
Bounded Analysis and Decomposition for
Behavioural Description of Components

Jean-Claude Royer
Ecole des Mines de Nantes, OBASCO INRIA, LINA

Jean-Claude.Royer@emn.fr

Collaboration with Pascal Poizat and Gwen Salaün

FMOODS 2006, Bologna, Italy

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Context

I Software component architectures

I Specifications and verifications

I Introducing complex protocols
for expressiveness and readability

I Resource and service availability properties

I Boundedness of dynamic systems with data

I Reusing classic model-checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Context

I Software component architectures

I Specifications and verifications

I Introducing complex protocols
for expressiveness and readability

I Resource and service availability properties

I Boundedness of dynamic systems with data

I Reusing classic model-checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Context

I Software component architectures

I Specifications and verifications

I Introducing complex protocols
for expressiveness and readability

I Resource and service availability properties

I Boundedness of dynamic systems with data

I Reusing classic model-checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Context

I Software component architectures

I Specifications and verifications

I Introducing complex protocols
for expressiveness and readability

I Resource and service availability properties

I Boundedness of dynamic systems with data

I Reusing classic model-checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Context

I Software component architectures

I Specifications and verifications

I Introducing complex protocols
for expressiveness and readability

I Resource and service availability properties

I Boundedness of dynamic systems with data

I Reusing classic model-checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Context

I Software component architectures

I Specifications and verifications

I Introducing complex protocols
for expressiveness and readability

I Resource and service availability properties

I Boundedness of dynamic systems with data

I Reusing classic model-checking

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition
I Examples :

I The ticket protocol example
I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition
I Examples :

I The ticket protocol example
I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition
I Examples :

I The ticket protocol example
I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition
I Examples :

I The ticket protocol example
I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition

I Examples :

I The ticket protocol example
I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition
I Examples :

I The ticket protocol example
I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition
I Examples :

I The ticket protocol example

I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition
I Examples :

I The ticket protocol example
I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Plan

I Related work

I Symbolic Transition System (STS)

I Configuration graph and interpretations

I Boundedness of counter systems

I Decomposition
I Examples :

I The ticket protocol example
I The resource allocator example

I Conclusion and future work

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Related Work

I To complement model-checking

I Boundedness of generalized Petri nets (Finkel, Schnoebelen,
...)

I Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

I Acceleration technique (Finkel and al.)

I Theorem prover and model-checker (Rushby, ...)

I Constraint programming (Delzanno and Podelsky)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Related Work

I To complement model-checking

I Boundedness of generalized Petri nets (Finkel, Schnoebelen,
...)

I Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

I Acceleration technique (Finkel and al.)

I Theorem prover and model-checker (Rushby, ...)

I Constraint programming (Delzanno and Podelsky)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Related Work

I To complement model-checking

I Boundedness of generalized Petri nets (Finkel, Schnoebelen,
...)

I Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

I Acceleration technique (Finkel and al.)

I Theorem prover and model-checker (Rushby, ...)

I Constraint programming (Delzanno and Podelsky)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Related Work

I To complement model-checking

I Boundedness of generalized Petri nets (Finkel, Schnoebelen,
...)

I Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

I Acceleration technique (Finkel and al.)

I Theorem prover and model-checker (Rushby, ...)

I Constraint programming (Delzanno and Podelsky)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Related Work

I To complement model-checking

I Boundedness of generalized Petri nets (Finkel, Schnoebelen,
...)

I Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

I Acceleration technique (Finkel and al.)

I Theorem prover and model-checker (Rushby, ...)

I Constraint programming (Delzanno and Podelsky)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Related Work

I To complement model-checking

I Boundedness of generalized Petri nets (Finkel, Schnoebelen,
...)

I Bounded decomposition is an abstraction method (Bensalem,
Clarke, Dams, ...)

I Acceleration technique (Finkel and al.)

I Theorem prover and model-checker (Rushby, ...)

I Constraint programming (Delzanno and Podelsky)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Symbolic Transition System (STS)

I Component needs complex protocols with data values

I STS : a finite state and transition formalism

I STS rather than automata, LTS or Petri net

I Process algebra with values (LOTOS)
models : STG, I/O-STS, STS ...

