
Verification of Software Components:
Checking Implementation (Java) against

Specification (Behavior Protocols)

DISTRIBUTED SYSTEMS RESEARCH GROUP
http://nenya.ms.mff.cuni.cz

CHARLES UNIVERSITY PRAGUE
Faculty of Mathematics and Physics

Pavel Parízek

Behavior Compliance

• Works fine
Assumption: each primitive component (Java code)
is compliant with its frame protocol

• It has to accept/issue exactly those method call related
event sequences on its frame that are specified by the
frame protocol

Pavel Parízek
ECO-NET

Database

Logger

db : IDatabase

tm : ITxMngr

logger : ILog

Transaction
Manager

logger : ILog

tm : ITxMngr

db : IDatabase

DBServer

bk : IBackup

Backup
Scheduler
bk : IBackup

Verification of Primitive Components

Pavel Parízek
ECO-NET

• Goal
Design an algorithm and a tool for checking
compliance between Java implementation of
a primitive component and its frame protocol

• via Java source code / byte code analysis

• Previous experience
Checking of compliance between behavior
protocols

• Behavior protocol checker (BPC)

Checking of Java Code

Pavel Parízek
ECO-NET

• Java PathFinder
Model checker for Java programs
Highly customizable and extensible

• Features
Able to check only low-level properties

• Deadlocks, uncaught exceptions
Non-deterministic value choice
Publisher/listener pattern

• Listeners can watch the course of the state space
traversal and check for specific properties

Our Solution

Pavel Parízek
ECO-NET

• Checking by JPF is not directly possible
JPF is able to check only low-level properties

• Compliance between Java code and frame protocol is a
high-level property

• Extension of JPF is necessary
JPF accepts only complete Java programs

• Isolated primitive component is not such a program
problem of missing environment

• Basic idea
Cooperation of the Java PathFinder (JPF) model
checker with the Behavior Protocol Checker (BPC)
Automated generation of component environment

Cooperation of JPF and BPC

Pavel Parízek
ECO-NET

• Both model checkers cooperate during traversal of their
own state spaces

JPF listener communicates with BPC

• Coordination of backtracking
• JPF is allowed to backtrack if and only if BPC agrees
• Both checkers must be in an already visited state or in an end

state for backtracking to take place

4: !tm.begin8

JPF state space BPC state space

.

. JPF
Listener

1: invoke
 tm.begin

2: invoke insn

6: return
<from
tm.begin>

7: return insn

BPC
9: ?tm.begin9

3: notify(!tm.begin8
 onward)

8: notify(?tm.begin9
 onward)

5: ok

10: ok

Cooperation of JPF and BPC – cont.

• Issue
JPF and BPC work on different levels of
abstraction

• JPF at the level of byte code instructions
• BPC at the level of behavior protocols

• We need to have a mapping from the JPF
state space into the BPC state space

Program code behavior protocols

Pavel Parízek
ECO-NET

Mapping between Checkers’ State Spaces

Pavel Parízek
ECO-NET

• Unique association of frame call points in Java
byte code with JPF states

Frame call point
• Invoke or return byte code instruction related to a method of

a provided or required interface
Consequence: no JPF state is associated with two
or more frame call points

• (by definition, each BPC state is uniquely associated with a
frame call point)

• Correspondence between end states in both
checkers’ state spaces

An end state in the program code state space (JPF)
has to be mapped to an end state in the behavior
protocol state space (BPC)

From Java Program Code to JPF State Space

Pavel Parízek
ECO-NET

public class DatabaseImpl
implements IDatabase

{
private ITxMngr tm;

public void remove(String key)
{

synchronized (this) {counter++;}
if (key == null) return;
tm.begin();
...

}
}

public static void main(...) {
IDatabase db = new DatabaseImpl();

String key = Verify.randomStr();
db.remove(key);
...

}

 ...
key = Verify.randomStr

[key == null]
invoke db.remove
<start of
synch block>

[key != null]
invoke db.remove
<start of
synch block>

counter++
<end of
synch block>

return <from
 db.remove>
 ...

counter++
<end of
synch block>

invoke tm.begin
 ...

...

Frame Call Points in JPF State Space

• Frame call point
Triggers a JPF transition

NewWas

Pavel Parízek
ECO-NET

 ...
key = Verify.randomStr

[key == null]
invoke db.remove

[key != null]
invoke db.remove

.

.
.
.

counter++
<end of
synch block>

return <from
 db.remove>

counter++
<end of
synch block>

invoke tm.begin

<start of
synch block>

<start of
synch block>

 ...
key = Verify.randomStr

[key == null]
invoke db.remove
<start of
synch block>

[key != null]
invoke db.remove
<start of
synch block>

counter++
<end of
synch block>

return <from
 db.remove>
 ...

counter++
<end of
synch block>

invoke tm.begin
 ...

Cooperation between JPF and BPC: Summary

Pavel Parízek
ECO-NET

• Goal
Checking compliance between Java
implementation of a primitive component and its
frame protocol

• Solution
Cooperation between JPF and BPC

• Mapping from program code state space (in JPF) to
behavior protocol state space (in BPC)

• Remaining issue
Problem of missing environment

Problem of Missing Environment

• Problem
JPF checks only complete Java programs, but an isolated primitive
component is not such a program

• Solution
Construction of an environment for a primitive component

• Set of Java classes (one of them featuring the main method)
• Simulating the behavior of other components in a given architecture

• Component + environment = complete Java program

Pavel Parízek
ECO-NET

Database

Logger

db : IDatabase

tm : ITxMngr

logger : ILog

Transaction
Manager

logger : ILog

tm : ITxMngr

db : IDatabase

DBServer

bk : IBackup

Backup
Scheduler
bk : IBackup

Environment for
Transaction Manager

tm : ITxMngr

Transaction
Manager

tm : ITxMngr

bk : IBackup

bk : IBackup

Requirements for an Environment

• Completeness
Representation of behavior of all the other
components bound to the target component
Exercise all the control flow paths in the target
component’s code

