Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Components with Symbolic Transition
Systems:
a Java Implementation of Rendezvous

Fabricio de Alexandria Fernandes
Jean-Claude Royer Robin Passama

Ecole des Mines de Nantes
Department of Computer Science — OBASCO Group
INRIA Research Centre Rennes - Bretagne Atlantique — LINA

I Einria JINE O geasle

vvvvv

10-07-2007 / CPA 2007

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

@ Introduction
Motivation
Our work

Outline

2/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

@ Introduction
Motivation
Our work

@ STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

Outline

/38

Components
with STS : a
Java Imple-

mentation O Utl | n e
oo @ Introduction

Fernandes, . .
Jean-Claude M 0t|Vat| on

Royer, Robin Our work
Passama

@ STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

@® Model Implementation Overview
Implementation of the STS
Rules to Generate Interfaces
Partial UML Class Diagram

Components
with STS : a
Java Imple-

mentation OU“ | ne
oo @ Introduction

Flogpncs, Motivation

ean-Claude

Royer, Robin Our Work

Passama

@ STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

® Model Implementation Overview
Implementation of the STS
Rules to Generate Interfaces
Partial UML Class Diagram

@ A Java Implementation of Rendezvous
Basic Barrier Principles

Improvements on the Mechanism
Partial UML Class Diagram

Components
with STS : a
Java Imple-

mentation .
oo @ Introduction
JFernandes, Motivation
ean-Claude
Royer, Robin Our work
Passama

@ STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

® Model Implementation Overview
Implementation of the STS
Rules to Generate Interfaces
Partial UML Class Diagram

@ A Java Implementation of Rendezvous
Basic Barrier Principles
Improvements on the Mechanism
Partial UML Class Diagram

@® Conclusions

Outline

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Motivation
Our work

Motivation

o Component Based Software Engineering (CBSE)

/38

Components
with STS : a

pie Motivation
Fabricio
Fernandes,
Jean-CIauqe
M oeama « Component Based Software Engineering (CBSE)
o Explicit protocols integrated into component interfaces
otvaten to describe their behaviour in a formal way

Components
with STS : a

pie Motivation
Fabricio
Fernandes,
Jean-CIauqe
M oeama « Component Based Software Engineering (CBSE)
o Explicit protocols integrated into component interfaces
S to describe their behaviour in a formal way

e Need of formal analysis methods to analyze component
interactions

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Motivation
Our work

Motivation

Component Based Software Engineering (CBSE)

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Need of formal analysis methods to analyze component
interactions

Behavioural Interface Description Languages (BIDLSs):

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Motivation
Our work

Motivation

Component Based Software Engineering (CBSE)
Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Need of formal analysis methods to analyze component
interactions

Behavioural Interface Description Languages (BIDLSs):
¢ Architectural analysis and verification issues

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Motivation
Our work

Motivation

Component Based Software Engineering (CBSE)

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Need of formal analysis methods to analyze component
interactions

Behavioural Interface Description Languages (BIDLSs):

¢ Architectural analysis and verification issues
o Relate efficiently design and implementation

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Motivation
Our work

Motivation

Component Based Software Engineering (CBSE)

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Need of formal analysis methods to analyze component
interactions
Behavioural Interface Description Languages (BIDLSs):
¢ Architectural analysis and verification issues
¢ Relate efficiently design and implementation
Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Motivation

Our work

Our work

¢ Fill the gap between high-level formal models and
implementation of protocols

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Motivation

Our work

Our work

¢ Fill the gap between high-level formal models and
implementation of protocols

e Ensure consistency between analysis and execution
phases

Components

ith STS :
Java mpl- Our work
mentation
Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama o Fill the gap between high-level formal models and
implementation of protocols
Ourvork e Ensure consistency between analysis and execution
y

phases

e Link between specification or design models and
programming languages: automated translation of
models into programming code

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Motivatior
Our work

Our work

Fill the gap between high-level formal models and
implementation of protocols

Ensure consistency between analysis and execution
phases

Link between specification or design models and
programming languages: automated translation of
models into programming code

Long term goal: formal component model with
executable protocols which includes associated tools:
an STSLib, a formal ADL and analysis tools

Components

with STS : a

Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

Guard with Receipt

STS-Oriented Component
Model

e Subset of Korrigan model [Poizat and Royer JUCSO06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

© 3D 0>
o TP gz

STS-Oriented Component
Model

e Subset of Korrigan model [Poizat and Royer JUCSO06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

e Two types of components

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

STS-Oriented Component
Model

e Subset of Korrigan model [Poizat and Royer JUCSO06]

based on ADL ontology: configurations (architectures)
made of components with ports and connections
e Two types of components
e Primitive: based on STS, to be presented in the next
slides

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

STS-Oriented Component
Model

e Subset of Korrigan model [Poizat and Royer JUCSO06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

e Two types of components

e Primitive: based on STS, to be presented in the next

slides
e Composite: reusable compositions of components (i.e.

architectures)

