Bounded Analysis and Decomposition for

Behavioural Description of Components

Jean-Claude Royer
Ecole des Mines de Nantes, OBASCO INRIA, LINA
Jean-Claude.Royer@emn.fr

Collaboration with Pascal Poizat and Gwen Salatin

FMOODS 2006, Bologna, ltaly

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Context

» Software component architectures

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Context

» Software component architectures

» Specifications and verifications

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Context

» Software component architectures
» Specifications and verifications

» Introducing complex protocols
for expressiveness and readability

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Context

» Software component architectures
» Specifications and verifications

» Introducing complex protocols
for expressiveness and readability

» Resource and service availability properties

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Context

v

Software component architectures

v

Specifications and verifications

v

Introducing complex protocols
for expressiveness and readability

v

Resource and service availability properties

v

Boundedness of dynamic systems with data

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Context

v

Software component architectures

v

Specifications and verifications

v

Introducing complex protocols
for expressiveness and readability

v

Resource and service availability properties

v

Boundedness of dynamic systems with data

v

Reusing classic model-checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» Related work

-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» Related work
» Symbolic Transition System (STS)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

» Related work
» Symbolic Transition System (STS)

» Configuration graph and interpretations

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» Related work
» Symbolic Transition System (STS)

» Configuration graph and interpretations

» Boundedness of counter systems

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Related work
Symbolic Transition System (STS)

Configuration graph and interpretations

Boundedness of counter systems

vV vVv.v. v Yy

Decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Related work
Symbolic Transition System (STS)

Configuration graph and interpretations

Boundedness of counter systems

Decomposition

vVVvYy VvV VvV VY

Examples :

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Related work
Symbolic Transition System (STS)

Configuration graph and interpretations

Boundedness of counter systems

Decomposition

vVVvYy VvV VvV VY

Examples :
» The ticket protocol example

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Related work
Symbolic Transition System (STS)

Configuration graph and interpretations

Boundedness of counter systems

Decomposition

vVVvYy VvV VvV VY

Examples :

» The ticket protocol example
» The resource allocator example

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» Related work
» Symbolic Transition System (STS)
» Configuration graph and interpretations
» Boundedness of counter systems
» Decomposition
» Examples :
» The ticket protocol example
» The resource allocator example
» Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Related Work

» To complement model-checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Related Work

» To complement model-checking

» Boundedness of generalized Petri nets (Finkel, Schnoebelen,

)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» To complement model-checking

» Boundedness of generalized Petri nets (Finkel, Schnoebelen,
)

» Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Related Work

» To complement model-checking

» Boundedness of generalized Petri nets (Finkel, Schnoebelen,

» Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

» Acceleration technique (Finkel and al.)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Related Work

v

To complement model-checking

v

Boundedness of generalized Petri nets (Finkel, Schnoebelen,

)

Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

Acceleration technique (Finkel and al.)

v

v

v

Theorem prover and model-checker (Rushby, ...)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Related Work

» To complement model-checking

» Boundedness of generalized Petri nets (Finkel, Schnoebelen,

» Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

» Acceleration technique (Finkel and al.)

» Theorem prover and model-checker (Rushby, ...)

» Constraint programming (Delzanno and Podelsky)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (

» Component needs complex protocols with data values

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (

» Component needs complex protocols with data values

» STS : a finite state and transition formalism

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (

» Component needs complex protocols with data values
» STS : a finite state and transition formalism
» STS rather than automata, LTS or Petri net

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

» Component needs complex protocols with data values
» STS : a finite state and transition formalism
» STS rather than automata, LTS or Petri net

» Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

>
>
>
>

v

Component needs complex protocols with data values
STS : a finite state and transition formalism
STS rather than automata, LTS or Petri net

Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

A transition label : [guard] event / action

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

>
>
>
>

Component needs complex protocols with data values
STS : a finite state and transition formalism
STS rather than automata, LTS or Petri net

Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

A transition label : [guard] event / action

v

v

Input (? x) and output (! v) event parameters

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

>
>
>
>

Component needs complex protocols with data values
STS : a finite state and transition formalism
STS rather than automata, LTS or Petri net

Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

» A transition label : [guard] event / action
» Input (? x) and output (! v) event parameters
» Guards : a condition to trigger the transition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

>
>
>
>

Component needs complex protocols with data values
STS : a finite state and transition formalism
STS rather than automata, LTS or Petri net

Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

A transition label : [guard] event / action
Input (? x) and output (! v) event parameters
Guards : a condition to trigger the transition

vV v vy

Action notation (imperative style in examples)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (

>
>
>
>

Component needs complex protocols with data values
STS : a finite state and transition formalism
STS rather than automata, LTS or Petri net

Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

A transition label : [guard] event / action
Input (? x) and output (! v) event parameters
Guards : a condition to trigger the transition

Action notation (imperative style in examples)

vV v v v Y

Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Resource Allocator

[size . =M
gauge :=M comlsize
who :=0 [gauge < size]
release?i
/ gauge := gauge+QUOTA
ask?i end /who:=0
/who =i

[gauge >= GIVEN]
acquirelwho
/ gauge := gauge—-GIVEN

[gauge < GIVEN]
delete
/ gauge := gauge+QUOTA

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

» Structured synchronous product for component composition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Verifications Issues

» Structured synchronous product for component composition

» Model-checking : state explosion problems

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Verifications Issues

» Structured synchronous product for component composition

» Model-checking : state explosion problems
» Several solutions for infinite state system :

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Verifications Issues

» Structured synchronous product for component composition

» Model-checking : state explosion problems
» Several solutions for infinite state system :
> Acceleration

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Verifications Issues

» Structured synchronous product for component composition
» Model-checking : state explosion problems

» Several solutions for infinite state system :

> Acceleration
» Theorem prover

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Verifications Issues

» Structured synchronous product for component composition

» Model-checking : state explosion problems
» Several solutions for infinite state system :

> Acceleration
» Theorem prover
» Constraint programming

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Verifications Issues

» Structured synchronous product for component composition
» Model-checking : state explosion problems

» Several solutions for infinite state system :

> Acceleration
» Theorem prover
» Constraint programming

» Model-checking : efficient and automatic

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

v

Structured synchronous product for component composition

v

Model-checking : state explosion problems

v

Several solutions for infinite state system :
> Acceleration
» Theorem prover
» Constraint programming

v

Model-checking : efficient and automatic

v

Abstraction technique :

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

v

Structured synchronous product for component composition

v

Model-checking : state explosion problems

v

Several solutions for infinite state system :
> Acceleration
» Theorem prover
» Constraint programming

v

Model-checking : efficient and automatic

v

Abstraction technique :
» Component context

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

v

Structured synchronous product for component composition

v

Model-checking : state explosion problems

v

Several solutions for infinite state system :
> Acceleration
» Theorem prover
» Constraint programming

v

Model-checking : efficient and automatic

v

Abstraction technique :

» Component context
» Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

/ gauge:=0 ; size:=3 ; total=3 [gauge<size]

@ ——— INITIDLE . release

/ gauge:= gauge+1 ; total:= total-1

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

/ gauge:=0 ; size:=3 ; total=3 [gauge<size]

o — | INITIDLE . release

/ gauge:= gauge+1 ; total:= total-1

[gauge<size]

.—»GNITIDLE gauge=0; size=3; total=3]:> release

/ gauge:= gauge+1 ; total:= total-1

Bounded Analysis and Decompositi

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

.—»GNITIDLE gauge=0; size=3; totalz3]

\

/

release
[gauge<size]

GNITIDLE gauge=1; size=3; total=2 release

/ gauge:= gauge+1 ; total:= total-1

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

*———» [INITIDLE gauge=0 size=3 total=3]

release

GNITIDLE gauge=1 size=3 total=2]

release

ENITIDLE gauge=2 size=3 total=1]

v

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

*—»> C INITIDLE gauge=0 size=3 total=3]

release

QNITIDLE gauge=1 size=3 total=2]

release

GNITIDLE gauge=2 size=3 total=1]

v
G(d,v0)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Interpretation

» The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Interpretation

» The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

» Various LTS (/.7s) interpretations of STS

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

» The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

» Various LTS (/.7s) interpretations of STS

[guard] event / action
X >y

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

» The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

» Various LTS (/.7s) interpretations of STS

[guard] event / action
X >y

>
event

Nl (v

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

Various LTS (/.1s) interpretations of STS

[guard] event / action
X >y

v

v

event
[-]

lirs(d) = Ii7s(G(d, V)

v

v

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

v

The configuration graph is not necessarily a finite machine

(infinite state set or infinite event set)

v

Various LTS (/.1s) interpretations of STS

[guard] event / action

event

>y

3

lirs(d) = Ii7s(G(d, V)

v

v

v

-]

Decomposition and boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr

Bounded Analysis and Decomposition

Composition

» We extend the LTS synchronous product to STS : ®y

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» We extend the LTS synchronous product to STS : ®y