• Sequences and parallel interleavings of method calls
• Different combinations of method parameter values

• Feasibility
Reasonable state space size of the Java program
composed of the component and its environment

Pavel Parízek
ECO-NET

“Ideal” Environment for Transaction Manager

Pavel Parízek
ECO-NET

• Satisfies all requirements on the environment
Calling methods of the component in parallel
Checking all control flow paths (different combinations of parameter values)

public class EnvDbThread public static void main(String[]) {
extends Thread { TransactionMngrImpl tm =

ITxMngr tm; new TransactionMngrImpl();
...

tm.start();
public void run() {
String id = tm.begin(rndStr()); new EnvDbThread(tm).start();
if (rndBool()) tm.commit(id); new EnvDbThread(tm).start();
else tm.abort(id); new EnvBkThread(tm).start();
...
} // wait for threads to finish
}

tm.stop();
public class EnvBkThread }

extends Thread {
...
}

Construction of the Environment

Pavel Parízek
ECO-NET

• We aim at automated environment generation
Better than manual construction

• Hard and tedious work not a way to go

• Environment Generator for JPF
Input

• Model of the environment’s behavior
• Definition of component’s provided and required interfaces
• Sets of possible method parameter values and return values

Output
• Stub implementations of the required interfaces
• Driver program that calls methods of the provided interfaces

according to the model of environment’s behavior

Modeling the Environment’s Behavior

Pavel Parízek
ECO-NET

• The model should force the environment
To call a certain method of a particular provided interface at the
moment the component expects it
To accept a certain method call issued on a particular required
interface at the moment the component “wishes” to do so

• Idea
Exploit model of component’s behavior (i.e. frame protocol)
Use a behavior protocol as a model of environment

• Options
Inverted frame protocol

• Constructed from the frame protocol by replacing all the accept events with
emit events and vice versa

• Models the most general valid environment
Context protocol

• Specifies actual use of the target component by the other components in
the particular hierarchical architecture

• Models the simplest valid environment

Context Protocol vs. Inverted Frame Protocol

• Context protocol is more suitable
Component application typically exploits a subset of
functionality provided by the target component
Completeness and feasibility at the same time

• Example (for Transaction Manager)
Inverted frame protocol

Context protocol

(!tm.start ; !tm.begin* ; (!tm.begin* | !tm.commit* |
!tm.abort*) ; !tm.stop) | !bk.backup*

(!tm.start ; (!tm.begin ; (!tm.commit + !tm.abort))* ;
!tm.stop) | !bk.backup*

Pavel Parízek
ECO-NET

Calling Protocol

Pavel Parízek
ECO-NET

• Problems
Computing the context protocol could be very time consuming
task for some inputs
No Java construct for acceptance of a method call depending
upon execution history

• Accept events not directly reflected in the environment’s code

• Solution: calling protocol
Should be as close to the context protocol as possible to allow
for feasible verification
Computed efficiently via syntactical expansion of frame
protocols of other components in a particular hierarchical
architecture
Only calls on the component’s provided interfaces are modeled

• Accept events are reflected implicitly in the environment’s code

Modeling Environment Behavior: Evaluation

• Assuming
Environment’s behavior is modeled via calling protocol

• Then
Component environment can be used for checking of
arbitrary properties of primitive components

• i.e. not only for compliance of Java code to a frame protocol

Verification has to be done for each architecture the
component is used in

• Calling protocol is specific to a particular hierarchical
component architecture (i.e. depends on the context)

Pavel Parízek
ECO-NET

Environment and Feasibility of Code Checking

• Issue
Use of environment modeled by the calling
protocol can still lead to state explosion

• Our approach (current research)
Reducing complexity of the environment

• Heuristic transformations of the calling protocol
• Static analysis of Java byte code

Pavel Parízek
ECO-NET

Reduction of Environment’s Complexity

Pavel Parízek
ECO-NET

• State explosion
Caused mainly by parallelism and repetition

• Reduction of level of parallelism
Some parallel operators are replaced be sequencing

• e.g. p1 | p2 | p3 | p4 p2;p4;(p1 | p3)

via static code analysis and concurrency metrics

• Reduction of repetition
Repetition operator is replaced by a sequence

• e.g. prot* NULL + (prot ; prot)

Conclusion

Pavel Parízek
ECO-NET

• Goal
Checking compliance between Java code of a
primitive component and its frame protocol

• Our approach
Cooperation of the Java PathFinder with Behavior
Protocol Checker

• Issue: mapping between state spaces
Automated environment generation

• Issue: modeling of environment’s behavior
Heuristic reduction of environment’s complexity

• Current research

	Verification of Software Components: Checking Implementation (Java) against Specification (Behavior Protocols)
	Behavior Compliance
	Verification of Primitive Components
	Checking of Java Code
	Our Solution
	Cooperation of JPF and BPC
	Cooperation of JPF and BPC – cont.
	Mapping between Checkers’ State Spaces
	From Java Program Code to JPF State Space
	Frame Call Points in JPF State Space
	Cooperation between JPF and BPC: Summary
	Problem of Missing Environment
	Requirements for an Environment
	“Ideal” Environment for Transaction Manager
	Construction of the Environment
	Modeling the Environment’s Behavior
	Context Protocol vs. Inverted Frame Protocol
	Calling Protocol
	Modeling Environment Behavior: Evaluation
	Environment and Feasibility of Code Checking
	Reduction of Environment’s Complexity
	Conclusion