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

STS-Oriented Component
Model

e Subset of Korrigan model [Poizat and Royer JUCSO06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

e Two types of components

e Primitive: based on STS, to be presented in the next

slides
e Composite: reusable compositions of components (i.e.

architectures)
¢ A glue notation to define communications, currently
restricted to n-ary communications with one emitter and
several receivers

Components
with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model
Architecture and
Composite
Rendezvous
Principle

Guard with Receipt

STS Model

e Primitive component made of ports and a protocol
described in the STS formalism

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model
Architecture and
Composite

R

STS Model

e Primitive component made of ports and a protocol
described in the STS formalism

e STS: states + transitions between states

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

Architecture and

STS Model

e Primitive component made of ports and a protocol
described in the STS formalism

e STS: states + transitions between states

e STS transition general syntax: [guard] event/action

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

Archite

o O

Guard with Receipt

STS Model

e Primitive component made of ports and a protocol
described in the STS formalism
e STS: states + transitions between states
e STS transition general syntax: [guard] event/action
e guard: condition to trigger the transition

Components
ith STS :

\\’JVIatCa I-lr;1_plr-)fjl STS MOdeI
mentation

Fabricio
Fernandes,
Jean-Claude

rhitiiog « Primitive component made of ports and a protocol
described in the STS formalism

STS-oriented e STS: states + transitions between states
Component .
Modé’u e STS transition general syntax: [guard] event/action

e guard: condition to trigger the transition
¢ event: dynamic event possibly with emission ! or receipt
? (notification of the action execution)

Guard with Receipt

Components

with STS : a

Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

Guard with Receipt

STS Model

e Primitive component made of ports and a protocol
described in the STS formalism

e STS: states + transitions between states
e STS transition general syntax: [guard] event/action

e guard: condition to trigger the transition

¢ event: dynamic event possibly with emission ! or receipt
? (notification of the action execution)

e action: action to be performed

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

STS Model

e Primitive component made of ports and a protocol
described in the STS formalism

e STS: states + transitions between states

e STS transition general syntax: [guard] event/action

guard: condition to trigger the transition

event: dynamic event possibly with emission ! or receipt
? (notification of the action execution)

action: action to be performed

Action may be described in an algebraic or a
programming style

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

STS Model

e Primitive component made of ports and a protocol
described in the STS formalism

e STS: states + transitions between states
e STS transition general syntax: [guard] event/action

guard: condition to trigger the transition

event: dynamic event possibly with emission ! or receipt
? (notification of the action execution)

action: action to be performed

Action may be described in an algebraic or a
programming style

A Java translation from axiom description has been
experimented

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS-oriented
Component
Model

Architecture and

Example of STS Component:
The Process

[A :=0: Naturd

think 7T : Natura
[A:=T

[A=S]
use ?S: Naturd

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Architecture and Composite

¢ Note: We are rather discussing component types rather

than a component instance

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite
Rendezvous
Principle

Guard with Receipt

Architecture and Composite

¢ Note: We are rather discussing component types rather
than a component instance

e An architecture is a closed composite, that is not
designed to interact with the outside

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Architecture and Composite

¢ Note: We are rather discussing component types rather
than a component instance

e An architecture is a closed composite, that is not
designed to interact with the outside

e A composite is an assembly of primitive and composite
components

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Architecture and Composite

Note: We are rather discussing component types rather
than a component instance

An architecture is a closed composite, that is not
designed to interact with the outside

A composite is an assembly of primitive and composite
components

Ports: connection points that externalizes the triggering
of a given event in the STS protocol

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Architecture and Composite

Note: We are rather discussing component types rather
than a component instance

An architecture is a closed composite, that is not
designed to interact with the outside

A composite is an assembly of primitive and composite
components

Ports: connection points that externalizes the triggering
of a given event in the STS protocol

Connections: primitive bindings between ports

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Architecture and Composite

Note: We are rather discussing component types rather
than a component instance

An architecture is a closed composite, that is not
designed to interact with the outside

A composite is an assembly of primitive and composite
components

Ports: connection points that externalizes the triggering
of a given event in the STS protocol

Connections: primitive bindings between ports

Connected ports: synchronization of corresponding
events

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Guard with Receipt

Architecture Example

rpl: process)
/ A:=0:int
? think T:int
IA=T activityOut
[A==8]
P "
_ ? use S:int)
Z| 8%
s
S server
/8, T, C:=0iint ! givet T:int
[T:=(T+1)%MAXINT
[C==0]
! gives S:int
/C:=C+1
end /S:=(S+1)%MAXINT .
/C:=C-1 2| = S
a| 8 =

p2: process
Same STSas pl

38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite
Rendezvous
Principle

Guard with Receipt

Rendezvous Principle

e Synchronization of several events: triggering them in
any real order but in the same logical time

10/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Rendezvous Principle

e Synchronization of several events: triggering them in
any real order but in the same logical time

e With communication: sender necessarily initiates a
value computation and communicate it to the receivers

10/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite
Rendezvous
Principle

Guard with Receipt

Rendezvous Principle

e Synchronization of several events: triggering them in
any real order but in the same logical time

e With communication: sender necessarily initiates a

value computation and communicate it to the receivers

e Primitive components involved in synchronization
cannot trigger any other event during this
synchronization

