
Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Components with Symbolic Transition
Systems:

a Java Implementation of Rendezvous

Fabrício de Alexandria Fernandes
Jean-Claude Royer Robin Passama

École des Mines de Nantes
Department of Computer Science – OBASCO Group

INRIA Research Centre Rennes - Bretagne Atlantique – LINA

10-07-2007 / CPA 2007

1 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Outline
1 Introduction

Motivation
Our work

2 STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

3 Model Implementation Overview
Implementation of the STS
Rules to Generate Interfaces
Partial UML Class Diagram

4 A Java Implementation of Rendezvous
Basic Barrier Principles
Improvements on the Mechanism
Partial UML Class Diagram

5 Conclusions
2 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Outline
1 Introduction

Motivation
Our work

2 STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

3 Model Implementation Overview
Implementation of the STS
Rules to Generate Interfaces
Partial UML Class Diagram

4 A Java Implementation of Rendezvous
Basic Barrier Principles
Improvements on the Mechanism
Partial UML Class Diagram

5 Conclusions
2 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Outline
1 Introduction

Motivation
Our work

2 STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

3 Model Implementation Overview
Implementation of the STS
Rules to Generate Interfaces
Partial UML Class Diagram

4 A Java Implementation of Rendezvous
Basic Barrier Principles
Improvements on the Mechanism
Partial UML Class Diagram

5 Conclusions
2 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Outline
1 Introduction

Motivation
Our work

2 STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

3 Model Implementation Overview
Implementation of the STS
Rules to Generate Interfaces
Partial UML Class Diagram

4 A Java Implementation of Rendezvous
Basic Barrier Principles
Improvements on the Mechanism
Partial UML Class Diagram

5 Conclusions
2 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Outline
1 Introduction

Motivation
Our work

2 STS-oriented Component Model
Architecture and Composite
Rendezvous Principle
Guard with Receipt

3 Model Implementation Overview
Implementation of the STS
Rules to Generate Interfaces
Partial UML Class Diagram

4 A Java Implementation of Rendezvous
Basic Barrier Principles
Improvements on the Mechanism
Partial UML Class Diagram

5 Conclusions
2 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Motivation

• Component Based Software Engineering (CBSE)
• Explicit protocols integrated into component interfaces

to describe their behaviour in a formal way
• Need of formal analysis methods to analyze component

interactions
• Behavioural Interface Description Languages (BIDLs):

• Architectural analysis and verification issues
• Relate efficiently design and implementation

• Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules

3 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Motivation

• Component Based Software Engineering (CBSE)
• Explicit protocols integrated into component interfaces

to describe their behaviour in a formal way
• Need of formal analysis methods to analyze component

interactions
• Behavioural Interface Description Languages (BIDLs):

• Architectural analysis and verification issues
• Relate efficiently design and implementation

• Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules

3 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Motivation

• Component Based Software Engineering (CBSE)
• Explicit protocols integrated into component interfaces

to describe their behaviour in a formal way
• Need of formal analysis methods to analyze component

interactions
• Behavioural Interface Description Languages (BIDLs):

• Architectural analysis and verification issues
• Relate efficiently design and implementation

• Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules

3 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Motivation

• Component Based Software Engineering (CBSE)
• Explicit protocols integrated into component interfaces

to describe their behaviour in a formal way
• Need of formal analysis methods to analyze component

interactions
• Behavioural Interface Description Languages (BIDLs):

• Architectural analysis and verification issues
• Relate efficiently design and implementation

• Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules

3 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Motivation

• Component Based Software Engineering (CBSE)
• Explicit protocols integrated into component interfaces

to describe their behaviour in a formal way
• Need of formal analysis methods to analyze component

interactions
• Behavioural Interface Description Languages (BIDLs):

• Architectural analysis and verification issues
• Relate efficiently design and implementation

• Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules

3 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Motivation

• Component Based Software Engineering (CBSE)
• Explicit protocols integrated into component interfaces

to describe their behaviour in a formal way
• Need of formal analysis methods to analyze component

interactions
• Behavioural Interface Description Languages (BIDLs):

• Architectural analysis and verification issues
• Relate efficiently design and implementation

• Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules

3 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Motivation

• Component Based Software Engineering (CBSE)
• Explicit protocols integrated into component interfaces

to describe their behaviour in a formal way
• Need of formal analysis methods to analyze component

interactions
• Behavioural Interface Description Languages (BIDLs):

• Architectural analysis and verification issues
• Relate efficiently design and implementation

• Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules

3 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Our work

• Fill the gap between high-level formal models and
implementation of protocols

• Ensure consistency between analysis and execution
phases

• Link between specification or design models and
programming languages: automated translation of
models into programming code

• Long term goal: formal component model with
executable protocols which includes associated tools:
an STSLib, a formal ADL and analysis tools

4 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Our work

• Fill the gap between high-level formal models and
implementation of protocols

• Ensure consistency between analysis and execution
phases

• Link between specification or design models and
programming languages: automated translation of
models into programming code

• Long term goal: formal component model with
executable protocols which includes associated tools:
an STSLib, a formal ADL and analysis tools

4 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Our work

• Fill the gap between high-level formal models and
implementation of protocols

• Ensure consistency between analysis and execution
phases

• Link between specification or design models and
programming languages: automated translation of
models into programming code

• Long term goal: formal component model with
executable protocols which includes associated tools:
an STSLib, a formal ADL and analysis tools

4 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction
Motivation

Our work

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Our work

• Fill the gap between high-level formal models and
implementation of protocols

• Ensure consistency between analysis and execution
phases

• Link between specification or design models and
programming languages: automated translation of
models into programming code

• Long term goal: formal component model with
executable protocols which includes associated tools:
an STSLib, a formal ADL and analysis tools

4 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS-Oriented Component
Model

• Subset of Korrigan model [Poizat and Royer JUCS06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

• Two types of components
• Primitive: based on STS, to be presented in the next

slides
• Composite: reusable compositions of components (i.e.

architectures)

