SOFA 2 overview

Petr Hnetynka

Charles University in Prague
Faculty of Mathematics and Physics

Czech Republic

Overview

N
SOFA 2 overview ECONET, Prague workshop — September 3, 2007

 SOFA 2 — a component system with hierarchical
component model

« Based on SOFA (1)
= features of the original SOFA

« composite components

connectors (generated)
= multiple communication styles
= distributed deployment

versioning

behavior specification/verification
dynamic update

« component trading/licensing

" implemented in Java
« freely available (LGPL)

SOFA 2 history

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Problems with SOFA (1)

= evolution over years -> inconsistencies between
implementation and specifications

* e.g., protocols vs. connectors, architectures vs. dynamic
reconfiguration,...

. SOFA 2 (2006)

= properly balanced features

= key improvements
* based on meta-model
« dynamic reconfiguration
« explicitly modeled control part of components
 support for multiple communication styles

SOFA 2 description outline

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

« Component model
= meta-model
= dynamic reconfiguration (dynamic architectures)
= connectors
= control parts (non-functional)
= versioning
* Implementation
= component lifecycle
= runtime environment
= usage, tools, current status

SOFA 2 definition

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Original SOFA

= pbased on ADL

 |DL-like syntax

« added constructs for describing components
= frames, architectures

« SOFA 2

= based on meta-model (using EMF)

= advantages
 faster development
« automated generation of a repository
 existence of generators of models-editors

SOFA 2 components

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

e 2 basic abstractions / \
= frame & architecture
* Frame
N

= black-box view of a component

= defines component's provided
and required interfaces L y
* interfaces defined by interface types

= defines component's behavior

* Architecture
= glass-box view K /

= either primitive or composite
« directly implemented or composed of other components
= subcomponents defined primarily by frame 5

SOFA 2 meta-model

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

» Meta-model figure...

SOFA 2 dynamic architectures

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

« Support of dynamic architectures
" i.e. changes of the architecture at runtime

= via reconfiguration patterns
- factory pattern (adding new components)
* removal pattern
« utility interface pattern (access to external services)

(
WorkerA WorkerB PService
DAccess [DAccess [

FactoryManager

I LFactory
[TT]

Logger

:

factory pattern utility interface pattern

SOFA 2 dynamic architectures

SOFA 2 overview

Why these patterns?

>
<>
ECONET, Prague workshop — September 3, 2007

Dynamic behavior is inherent to systems

= simple example — multiple
instances of a component
 e.g. of parameterized loggers

In a flat component model

" easy

In a hierarchical component
model

* how to manage new
components?

‘ DAccess [

y A
Logger1 é Z

v

FactoryManager

I LFactory

Nested factory pattern

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Two possibilities
A B

FactoryManager FactoryManager

I LFactory I
[TT11 111

7 A |

Logger -
| =

LFactory

 We adopted A

= component, which initiated the creation typically needs
to intensively collaborate with the new component

= B breaks the rule of well-defined component interface

Removal pattern

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

« Complementary to the factory pattern

Utility interfaces

<> S
SOFA 2 overview ECONET, Prague workshop — September 3, 2007 ’

* Previous two patterns
= nothing new
= restricted reconfiguration

* Do not solve access to broadly-needed services
= services needed by any component

= strictly “component-based” solution — a component on
the top level of the architecture hierarchy and
connections through all the higher-level composite
components

 escalation of connections, unclean applications, performance
penalties

Utility interfaces

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* New concept — a utility interface

= reference to a utility interface can be freely passed
among components

= connection made to it established orthogonally to the

architecture hierarchy
WorkerA J WorkerB
DAccess [DAccess [‘

SOFA 2 connectors

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

« Connectors
= connections among components
= at design time

bus
connector

Management
Console

* links with properties and
communication style P

™ g Data

= method invocations, S———— s
shared memory, P
messaging, ... "

Sensor1

Sensor2

Sensor3

= at deployment time

« automatically generated based on properties and connected

interfaces
« allow transparently distributed applications

14

SOFA 2 control parts

<> S
SOFA 2 overview ECONET, Prague workshop — September 3, 2007 ’

» Explicitly separated control and business parts of
components

« Control part
= controls non-functional properties
= provides so-called controllers
* interfaces managing non-functional properties

= modular and fully extensible
« composed of microcomponents
» applied as aspects at deployment time

15

Microcomponent model

>
<>
SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Very minimalistic
e Flat