10/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Rendezvous Principle

Synchronization of several events: triggering them in
any real order but in the same logical time

With communication: sender necessarily initiates a
value computation and communicate it to the receivers
Primitive components involved in synchronization
cannot trigger any other event during this
synchronization

Provides execution actions of all the participants and 1
to n communications

10/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite
Rendezvous
Principle

Guard with Receipt

Three Modes for Components
Interaction

e Asynchronous activity: one component executes an
action independently (no interaction)

11/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite
Rendezvous
Principle

Guard with Receipt

Three Modes for Components
Interaction

e Asynchronous activity: one component executes an
action independently (no interaction)

e Rendezvous without communication: n components
execute a given action in the same logical time

11/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Three Modes for Components
Interaction

e Asynchronous activity: one component executes an
action independently (no interaction)

e Rendezvous without communication: n components
execute a given action in the same logical time

e Rendezvous: latter case + a component emits a value
and other receives it during the rendezvous. Receiver
guards check the emitted value (guards with receipt)

11/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Synchronization Vectors

e Concept coming from the synchronous product of
automata

12/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite
Rendezvous
Principle

Guard with Receipt

Synchronization Vectors

e Concept coming from the synchronous product of
automata

e Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

12/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Synchronization Vectors

e Concept coming from the synchronous product of
automata

e Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

e Computed according to the connections between
component ports

12/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Synchronization Vectors

Concept coming from the synchronous product of
automata

Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

Computed according to the connections between
component ports

Defined according to an arbitrary ordering of primitive
components

12/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Synchronization Vectors

Concept coming from the synchronous product of
automata

Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

Computed according to the connections between
component ports

Defined according to an arbitrary ordering of primitive
components

The connections define a computation of

synchronization vectors, for instance & communication

12/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Synchronization Vectors

Concept coming from the synchronous product of
automata

Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

Computed according to the connections between
component ports

Defined according to an arbitrary ordering of primitive
components

The connections define a computation of

synchronization vectors, for instance & communication

Also useful for configuring runtime support of
components

12/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Principle

Guard with Receipt

Guard with Receipt

e Important construction with a specific semantics:

components can conditionally receive and synchronize

on a value in the same logical time

13/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Principle

Guard with Receipt

Guard with Receipt

e Important construction with a specific semantics:

components can conditionally receive and synchronize

on a value in the same logical time

e Benefit: to increase the abstraction and reduce the size

of finite state machine

13/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Principle

Guard with Receipt

Guard with Receipt

e Important construction with a specific semantics:

components can conditionally receive and synchronize

on a value in the same logical time

e Benefit: to increase the abstraction and reduce the size

of finite state machine

o Example guard with receipt and no action: [A=S] ? use

S:int .

13/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Principle

Guard with Receipt

Guard with Receipt

Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

Benefit: to increase the abstraction and reduce the size
of finite state machine

Example guard with receipt and no action: [A=S] ? use
S:int .
Three steps: receipt, guard checking, (null) action

13/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Principle

Guard with Receipt

Guard with Receipt

Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

Benefit: to increase the abstraction and reduce the size
of finite state machine

Example guard with receipt and no action: [A=S] ? use
S:int .

Three steps: receipt, guard checking, (null) action
Rendezvous: all three steps have to be synchronous

13/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Principle

Guard with Receipt

Guard with Receipt

Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

Benefit: to increase the abstraction and reduce the size
of finite state machine

Example guard with receipt and no action: [A=S] ? use
S:int .

Three steps: receipt, guard checking, (null) action
Rendezvous: all three steps have to be synchronous

Major implementation issue: keep the model semantic
and components execution consistent

13/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Model Imple-
mentation
Overview

Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

Implementation Overview

e Implementing STS requires to manage different
development steps:

14/38

Components
with STS : a
Java Imple-

Rl Implementation Overview

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

e Implementing STS requires to manage different
development steps:

¢ Implementing the data part
Model Imple-

mentation
Overview

Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

14/38

Components
with STS : a
Java Imple-

Rl Implementation Overview

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

e Implementing STS requires to manage different
development steps:

» Implementing the data part
Modal Imple- « Representing the protocol

Overview

Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

14/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Model Imple-
mentation
Overview

Implementation of
the

Diagram

Implementation Overview

e Implementing STS requires to manage different
development steps:
e Implementing the data part
e Representing the protocol
e Gluing the data part and the protocol into a primitive
component (intra-component composition)

14/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Model Imple-
mentation
Overview

Implementation of
the
R
In

Partial UML Class
Diagram

Implementation Overview

e Implementing STS requires to manage different
development steps:

Implementing the data part

Representing the protocol

Giluing the data part and the protocol into a primitive
component (intra-component composition)
Implementing components synchronization and
communication (inter-component composition)

