
Charles University in Prague
Faculty of Mathematics and Physics

Czech Republic

SOFA 2 overview

Petr Hnětynka

SOFA 2 overview

2

ECONET, Prague workshop – September 3, 2007

Overview

• SOFA 2 – a component system with hierarchical
component model

• Based on SOFA (1)
 features of the original SOFA

• composite components
• connectors (generated)

 multiple communication styles
 distributed deployment

• versioning
• behavior specification/verification
• dynamic update
• component trading/licensing

 implemented in Java
• freely available (LGPL)

SOFA 2 overview

3

ECONET, Prague workshop – September 3, 2007

SOFA 2 history

• Problems with SOFA (1)
 evolution over years -> inconsistencies between

implementation and specifications
• e.g., protocols vs. connectors, architectures vs. dynamic

reconfiguration,...

• SOFA 2 (2006)
 properly balanced features
 key improvements

• based on meta-model
• dynamic reconfiguration
• explicitly modeled control part of components
• support for multiple communication styles

SOFA 2 overview

4

ECONET, Prague workshop – September 3, 2007

SOFA 2 description outline

• Component model
 meta-model
 dynamic reconfiguration (dynamic architectures)
 connectors
 control parts (non-functional)
 versioning
 behavior specification

• Implementation
 component lifecycle
 runtime environment
 usage, tools, current status

SOFA 2 overview

5

ECONET, Prague workshop – September 3, 2007

SOFA 2 definition

• Original SOFA
 based on ADL

• IDL-like syntax
• added constructs for describing components

 frames, architectures

• SOFA 2
 based on meta-model (using EMF)
 advantages

• faster development
• automated generation of a repository
• existence of generators of models-editors
• ...

SOFA 2 overview

6

ECONET, Prague workshop – September 3, 2007

SOFA 2 components

• 2 basic abstractions
 frame & architecture

• Frame
 black-box view of a component
 defines component's provided

and required interfaces
• interfaces defined by interface types

 defines component's behavior

• Architecture
 glass-box view
 either primitive or composite

• directly implemented or composed of other components
 subcomponents defined primarily by frame

SOFA 2 overview

7

ECONET, Prague workshop – September 3, 2007

SOFA 2 meta-model

• Meta-model figure...

SOFA 2 overview

8

ECONET, Prague workshop – September 3, 2007

SOFA 2 dynamic architectures

• Support of dynamic architectures
 i.e. changes of the architecture at runtime
 via reconfiguration patterns

• factory pattern (adding new components)
• removal pattern
• utility interface pattern (access to external services)

DAccess LFactory

Logger

FactoryManager

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

factory pattern utility interface pattern

SOFA 2 overview

9

ECONET, Prague workshop – September 3, 2007

SOFA 2 dynamic architectures

• Why these patterns?
• Dynamic behavior is inherent to systems

 simple example – multiple
instances of a component

• e.g. of parameterized loggers

• In a flat component model
 easy

• In a hierarchical component
model
 how to manage new

components?

Logger2

DAccess LFactory

Logger1

DAccess LFactory

Logger
??

FactoryManager

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Nested factory pattern

• Two possibilities
A B

• We adopted A
 component, which initiated the creation typically needs

to intensively collaborate with the new component
 B breaks the rule of well-defined component interface

DAccess LFactory

Logger

FactoryManager

DAccess LFactory

Logger

FactoryManager

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Removal pattern

• Complementary to the factory pattern

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Utility interfaces

• Previous two patterns
 nothing new
 restricted reconfiguration

• Do not solve access to broadly-needed services
 services needed by any component
 strictly “component-based” solution – a component on

the top level of the architecture hierarchy and
connections through all the higher-level composite
components

• escalation of connections, unclean applications, performance
penalties

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Utility interfaces

• New concept – a utility interface
 reference to a utility interface can be freely passed

among components
 connection made to it established orthogonally to the

architecture hierarchy

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

SOFA 2 overview

14

ECONET, Prague workshop – September 3, 2007

SOFA 2 connectors

• Connectors
 connections among components
 at design time

• links with properties and
communication style

 method invocations,
shared memory,
messaging,...

 at deployment time
• automatically generated based on properties and connected

interfaces
• allow transparently distributed applications

Data
Processor

Logger

Management
Console

Sensor1

Sensor2

Sensor3

method invocation
connectors

bus
connector

SOFA 2 overview

15

ECONET, Prague workshop – September 3, 2007

SOFA 2 control parts

• Explicitly separated control and business parts of
components

• Control part
 controls non-functional properties
 provides so-called controllers

• interfaces managing non-functional properties

 modular and fully extensible
• composed of microcomponents
• applied as aspects at deployment time

