
Charles University in Prague
Faculty of Mathematics and Physics

Czech Republic

SOFA 2 overview

Petr Hnětynka

SOFA 2 overview

2

ECONET, Prague workshop – September 3, 2007

Overview

• SOFA 2 – a component system with hierarchical
component model

• Based on SOFA (1)
 features of the original SOFA

• composite components
• connectors (generated)

 multiple communication styles
 distributed deployment

• versioning
• behavior specification/verification
• dynamic update
• component trading/licensing

 implemented in Java
• freely available (LGPL)

SOFA 2 overview

3

ECONET, Prague workshop – September 3, 2007

SOFA 2 history

• Problems with SOFA (1)
 evolution over years -> inconsistencies between

implementation and specifications
• e.g., protocols vs. connectors, architectures vs. dynamic

reconfiguration,...

• SOFA 2 (2006)
 properly balanced features
 key improvements

• based on meta-model
• dynamic reconfiguration
• explicitly modeled control part of components
• support for multiple communication styles

SOFA 2 overview

4

ECONET, Prague workshop – September 3, 2007

SOFA 2 description outline

• Component model
 meta-model
 dynamic reconfiguration (dynamic architectures)
 connectors
 control parts (non-functional)
 versioning
 behavior specification

• Implementation
 component lifecycle
 runtime environment
 usage, tools, current status

SOFA 2 overview

5

ECONET, Prague workshop – September 3, 2007

SOFA 2 definition

• Original SOFA
 based on ADL

• IDL-like syntax
• added constructs for describing components

 frames, architectures

• SOFA 2
 based on meta-model (using EMF)
 advantages

• faster development
• automated generation of a repository
• existence of generators of models-editors
• ...

SOFA 2 overview

6

ECONET, Prague workshop – September 3, 2007

SOFA 2 components

• 2 basic abstractions
 frame & architecture

• Frame
 black-box view of a component
 defines component's provided

and required interfaces
• interfaces defined by interface types

 defines component's behavior

• Architecture
 glass-box view
 either primitive or composite

• directly implemented or composed of other components
 subcomponents defined primarily by frame

SOFA 2 overview

7

ECONET, Prague workshop – September 3, 2007

SOFA 2 meta-model

• Meta-model figure...

SOFA 2 overview

8

ECONET, Prague workshop – September 3, 2007

SOFA 2 dynamic architectures

• Support of dynamic architectures
 i.e. changes of the architecture at runtime
 via reconfiguration patterns

• factory pattern (adding new components)
• removal pattern
• utility interface pattern (access to external services)

DAccess LFactory

Logger

FactoryManager

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

factory pattern utility interface pattern

SOFA 2 overview

9

ECONET, Prague workshop – September 3, 2007

SOFA 2 dynamic architectures

• Why these patterns?
• Dynamic behavior is inherent to systems

 simple example – multiple
instances of a component

• e.g. of parameterized loggers

• In a flat component model
 easy

• In a hierarchical component
model
 how to manage new

components?

Logger2

DAccess LFactory

Logger1

DAccess LFactory

Logger
??

FactoryManager

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Nested factory pattern

• Two possibilities
A B

• We adopted A
 component, which initiated the creation typically needs

to intensively collaborate with the new component
 B breaks the rule of well-defined component interface

DAccess LFactory

Logger

FactoryManager

DAccess LFactory

Logger

FactoryManager

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Removal pattern

• Complementary to the factory pattern

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Utility interfaces

• Previous two patterns
 nothing new
 restricted reconfiguration

• Do not solve access to broadly-needed services
 services needed by any component
 strictly “component-based” solution – a component on

the top level of the architecture hierarchy and
connections through all the higher-level composite
components

• escalation of connections, unclean applications, performance
penalties

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Utility interfaces

• New concept – a utility interface
 reference to a utility interface can be freely passed

among components
 connection made to it established orthogonally to the

architecture hierarchy

DAccess

PService

Logger

DAccess

Logger

WorkerA WorkerB

SOFA 2 overview

14

ECONET, Prague workshop – September 3, 2007

SOFA 2 connectors

• Connectors
 connections among components
 at design time

• links with properties and
communication style

 method invocations,
shared memory,
messaging,...

 at deployment time
• automatically generated based on properties and connected

interfaces
• allow transparently distributed applications

Data
Processor

Logger

Management
Console

Sensor1

Sensor2

Sensor3

method invocation
connectors

bus
connector

SOFA 2 overview

15

ECONET, Prague workshop – September 3, 2007

SOFA 2 control parts

• Explicitly separated control and business parts of
components

• Control part
 controls non-functional properties
 provides so-called controllers

• interfaces managing non-functional properties

 modular and fully extensible
• composed of microcomponents
• applied as aspects at deployment time