14/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the STS

Generate

Partial UML Class
Diagram

Implementation of the STS

e Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

15/38

Components
with STS : a
Java Imple-

mentation Implementatlon Of the STS

Fabricio
Fernandes,
Jean-CIauqe . .
gy e Separation of the FSM notations to the data part:

simplifies the implementation and promotes the reuse
e Dynamic part: states, transitions and some names
(guards, events, receipt variables, senders and actions)

Implementation of
the STS

15/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the STS

Implementation of the STS

e Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

e Dynamic part: states, transitions and some names
(guards, events, receipt variables, senders and actions)

e Data part: Java class implementing the formal data part
with a real implementation of the names with methods

15/38

Components
with STS : a

Jov Il Implementation of the STS
Fabricio

Joan-Claue

Royer, Robin e Separation of the FSM notations to the data part:

simplifies the implementation and promotes the reuse

e Dynamic part: states, transitions and some names
(guards, events, receipt variables, senders and actions)

e Data part: Java class implementing the formal data part
with a real implementation of the names with methods

rests Both parts glued thanks to a normalized Java interface

15/38

Components
with STS : a

Java I Implementation of the STS

mentation

Fabricio
Fernandes,
Jean-Claude

gy e Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

e Dynamic part: states, transitions and some names
(guards, events, receipt variables, senders and actions)

e Data part: Java class implementing the formal data part
with a real implementation of the names with methods

e Both parts glued thanks to a normalized Java interface

e Emitter: pure function computing the emitted value in a
given state of the component

Implementation of
the STS

15/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the STS

Implementation of the STS

Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

Dynamic part: states, transitions and some names
(guards, events, receipt variables, senders and actions)

Data part: Java class implementing the formal data part
with a real implementation of the names with methods

Both parts glued thanks to a normalized Java interface

Emitter: pure function computing the emitted value in a
given state of the component

Guard: boolean function implementing a condition

15/38

Components
with STS : a

Java I Implementation of the STS

mentation

Fabricio
Fernandes,
Jean-Claude

gy e Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

e Dynamic part: states, transitions and some names
(guards, events, receipt variables, senders and actions)

e Data part: Java class implementing the formal data part
with a real implementation of the names with methods

e Both parts glued thanks to a normalized Java interface

e Emitter: pure function computing the emitted value in a
given state of the component

e Guard: boolean function implementing a condition
e Areceiver is implemented as a method with parameters

Implementation of
the STS

15/38

Components

with STS : a

Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

STS Implementation Schema

IProcess

Process

Data

the STS

Rule
Inter
Partial UML Class
Diagram

+ think(T : int) : woid

+ check(s : int) : boolean
+ usefs :int) : woid

+ end) ; woid

+ searchMethod{name ; 5tring) ; Method
+ executeActiond) ; void

+ executeObservery) @ Object

+ executecuard(; boalean

+ trueicuard() ;. boolean

16/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

STS Implementation Principles

e Combination of a protocol and existing Java code data

part (passive class that implements an interface)

17/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the

STS Implementation Principles

e Combination of a protocol and existing Java code data
part (passive class that implements an interface)

¢ Implemented with an active object (thread in Java) to
execute STS protocol and to call the passive object

17/38

Components

with STS : a . . .

Java Imple- STS Implementation Principles
mentation
Fabricio

Fernandes,

Jean-Claude

Royer, Robin
Passama

e Combination of a protocol and existing Java code data
part (passive class that implements an interface)

¢ Implemented with an active object (thread in Java) to
execute STS protocol and to call the passive object

e e e An STS defines events, guards, emitters and actions
related to the Java interface of the data part class

17/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the STS

STS Implementation Principles

Combination of a protocol and existing Java code data

part (passive class that implements an interface)

Implemented with an active object (thread in Java) to
execute STS protocol and to call the passive object

An STS defines events, guards, emitters and actions
related to the Java interface of the data part class

Automatic generation from STS to Java skeleton

17/38

Components
with STS : a

Java Imple- Implementation of the Process

mentation

Fabrico Primitive Component
Jean-CIaud!e
Royer, Robin

Passama

STS Protocol

! |
! |
|
| |
: Process.java |
I) N
: cl ass Process | /'-’tt':}ISlL(T.Int
Implementation of .| extends Dat af{ : activityOut
! |
! |
! |
! |
! |
! |

the STS end

/end

activityln

F)
|
|
|
|
o
2
o
O
8
=
|
|
|
|
N
J
aoeyIalul JuUsuodwo) J

[check]
?use Sint

L ___ |\ /U% J

18/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

Rules to Generate Interfaces

e Translation rules for one emission and one receipt
public bool ean guard();
[guard] event !emitter: Type/ action public Type emtter();
public void action(Type var);

publ i c bool ean guard(Type var)

[guard] event ?var:Type/ action) . .
public void action(Type var);

public interface IProcess {
public void think (int T);
public boolean check (int S); // check for guard (A == S)
public void use (int S);
public void end ();
}

19/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class

Diagram

Rules to Generate Interfaces

e Translation rules for one emission and one receipt

public bool ean guard();

[guard] event !emitter: Type/ action public Type emtter();

public void action(Type var);

publ i c bool ean guard(Type var)