I A transition label : [guard] event / action

I Input (? x) and output (! v) event parameters

I Guards : a condition to trigger the transition

I Action notation (imperative style in examples)

I Formal notations are provided

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Resource Allocator

/ size := M
BEG

INIT

WORK

release?i
[gauge < size]

/ gauge := gauge+QUOTA

com!size

end / who := 0

[gauge >= GIVEN]
acquire!who

/ gauge := gauge−GIVEN

[gauge < GIVEN]
delete
/ gauge := gauge+QUOTA

/ who := i
ask?i

 who := 0
 gauge := M

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration
I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems

I Several solutions for infinite state system :

I Acceleration
I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration
I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration

I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration
I Theorem prover

I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration
I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration
I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic

I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration
I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration
I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context

I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications Issues

I Structured synchronous product for component composition

I Model-checking : state explosion problems
I Several solutions for infinite state system :

I Acceleration
I Theorem prover
I Constraint programming

I Model-checking : efficient and automatic
I Abstraction technique :

I Component context
I Related to boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

releaseINITIDLE

/ gauge:=0 ; size:=3 ; total=3

/ gauge:= gauge+1 ; total:= total−1

[gauge<size]

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

releaseINITIDLE

/ gauge:=0 ; size:=3 ; total=3

/ gauge:= gauge+1 ; total:= total−1

[gauge<size]

INITIDLE gauge=0 ; size=3 ; total=3

/ gauge:= gauge+1 ; total:= total−1

[gauge<size]

release

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

/ gauge:= gauge+1 ; total:= total−1

release

INITIDLE gauge=0 ; size=3 ; total=3

INITIDLE gauge=1 ; size=3 ; total=2 release

[gauge<size]

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

INITIDLE gauge=0 size=3 total=3

INITIDLE gauge=2 size=3 total=1

release

release

INITIDLE gauge=1 size=3 total=2

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Configuration Graph

Configuration graph : unfolding receipts and data evaluation

INITIDLE gauge=0 size=3 total=3

INITIDLE gauge=2 size=3 total=1

release

release

INITIDLE gauge=1 size=3 total=2

G (d , v0)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

I The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

I Various LTS (ILTS) interpretations of STS

I
x y

[guard] event / action

I
x y

event

I ILTS(d) � ILTS(G (d , v0))

I Decomposition and boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

I The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

I Various LTS (ILTS) interpretations of STS

I
x y

[guard] event / action

I
x y

event

I ILTS(d) � ILTS(G (d , v0))

I Decomposition and boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

I The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

I Various LTS (ILTS) interpretations of STS

I
x y

[guard] event / action

I
x y

event

I ILTS(d) � ILTS(G (d , v0))

I Decomposition and boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

I The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

I Various LTS (ILTS) interpretations of STS

I
x y

[guard] event / action

I
x y

event

I ILTS(d) � ILTS(G (d , v0))

I Decomposition and boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

I The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

I Various LTS (ILTS) interpretations of STS

I
x y

[guard] event / action

I
x y

event

I ILTS(d) � ILTS(G (d , v0))

I Decomposition and boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Interpretation

I The configuration graph is not necessarily a finite machine
(infinite state set or infinite event set)

I Various LTS (ILTS) interpretations of STS

I
x y

[guard] event / action

I
x y

event

I ILTS(d) � ILTS(G (d , v0))

I Decomposition and boundedness

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Composition

I We extend the LTS synchronous product to STS : ⊗V

I G (d1 ⊗V d2, (v1, v2)) ≡ G (G (d1, v1)⊗V d2, v2) ≡
G (d1, v1)⊗V G (d2, v2)

I More computation implies more information

II ILTS(d1 ⊗V d2) � ILTS(G (d1, v1)⊗V d2) � ...

I Can be used to abstract some infinite and compound systems

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Composition

I We extend the LTS synchronous product to STS : ⊗V

I G (d1 ⊗V d2, (v1, v2)) ≡ G (G (d1, v1)⊗V d2, v2) ≡
G (d1, v1)⊗V G (d2, v2)

I More computation implies more information

II ILTS(d1 ⊗V d2) � ILTS(G (d1, v1)⊗V d2) � ...

I Can be used to abstract some infinite and compound systems

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Composition

I We extend the LTS synchronous product to STS : ⊗V

I G (d1 ⊗V d2, (v1, v2)) ≡ G (G (d1, v1)⊗V d2, v2) ≡
G (d1, v1)⊗V G (d2, v2)

I More computation implies more information

I ... � ILTS(G (d1, v1)⊗V d2) � ...

I ILTS(d1 ⊗V d2) � ILTS(G (d1, v1)⊗V d2) � ...