> G(di ®y do, (v1,v2)) = G(G(d1, v1) Qy do, o) =
G(di,v1) @y G(d2, v2)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

» We extend the LTS synchronous product to STS : ®y

> G(di ®y do, (v1,v2)) = G(G(d1, v1) Qy do, o) =
G(di,v1) @y G(d2, v2)

» More computation implies more information

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr

Bounded Analysis and Decomposition

» We extend the LTS synchronous product to STS : ®y

> G(di ®y do, (v1,v2)) = G(G(d1, v1) Qy do, o) =
G(di,v1) @y G(d2, v2)

» More computation implies more information
> .= Ii7s(G(di, vi) ®y d2) = Ii7s(G(dL ®v do, (v, v2)))

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr

Bounded Analysis and Decomposition

v

We extend the LTS synchronous product to STS : ®y

G(di ®v da, (vi,) = G(G(d1, 1) ®y do, vr) =
G(di,v1) @y G(d2, v2)

More computation implies more information
o= Ii7s(G(d, vi) Qv do) = I 7s(G(di ®v da, (v1, v2)))
Iirs(di ®v do) = I175(G(d1, v1) ®v do) = ...

v

v

v

v

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

v

We extend the LTS synchronous product to STS : ®y

G(di ®v da, (vi,) = G(G(d1, 1) ®y do, vr) =
G(di,v1) @y G(d2, v2)

More computation implies more information

o = Iirs(G(d, vi) ®y d2) = Ii7s(G(d1 ®v da, (vi, v2)))
Iirs(di ®v d2) = I17s(G(d1, v1) @y do) = ...

Can be used to abstract some infinite and compound systems

v

vV v v .Yy

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

» Finite resource allocation

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Boundedness

» Finite resource allocation

» Finite configuration graph

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» Finite resource allocation
» Finite configuration graph
» Semi-decidable, but decidable with Petri nets and extensions

with variable transfers and constant multiplications (Finkel
and al.)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» Finite resource allocation
» Finite configuration graph

» Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

» STS restrictions (counter machine) :

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

» Finite resource allocation
» Finite configuration graph
» Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)
» STS restrictions (counter machine) :
» Variables C; are natural numbers

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

» Finite resource allocation
» Finite configuration graph

» Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

» STS restrictions (counter machine) :

» Variables C; are natural numbers
» Guards are C; > M,

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

» Finite resource allocation

» Finite configuration graph

» Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

» STS restrictions (counter machine) :

» Variables C; are natural numbers

» Guards are G; > M;

» C:=1X,a;x G £ p;, a;, pi :Natural and at least one 3; is
greater than 0

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Finite resource allocation

v

v

Finite configuration graph

Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)
STS restrictions (counter machine) :

» Variables C; are natural numbers

» Guards are C; > M;

> Ci:= Y7 a) % G £ pi, aj, pi :Natural and at least one a; is

greater than 0

v

v

v

Look for an accumulating cycle in the configuration graph

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

» Finite resource allocation

» Finite configuration graph

» Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

» STS restrictions (counter machine) :
» Variables C; are natural numbers
» Guards are G; > M;
» C:=1X,a;x G £ p;, a;, pi :Natural and at least one 3; is
greater than 0

» Look for an accumulating cycle in the configuration graph

ENITIDLE gauge=0 size=3)—»(INITIDLE gauge=1 size=3)
>

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Principle

» Unfolding is split in two steps from a partition of variables

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Decomposition Principle

» Unfolding is split in two steps from a partition of variables

» Data type guards and actions are decomposable in two parts

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Principle

» Unfolding is split in two steps from a partition of variables

» Data type guards and actions are decomposable in two parts

/ gauge:=0 ; size:=3 ; total=3 [gauge<size]

@®—— | INITIDLE ‘ release

» / gauge:= gauge+1 ; total:= total-1

A partition of the variables : {gauge, size } + {total}

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Decomposition Principle

» Unfolding is split in two steps from a partition of variables

» Data type guards and actions are decomposable in two parts
/ gauge:=0 ; size:=3 ; total=3 [gauge<size]

» / gauge:= gauge+1 ; total:= total-1
A partition of the variables : {gauge, size } + {total}

/ total=3
@ |INITIDLE gauge=0 size=3]

release
| / total:= total-1

ENITIDLE gauge=1 size=3 j

|

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decompositi

Decomposition Principle

» Unfolding is split in two steps from a partition of variables

» Data type guards and actions are decomposable in two parts
/ gauge:=0 ; size:=3 ; total=3 [gauge<size]