[guard] event ?var:Type/ action

public void action(Type var);

e Automatic generation from STS to Java skeleton

public interface IProcess {

public

public

public

public
}

void think (int T);

boolean check (int S); // check for guard (A == S)
void use (int S);

void end ();

19/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

Java Class for the Process STS

public class Process extends Data implements IProcess {

protected int A;

public Process () {

this.A = 0;

}

public void think (int T) {
this . A = T;

}

// guard with receipt
public boolean check (int S) {
return this.A == S;

}

// use action with receipt
public void use (int S) {
System.out. printin ("Enter_critical_section");

}

public void end () {
System.out. println ("Leaving_critical _section");

}

20/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Partial UML Class
Diagram

Partial UML Class Diagram

Runnable
Arblier
#arbiver
Acion ™ | +imchroroed: nt Haas
4 ame g Ftargel: wll ! + isfoscibled : bodlzan # e, Ll 5
SO + check(uards() : boolesn -
F: +r2ezel) brolesn
T + 2} iz [+ Flrs D i
+ng e — T
Transitiun 4 Foceeacion] ;I #llay-
#evetlare trirg Ay
InrkSynr L
#amchro il il
T\ # sy alaehunber : int 1. Conniia
fraided # adtior Bl + SR Z20FETR - oo ezn | skean) bodlaan
o suard g . . M + gyhcn Z20r B veld
ELEE WA }
<l
Hoos
/ \ #20Urter
J \ £ OCt
Lounter
Emissivn Data #LUmCrs
LockCom LI
FEmtter T T
] + egEomteAdiord vaiz

+ executeGuardd : Doolesn

1 SCaruzeshzpirey s O ezt poledr

+inrTnmtd) cnin

21/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Implementation of Concurrent

Composition

e Input: several STSs and synchronization vectors that

bind their events

22/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Implementation of Concurrent
Composition

e Input: several STSs and synchronization vectors that
bind their events

e Configures STS runtime support that conforms to the
semantic model

22/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Implementation of Concurrent
Composition

e Input: several STSs and synchronization vectors that
bind their events

e Configures STS runtime support that conforms to the
semantic model

Consequences:

22/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of

Partial UML Class
Diagram

e Input: several STSs and synchronization vectors that

e Configures STS runtime support that conforms to the

Implementation of Concurrent
Composition

bind their events
semantic model

Consequences:
e Each STS has its own execution thread

22/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of
Rendezvous
Ba:

Implementation of Concurrent
Composition

Input: several STSs and synchronization vectors that

bind their events

e Configures STS runtime support that conforms to the
semantic model

e Consequences:

e Each STS has its own execution thread
¢ All STSs have to be synchronized depending on
synchronization vectors.

22/38

Components

with STS : a .
Java Impl- Implementation of Concurrent
Fabricio CompOS|t|0n
Fernandes,
Jean-Claude
Royer, Robin
Passama e Input: several STSs and synchronization vectors that
bind their events
e Configures STS runtime support that conforms to the
semantic model
e Consequences:
Ao ol e Each STS has its own execution thread
feTe e All STSs have to be synchronized depending on

Rendezvous
Ba:
P

synchronization vectors.
Primitive component (at runtime): unique thread

22/38

Components

with STS : a .
Java Impl- Implementation of Concurrent
Fabricio CompOS|t|0n
Fernandes,
Jean-Claude
Royer, Robin
Passama e Input: several STSs and synchronization vectors that
bind their events
e Configures STS runtime support that conforms to the
semantic model
e Consequences:
Ao ol e Each STS has its own execution thread
feTe e All STSs have to be synchronized depending on

Rendezvous
Ba
P

synchronization vectors.

Primitive component (at runtime): unique thread

Composite component: collection of interacting threads

22/38

Components
with STS : a

Java Impl- Implementation of Concurrent
Fabricio COmpOSItIOﬂ
Fernandes,
Jean-Claude
Royer, Robin
Passama e Input: several STSs and synchronization vectors that
bind their events
e Configures STS runtime support that conforms to the
semantic model
e Consequences:
Ao ol e Each STS has its own execution thread
feTe e All STSs have to be synchronized depending on
Aendezvous synchronization vectors.

e Primitive component (at runtime): unique thread
e Composite component: collection of interacting threads

e Synchronization of threads: supported by a specific
rendezvous mechanism

22/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Basic Barrier Principles

o Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCEO06]

23/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles

Improvements on the

Basic Barrier Principles

o Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCEO06]

e Synchronization possible between two actions with the
same name

23/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier Principles

o Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCEO06]

e Synchronization possible between two actions with the

same name

¢ An arbiter controls that synchronizations are correctly
handled

23/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles

Mechanism

Diagram

Basic Barrier Principles

Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCEO06]

Synchronization possible between two actions with the
same name

An arbiter controls that synchronizations are correctly
handled

Two synchronization barriers with a Java monitor: one
barrier to enter and other one to leave

23/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles

Basic Barrier Principles

Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCEO06]

Synchronization possible between two actions with the
same name

An arbiter controls that synchronizations are correctly
handled

Two synchronization barriers with a Java monitor: one
barrier to enter and other one to leave

