP vs. BP comparison

 EBP – more detailed

• modeling of method (some) parameters and 

component states (modes)

 EBP spec more readable and easier to 

“debug”

 Both verified in reasonable time (minutes)

• Compared to CoCoME in Fractal

 Specification in EBP shorter (1500 vs. 2700 

LOC) and more readable



Conclusion

• Behavior:

 Both vertical and horizontal compliance 

verified in reasonable time

• Performance

 Simple models with reasonably precise 

output

• Available at

http://dsrg.mff.cuni.cz/cocome/sofa
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Future Work

• Behavior view

 Checking of EBP spec against Java code
• Taking advantage of data in spec

 Support for sessions

 Support for other properties
• E.g. enhancing data relations

• Performance view
 Additional behavioral information needed to 

generate model automatically

 Potential for automating resource modeling
• Component benchmarking

• Knowledge of typical resources
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