@ —— INITIDLE release
/ gauge:= gauge+1 ; total:= total-1

A partition of the variables : {gauge, size } + {total}

/ total=3

@ |INITIDLE gauge=0 size=3]

>

*—> [INITIDLE gauge=0 size=3 total=3)
release

| / total:= total-1

ENITIDLE gauge=1 size=3 j

release

GNITIDLE gauge=1 size=3 total=2)

| |

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr

Bounded Analysis and Decompositi

Decomposition Property

» Gi(d, Q) a decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

Decomposition Property

» Gi(d, Q) a decomposition

» Synchronous product is decomposable

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

» Gi(d, Q) a decomposition
» Synchronous product is decomposable
» If d,d’ are decomposable STS then d ®y d’ is decomposable

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

» Gi(d, Q) a decomposition

» Synchronous product is decomposable

» If d,d’ are decomposable STS then d ®y d’ is decomposable
» d decomposable /;15(G1(d,?)) = I.7s(G(d,V°))

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

Gi(d, v?) a decomposition

Synchronous product is decomposable

If d,d" are decomposable STS then d ®\, d’ is decomposable
d decomposable /,75(G1(d,?)) = I75(G(d, V)

Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

vV vVv.v.v Yy

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

Gi(d, v?) a decomposition

Synchronous product is decomposable

If d,d" are decomposable STS then d ®\, d’ is decomposable
d decomposable /,75(G1(d,?)) = I75(G(d, V)

Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

vV vVv.v.v Yy

v

Bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

Gi(d, v?) a decomposition

Synchronous product is decomposable

If d,d" are decomposable STS then d ®\, d’ is decomposable
d decomposable /,75(G1(d,?)) = I75(G(d, V)

Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

vV vVv.v.v Yy

» Bounded decomposition

» They can be proved by model-checking on the bounded
decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Example 1 : Ticket Protocol

/A :=0: Natural

think T : Natural

[A=S]
use ?S : Natural

/'S, T,C:=0: Natural

gives IS [C=0]
/S =S+1 givet IT
C=C+1 /T:=T+1

end /C=C-1

Process

Server

Synchronisations : (think, givet), (use, gives), (end, end)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr

Bounded Analysis and Decomposition

A Bounded Decomposition

» With a finite number of processes

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

A Bounded Decomposition

» With a finite number of processes

» Synchronous product is not bounded

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

» With a finite number of processes
» Synchronous product is not bounded
» Experiments with SPIN and CADP up to 6 processes

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

» With a finite number of processes
» Synchronous product is not bounded

» Experiments with SPIN and CADP up to 6 processes
» A bounded decomposition :

(A}, {c, T, sp =|{}, {cP |+ ({A}, {T, SP

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

With a finite number of processes
Synchronous product is not bounded
Experiments with SPIN and CADP up to 6 processes

vV v v .Yy

A bounded decomposition :

(A}, {c, T, sp =|{}, {cP |+ ({A}, {T, SP

The counter choice can be assisted using communication
analysis

v

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

With a finite number of processes
Synchronous product is not bounded

Experiments with SPIN and CADP up to 6 processes

vV v v .Yy

A bounded decomposition :

(A}, {c, T, sp =|{}, {cP |+ ({A}, {T, SP

The counter choice can be assisted using communication
analysis

v

» One counter : boundedness is decidable !

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

e Bounded Analysis

™O0[0] 00]

[1 givet_think_~(%[[], [0]. [11)
[end_end_-(%l[1, 1, 1
1 gives_use_-(%I[]. [0]. (1)
1 givet_-_think(%I[]. [1, [01])
1] gives_use_-(%[[]. [0], [1])] givet_-_think(%[[]. [J. [01])
[1 end_end_-(%L], [1, [11)
) gives_-_use(%l(1. [1, [0]))

(S, 0011 0 0]

[1 givet_think_~(%[(1, [0], [11)

[l end_-_end(%l[[], [1, (1)

[l end_-_end(%l[[], [1, (1)

1 gives_-_use(%I[l. [1. [01])

L0011 00]

Server x Process x Process

ean-Claude Royer OBASCO Jean-Clau

Example 2 : A Resource Allocator :

the Client System

/ who:=0
num:=0
total:=0
id:=[]
BeG | 2aca=ll
[i inid] releaseli
/ who:=0 id.remove(i)
acq.remove(QUOTA)
total:=total-QUOTA

com?s / size:=s

[not i in id] ask!i / who:=i
ok/who =0 num:=num-QUOTA
[num < QUOTA]
acquire

/ num:=num+GIVEN

[num = QUOTA]
new / acq:=acq+[QUOTA]
[total>0] delete id:=id+[who]