I Can be used to abstract some infinite and compound systems

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Composition

I We extend the LTS synchronous product to STS : ⊗V

I G (d1 ⊗V d2, (v1, v2)) ≡ G (G (d1, v1)⊗V d2, v2) ≡
G (d1, v1)⊗V G (d2, v2)

I More computation implies more information

I ... � ILTS(G (d1, v1)⊗V d2) � ILTS(G (d1 ⊗V d2, (v1, v2)))

I ILTS(d1 ⊗V d2) � ILTS(G (d1, v1)⊗V d2) � ...

I Can be used to abstract some infinite and compound systems

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Composition

I We extend the LTS synchronous product to STS : ⊗V

I G (d1 ⊗V d2, (v1, v2)) ≡ G (G (d1, v1)⊗V d2, v2) ≡
G (d1, v1)⊗V G (d2, v2)

I More computation implies more information

I ... � ILTS(G (d1, v1)⊗V d2) � ILTS(G (d1 ⊗V d2, (v1, v2)))

I ILTS(d1 ⊗V d2) � ILTS(G (d1, v1)⊗V d2) � ...

I Can be used to abstract some infinite and compound systems

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Composition

I We extend the LTS synchronous product to STS : ⊗V

I G (d1 ⊗V d2, (v1, v2)) ≡ G (G (d1, v1)⊗V d2, v2) ≡
G (d1, v1)⊗V G (d2, v2)

I More computation implies more information

I ... � ILTS(G (d1, v1)⊗V d2) � ILTS(G (d1 ⊗V d2, (v1, v2)))

I ILTS(d1 ⊗V d2) � ILTS(G (d1, v1)⊗V d2) � ...

I Can be used to abstract some infinite and compound systems

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :

I Variables Ci are natural numbers
I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :

I Variables Ci are natural numbers
I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :

I Variables Ci are natural numbers
I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :

I Variables Ci are natural numbers
I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :
I Variables Ci are natural numbers

I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :
I Variables Ci are natural numbers
I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :
I Variables Ci are natural numbers
I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :
I Variables Ci are natural numbers
I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Boundedness

I Finite resource allocation

I Finite configuration graph

I Semi-decidable, but decidable with Petri nets and extensions
with variable transfers and constant multiplications (Finkel
and al.)

I STS restrictions (counter machine) :
I Variables Ci are natural numbers
I Guards are Ci ≥ Mi

I Ci:= Σm
j=1aj ∗ Cj ± pi , aj , pi :Natural and at least one aj is

greater than 0

I Look for an accumulating cycle in the configuration graph

I
INITIDLE gauge=0 size=3 INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Principle

I Unfolding is split in two steps from a partition of variables

I Data type guards and actions are decomposable in two parts

I

releaseINITIDLE

/ gauge:=0 ; size:=3 ; total=3

/ gauge:= gauge+1 ; total:= total−1

[gauge<size]

A partition of the variables : {gauge, size } + {total}

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Principle

I Unfolding is split in two steps from a partition of variables

I Data type guards and actions are decomposable in two parts

I

releaseINITIDLE

/ gauge:=0 ; size:=3 ; total=3

/ gauge:= gauge+1 ; total:= total−1

[gauge<size]

A partition of the variables : {gauge, size } + {total}

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Principle

I Unfolding is split in two steps from a partition of variables

I Data type guards and actions are decomposable in two parts

I

releaseINITIDLE

/ gauge:=0 ; size:=3 ; total=3

/ gauge:= gauge+1 ; total:= total−1

[gauge<size]

A partition of the variables : {gauge, size } + {total}

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Principle

I Unfolding is split in two steps from a partition of variables

I Data type guards and actions are decomposable in two parts

I

releaseINITIDLE

/ gauge:=0 ; size:=3 ; total=3

/ gauge:= gauge+1 ; total:= total−1

[gauge<size]

A partition of the variables : {gauge, size } + {total}
/ total=3

release
/ total:= total−1

INITIDLE gauge=0 size=3

INITIDLE gauge=1 size=3

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Principle

I Unfolding is split in two steps from a partition of variables

I Data type guards and actions are decomposable in two parts

I

releaseINITIDLE

/ gauge:=0 ; size:=3 ; total=3

/ gauge:= gauge+1 ; total:= total−1

[gauge<size]