• A glue notation to define communications, currently
restricted to n-ary communications with one emitter and
several receivers

5 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS-Oriented Component
Model

• Subset of Korrigan model [Poizat and Royer JUCS06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

• Two types of components
• Primitive: based on STS, to be presented in the next

slides
• Composite: reusable compositions of components (i.e.

architectures)

• A glue notation to define communications, currently
restricted to n-ary communications with one emitter and
several receivers

5 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS-Oriented Component
Model

• Subset of Korrigan model [Poizat and Royer JUCS06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

• Two types of components
• Primitive: based on STS, to be presented in the next

slides
• Composite: reusable compositions of components (i.e.

architectures)

• A glue notation to define communications, currently
restricted to n-ary communications with one emitter and
several receivers

5 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS-Oriented Component
Model

• Subset of Korrigan model [Poizat and Royer JUCS06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

• Two types of components
• Primitive: based on STS, to be presented in the next

slides
• Composite: reusable compositions of components (i.e.

architectures)

• A glue notation to define communications, currently
restricted to n-ary communications with one emitter and
several receivers

5 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS-Oriented Component
Model

• Subset of Korrigan model [Poizat and Royer JUCS06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

• Two types of components
• Primitive: based on STS, to be presented in the next

slides
• Composite: reusable compositions of components (i.e.

architectures)

• A glue notation to define communications, currently
restricted to n-ary communications with one emitter and
several receivers

5 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Model

• Primitive component made of ports and a protocol
described in the STS formalism

• STS: states + transitions between states
• STS transition general syntax: [guard] event/action

• guard: condition to trigger the transition
• event: dynamic event possibly with emission ! or receipt

? (notification of the action execution)
• action: action to be performed
• Action may be described in an algebraic or a

programming style
• A Java translation from axiom description has been

experimented

6 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Model

• Primitive component made of ports and a protocol
described in the STS formalism

• STS: states + transitions between states
• STS transition general syntax: [guard] event/action

• guard: condition to trigger the transition
• event: dynamic event possibly with emission ! or receipt

? (notification of the action execution)
• action: action to be performed
• Action may be described in an algebraic or a

programming style
• A Java translation from axiom description has been

experimented

6 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Model

• Primitive component made of ports and a protocol
described in the STS formalism

• STS: states + transitions between states
• STS transition general syntax: [guard] event/action

• guard: condition to trigger the transition
• event: dynamic event possibly with emission ! or receipt

? (notification of the action execution)
• action: action to be performed
• Action may be described in an algebraic or a

programming style
• A Java translation from axiom description has been

experimented

6 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Model

• Primitive component made of ports and a protocol
described in the STS formalism

• STS: states + transitions between states
• STS transition general syntax: [guard] event/action

• guard: condition to trigger the transition
• event: dynamic event possibly with emission ! or receipt

? (notification of the action execution)
• action: action to be performed
• Action may be described in an algebraic or a

programming style
• A Java translation from axiom description has been

experimented

6 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Model

• Primitive component made of ports and a protocol
described in the STS formalism

• STS: states + transitions between states
• STS transition general syntax: [guard] event/action

• guard: condition to trigger the transition
• event: dynamic event possibly with emission ! or receipt

? (notification of the action execution)
• action: action to be performed
• Action may be described in an algebraic or a

programming style
• A Java translation from axiom description has been

experimented

6 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Model

• Primitive component made of ports and a protocol
described in the STS formalism

• STS: states + transitions between states
• STS transition general syntax: [guard] event/action

• guard: condition to trigger the transition
• event: dynamic event possibly with emission ! or receipt

? (notification of the action execution)
• action: action to be performed
• Action may be described in an algebraic or a

programming style
• A Java translation from axiom description has been

experimented

6 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Model

• Primitive component made of ports and a protocol
described in the STS formalism

• STS: states + transitions between states
• STS transition general syntax: [guard] event/action

• guard: condition to trigger the transition
• event: dynamic event possibly with emission ! or receipt

? (notification of the action execution)
• action: action to be performed
• Action may be described in an algebraic or a

programming style
• A Java translation from axiom description has been

experimented

6 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Model

• Primitive component made of ports and a protocol
described in the STS formalism

• STS: states + transitions between states
• STS transition general syntax: [guard] event/action

• guard: condition to trigger the transition
• event: dynamic event possibly with emission ! or receipt

? (notification of the action execution)
• action: action to be performed
• Action may be described in an algebraic or a

programming style
• A Java translation from axiom description has been

experimented

6 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Example of STS Component:
The Process

use ?S : Natural

E

Ithink ?T : Natural
/ A := T

[A=S]
T

end

/ A := 0 : Natural

7 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Architecture and Composite

• Note: We are rather discussing component types rather
than a component instance

• An architecture is a closed composite, that is not
designed to interact with the outside

• A composite is an assembly of primitive and composite
components

• Ports: connection points that externalizes the triggering
of a given event in the STS protocol

• Connections: primitive bindings between ports
• Connected ports: synchronization of corresponding

events

8 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Architecture and Composite

• Note: We are rather discussing component types rather
than a component instance

• An architecture is a closed composite, that is not
designed to interact with the outside

• A composite is an assembly of primitive and composite
components

• Ports: connection points that externalizes the triggering
of a given event in the STS protocol

• Connections: primitive bindings between ports
• Connected ports: synchronization of corresponding

events

8 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Architecture and Composite

• Note: We are rather discussing component types rather
than a component instance

• An architecture is a closed composite, that is not
designed to interact with the outside

• A composite is an assembly of primitive and composite
components

• Ports: connection points that externalizes the triggering
of a given event in the STS protocol

• Connections: primitive bindings between ports
• Connected ports: synchronization of corresponding

events

8 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Architecture and Composite

• Note: We are rather discussing component types rather
than a component instance

• An architecture is a closed composite, that is not
designed to interact with the outside

• A composite is an assembly of primitive and composite
components

• Ports: connection points that externalizes the triggering
of a given event in the STS protocol

• Connections: primitive bindings between ports
• Connected ports: synchronization of corresponding

events

8 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Architecture and Composite