Why two? With only one, asynchronous actions may be
triggered at the same logical time (inconsistent)

23/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles

Runnable

7

LTS

#actions: String []
#target:int[] []
#currentState : int
#thread : Thread

+void eval()
+void run()

Basic Barrier Diagram

arbiter

Arbiter

counter : int []
syncVaueNumber : int []

+ void synchronizeOnEntry(int action)
{'synchronized}

+ void synchronizeExit(int action)
{'synchronized}

24/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Synchronization Barrier

synchronized public void synchronizeOnEntry (int action) {
if (counter[action] < syncValueNumber[action] — 1) {

counter[action]++; // we are not the last thread
try { // so block
wait ();
} catch (InterruptedException e) {}
} else {
counter[action]=0; // we are the last thread
notifyAll (); // so wake up all

25/38

Components
with STS : a

Java mpl- Sequence Entering the Barrier

mentation

Fabricio
Fernandes,

Jean-Claude -
Royer, Robin 5:STS pl:STS
Passama
; eval()

synchronizeOnEntry() : true

oy
|
data.executeAction("use”,v) \4»

; data.executeAction("gives".v)

wait()
- 7
Basic Barrier ' '
Principles i 1
Improvements on the ' '
Mechanism i [synchronizeOnEntry()
! notify() notify()

26/38

Components

with STS : a . .

Java Impe- Synchronization Vector
Fabricio Representation
Fernandes,

Jean-Claude

Royer, Robin

Passama

e First improvement: relax the restriction on names for
synchronization (reuse purposes)

Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

27/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Synchronization Vector
Representation

e First improvement: relax the restriction on names for
synchronization (reuse purposes)

e Solution: set of synchronizations vectors each one

represents a possible synchronization between some
events

27/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Synchronization Vector
Representation

e First improvement: relax the restriction on names for
synchronization (reuse purposes)

e Solution: set of synchronizations vectors each one
represents a possible synchronization between some
events

e Event and action name associated inside a Transition

27/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Synchronization Vector
Representation

First improvement: relax the restriction on names for
synchronization (reuse purposes)

Solution: set of synchronizations vectors each one
represents a possible synchronization between some
events

Event and action name associated inside a Transition

Representation by a new class L.ockSync with the
barrier methods

27/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Synchronization Vector
Representation

First improvement: relax the restriction on names for
synchronization (reuse purposes)

Solution: set of synchronizations vectors each one
represents a possible synchronization between some
events

Event and action name associated inside a Transition

Representation by a new class L.ockSync with the
barrier methods

Method i sSynchronous to choose one LockSync
object

27/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

al UML C
Diagram

Pal

s:STS

Sequence Entering the Barrier

[:Arbiter | [Ic:Locksync | pl:STS

Ic : LockSync = isSynchronous("gives"h '

synchronizeOnEntry() : true

wait()

A

-
.
g SPossible(lo) : true }

notify()

Ic : LockSync = isSynchronous("use")

synchronizeOnEntry()

notify() -
-

; data.executeAction("gives" v)

0
-

data.executeAction("use" v) \4»

28/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Independent Synchronizations

e Problem: synchronization serialized (single arbiter and

entry/exit methods are synchronized)

29/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Independent Synchronizations

e Problem: synchronization serialized (single arbiter and

entry/exit methods are synchronized)
e Solution: LockSync class

29/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Independent Synchronizations

e Problem: synchronization serialized (single arbiter and

entry/exit methods are synchronized)
e Solution: LockSync class

¢ Independent synchronization: one from another iff it
does not belong to its conflict set (Conflict class)

29/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Independent Synchronizations

Problem: synchronization serialized (single arbiter and
entry/exit methods are synchronized)

Solution: LockSync class

Independent synchronization: one from another iff it
does not belong to its conflict set (Conflict class)
Conflict of a synchronization: defined as set of
synchronizations which synchronize on a common
component

29/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Independent Synchronizations

Problem: synchronization serialized (single arbiter and

entry/exit methods are synchronized)
Solution: LockSync class

Independent synchronization: one from another iff it
does not belong to its conflict set (Conflict class)
Conflict of a synchronization: defined as set of
synchronizations which synchronize on a common
component

On the example, synchronizations are mutually
conflicting because of the central server component

29/38

Components
with STS : a

Java mpl- Sequence Entering the Barrier

mentation

Fabricio
Fernandes,
Jean-Claude ‘
Royer, Robin

Passama MW)’D

sists | [:Aags | [:Arbiter | [Ic:Locksync | pl:STS

i1

q‘ynchronizeOnEn!ry() : true

_—
|_ml

| g SPOSSIDIE(IO) : true

D‘M
D‘%— ; conflict.isFree() : true

- : wait()
oo i T
' ' Ic : LockSync = isSynchronous("use")
Improvements on the
Mechanism ! ! ' synchronizeOnEntry()
al UML G ' i ﬂ‘—
Diagram . notify() notify() -

