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Component Based Software Engineering (CBSE)

Explicit protocols integrated into component interfaces
to describe their behaviour in a formal way

Need of formal analysis methods to analyze component
interactions
Behavioural Interface Description Languages (BIDLSs):
¢ Architectural analysis and verification issues
¢ Relate efficiently design and implementation
Problem: explicit protocols are often dissociated from
component code, not ensured that component
execution will respect protocols rules
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Fill the gap between high-level formal models and
implementation of protocols

Ensure consistency between analysis and execution
phases

Link between specification or design models and
programming languages: automated translation of
models into programming code

Long term goal: formal component model with
executable protocols which includes associated tools:
an STSLib, a formal ADL and analysis tools
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e Subset of Korrigan model [Poizat and Royer JUCSO06]
based on ADL ontology: configurations (architectures)
made of components with ports and connections

e Two types of components

e Primitive: based on STS, to be presented in the next

slides
e Composite: reusable compositions of components (i.e.

architectures)
¢ A glue notation to define communications, currently
restricted to n-ary communications with one emitter and
several receivers
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e Primitive component made of ports and a protocol
described in the STS formalism

e STS: states + transitions between states
e STS transition general syntax: [guard] event/action

guard: condition to trigger the transition

event: dynamic event possibly with emission ! or receipt
? (notification of the action execution)

action: action to be performed

Action may be described in an algebraic or a
programming style

A Java translation from axiom description has been
experimented
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Note: We are rather discussing component types rather
than a component instance

An architecture is a closed composite, that is not
designed to interact with the outside

A composite is an assembly of primitive and composite
components

Ports: connection points that externalizes the triggering
of a given event in the STS protocol

Connections: primitive bindings between ports

Connected ports: synchronization of corresponding
events
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rpl: process )
/ A:=0:int
? think T:int
IA=T activityOut
[A==8]
P "
_ ? use S:int )
Z| 8%
s
S server
/8, T, C:=0iint ! givet T:int
[ T:=(T+1)%MAXINT
[C==0]
! gives S:int
/C:=C+1
end /S:=(S+1)%MAXINT .
/C:=C-1 2| = S
a| 8 =

p2: process
Same STSas pl
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Rendezvous Principle

Synchronization of several events: triggering them in
any real order but in the same logical time

With communication: sender necessarily initiates a
value computation and communicate it to the receivers
Primitive components involved in synchronization
cannot trigger any other event during this
synchronization

Provides execution actions of all the participants and 1
to n communications
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e Asynchronous activity: one component executes an
action independently (no interaction)

e Rendezvous without communication: n components
execute a given action in the same logical time

e Rendezvous: latter case + a component emits a value
and other receives it during the rendezvous. Receiver
guards check the emitted value (guards with receipt)
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Concept coming from the synchronous product of
automata

Definition: vector of events that denotes a possible
synchronization at runtime between a set of events

Computed according to the connections between
component ports

Defined according to an arbitrary ordering of primitive
components

The connections define a computation of

synchronization vectors, for instance & communication

Also useful for configuring runtime support of
components
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e Benefit: to increase the abstraction and reduce the size

of finite state machine

o Example guard with receipt and no action: [A=S] ? use

S:int .
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Important construction with a specific semantics:
components can conditionally receive and synchronize
on a value in the same logical time

Benefit: to increase the abstraction and reduce the size
of finite state machine

Example guard with receipt and no action: [A=S] ? use
S:int .

Three steps: receipt, guard checking, (null) action
Rendezvous: all three steps have to be synchronous

Major implementation issue: keep the model semantic
and components execution consistent
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Implementation Overview

e Implementing STS requires to manage different
development steps:

Implementing the data part

Representing the protocol

Giluing the data part and the protocol into a primitive
component (intra-component composition)
Implementing components synchronization and
communication (inter-component composition)
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+ check(s : int) : boolean
+ usefs :int) : woid
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Rules to Generate Interfaces

e Translation rules for one emission and one receipt
public bool ean guard();
[guard] event !emitter: Type/ action public Type emtter();
public void action(Type var);

publ i c bool ean guard(Type var)

[guard] event ?var:Type/ action ) . .
public void action(Type var);

public interface IProcess {
public void think (int T);
public boolean check (int S); // check for guard (A == S)
public void use (int S);
public void end ();
}
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e Translation rules for one emission and one receipt

public bool ean guard();

[guard] event !emitter: Type/ action public Type emtter();

public void action(Type var);

publ i c bool ean guard(Type var)

[guard] event ?var:Type/ action

public void action(Type var);

e Automatic generation from STS to Java skeleton

public interface IProcess {

public

public

public

public
}

void think (int T);

boolean check (int S); // check for guard (A == S)
void use (int S);

void end ();
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Java Class for the Process STS

public class Process extends Data implements IProcess {

protected int A;

public Process () {

this.A = 0;

}

public void think (int T) {
this . A = T;

}

// guard with receipt
public boolean check (int S) {
return this.A == S;

}

// use action with receipt
public void use (int S) {
System.out. printin ("Enter_critical_section");

}

public void end () {
System.out. println ("Leaving_critical _section");

}

20/38



Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

Partial UML Class
Diagram

Partial UML Class Diagram

Runnable
Arblier
#arbiver
Acion ™ | +imchroroed: nt Haas
4 ame g Ftargel: wll ! + isfoscibled : bodlzan # e, Ll 5
SO + check(uards() : boolesn -
F: +r2ezel) brolesn
T + 2} iz [ + Flrs D i
+ng e — T
Transitiun 4 Foceeacion] ;I #llay-
#evetlare  trirg Ay
InrkSynr L
#amchro il il
T\ # sy alaehunber : int 1. Conniia
fraided # adtior Bl + SR Z20FETR - oo ezn | skean) bodlaan
o suard g . . M + gyhcn Z20r B veld
ELEE WA }
<l
Hoos
/ \ #20Urter
J \ £ OCt
Lounter
Emissivn Data #LUmCrs
LockCom LI
FEmtter T T
] + egEomteAdiord vaiz