• Note: We are rather discussing component types rather
than a component instance

• An architecture is a closed composite, that is not
designed to interact with the outside

• A composite is an assembly of primitive and composite
components

• Ports: connection points that externalizes the triggering
of a given event in the STS protocol

• Connections: primitive bindings between ports
• Connected ports: synchronization of corresponding

events

8 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Architecture and Composite

• Note: We are rather discussing component types rather
than a component instance

• An architecture is a closed composite, that is not
designed to interact with the outside

• A composite is an assembly of primitive and composite
components

• Ports: connection points that externalizes the triggering
of a given event in the STS protocol

• Connections: primitive bindings between ports
• Connected ports: synchronization of corresponding

events

8 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Architecture Example

activityIn

think

th
in

k us
e

gives
S

end
/ C:=C−1

/ C:=C+1
! gives S:int
[C==0]

/ S, T, C:=0:int
/ T:=(T+1)%MAXINT

! givet T:int

/ S:=(S+1)%MAXINT

activityOut

end

end

givet

en
d

end

s: server

p1: process

p2: process
Same STS as p1

? use S:int
[A==S]

T

/ A:=0:int

? think T:int
/ A:=T

E

I

use

9 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Rendezvous Principle

• Synchronization of several events: triggering them in
any real order but in the same logical time

• With communication: sender necessarily initiates a
value computation and communicate it to the receivers

• Primitive components involved in synchronization
cannot trigger any other event during this
synchronization

• Provides execution actions of all the participants and 1
to n communications

10 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Rendezvous Principle

• Synchronization of several events: triggering them in
any real order but in the same logical time

• With communication: sender necessarily initiates a
value computation and communicate it to the receivers

• Primitive components involved in synchronization
cannot trigger any other event during this
synchronization

• Provides execution actions of all the participants and 1
to n communications

10 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Rendezvous Principle

• Synchronization of several events: triggering them in
any real order but in the same logical time

• With communication: sender necessarily initiates a
value computation and communicate it to the receivers

• Primitive components involved in synchronization
cannot trigger any other event during this
synchronization

• Provides execution actions of all the participants and 1
to n communications

10 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Rendezvous Principle

• Synchronization of several events: triggering them in
any real order but in the same logical time

• With communication: sender necessarily initiates a
value computation and communicate it to the receivers

• Primitive components involved in synchronization
cannot trigger any other event during this
synchronization

• Provides execution actions of all the participants and 1
to n communications

10 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Three Modes for Components
Interaction

• Asynchronous activity: one component executes an
action independently (no interaction)

• Rendezvous without communication: n components
execute a given action in the same logical time

• Rendezvous: latter case + a component emits a value
and other receives it during the rendezvous. Receiver
guards check the emitted value (guards with receipt)

11 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Three Modes for Components
Interaction

• Asynchronous activity: one component executes an
action independently (no interaction)

• Rendezvous without communication: n components
execute a given action in the same logical time

• Rendezvous: latter case + a component emits a value
and other receives it during the rendezvous. Receiver
guards check the emitted value (guards with receipt)

11 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Three Modes for Components
Interaction

• Asynchronous activity: one component executes an
action independently (no interaction)

• Rendezvous without communication: n components
execute a given action in the same logical time

• Rendezvous: latter case + a component emits a value
and other receives it during the rendezvous. Receiver
guards check the emitted value (guards with receipt)

11 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Synchronization Vectors

• Concept coming from the synchronous product of
automata

• Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

• Computed according to the connections between
component ports

• Defined according to an arbitrary ordering of primitive
components

• The connections define a computation of
synchronization vectors, for instance ⊕ communication

• Also useful for configuring runtime support of
components

12 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Synchronization Vectors

• Concept coming from the synchronous product of
automata

• Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

• Computed according to the connections between
component ports

• Defined according to an arbitrary ordering of primitive
components

• The connections define a computation of
synchronization vectors, for instance ⊕ communication

• Also useful for configuring runtime support of
components

12 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Synchronization Vectors

• Concept coming from the synchronous product of
automata

• Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

• Computed according to the connections between
component ports

• Defined according to an arbitrary ordering of primitive
components

• The connections define a computation of
synchronization vectors, for instance ⊕ communication

• Also useful for configuring runtime support of
components

12 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Synchronization Vectors

• Concept coming from the synchronous product of
automata

• Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

• Computed according to the connections between
component ports

• Defined according to an arbitrary ordering of primitive
components

• The connections define a computation of
synchronization vectors, for instance ⊕ communication

• Also useful for configuring runtime support of
components

12 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Synchronization Vectors

• Concept coming from the synchronous product of
automata

• Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

• Computed according to the connections between
component ports

• Defined according to an arbitrary ordering of primitive
components

• The connections define a computation of
synchronization vectors, for instance ⊕ communication

• Also useful for configuring runtime support of
components

12 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Synchronization Vectors

• Concept coming from the synchronous product of
automata

• Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

• Computed according to the connections between
component ports

• Defined according to an arbitrary ordering of primitive
components

• The connections define a computation of
synchronization vectors, for instance ⊕ communication

• Also useful for configuring runtime support of
components

12 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Guard with Receipt

• Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

• Benefit: to increase the abstraction and reduce the size
of finite state machine

• Example guard with receipt and no action: [A=S] ? use
S:int .

• Three steps: receipt, guard checking, (null) action
• Rendezvous: all three steps have to be synchronous
• Major implementation issue: keep the model semantic

and components execution consistent

13 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Guard with Receipt

• Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

• Benefit: to increase the abstraction and reduce the size
of finite state machine

• Example guard with receipt and no action: [A=S] ? use
S:int .

• Three steps: receipt, guard checking, (null) action
• Rendezvous: all three steps have to be synchronous
• Major implementation issue: keep the model semantic

and components execution consistent

13 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Guard with Receipt

• Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

• Benefit: to increase the abstraction and reduce the size
of finite state machine

• Example guard with receipt and no action: [A=S] ? use
S:int .