; dala,exeo:u(eAcllon("glves",v)

data.executeAction("use” V)| . |

0
-

30/38

Components
with STS : a

Java mple- Guards with Communication

Fabricio
Fernandes,
Jean-Claude

Royer, Robin e More complex STS transitions: addition of the classes
aesama Guarded, Emission and Receipt

Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

31/38

Components
with STS : a

Tl e Guards with Communication

mentation

Fabricio
Fernandes,
Jean-Claude

Royer, Robin e More complex STS transitions: addition of the classes
aesama Guarded, Emission and Receipt

e Abstract class Data: execution of guards, emitters and
actions on an instance

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

31/38

Components
with STS : a

Tl e Guards with Communication

mentation

Fabricio
Fernandes,
Jean-Claude

Royer, Robin e More complex STS transitions: addition of the classes
sesama Guarded, Emission and Receipt

e Abstract class Data: execution of guards, emitters and
actions on an instance

e eval method modified to manage synchronous actions
with communication

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

31/38

Components
with STS : a

Tl e Guards with Communication

mentation

Fabricio
Fernandes,
Jean-Claude

Royer, Robin e More complex STS transitions: addition of the classes
aeeeme Guarded, Emission and Receipt

e Abstract class Data: execution of guards, emitters and
actions on an instance

e eval method modified to manage synchronous actions
with communication

e Introduction of the class LockCom (specialization of
LockSync with the communication case)

Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

31/38

Components

with STS : a . . .

Java impl- Guards with Communication
Fabricio

Fernandes,

Jean-Claude

Royer, Robin e More complex STS transitions: addition of the classes
aeeeme Guarded, Emission and Receipt

e Abstract class Data: execution of guards, emitters and
actions on an instance

e eval method modified to manage synchronous actions
with communication

e Introduction of the class LockCom (specialization of
LockSync with the communication case)

Basic Barrier

e New methods: setEmittedvalue to communicate

Improvements on the
Mechanism

the values to the LockSync objects; checkGuards to
L verify if the guards are true; eval modified to retrieve
the communicated values

31/38

Components
with STS : a

Java mpl- Sequence Entering the Barrier

mentation

Fabricio
Fernandes,
Jean-Claude ‘
Royer, Robin
Passama

STS ‘ ‘ : Flags ‘ ‘ :Arbiler‘ ‘lc:LockC(Jmm pl : STS

Ic : LockComm = isSynchronous("gives"

; data.exccuteGuard("gives” : true

i v = computeEmittedValue("gives") |

| setEmittedValue(v)

v

synchronizeOnEntry() : true

isPossible(lc) : true

checkGuards(lc) : true

D‘i data.executeGuard("gives") : trug
freeze() : true

) ' wait()
T i i .
Basic Barrier | ! L Ic : LockComim = isSynchronous("use")
Principles i ; '
sl . . . v = getEmmitedValue("use")
Improvements on the ! ! D<—
Mechanism | | synchronizeOnEntry()
Partial UML C] 1 notify() notify()
Diagram : -

; data.executeAction("gives",v)

data.executeAction("use",v) \4»

32/38

Components

with STS : a

Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Improvements on the
Mechanism

Partial UML Class
Diagram

Partial UML Class Diagram

counters

"

Runnable |
\ | Arbitet
" #
Ation LTS % + Isynchronous) © nt Flags
#rane pea v o e
#1: Thread | . + freazef) : boolean
Zﬁ + el void 1 T + relax) ; vid
+ runf) ; void 1
Transition + chopseAction() : int | #flags
1
eyveniName : String I
I LockSync
| #synchra ; int]] # conflicts -
? : # syncialueNumber : int 1.7 Conflict
Guarded # action 518 | + synchronizeOnEntry) ; hoolean + isFreeq - boolean
guard : String [e + synchranizeOnExdy) : void
1
! #counter
data !
: Counter
Receipt Emission
i - Daa | LockCom LAV T
#efiter: g + execiteAction) : void T + incCount) : vaid
+ exeruteCuard) * Boolean L 1| + synchronizeOnEntryiy - Ohject) : boolean :
I e = E EEEEEEEEEEEEEE -

33/38

Components
with STS : a

Java Imple- Related WOrk

mentation

Fabricio
Fernandes,
Jean-Claude

Royer, Robin e Use of explicit behavioural protocols

Passama

Conclusions

34/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Conclusions

Related work

e Use of explicit behavioural protocols

e PROCOL: sequences of events, data types and guards,

1-1 communication

34/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Conclusions

Related work

e Use of explicit behavioural protocols

e PROCOL: sequences of events, data types and guards,

1-1 communication

e SOFA: sequences of events, synchronous
communications 1-1 RPC calls

34/38

Components
with STS : a

Java Imple- Related WOrk

mentation

Fabricio
Fernandes,
Jean-Claude

Royer, Robin e Use of explicit behavioural protocols
Passama o PROCOL: sequences of events, data types and guards,
1-1 communication
e SOFA: sequences of events, synchronous
communications 1-1 RPC calls
e Cooperative Objects: Petri-Net, data types and guards,
synchronous communications 1-1 RPC calls