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Microcomponent model

• Very minimalistic
• Flat
• No connectors
• No distribution
• No control part
• From the implementation view

 microcomponent ~ class

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Aspects

• Defined on the top of the microcomponent model
• Aspect ~ extension of the control part

 definition of microcomponents
 instantiation patterns

• Core aspect
 present in all components
 controllers

• lifecycle
• binding

SOFA 2 overview ECONET, Prague workshop – September 3, 2007

Aspects

• Defined on the top of the microcomponent model
• Aspect ~ extension of the control part

 definition of microcomponents
 instantiation patterns

• Core aspect
 present in all components
 controllers

• lifecycle
• binding

SOFA 2 overview

19

ECONET, Prague workshop – September 3, 2007

SOFA 2 component lifecycle

1. Development
 composing existing components together

• components stored in the repository

 newly developed ones also stored in the repository

2. Assembly
 subcomponents primarily defined by frames
 recursively replacing frames by architectures

3. Deployment and executing
 where particular components have to be executed

• information stored in a deployment plan

 connector generation
 applying control aspects
 execution

SOFA 2 overview

20

ECONET, Prague workshop – September 3, 2007

SOFA 2 Runtime environment

• Implementation in Java
• Runtime environment (called SOFAnode) consists

of several units
 repository
 deployment

docks
 dock registry
 global

connector
manager

Deployment
Node 2

Repository
DockA

DockB

DockC
DockD

Developing
new components

Uploading
new components

Deployment
Node 3

Deployment
Node 1

SOFA 2 overview

21

ECONET, Prague workshop – September 3, 2007

SOFA 2 Runtime environment

• Repository
 generated from the EMF meta-model
 remotely accessible
 adding new content via cloning

• a developer creates new clone of the repository,
adds new content,
tests it and
finally merges it back

• a clone can contain temporarily inconsistent content
• at merge time, the content have to be consistent

SOFA 2 overview

22

ECONET, Prague workshop – September 3, 2007

SOFA 2 Runtime environment

• Deployment dock
 a container executing components
 automatically downloads code of

components from the repository
Deployment

Node 2

Repository
DockA

DockB

DockC
DockD

Developing
new components

Uploading
new components

Deployment
Node 3

Deployment
Node 1

SOFA 2 overview

23

ECONET, Prague workshop – September 3, 2007

Component implementation

• Developers provide implementation just for
primitive components
 (composite components do not contain business code)

• Implementation
 plain Java classes
 no special requirements

• about a number of threads, used libraries,...

 currently
• classes have to implement SOFA-specific interfaces

 near future
• provided and required services and initialization methods are

marked by Java annotations
=> no external dependencies, code is reusable for different
component system

SOFA 2 overview

24

ECONET, Prague workshop – September 3, 2007

Connectors

• Generated at deployment time
 from the specification

• communication style & properties (secure connection, logging...)

• Allows transparently distributed applications
 developers do not bother with the networking
 generated using suitable middleware

• Internal structure
 set of connector elements
 connector generator builds

a suitable connector architecture
and uses predefined elements

• (connector architectures are either predefined or can be defined
by special language)

pe
rf

or
m

an
ce

m
ea

su
re

m
en

t
pr

o
be

m
id

dl
e

w
ar

e
st

u
b

pe
rf

or
m

an
ce

m
ea

su
re

m
en

t
pr

o
be

m
id

dl
ew

a
re

sk
el

e
to

n

Client connector unit Server connector unit

SOFA 2 overview

25

ECONET, Prague workshop – September 3, 2007

Versioning

• SOFA 2 supports versioning of components
 one component can exist in several versions

• i.e. evolution of the component

 versions are assigned by the repository
 version identifiers are globally unique

• At runtime, it can lead to the class name clashes
in Java virtual machine
 i.e. a situation when a class/interface cannot be loaded to

JVM because another class/interface with same name
has been already loaded

 it can happen e.g.
• during dynamic update, or
• single deployment dock hosts two applications – each of them

use different version of the same component

SOFA 2 overview

26

ECONET, Prague workshop – September 3, 2007

Class name clashes

• Common solution
 loading different components by different Java

classloaders
• Java identifies classes not only by the name but also by loading

classloader

 but it does not cover all sources of class name clashes

• Our solution
 byte code manipulation
 during uploading components to the repository, the

names of classes are augmented in their byte code
=> unique names

 completely transparent to the developers/users

SOFA 2 overview

27

ECONET, Prague workshop – September 3, 2007

Current status

• Implementation freely available (LGPL license)
 http://sofa.objectweb.org/

• All features are implemented
 “small issue”

• not very “user-friendly”

 we are working on graphical development tool
• Eclipse based

• Cushion
 command line development tool for SOFA 2 components

SOFA 2 overview

28

ECONET, Prague workshop – September 3, 2007

Development with Cushion

• Developing new application
 create or reuse interface types, frames and architectures

• cushion new [interface,frame,architecture]

• cushion commit

• cushion checkout

 compiling Java code
• cushion compile

• cushion upload

 assembling complete application
• cushion assembly

 deploying application
• cushion deplplan

• cushion deploy