• Three steps: receipt, guard checking, (null) action
• Rendezvous: all three steps have to be synchronous
• Major implementation issue: keep the model semantic

and components execution consistent

13 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Guard with Receipt

• Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

• Benefit: to increase the abstraction and reduce the size
of finite state machine

• Example guard with receipt and no action: [A=S] ? use
S:int .

• Three steps: receipt, guard checking, (null) action
• Rendezvous: all three steps have to be synchronous
• Major implementation issue: keep the model semantic

and components execution consistent

13 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Guard with Receipt

• Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

• Benefit: to increase the abstraction and reduce the size
of finite state machine

• Example guard with receipt and no action: [A=S] ? use
S:int .

• Three steps: receipt, guard checking, (null) action
• Rendezvous: all three steps have to be synchronous
• Major implementation issue: keep the model semantic

and components execution consistent

13 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model
Architecture and
Composite

Rendezvous
Principle

Guard with Receipt

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Guard with Receipt

• Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

• Benefit: to increase the abstraction and reduce the size
of finite state machine

• Example guard with receipt and no action: [A=S] ? use
S:int .

• Three steps: receipt, guard checking, (null) action
• Rendezvous: all three steps have to be synchronous
• Major implementation issue: keep the model semantic

and components execution consistent

13 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation Overview

• Implementing STS requires to manage different
development steps:

• Implementing the data part
• Representing the protocol
• Gluing the data part and the protocol into a primitive

component (intra-component composition)
• Implementing components synchronization and

communication (inter-component composition)

14 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation Overview

• Implementing STS requires to manage different
development steps:

• Implementing the data part
• Representing the protocol
• Gluing the data part and the protocol into a primitive

component (intra-component composition)
• Implementing components synchronization and

communication (inter-component composition)

14 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation Overview

• Implementing STS requires to manage different
development steps:

• Implementing the data part
• Representing the protocol
• Gluing the data part and the protocol into a primitive

component (intra-component composition)
• Implementing components synchronization and

communication (inter-component composition)

14 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation Overview

• Implementing STS requires to manage different
development steps:

• Implementing the data part
• Representing the protocol
• Gluing the data part and the protocol into a primitive

component (intra-component composition)
• Implementing components synchronization and

communication (inter-component composition)

14 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation Overview

• Implementing STS requires to manage different
development steps:

• Implementing the data part
• Representing the protocol
• Gluing the data part and the protocol into a primitive

component (intra-component composition)
• Implementing components synchronization and

communication (inter-component composition)

14 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation of the STS

• Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

• Dynamic part : states, transitions and some names
(guards, events, receipt variables, senders and actions)

• Data part : Java class implementing the formal data part
with a real implementation of the names with methods

• Both parts glued thanks to a normalized Java interface
• Emitter : pure function computing the emitted value in a

given state of the component
• Guard : boolean function implementing a condition
• A receiver is implemented as a method with parameters

15 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation of the STS

• Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

• Dynamic part : states, transitions and some names
(guards, events, receipt variables, senders and actions)

• Data part : Java class implementing the formal data part
with a real implementation of the names with methods

• Both parts glued thanks to a normalized Java interface
• Emitter : pure function computing the emitted value in a

given state of the component
• Guard : boolean function implementing a condition
• A receiver is implemented as a method with parameters

15 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation of the STS

• Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

• Dynamic part : states, transitions and some names
(guards, events, receipt variables, senders and actions)

• Data part : Java class implementing the formal data part
with a real implementation of the names with methods

• Both parts glued thanks to a normalized Java interface
• Emitter : pure function computing the emitted value in a

given state of the component
• Guard : boolean function implementing a condition
• A receiver is implemented as a method with parameters

15 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation of the STS

• Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

• Dynamic part : states, transitions and some names
(guards, events, receipt variables, senders and actions)

• Data part : Java class implementing the formal data part
with a real implementation of the names with methods

• Both parts glued thanks to a normalized Java interface
• Emitter : pure function computing the emitted value in a

given state of the component
• Guard : boolean function implementing a condition
• A receiver is implemented as a method with parameters

15 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation of the STS

• Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

• Dynamic part : states, transitions and some names
(guards, events, receipt variables, senders and actions)

• Data part : Java class implementing the formal data part
with a real implementation of the names with methods

• Both parts glued thanks to a normalized Java interface
• Emitter : pure function computing the emitted value in a

given state of the component
• Guard : boolean function implementing a condition
• A receiver is implemented as a method with parameters

15 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation of the STS

• Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

• Dynamic part : states, transitions and some names
(guards, events, receipt variables, senders and actions)

• Data part : Java class implementing the formal data part
with a real implementation of the names with methods

• Both parts glued thanks to a normalized Java interface
• Emitter : pure function computing the emitted value in a

given state of the component
• Guard : boolean function implementing a condition
• A receiver is implemented as a method with parameters

15 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation of the STS

• Separation of the FSM notations to the data part:
simplifies the implementation and promotes the reuse

• Dynamic part : states, transitions and some names
(guards, events, receipt variables, senders and actions)

• Data part : Java class implementing the formal data part
with a real implementation of the names with methods

• Both parts glued thanks to a normalized Java interface
• Emitter : pure function computing the emitted value in a

given state of the component
• Guard : boolean function implementing a condition
• A receiver is implemented as a method with parameters

15 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Implementation Schema

16 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Implementation Principles

• Combination of a protocol and existing Java code data
part (passive class that implements an interface)

• Implemented with an active object (thread in Java) to
execute STS protocol and to call the passive object

• An STS defines events, guards, emitters and actions
related to the Java interface of the data part class

• Automatic generation from STS to Java skeleton

17 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Implementation Principles

• Combination of a protocol and existing Java code data
part (passive class that implements an interface)

• Implemented with an active object (thread in Java) to
execute STS protocol and to call the passive object

• An STS defines events, guards, emitters and actions
related to the Java interface of the data part class

• Automatic generation from STS to Java skeleton

17 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Implementation Principles

• Combination of a protocol and existing Java code data
part (passive class that implements an interface)