Conclusions

34/38

Components
with STS : a

Java Imple- Related WOrk

mentation

Fabricio
Fernandes,
Jean-Claude

Royer, Robin e Use of explicit behavioural protocols

Passama o PROCOL: sequences of events, data types and guards,
1-1 communication
e SOFA: sequences of events, synchronous
communications 1-1 RPC calls
e Cooperative Objects: Petri-Net, data types and guards,
synchronous communications 1-1 RPC calls

e Finite State Processes (FSP) with Java constructions:
process algebra based CSP, synchronization based on
Conclusions rendezvous mechanism

34/38

Components
with STS : a

Java Imple- Related WOrk

mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Use of explicit behavioural protocols
e PROCOL: sequences of events, data types and guards,
1-1 communication
e SOFA: sequences of events, synchronous
communications 1-1 RPC calls
e Cooperative Objects: Petri-Net, data types and guards,
synchronous communications 1-1 RPC calls
e Finite State Processes (FSP) with Java constructions:
process algebra based CSP, synchronization based on
Conclusions rendezvous mechanism

e JCSP: provides a CSP model for the Java thread
model, Java library, shared channels to synchronize
processes, safer alternative than threads

34/38

Components
with STS : a

Java Imple- COﬂClUSIOnS

mentation

Fabricio e Provides an operational interpreter to program primitive

Fernandes,

Jean-Claude components in Java with STS and a powerful way to
oyer, Robin

Passama compose them

Conclusions

35/38

Components
with STS : a

Java Im_ple- COﬂClUSIOnS
mentation
F;ﬁ;gg& e Provides an operational interpreter to program primitive
Jean-Claude components in Java with STS and a powerful way to
oyer, Robin
Passama compose them

e Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

Conclusions

35/38

Components

with STS : a .
Java Im_ple- COﬂClUSIOnS
mentation
s, e Provides an (_)perationgl interpreter to program primitive
Jean-Claude components in Java with STS and a powerful way to
oyer, Robin
Passama compose them

e Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

¢ Definition of conditional rendezvous taking into account
the communicated values

Conclusions

35/38

Components
with STS : a

Java Im_ple- COﬂClUSIOnS

mentation

oabrido e Provides an (_)perationgl interpreter to program primitive
Jean-Claude components in Java with STS and a powerful way to
oyer, Robin

Passama compose them

e Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

¢ Definition of conditional rendezvous taking into account
the communicated values

e No constraints on the ordering of processes

Conclusions

35/38

Components
with STS : a

Java Im_ple- COﬂClUSIOnS

mentation

F;ﬁ;gg& e Provides an operational interpreter to program primitive
Jean-Claude components in Java with STS and a powerful way to
oyer, Robin

Passama compose them

e Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

¢ Definition of conditional rendezvous taking into account
the communicated values

e No constraints on the ordering of processes

Gonclusions e Dynamic checker: to compare generated events to the

synchronization rules and compatble with each running
state machine

35/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Conclusions

Conclusions

Provides an operational interpreter to program primitive
components in Java with STS and a powerful way to
compose them

Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

Definition of conditional rendezvous taking into account
the communicated values
No constraints on the ordering of processes

Dynamic checker: to compare generated events to the
synchronization rules and compatble with each running
state machine

Efficiency has been partly taken into account:
distributing the central arbiter in several objects and
minimizing the synchronized parts

35/38

Components
with STS : a

Java Imple- FUTU re WO I’k

mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

e Definition of a Java based language with STS,
asynchronous and synchronous communications

Conclusions

36/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Conclusions

Future Work

e Definition of a Java based language with STS,
asynchronous and synchronous communications

e Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

36/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Conclusions

Future Work

e Definition of a Java based language with STS,
asynchronous and synchronous communications

e Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

e True usable system: exception handling, barrier
optimizations and RMI

36/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Conclusions

Future Work

Definition of a Java based language with STS,
asynchronous and synchronous communications

Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

True usable system: exception handling, barrier
optimizations and RMI

Prove the correctness of the solution

36/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Conclusions

Future Work

Definition of a Java based language with STS,
asynchronous and synchronous communications

Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

True usable system: exception handling, barrier
optimizations and RMI

Prove the correctness of the solution
Use of this new approach into the AMPLE Project

36/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

e Questions?

Questions?

37/38

Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Components with Symbolic Transition
Systems:
a Java Implementation of Rendezvous

Fabricio de Alexandria Fernandes
Jean-Claude Royer Robin Passama

Ecole des Mines de Nantes
Department of Computer Science — OBASCO Group
INRIA Research Centre Rennes - Bretagne Atlantique — LINA

I Einria JINE O geasle

vvvvv

10-07-2007 / CPA 2007

38/38

	Introduction
	Motivation
	Our work

	STS-oriented Component Model
	Architecture and Composite
	Rendezvous Principle
	Guard with Receipt

	Model Implementation Overview
	Implementation of the STS
	Rules to Generate Interfaces
	Partial UML Class Diagram

	A Java Implementation of Rendezvous
	Basic Barrier Principles
	Improvements on the Mechanism
	Partial UML Class Diagram

	Conclusions
	