+ executeGuardd : Doolesn

1 SCaruzeshzpirey s O ezt poledr

+inrTnmtd) cnin

21/38



Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Implementation of Concurrent

Composition

e Input: several STSs and synchronization vectors that

bind their events

22/38



Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Implementation of Concurrent
Composition

e Input: several STSs and synchronization vectors that
bind their events

e Configures STS runtime support that conforms to the
semantic model

22/38



Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of
Rendezvous
Basic Barrier
Principles
Improvements on the
Mechanism

Partial UML Class
Diagram

Implementation of Concurrent
Composition

e Input: several STSs and synchronization vectors that
bind their events

e Configures STS runtime support that conforms to the
semantic model

Consequences:

22/38



Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of

Partial UML Class
Diagram

e Input: several STSs and synchronization vectors that

e Configures STS runtime support that conforms to the

Implementation of Concurrent
Composition

bind their events
semantic model

Consequences:
e Each STS has its own execution thread

22/38



Components

with STS : a
Java Imple-
mentation

Fabricio
Fernandes,
Jean-Claude
Royer, Robin
Passama

A Java Imple-
mentation of
Rendezvous
Ba:

Implementation of Concurrent
Composition

Input: several STSs and synchronization vectors that

bind their events

e Configures STS runtime support that conforms to the
semantic model

e Consequences:

e Each STS has its own execution thread
¢ All STSs have to be synchronized depending on
synchronization vectors.

22/38



Components

with STS : a .
Java Impl- Implementation of Concurrent
Fabricio CompOS|t|0n
Fernandes,
Jean-Claude
Royer, Robin
Passama e Input: several STSs and synchronization vectors that
bind their events
e Configures STS runtime support that conforms to the
semantic model
e Consequences:
Ao ol e Each STS has its own execution thread
feTe e All STSs have to be synchronized depending on

Rendezvous
Ba:
P

synchronization vectors.
Primitive component (at runtime): unique thread

22/38



Components

with STS : a .
Java Impl- Implementation of Concurrent
Fabricio CompOS|t|0n
Fernandes,
Jean-Claude
Royer, Robin
Passama e Input: several STSs and synchronization vectors that
bind their events
e Configures STS runtime support that conforms to the
semantic model
e Consequences:
Ao ol e Each STS has its own execution thread
feTe e All STSs have to be synchronized depending on

Rendezvous
Ba
P

synchronization vectors.

Primitive component (at runtime): unique thread

Composite component: collection of interacting threads

22/38



Components
with STS : a

Java Impl- Implementation of Concurrent
Fabricio COmpOSItIOﬂ
Fernandes,
Jean-Claude
Royer, Robin
Passama e Input: several STSs and synchronization vectors that
bind their events
e Configures STS runtime support that conforms to the
semantic model
e Consequences:
Ao ol e Each STS has its own execution thread
feTe e All STSs have to be synchronized depending on
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e Primitive component (at runtime): unique thread
e Composite component: collection of interacting threads

e Synchronization of threads: supported by a specific
rendezvous mechanism
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Started with a mechanism to implement the
synchronization of LTSs [Noyé et al, GPCEO06]

Synchronization possible between two actions with the
same name

An arbiter controls that synchronizations are correctly
handled

Two synchronization barriers with a Java monitor: one
barrier to enter and other one to leave

Why two? With only one, asynchronous actions may be
triggered at the same logical time (inconsistent)
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LTS

#actions: String []
#target:int[] []
#currentState : int
#thread : Thread

+void eval()
+void run()

Basic Barrier Diagram

# arbiter

Arbiter

# counter : int []
# syncVaueNumber : int []

+ void synchronizeOnEntry(int action)
{'synchronized}

+ void synchronizeExit(int action)
{'synchronized}
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Synchronization Barrier

synchronized public void synchronizeOnEntry (int action) {
if (counter[action] < syncValueNumber[action] — 1) {

counter[action]++; // we are not the last thread
try { // so block
wait ();
} catch (InterruptedException e) {}
} else {
counter[action]=0; // we are the last thread
notifyAll (); // so wake up all
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Problem: synchronization serialized (single arbiter and

entry/exit methods are synchronized)
Solution: LockSync class

Independent synchronization: one from another iff it
does not belong to its conflict set (Conflict class)
Conflict of a synchronization: defined as set of
synchronizations which synchronize on a common
component

On the example, synchronizations are mutually
conflicting because of the central server component
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Provides an operational interpreter to program primitive
components in Java with STS and a powerful way to
compose them

Protocols as Symbolic Transition Systems with full data
types, guards and communications (relating verification
and execution of component systems)

Definition of conditional rendezvous taking into account
the communicated values
No constraints on the ordering of processes

Dynamic checker: to compare generated events to the
synchronization rules and compatble with each running
state machine

Efficiency has been partly taken into account:
distributing the central arbiter in several objects and
minimizing the synchronized parts
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Definition of a Java based language with STS,
asynchronous and synchronous communications

Current version: reflexivity used to glue protocols and
data parts. Compiler version: direct call to the data
parts methods

True usable system: exception handling, barrier
optimizations and RMI

Prove the correctness of the solution
Use of this new approach into the AMPLE Project
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