• Implemented with an active object (thread in Java) to
execute STS protocol and to call the passive object

• An STS defines events, guards, emitters and actions
related to the Java interface of the data part class

• Automatic generation from STS to Java skeleton

17 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

STS Implementation Principles

• Combination of a protocol and existing Java code data
part (passive class that implements an interface)

• Implemented with an active object (thread in Java) to
execute STS protocol and to call the passive object

• An STS defines events, guards, emitters and actions
related to the Java interface of the data part class

• Automatic generation from STS to Java skeleton

17 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Implementation of the Process
Primitive Component

activityIn

/ think

E

I

/ use

/ end
end

activityOut

Process.java

Data Part STS Protocol

}

...

extends Data{
class Process

Java In
terface

? use S:int
[check]

T

? think T:int

C
o

m
p

o
n

en
t In

terface

18 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Rules to Generate Interfaces

• Translation rules for one emission and one receipt

public void action(Type var);

public boolean guard();

public void action(Type var);

[guard] event !emitter:Type / action

[guard] event ?var:Type / action

public Type emitter();

public boolean guard(Type var);

• Automatic generation from STS to Java skeleton

public inter face IProcess {
public void t h i n k (i n t T) ;
public boolean check (i n t S) ; / / check f o r guard (A == S)
public void use (i n t S) ;
public void end () ;

}

19 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Rules to Generate Interfaces

• Translation rules for one emission and one receipt

public void action(Type var);

public boolean guard();

public void action(Type var);

[guard] event !emitter:Type / action

[guard] event ?var:Type / action

public Type emitter();

public boolean guard(Type var);

• Automatic generation from STS to Java skeleton

public inter face IProcess {
public void t h i n k (i n t T) ;
public boolean check (i n t S) ; / / check f o r guard (A == S)
public void use (i n t S) ;
public void end () ;

}

19 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Java Class for the Process STS

public class Process extends Data implements IProcess {

protected i n t A;

public Process () {
th is .A = 0;

}

public void t h i n k (i n t T) {
th is .A = T ;

}

/ / guard w i th r e c e i p t
public boolean check (i n t S) {

return th is .A == S;
}

/ / use ac t i on w i th r e c e i p t
public void use (i n t S) {

System . out . p r i n t l n (" Enter c r i t i c a l sec t ion ") ;
}

public void end () {
System . out . p r i n t l n (" Leaving c r i t i c a l sec t ion ") ;

}

}

20 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview
Implementation of
the STS

Rules to Generate
Interfaces

Partial UML Class
Diagram

A Java Imple-
mentation of
Rendezvous

Conclusions

Partial UML Class Diagram

21 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Implementation of Concurrent
Composition

• Input: several STSs and synchronization vectors that
bind their events

• Configures STS runtime support that conforms to the
semantic model

• Consequences:
• Each STS has its own execution thread
• All STSs have to be synchronized depending on

synchronization vectors.

• Primitive component (at runtime): unique thread
• Composite component: collection of interacting threads
• Synchronization of threads: supported by a specific

rendezvous mechanism

22 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Implementation of Concurrent
Composition

• Input: several STSs and synchronization vectors that
bind their events

• Configures STS runtime support that conforms to the
semantic model

• Consequences:
• Each STS has its own execution thread
• All STSs have to be synchronized depending on

synchronization vectors.

• Primitive component (at runtime): unique thread
• Composite component: collection of interacting threads
• Synchronization of threads: supported by a specific

rendezvous mechanism

22 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Implementation of Concurrent
Composition

• Input: several STSs and synchronization vectors that
bind their events

• Configures STS runtime support that conforms to the
semantic model

• Consequences:
• Each STS has its own execution thread
• All STSs have to be synchronized depending on

synchronization vectors.

• Primitive component (at runtime): unique thread
• Composite component: collection of interacting threads
• Synchronization of threads: supported by a specific

rendezvous mechanism

22 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Implementation of Concurrent
Composition

• Input: several STSs and synchronization vectors that
bind their events

• Configures STS runtime support that conforms to the
semantic model

• Consequences:
• Each STS has its own execution thread
• All STSs have to be synchronized depending on

synchronization vectors.

• Primitive component (at runtime): unique thread
• Composite component: collection of interacting threads
• Synchronization of threads: supported by a specific

rendezvous mechanism

22 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Implementation of Concurrent
Composition

• Input: several STSs and synchronization vectors that
bind their events

• Configures STS runtime support that conforms to the
semantic model

• Consequences:
• Each STS has its own execution thread
• All STSs have to be synchronized depending on

synchronization vectors.

• Primitive component (at runtime): unique thread
• Composite component: collection of interacting threads
• Synchronization of threads: supported by a specific

rendezvous mechanism

22 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Implementation of Concurrent
Composition

• Input: several STSs and synchronization vectors that
bind their events

• Configures STS runtime support that conforms to the
semantic model

• Consequences:
• Each STS has its own execution thread
• All STSs have to be synchronized depending on

synchronization vectors.

• Primitive component (at runtime): unique thread
• Composite component: collection of interacting threads
• Synchronization of threads: supported by a specific

rendezvous mechanism

22 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Implementation of Concurrent
Composition

• Input: several STSs and synchronization vectors that
bind their events

• Configures STS runtime support that conforms to the
semantic model

• Consequences:
• Each STS has its own execution thread
• All STSs have to be synchronized depending on

synchronization vectors.

• Primitive component (at runtime): unique thread
• Composite component: collection of interacting threads
• Synchronization of threads: supported by a specific

rendezvous mechanism

22 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Implementation of Concurrent
Composition

• Input: several STSs and synchronization vectors that
bind their events

• Configures STS runtime support that conforms to the
semantic model

• Consequences:
• Each STS has its own execution thread
• All STSs have to be synchronized depending on

synchronization vectors.