A partition of the variables : {gauge, size } + {total}
/ total=3

release
/ total:= total−1

INITIDLE gauge=0 size=3

INITIDLE gauge=1 size=3

INITIDLE gauge=0 size=3 total=3

INITIDLE gauge=1 size=3 total=2

release

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

I G1(d , v0
1) a decomposition

I Synchronous product is decomposable

I If d , d ′ are decomposable STS then d ⊗V d ′ is decomposable

I d decomposable ILTS(G1(d , v0
1)) � ILTS(G (d , v0))

I Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

I Bounded decomposition

I They can be proved by model-checking on the bounded
decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

I G1(d , v0
1) a decomposition

I Synchronous product is decomposable

I If d , d ′ are decomposable STS then d ⊗V d ′ is decomposable

I d decomposable ILTS(G1(d , v0
1)) � ILTS(G (d , v0))

I Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

I Bounded decomposition

I They can be proved by model-checking on the bounded
decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

I G1(d , v0
1) a decomposition

I Synchronous product is decomposable

I If d , d ′ are decomposable STS then d ⊗V d ′ is decomposable

I d decomposable ILTS(G1(d , v0
1)) � ILTS(G (d , v0))

I Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

I Bounded decomposition

I They can be proved by model-checking on the bounded
decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

I G1(d , v0
1) a decomposition

I Synchronous product is decomposable

I If d , d ′ are decomposable STS then d ⊗V d ′ is decomposable

I d decomposable ILTS(G1(d , v0
1)) � ILTS(G (d , v0))

I Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

I Bounded decomposition

I They can be proved by model-checking on the bounded
decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

I G1(d , v0
1) a decomposition

I Synchronous product is decomposable

I If d , d ′ are decomposable STS then d ⊗V d ′ is decomposable

I d decomposable ILTS(G1(d , v0
1)) � ILTS(G (d , v0))

I Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

I Bounded decomposition

I They can be proved by model-checking on the bounded
decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

I G1(d , v0
1) a decomposition

I Synchronous product is decomposable

I If d , d ′ are decomposable STS then d ⊗V d ′ is decomposable

I d decomposable ILTS(G1(d , v0
1)) � ILTS(G (d , v0))

I Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

I Bounded decomposition

I They can be proved by model-checking on the bounded
decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Decomposition Property

I G1(d , v0
1) a decomposition

I Synchronous product is decomposable

I If d , d ′ are decomposable STS then d ⊗V d ′ is decomposable

I d decomposable ILTS(G1(d , v0
1)) � ILTS(G (d , v0))

I Safety properties can be proved by simulation (Dams,
Loiseaux, ...)

I Bounded decomposition

I They can be proved by model-checking on the bounded
decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Example 1 : Ticket Protocol

[A=S]

/ A := 0 : Natural

end

/ A := T
think ?T : Natural

use ?S : Natural T

E

I

[C=0]

/ T := T+1
givet !T

end / C := C − 1

S
gives !S

/ S := S + 1
C := C + 1

/ S, T, C := 0 : Natural

Process Server

Synchronisations : (think, givet), (use, gives), (end, end)

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

I With a finite number of processes

I Synchronous product is not bounded

I Experiments with SPIN and CADP up to 6 processes

I A bounded decomposition :

({A}, {C, T, S}) = ({}, {C}) + ({A}, {T, S})
I The counter choice can be assisted using communication

analysis

I One counter : boundedness is decidable !

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

I With a finite number of processes

I Synchronous product is not bounded

I Experiments with SPIN and CADP up to 6 processes

I A bounded decomposition :

({A}, {C, T, S}) = ({}, {C}) + ({A}, {T, S})
I The counter choice can be assisted using communication

analysis

I One counter : boundedness is decidable !

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

I With a finite number of processes

I Synchronous product is not bounded

I Experiments with SPIN and CADP up to 6 processes

I A bounded decomposition :

({A}, {C, T, S}) = ({}, {C}) + ({A}, {T, S})
I The counter choice can be assisted using communication

analysis

I One counter : boundedness is decidable !

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

I With a finite number of processes

I Synchronous product is not bounded

I Experiments with SPIN and CADP up to 6 processes

I A bounded decomposition :

({A}, {C, T, S}) = ({}, {C}) + ({A}, {T, S})

I The counter choice can be assisted using communication
analysis

I One counter : boundedness is decidable !

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

I With a finite number of processes

I Synchronous product is not bounded

I Experiments with SPIN and CADP up to 6 processes

I A bounded decomposition :

({A}, {C, T, S}) = ({}, {C}) + ({A}, {T, S})
I The counter choice can be assisted using communication

analysis

I One counter : boundedness is decidable !