 No connectors

* No distribution

* No control part

* From the implementation view
= microcomponent ~ class

Aspects

¥) S5l
SOFA 2 overview ECONET, Prague workshop — September 3, 2007

« Defined on the top of the microcomponent model

* Aspect ~ extension of the control part
= definition of microcomponents
= instantiation patterns

* Core aspect

s Yo %
= present in all components %///////
= controllers

« lifecycle %

* binding

4> ,,,,,,,,,,,,,,,,,,

7

Aspects

<
SOFA 2 overview ECONET, Prague workshop — September 3, 2007

« Defined on the top of the microcomponent model

* Aspect ~ extension of the control part
= definition of microcomponents
= instantiation patterns

* Core aspect
= present in all components

= controllers
« lifecycle
* binding

SOFA 2 component lifecycle

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

1. Development

= composing existing components together
« components stored in the repository

* newly developed ones also stored in the repository
2. Assembly

* subcomponents primarily defined by frames
" recursively replacing frames by architectures

3. Deployment and executing

* where particular components have to be executed
 information stored in a deployment plan

= connector generation
= applying control aspects
= execution

19

SOFA 2 Runtime environment

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Implementation in Java

* Runtime environment (called SOFAnode) consists
of several units
= repository Deployment

Node 2
= deployment >
d o) ck S Deﬁgc:jyem1e nt R

" dock registry
= global /
Uploading
ConneCtO[' new components

manager =

W

Developing
new components

Deployment

Node 3 20

SOFA 2 Runtime environment

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Repository
= generated from the EMF meta-model
= remotely accessible

= adding new content via cloning

» a developer creates new clone of the repository,
adds new content,
tests it and
finally merges it back

 a clone can contain temporarily inconsistent content
« at merge time, the content have to be consistent

21

SOFA 2 Runtime environment

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Deployment dock
= a container executing components

= automatically downloads code of
components from the repository

Deployment

E Node 2
Depent _
Node 1 Repository

Uploading
new components

W

Developing
new components

Deployment
Node3 22

Component implementation

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Developers provide implementation just for
primitive components

= (composite components do not contain business code)

* Implementation
= plain Java classes

" no special requirements
* about a number of threads, used libraries,...

= currently
 classes have to implement SOFA-specific interfaces

= near future

« provided and required services and initialization methods are
marked by Java annotations
=> no external dependencies, code is reusable for different
component system 23

Connectors

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

» Generated at deployment time

= from the specification
« communication style & properties (secure connection, logging...)

* Allows transparently distributed applications
= developers do not bother with the networking
= generated using suitable middleware

* |Internal structure
= set of connector elements

= connector generator builds
a suitable connector architecture
and uses predeflned elements Client connector unit Server connector unit
 (connector architectures are either predefined or can be defined
by special language)

iddleware
skeleton

measurement

erformance
measurement
probe

p

probe

stub
%‘

middleware
performance

24

Versioning

< "0
SOFA 2 overview ECONET, Prague workshop — September 3, 2007 ’

« SOFA 2 supports versioning of components
= one component can exist in several versions
* i.e. evolution of the component
= versions are assigned by the repository

= version identifiers are globally unique

At runtime, it can lead to the class name clashes
In Java virtual machine

= j.e. a situation when a class/interface cannot be loaded to
JVM because another class/interface with same name
has been already loaded

= it can happen e.qg.
 during dynamic update, or

+ single deployment dock hosts two applications — each of them
use different version of the same component 25

Class name clashes

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

« Common solution

= loading different components by different Java
classloaders

« Java identifies classes not only by the name but also by loading
classloader

= but it does not cover all sources of class name clashes

* Qur solution
= byte code manipulation

= during uploading components to the repository, the
names of classes are augmented in their byte code
=> unique names

= completely transparent to the developers/users

26

Current status

>
<>
SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Implementation freely available (LGPL license)
= http://sofa.objectweb.org/

» All features are implemented

= “small issue”
* not very “user-friendly”

= we are working on graphical development tool
» Eclipse based
* Cushion
= command line development tool for SOFA 2 components

27

Development with Cushion

SOFA 2 overview ECONET, Prague workshop — September 3, 2007

* Developing new application
= create or reuse interface types, frames and architectures

e cushion new [interface, frame,architecture]
e cushion commit

e cushion checkout

= compiling Java code
e cushion compile

e cushion upload

= assembling complete application
e cushion assembly

= deploying application
e cushion deplplan
e cushion deploy

28