• Primitive component (at runtime): unique thread
• Composite component: collection of interacting threads
• Synchronization of threads: supported by a specific

rendezvous mechanism

22 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Basic Barrier Principles

• Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCE06]

• Synchronization possible between two actions with the
same name

• An arbiter controls that synchronizations are correctly
handled

• Two synchronization barriers with a Java monitor: one
barrier to enter and other one to leave

• Why two? With only one, asynchronous actions may be
triggered at the same logical time (inconsistent)

23 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Basic Barrier Principles

• Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCE06]

• Synchronization possible between two actions with the
same name

• An arbiter controls that synchronizations are correctly
handled

• Two synchronization barriers with a Java monitor: one
barrier to enter and other one to leave

• Why two? With only one, asynchronous actions may be
triggered at the same logical time (inconsistent)

23 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Basic Barrier Principles

• Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCE06]

• Synchronization possible between two actions with the
same name

• An arbiter controls that synchronizations are correctly
handled

• Two synchronization barriers with a Java monitor: one
barrier to enter and other one to leave

• Why two? With only one, asynchronous actions may be
triggered at the same logical time (inconsistent)

23 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Basic Barrier Principles

• Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCE06]

• Synchronization possible between two actions with the
same name

• An arbiter controls that synchronizations are correctly
handled

• Two synchronization barriers with a Java monitor: one
barrier to enter and other one to leave

• Why two? With only one, asynchronous actions may be
triggered at the same logical time (inconsistent)

23 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Basic Barrier Principles

• Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCE06]

• Synchronization possible between two actions with the
same name

• An arbiter controls that synchronizations are correctly
handled

• Two synchronization barriers with a Java monitor: one
barrier to enter and other one to leave

• Why two? With only one, asynchronous actions may be
triggered at the same logical time (inconsistent)

23 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Basic Barrier Diagram

actions : String []

LTS

thread : Thread

+ void eval()
+ void run()

counter : int []
syncValueNumber : int []

+ void synchronizeOnEntry(int action)

+ void synchronizeExit(int action)

{synchronized}

{synchronized}

Arbiter

Runnable

arbiter
currentState : int

target : int [] []

24 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Synchronization Barrier

synchronized public void synchronizeOnEntry (i n t ac t i on) {
i f (counter [ac t i on] < syncValueNumber [ac t i on] − 1) {

counter [ac t i on]++ ; / / we are not the l a s t thread
t ry { / / so b lock

wai t () ;
} catch (I n te r rup tedExcep t i on e) { }

} else {
counter [ac t i on] = 0 ; / / we are the l a s t thread
n o t i f y A l l () ; / / so wake up a l l

}
}

25 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Sequence Entering the Barrier

s : STS : Arbiter p1 : STS

synchronizeOnEntry() : true

wait()

synchronizeOnEntry()

notify() notify()

data.executeAction("gives",v) data.executeAction("use",v)

eval()

26 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Synchronization Vector
Representation

• First improvement: relax the restriction on names for
synchronization (reuse purposes)

• Solution: set of synchronizations vectors each one
represents a possible synchronization between some
events

• Event and action name associated inside a Transition
• Representation by a new class LockSync with the

barrier methods
• Method isSynchronous to choose one LockSync

object

27 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Synchronization Vector
Representation

• First improvement: relax the restriction on names for
synchronization (reuse purposes)

• Solution: set of synchronizations vectors each one
represents a possible synchronization between some
events

• Event and action name associated inside a Transition
• Representation by a new class LockSync with the

barrier methods
• Method isSynchronous to choose one LockSync

object

27 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Synchronization Vector
Representation

• First improvement: relax the restriction on names for
synchronization (reuse purposes)

• Solution: set of synchronizations vectors each one
represents a possible synchronization between some
events

• Event and action name associated inside a Transition
• Representation by a new class LockSync with the

barrier methods
• Method isSynchronous to choose one LockSync

object

27 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Synchronization Vector
Representation

• First improvement: relax the restriction on names for
synchronization (reuse purposes)

• Solution: set of synchronizations vectors each one
represents a possible synchronization between some
events

• Event and action name associated inside a Transition
• Representation by a new class LockSync with the

barrier methods
• Method isSynchronous to choose one LockSync

object

27 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Synchronization Vector
Representation

• First improvement: relax the restriction on names for
synchronization (reuse purposes)

• Solution: set of synchronizations vectors each one
represents a possible synchronization between some
events

• Event and action name associated inside a Transition
• Representation by a new class LockSync with the

barrier methods
• Method isSynchronous to choose one LockSync

object

27 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Sequence Entering the Barrier

s : STS : Arbiter lc : LockSync p1 : STS

lc : LockSync = isSynchronous("gives")

synchronizeOnEntry() : true

isPoss ible(lc) : true

wait()

lc : LockSync = isSynchronous("use")

synchronizeOnEntry()

notify() notify()

data.executeAction("gives",v) data.executeAction("use",v)

28 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Independent Synchronizations

• Problem: synchronization serialized (single arbiter and
entry/exit methods are synchronized)

• Solution: LockSync class
• Independent synchronization: one from another iff it

does not belong to its conflict set (Conflict class)
• Conflict of a synchronization: defined as set of

synchronizations which synchronize on a common
component

• On the example, synchronizations are mutually
conflicting because of the central server component

29 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Independent Synchronizations

• Problem: synchronization serialized (single arbiter and
entry/exit methods are synchronized)

• Solution: LockSync class
• Independent synchronization: one from another iff it

does not belong to its conflict set (Conflict class)
• Conflict of a synchronization: defined as set of

synchronizations which synchronize on a common
component

• On the example, synchronizations are mutually
conflicting because of the central server component

29 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Independent Synchronizations

• Problem: synchronization serialized (single arbiter and
entry/exit methods are synchronized)

• Solution: LockSync class
• Independent synchronization: one from another iff it

does not belong to its conflict set (Conflict class)
• Conflict of a synchronization: defined as set of

synchronizations which synchronize on a common
component

• On the example, synchronizations are mutually
conflicting because of the central server component

29 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Independent Synchronizations

• Problem: synchronization serialized (single arbiter and
entry/exit methods are synchronized)