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

A Bounded Decomposition

I With a finite number of processes

I Synchronous product is not bounded

I Experiments with SPIN and CADP up to 6 processes

I A bounded decomposition :

({A}, {C, T, S}) = ({}, {C}) + ({A}, {T, S})
I The counter choice can be assisted using communication

analysis

I One counter : boundedness is decidable !

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

The Bounded Analysis

('S', 'I', 'I')[0 0 [0] 0 0]

('S', 'E', 'E')[0 0 [0] 0 0]

('S', 'E', 'T')[0 0 [1] 0 0]

[] gives_-_use(%[[], [], [0]])

('S', 'T', 'E')[0 0 [1] 0 0]

[] gives_use_-(%[[], [0], []])

('S', 'E', 'I')[0 0 [0] 0 0]

[] end_-_end(%[[], [], []])

[] givet_think_-(%[[], [0], []])

('S', 'I', 'E')[0 0 [0] 0 0]

[] givet_-_think(%[[], [], [0]])

[] givet_-_think(%[[], [], [0]])

('S', 'T', 'I')[0 0 [1] 0 0]

[] gives_use_-(%[[], [0], []])

[] end_end_-(%[[], [], []])

[] givet_think_-(%[[], [0], []])

('S', 'I', 'T')[0 0 [1] 0 0]

[] gives_-_use(%[[], [], [0]])

[] givet_think_-(%[[], [0], []])

[] end_-_end(%[[], [], []])

[] end_end_-(%[[], [], []])

[] givet_-_think(%[[], [], [0]])

Server x Process x Process

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Example 2 : A Resource Allocator : the Client System

com?s / size:=s

BEG

IDLE

ASK OK

[not i in id] ask!i / who:=i

[num < QUOTA]

acquire

/ num:=num+GIVEN

[total>0] delete

/ id.pop() acq.pop()

total:=total−QUOTA

total:=total+QUOTA

id:=id+[who]

new / acq:=acq+[QUOTA]

[num = QUOTA]

ok / who:=0 num:=num−QUOTA

total:=total−QUOTA
acq.remove(QUOTA)

/ who:=0 id.remove(i)
[i in id] release!i

acq:=[]
id:=[]
total:=0
num:=0

/ who:=0

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications

I A partition : ({size, gauge}, {size, num, total})
+ ({who}, {who, acq, id})

I Bounded decomposition (finite allocated quantities !)

I The sequence delete ; delete cannot occur

I Decomposition deadlocks iff GIVEN does not divide QUOTA

I Deadlock freeness of the resource allocator needs an
additional property

I ask ; acquirep ; delete ; acquirer ; new ; ok
where p + r = (QUOTA % GIVEN)

I Bounded waiting time availability is a safety

I All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications

I A partition : ({size, gauge}, {size, num, total})
+ ({who}, {who, acq, id})

I Bounded decomposition (finite allocated quantities !)

I The sequence delete ; delete cannot occur

I Decomposition deadlocks iff GIVEN does not divide QUOTA

I Deadlock freeness of the resource allocator needs an
additional property

I ask ; acquirep ; delete ; acquirer ; new ; ok
where p + r = (QUOTA % GIVEN)

I Bounded waiting time availability is a safety

I All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications

I A partition : ({size, gauge}, {size, num, total})
+ ({who}, {who, acq, id})

I Bounded decomposition (finite allocated quantities !)

I The sequence delete ; delete cannot occur

I Decomposition deadlocks iff GIVEN does not divide QUOTA

I Deadlock freeness of the resource allocator needs an
additional property

I ask ; acquirep ; delete ; acquirer ; new ; ok
where p + r = (QUOTA % GIVEN)

I Bounded waiting time availability is a safety

I All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications

I A partition : ({size, gauge}, {size, num, total})
+ ({who}, {who, acq, id})

I Bounded decomposition (finite allocated quantities !)

I The sequence delete ; delete cannot occur

I Decomposition deadlocks iff GIVEN does not divide QUOTA

I Deadlock freeness of the resource allocator needs an
additional property

I ask ; acquirep ; delete ; acquirer ; new ; ok
where p + r = (QUOTA % GIVEN)

I Bounded waiting time availability is a safety

I All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications

I A partition : ({size, gauge}, {size, num, total})
+ ({who}, {who, acq, id})

I Bounded decomposition (finite allocated quantities !)