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Microcomponent model

• Very minimalistic
• Flat
• No connectors
• No distribution
• No control part
• From the implementation view

 microcomponent ~ class

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Aspects

• Defined on the top of the microcomponent model
• Aspect ~ extension of the control part

 definition of microcomponents
 instantiation patterns

• Core aspect
 present in all components
 controllers

• lifecycle
• binding

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Aspects

• Defined on the top of the microcomponent model
• Aspect ~ extension of the control part

 definition of microcomponents
 instantiation patterns

• Core aspect
 present in all components
 controllers

• lifecycle
• binding

SOFA 2 overview

19

ECONET, Prague workshop – September 3, 2007

SOFA 2 component lifecycle

1. Development
 composing existing components together

• components stored in the repository

 newly developed ones also stored in the repository

2. Assembly
 subcomponents primarily defined by frames
 recursively replacing frames by architectures

3. Deployment and executing
 where particular components have to be executed

• information stored in a deployment plan

 connector generation
 applying control aspects
 execution

SOFA 2 overview

20

ECONET, Prague workshop – September 3, 2007

SOFA 2 Runtime environment

• Implementation in Java
• Runtime environment (called SOFAnode) consists

of several units
 repository
 deployment

docks
 dock registry
 global

connector
manager

Deployment
Node 2

Repository
DockA

DockB

DockC
DockD

Developing
new components

Uploading
new components

Deployment
Node 3

Deployment
Node 1

SOFA 2 overview

21

ECONET, Prague workshop – September 3, 2007

SOFA 2 Runtime environment

• Repository
 generated from the EMF meta-model
 remotely accessible
 adding new content via cloning

• a developer creates new clone of the repository,
adds new content,
tests it and
finally merges it back

• a clone can contain temporarily inconsistent content
• at merge time, the content have to be consistent

SOFA 2 overview

22

ECONET, Prague workshop – September 3, 2007

SOFA 2 Runtime environment

• Deployment dock
 a container executing components
 automatically downloads code of

components from the repository
Deployment

Node 2

Repository
DockA

DockB

DockC
DockD

Developing
new components

Uploading
new components

Deployment
Node 3

Deployment
Node 1

SOFA 2 overview

23

ECONET, Prague workshop – September 3, 2007

Component implementation

• Developers provide implementation just for
primitive components
 (composite components do not contain business code)

• Implementation
 plain Java classes
 no special requirements

• about a number of threads, used libraries,...

 currently
• classes have to implement SOFA-specific interfaces

 near future
• provided and required services and initialization methods are

marked by Java annotations
=> no external dependencies, code is reusable for different
component system

SOFA 2 overview

24

ECONET, Prague workshop – September 3, 2007

Connectors

• Generated at deployment time
 from the specification

• communication style & properties (secure connection, logging...)

• Allows transparently distributed applications
 developers do not bother with the networking
 generated using suitable middleware

• Internal structure
 set of connector elements
 connector generator builds

a suitable connector architecture
and uses predefined elements

• (connector architectures are either predefined or can be defined
by special language)

pe
rf

or
m

an
ce

m
ea

su
re

m
en

t
pr

o
be

m
id

dl
e

w
ar

e
st

u
b

pe
rf

or
m

an
ce

m
ea

su
re

m
en

t
pr

o
be

m
id

dl
ew

a
re

sk
el

e
to

n

Client connector unit Server connector unit

SOFA 2 overview

25

ECONET, Prague workshop – September 3, 2007

Versioning

• SOFA 2 supports versioning of components
 one component can exist in several versions

• i.e. evolution of the component

 versions are assigned by the repository
 version identifiers are globally unique

• At runtime, it can lead to the class name clashes
in Java virtual machine
 i.e. a situation when a class/interface cannot be loaded to

JVM because another class/interface with same name
has been already loaded

 it can happen e.g.
• during dynamic update, or
• single deployment dock hosts two applications – each of them

use different version of the same component

SOFA 2 overview

26

ECONET, Prague workshop – September 3, 2007

Class name clashes

• Common solution
 loading different components by different Java

classloaders
• Java identifies classes not only by the name but also by loading

classloader

 but it does not cover all sources of class name clashes

• Our solution
 byte code manipulation
 during uploading components to the repository, the

names of classes are augmented in their byte code
=> unique names

 completely transparent to the developers/users

SOFA 2 overview

27

ECONET, Prague workshop – September 3, 2007

Current status

• Implementation freely available (LGPL license)
 http://sofa.objectweb.org/

• All features are implemented
 “small issue”

• not very “user-friendly”

 we are working on graphical development tool
• Eclipse based

• Cushion
 command line development tool for SOFA 2 components

SOFA 2 overview

28

ECONET, Prague workshop – September 3, 2007

Development with Cushion

• Developing new application
 create or reuse interface types, frames and architectures

• cushion new [interface,frame,architecture]

• cushion commit

• cushion checkout

 compiling Java code
• cushion compile

• cushion upload

 assembling complete application
• cushion assembly

 deploying application
• cushion deplplan

• cushion deploy