• Solution: LockSync class
• Independent synchronization: one from another iff it

does not belong to its conflict set (Conflict class)
• Conflict of a synchronization: defined as set of

synchronizations which synchronize on a common
component

• On the example, synchronizations are mutually
conflicting because of the central server component

29 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Independent Synchronizations

• Problem: synchronization serialized (single arbiter and
entry/exit methods are synchronized)

• Solution: LockSync class
• Independent synchronization: one from another iff it

does not belong to its conflict set (Conflict class)
• Conflict of a synchronization: defined as set of

synchronizations which synchronize on a common
component

• On the example, synchronizations are mutually
conflicting because of the central server component

29 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Sequence Entering the Barrier

s : STS : Flags : Arbiter lc : LockSync p1 : STS

lc : LockSync = isSynchronous("gives")

synchronizeOnEntry() : true

isPoss ible(lc) : true

freeze() : true

relax()
conflict.isFree() : true

wait()

lc : LockSync = isSynchronous("use")

synchronizeOnEntry()

notify() notify()

data.executeAction("gives",v) data.executeAction("use",v)

30 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Guards with Communication

• More complex STS transitions: addition of the classes
Guarded, Emission and Receipt

• Abstract class Data: execution of guards, emitters and
actions on an instance

• eval method modified to manage synchronous actions
with communication

• Introduction of the class LockCom (specialization of
LockSync with the communication case)

• New methods: setEmittedValue to communicate
the values to the LockSync objects; checkGuards to
verify if the guards are true; eval modified to retrieve
the communicated values

31 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Guards with Communication

• More complex STS transitions: addition of the classes
Guarded, Emission and Receipt

• Abstract class Data: execution of guards, emitters and
actions on an instance

• eval method modified to manage synchronous actions
with communication

• Introduction of the class LockCom (specialization of
LockSync with the communication case)

• New methods: setEmittedValue to communicate
the values to the LockSync objects; checkGuards to
verify if the guards are true; eval modified to retrieve
the communicated values

31 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Guards with Communication

• More complex STS transitions: addition of the classes
Guarded, Emission and Receipt

• Abstract class Data: execution of guards, emitters and
actions on an instance

• eval method modified to manage synchronous actions
with communication

• Introduction of the class LockCom (specialization of
LockSync with the communication case)

• New methods: setEmittedValue to communicate
the values to the LockSync objects; checkGuards to
verify if the guards are true; eval modified to retrieve
the communicated values

31 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Guards with Communication

• More complex STS transitions: addition of the classes
Guarded, Emission and Receipt

• Abstract class Data: execution of guards, emitters and
actions on an instance

• eval method modified to manage synchronous actions
with communication

• Introduction of the class LockCom (specialization of
LockSync with the communication case)

• New methods: setEmittedValue to communicate
the values to the LockSync objects; checkGuards to
verify if the guards are true; eval modified to retrieve
the communicated values

31 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Guards with Communication

• More complex STS transitions: addition of the classes
Guarded, Emission and Receipt

• Abstract class Data: execution of guards, emitters and
actions on an instance

• eval method modified to manage synchronous actions
with communication

• Introduction of the class LockCom (specialization of
LockSync with the communication case)

• New methods: setEmittedValue to communicate
the values to the LockSync objects; checkGuards to
verify if the guards are true; eval modified to retrieve
the communicated values

31 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Sequence Entering the Barrier

s : STS : Flags : Arbiter lc : LockComm p1 : STS

lc : LockComm = isSynchronous("gives")

data.executeGuard("gives") : true

v = computeEmittedValue("gives")

setEmittedValue(v)

synchronizeOnEntry() : true

isPossible(lc) : true

checkGuards(lc) : true
data.executeGuard("gives") : true

freeze() : true

relax() conflict.isFree() : true

wait()

lc : LockComm = isSynchronous("use")

v = getEmmitedValue("use")

synchronizeOnEntry()

notify() notify()

data.executeAction("gives",v) data.executeAction("use",v)

32 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles

Improvements on the
Mechanism

Partial UML Class
Diagram

Conclusions

Partial UML Class Diagram

33 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Related work

• Use of explicit behavioural protocols
• PROCOL: sequences of events, data types and guards,

1-1 communication
• SOFA: sequences of events, synchronous

communications 1-1 RPC calls
• Cooperative Objects: Petri-Net, data types and guards,

synchronous communications 1-1 RPC calls

• Finite State Processes (FSP) with Java constructions:
process algebra based CSP, synchronization based on
rendezvous mechanism

• JCSP: provides a CSP model for the Java thread
model, Java library, shared channels to synchronize
processes, safer alternative than threads

34 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Related work

• Use of explicit behavioural protocols
• PROCOL: sequences of events, data types and guards,

1-1 communication
• SOFA: sequences of events, synchronous

communications 1-1 RPC calls
• Cooperative Objects: Petri-Net, data types and guards,

synchronous communications 1-1 RPC calls

• Finite State Processes (FSP) with Java constructions:
process algebra based CSP, synchronization based on
rendezvous mechanism

• JCSP: provides a CSP model for the Java thread
model, Java library, shared channels to synchronize
processes, safer alternative than threads

34 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Related work

• Use of explicit behavioural protocols
• PROCOL: sequences of events, data types and guards,

1-1 communication
• SOFA: sequences of events, synchronous

communications 1-1 RPC calls
• Cooperative Objects: Petri-Net, data types and guards,

synchronous communications 1-1 RPC calls

• Finite State Processes (FSP) with Java constructions:
process algebra based CSP, synchronization based on
rendezvous mechanism

• JCSP: provides a CSP model for the Java thread
model, Java library, shared channels to synchronize
processes, safer alternative than threads

34 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Related work

• Use of explicit behavioural protocols
• PROCOL: sequences of events, data types and guards,

1-1 communication
• SOFA: sequences of events, synchronous

communications 1-1 RPC calls
• Cooperative Objects: Petri-Net, data types and guards,

synchronous communications 1-1 RPC calls

• Finite State Processes (FSP) with Java constructions:
process algebra based CSP, synchronization based on
rendezvous mechanism