I The sequence delete ; delete cannot occur

I Decomposition deadlocks iff GIVEN does not divide QUOTA

I Deadlock freeness of the resource allocator needs an
additional property

I ask ; acquirep ; delete ; acquirer ; new ; ok
where p + r = (QUOTA % GIVEN)

I Bounded waiting time availability is a safety

I All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications

I A partition : ({size, gauge}, {size, num, total})
+ ({who}, {who, acq, id})

I Bounded decomposition (finite allocated quantities !)

I The sequence delete ; delete cannot occur

I Decomposition deadlocks iff GIVEN does not divide QUOTA

I Deadlock freeness of the resource allocator needs an
additional property

I ask ; acquirep ; delete ; acquirer ; new ; ok
where p + r = (QUOTA % GIVEN)

I Bounded waiting time availability is a safety

I All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications

I A partition : ({size, gauge}, {size, num, total})
+ ({who}, {who, acq, id})

I Bounded decomposition (finite allocated quantities !)

I The sequence delete ; delete cannot occur

I Decomposition deadlocks iff GIVEN does not divide QUOTA

I Deadlock freeness of the resource allocator needs an
additional property

I ask ; acquirep ; delete ; acquirer ; new ; ok
where p + r = (QUOTA % GIVEN)

I Bounded waiting time availability is a safety

I All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Verifications

I A partition : ({size, gauge}, {size, num, total})
+ ({who}, {who, acq, id})

I Bounded decomposition (finite allocated quantities !)

I The sequence delete ; delete cannot occur

I Decomposition deadlocks iff GIVEN does not divide QUOTA

I Deadlock freeness of the resource allocator needs an
additional property

I ask ; acquirep ; delete ; acquirer ; new ; ok
where p + r = (QUOTA % GIVEN)

I Bounded waiting time availability is a safety

I All possibly verified on the bounded decomposition

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

I A formal component model with STS

I Configuration graphs, boundedness, decomposition

I Other experiments : slip, bakery protocols, cash point system,
ticket reservation

I A Python prototype : STS definition, synchronous product,
boundedness checking

I Future work

I Integrate other abstractions
I Automate using communication analysis, data isomorphism, ...
I Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

I A formal component model with STS

I Configuration graphs, boundedness, decomposition

I Other experiments : slip, bakery protocols, cash point system,
ticket reservation

I A Python prototype : STS definition, synchronous product,
boundedness checking

I Future work

I Integrate other abstractions
I Automate using communication analysis, data isomorphism, ...
I Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

I A formal component model with STS

I Configuration graphs, boundedness, decomposition

I Other experiments : slip, bakery protocols, cash point system,
ticket reservation

I A Python prototype : STS definition, synchronous product,
boundedness checking

I Future work

I Integrate other abstractions
I Automate using communication analysis, data isomorphism, ...
I Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

I A formal component model with STS

I Configuration graphs, boundedness, decomposition

I Other experiments : slip, bakery protocols, cash point system,
ticket reservation

I A Python prototype : STS definition, synchronous product,
boundedness checking

I Future work

I Integrate other abstractions
I Automate using communication analysis, data isomorphism, ...
I Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

I A formal component model with STS

I Configuration graphs, boundedness, decomposition

I Other experiments : slip, bakery protocols, cash point system,
ticket reservation

I A Python prototype : STS definition, synchronous product,
boundedness checking

I Future work

I Integrate other abstractions
I Automate using communication analysis, data isomorphism, ...
I Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

I A formal component model with STS

I Configuration graphs, boundedness, decomposition

I Other experiments : slip, bakery protocols, cash point system,
ticket reservation

I A Python prototype : STS definition, synchronous product,
boundedness checking

I Future work
I Integrate other abstractions

I Automate using communication analysis, data isomorphism, ...
I Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

I A formal component model with STS

I Configuration graphs, boundedness, decomposition

I Other experiments : slip, bakery protocols, cash point system,
ticket reservation

I A Python prototype : STS definition, synchronous product,
boundedness checking

I Future work
I Integrate other abstractions
I Automate using communication analysis, data isomorphism, ...

I Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

Conclusion and Future Work

I A formal component model with STS

I Configuration graphs, boundedness, decomposition

I Other experiments : slip, bakery protocols, cash point system,
ticket reservation

I A Python prototype : STS definition, synchronous product,
boundedness checking

I Future work
I Integrate other abstractions
I Automate using communication analysis, data isomorphism, ...
I Optimise the prototype

Jean-Claude Royer OBASCO Jean-Claude.Royer@emn.fr Bounded Analysis and Decomposition