/id.pop() acq.pop() total:=total+QUOTA
total:=total-OUOTA

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposi

» A partition : ’({size, gauge}, {size, num, total})‘
+ ({who}, {who, acq, id})

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

» A partition : ’({size, gauge}, {size, num, total})‘
+ ({who}, {who, acq, id})
» Bounded decomposition (finite allocated quantities!)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

» A partition : ’({size, gauge}, {size, num, total})‘
+ ({who}, {who, acq, id})
» Bounded decomposition (finite allocated quantities!)

» The sequence delete ; delete cannot occur

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

» A partition : ’({size, gauge}, {size, num, total})‘
+ ({who}, {who, acq, id})
» Bounded decomposition (finite allocated quantities!)

» The sequence delete ; delete cannot occur
» Decomposition deadlocks iff GIVEN does not divide QUOTA

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A partition : ’({size, gauge}, {size, num, total})‘
+ ({who}, {who, acq, id})
Bounded decomposition (finite allocated quantities!)

v

The sequence delete ; delete cannot occur
Decomposition deadlocks iff GIVEN does not divide QUOTA

Deadlock freeness of the resource allocator needs an
additional property

vV v vy

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A partition : ’({size, gauge}, {size, num, total})‘
+ ({who}, {who, acq, id})
Bounded decomposition (finite allocated quantities!)

v

The sequence delete ; delete cannot occur
Decomposition deadlocks iff GIVEN does not divide QUOTA

Deadlock freeness of the resource allocator needs an
additional property

vV v vy

» ask; acquireP ; delete; acquire’; new; ok
where p +r = (QUOTA % GIVEN)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A partition : ’({size, gauge}, {size, num, total})‘
+ ({who}, {who, acq, id})
Bounded decomposition (finite allocated quantities!)

v

The sequence delete ; delete cannot occur
Decomposition deadlocks iff GIVEN does not divide QUOTA

Deadlock freeness of the resource allocator needs an
additional property

vV v vy

» ask; acquireP ; delete; acquire’; new; ok
where p +r = (QUOTA % GIVEN)

» Bounded waiting time availability is a safety

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

v

vV v vy

A partition : ’({size, gauge}, {size, num, total})‘
+ ({who}, {who, acq, id})
Bounded decomposition (finite allocated quantities!)

The sequence delete ; delete cannot occur
Decomposition deadlocks iff GIVEN does not divide QUOTA

Deadlock freeness of the resource allocator needs an
additional property

ask ; acquiref ; delete; acquire’ ; new; ok
where p + r = (QUOTA % GIVEN)

» Bounded waiting time availability is a safety

» All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

» A formal component model with STS

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

» A formal component model with STS

» Configuration graphs, boundedness, decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

» A formal component model with STS
» Configuration graphs, boundedness, decomposition

» Other experiments : slip, bakery protocols, cash point system,
ticket reservation

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

» A formal component model with STS
» Configuration graphs, boundedness, decomposition

» Other experiments : slip, bakery protocols, cash point system,
ticket reservation

» A Python prototype : STS definition, synchronous product,
boundedness checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

» A formal component model with STS

» Configuration graphs, boundedness, decomposition

» Other experiments : slip, bakery protocols, cash point system,
ticket reservation

» A Python prototype : STS definition, synchronous product,
boundedness checking

» Future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

» A formal component model with STS

» Configuration graphs, boundedness, decomposition

» Other experiments : slip, bakery protocols, cash point system,
ticket reservation

» A Python prototype : STS definition, synchronous product,
boundedness checking

» Future work

> Integrate other abstractions

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

v

A formal component model with STS

v

Configuration graphs, boundedness, decomposition

v

Other experiments : slip, bakery protocols, cash point system,
ticket reservation

v

A Python prototype : STS definition, synchronous product,
boundedness checking

Future work

v

> Integrate other abstractions
» Automate using communication analysis, data isomorphism, ...

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

» A formal component model with STS

» Configuration graphs, boundedness, decomposition

» Other experiments : slip, bakery protocols, cash point system,
ticket reservation

» A Python prototype : STS definition, synchronous product,
boundedness checking

» Future work

> Integrate other abstractions
» Automate using communication analysis, data isomorphism, ...
» Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