• JCSP: provides a CSP model for the Java thread
model, Java library, shared channels to synchronize
processes, safer alternative than threads

34 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Related work

• Use of explicit behavioural protocols
• PROCOL: sequences of events, data types and guards,

1-1 communication
• SOFA: sequences of events, synchronous

communications 1-1 RPC calls
• Cooperative Objects: Petri-Net, data types and guards,

synchronous communications 1-1 RPC calls

• Finite State Processes (FSP) with Java constructions:
process algebra based CSP, synchronization based on
rendezvous mechanism

• JCSP: provides a CSP model for the Java thread
model, Java library, shared channels to synchronize
processes, safer alternative than threads

34 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Related work

• Use of explicit behavioural protocols
• PROCOL: sequences of events, data types and guards,

1-1 communication
• SOFA: sequences of events, synchronous

communications 1-1 RPC calls
• Cooperative Objects: Petri-Net, data types and guards,

synchronous communications 1-1 RPC calls

• Finite State Processes (FSP) with Java constructions:
process algebra based CSP, synchronization based on
rendezvous mechanism

• JCSP: provides a CSP model for the Java thread
model, Java library, shared channels to synchronize
processes, safer alternative than threads

34 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Conclusions
• Provides an operational interpreter to program primitive

components in Java with STS and a powerful way to
compose them

• Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

• Definition of conditional rendezvous taking into account
the communicated values

• No constraints on the ordering of processes
• Dynamic checker: to compare generated events to the

synchronization rules and compatble with each running
state machine

• Efficiency has been partly taken into account:
distributing the central arbiter in several objects and
minimizing the synchronized parts

35 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Conclusions
• Provides an operational interpreter to program primitive

components in Java with STS and a powerful way to
compose them

• Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

• Definition of conditional rendezvous taking into account
the communicated values

• No constraints on the ordering of processes
• Dynamic checker: to compare generated events to the

synchronization rules and compatble with each running
state machine

• Efficiency has been partly taken into account:
distributing the central arbiter in several objects and
minimizing the synchronized parts

35 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Conclusions
• Provides an operational interpreter to program primitive

components in Java with STS and a powerful way to
compose them

• Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

• Definition of conditional rendezvous taking into account
the communicated values

• No constraints on the ordering of processes
• Dynamic checker: to compare generated events to the

synchronization rules and compatble with each running
state machine

• Efficiency has been partly taken into account:
distributing the central arbiter in several objects and
minimizing the synchronized parts

35 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Conclusions
• Provides an operational interpreter to program primitive

components in Java with STS and a powerful way to
compose them

• Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

• Definition of conditional rendezvous taking into account
the communicated values

• No constraints on the ordering of processes
• Dynamic checker: to compare generated events to the

synchronization rules and compatble with each running
state machine

• Efficiency has been partly taken into account:
distributing the central arbiter in several objects and
minimizing the synchronized parts

35 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Conclusions
• Provides an operational interpreter to program primitive

components in Java with STS and a powerful way to
compose them

• Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

• Definition of conditional rendezvous taking into account
the communicated values

• No constraints on the ordering of processes
• Dynamic checker: to compare generated events to the

synchronization rules and compatble with each running
state machine

• Efficiency has been partly taken into account:
distributing the central arbiter in several objects and
minimizing the synchronized parts

35 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Conclusions
• Provides an operational interpreter to program primitive

components in Java with STS and a powerful way to
compose them

• Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

• Definition of conditional rendezvous taking into account
the communicated values

• No constraints on the ordering of processes
• Dynamic checker: to compare generated events to the

synchronization rules and compatble with each running
state machine

• Efficiency has been partly taken into account:
distributing the central arbiter in several objects and
minimizing the synchronized parts

35 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Future Work

• Definition of a Java based language with STS,
asynchronous and synchronous communications

• Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

• True usable system: exception handling, barrier
optimizations and RMI

• Prove the correctness of the solution
• Use of this new approach into the AMPLE Project

36 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Future Work

• Definition of a Java based language with STS,
asynchronous and synchronous communications

• Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

• True usable system: exception handling, barrier
optimizations and RMI

• Prove the correctness of the solution
• Use of this new approach into the AMPLE Project

36 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Future Work

• Definition of a Java based language with STS,
asynchronous and synchronous communications

• Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

• True usable system: exception handling, barrier
optimizations and RMI

• Prove the correctness of the solution
• Use of this new approach into the AMPLE Project

36 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Future Work

• Definition of a Java based language with STS,
asynchronous and synchronous communications

• Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

• True usable system: exception handling, barrier
optimizations and RMI

• Prove the correctness of the solution
• Use of this new approach into the AMPLE Project

36 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Future Work

• Definition of a Java based language with STS,
asynchronous and synchronous communications

• Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

• True usable system: exception handling, barrier
optimizations and RMI

• Prove the correctness of the solution
• Use of this new approach into the AMPLE Project

36 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Questions?

• Questions?

37 / 38

Components
with STS : a
Java Imple-
mentation

Fabrício
Fernandes,

Jean-Claude
Royer, Robin

Passama

Introduction

STS-oriented
Component
Model

Model Imple-
mentation
Overview

A Java Imple-
mentation of
Rendezvous

Conclusions

Components with Symbolic Transition
Systems:

a Java Implementation of Rendezvous

Fabrício de Alexandria Fernandes
Jean-Claude Royer Robin Passama

École des Mines de Nantes
Department of Computer Science – OBASCO Group

INRIA Research Centre Rennes - Bretagne Atlantique – LINA

10-07-2007 / CPA 2007

38 / 38

	Introduction
	Motivation
	Our work

	STS-oriented Component Model
	Architecture and Composite
	Rendezvous Principle
	Guard with Receipt

	Model Implementation Overview
	Implementation of the STS
	Rules to Generate Interfaces
	Partial UML Class Diagram

	A Java Implementation of Rendezvous
	Basic Barrier Principles
	Improvements on the Mechanism
	Partial UML Class Diagram

	Conclusions
	

