

COLOSS: COmposants et LOgiciels SûrS Safe Components and Softwares

LINA - CNRS - Nantes University

Prague - September, 3-7 2007

1 / 11

Outline

Outline

- Team members
- Motivations and Goals
- Research topics and results Integration of formal methods / Component specification
- Technical presentation by Pascal

Outline

Team presentation

- Creation: july 2005
- Leader: Christian Attiogbé

Permanent Members:

Pascal André	assistant professor
Gilles Ardourel	assistant professor
Christian Attiogbé	assistant professor
Henri Habrias	Professor

 Associate Member: Alain Vailly assistant professor

PhD Students: Cédric Stoquer PhD Student PhD Student PhD Student Still looking for another PhD Student

Background : Object-Orientation and Formal Methods

Motivations and Goals

• Concepts, Techniques and Tools to design correct software

- Main motivations (fundamental challenges):
 - Correct software construction;
 - Software quality and safety;
 - Support for specific development methods;
- Means and method:
 - Use of Multi-faceted formal approaches: specification, reasoning
 - Several steps: specification verification refinement
 - At the frontier between theoretical works and their applications.

Z, B, Promela/Spin, PVS, Lotos, Petri nets, Mec/AltaRica, Grafcet, Kmelia, ...

Motivations and Goals

- Concepts, Techniques and Tools to design correct software
- Main motivations (fundamental challenges):
 - Correct software construction;
 - Software quality and safety;
 - Support for specific development methods;
- Means and method:
 - Use of Multi-faceted formal approaches: specification, reasoning
 - Several steps: specification verification refinement
 - At the frontier between theoretical works and their applications.

Z, B, Promela/Spin, PVS, Lotos, Petri nets, Mec/AltaRica, Grafcet, Kmelia, ...

Motivations and Goals

- Concepts, Techniques and Tools to design correct software
- Main motivations (fundamental challenges):
 - Correct software construction;
 - Software quality and safety;
 - Support for specific development methods;
- Means and method:
 - Use of Multi-faceted formal approaches: specification, reasoning
 - Several steps: specification verification refinement
 - At the frontier between theoretical works and their applications.

Z, B, Promela/Spin, PVS, Lotos, Petri nets, Mec/AltaRica, Grafcet, Kmelia, ...

Multi formalism specifications, multi-faceted analysis

- Motivations: limits of the monoformalism approaches:partial covering of problem and partial analysis
- Formal methods integration
- challenges: decomposition, semantic interoperability, formal analysis
- multi-platforms experiments: B, PVS, Spin, Grafcet, Petri nets

Atacora Platform

Multi formalism specifications, multi-faceted analysis

- Motivations: limits of the monoformalism approaches:partial covering of problem and partial analysis
- Formal methods integration
- challenges: decomposition, semantic interoperability, formal analysis
- multi-platforms experiments: B, PVS, Spin, Grafcet, Petri nets

Atacora Platform

Multi formalism specifications, multi-faceted analysis - Results

- Extension of the B method with the integration of parallel composition operators from process algebra;
- Proposal of multi-faceted analysis method combining theorem proving and model checking with B , SPIN, ProB, Lotos
- Current PhD work on the B/Grafcet interaction, (C. Stoquer);
- Specification method in B of multiprocess systems with dynamic architecture.

ETAPS/FASE'03, QSIC'04, SOFSEM'05 ZB'05, SE'06, ICFEM'06, IEEE-TSE'07

Multi formalism specifications, multi-faceted analysis - Results

- Extension of the B method with the integration of parallel composition operators from process algebra;
- Proposal of multi-faceted analysis method combining theorem proving and model checking with B , SPIN, ProB, Lotos
- Current PhD work on the B/Grafcet interaction, (C. Stoquer);
- Specification method in B of multiprocess systems with dynamic architecture.

ETAPS/FASE'03, QSIC'04, SOFSEM'05 ZB'05, SE'06, ICFEM'06, IEEE-TSE'07

Multi formalism specifications, multi-faceted analysis - Results

- Extension of the B method with the integration of parallel composition operators from process algebra;
- Proposal of multi-faceted analysis method combining theorem proving and model checking with B , SPIN, ProB, Lotos
- Current PhD work on the B/Grafcet interaction, (C. Stoquer);
- Specification method in B of multiprocess systems with dynamic architecture.

ETAPS/FASE'03, QSIC'04, SOFSEM'05 ZB'05, SE'06, ICFEM'06, IEEE-TSE'07

Design and verification of component properties

Developed aspects: modeling, property verification The motivation: need of models and practical tools to assist users in formal component-based development.

- abstract definition of components and composition
- simple, flexible and expressive
- properties verification: safety, consistency, compatibility...
- from components to code

Kmelia Model - COSTO platform

Design and verification of model properties

Generic verification process for checking UML models consistency (extensible to other models) Managing several verifications because a single property

- can be decomposed into finer ones
- can concern several groups of model elements ٠
- can be verified at different levels of completeness
- ٠ can be verified using several techniques with various costs and performances

Design and verification of model properties

Generic verification process for checking UML models consistency (extensible to other models) Managing several verifications because a single property

- can be decomposed into finer ones
- can concern several groups of model elements
- can be verified at different levels of completeness
- can be verified using several techniques with various costs and performances

We designed a generic verification process

- composite verification processes (supports ordering, filtering, results propagation and annotation of faulty elements...)
- support for classification of verifications and properties (levels, diagrams...) ٠
- ۲ abstracting from the results of different tools and formalisms

Design and verification of model properties

Generic verification process for checking UML models consistency (extensible to other models) Managing several verifications because a single property

- can be decomposed into finer ones
- can concern several groups of model elements
- can be verified at different levels of completeness
- can be verified using several techniques with various costs and performances

We designed a generic verification process

- composite verification processes (supports ordering, filtering, results propagation and annotation of faulty elements...)
- support for classification of verifications and properties (levels, diagrams...) ٠
- abstracting from the results of different tools and formalisms

Prototype initially supported by a template-based metamodel repository generator.

Component specification and verification with kmelia

• (Kmelia): service-based formal component model

- services behaviors expressed as extended LTS
- support for horizontal composition (nested services and behaviors) as well as vertical composition
- component protocols expressed as services composed of several other ones
- techniques applied on Kmelia models:
 - interface/behavior consistency
 - behavioral compatibility (with Lotos and MEC 4)
 - generation of adaptors to correct some cases of behavioral incompatibility
 - using pre/post conditions to detect inconsistencies in protocols

COSTO prototype for specifying Kmelia components and analyzing

- support Kmelia model
- internal verifications and use of existing tools
- command line, API and eclipse plugins (editors, viewers, wizards for creation,

(LINA - CNRS - Nantes University)

ECONET Workshop 2007

9 / 11

Component specification and verification with kmelia

• (Kmelia): service-based formal component model

- services behaviors expressed as extended LTS
- support for horizontal composition (nested services and behaviors) as well as vertical composition
- component protocols expressed as services composed of several other ones

techniques applied on Kmelia models:

- interface/behavior consistency
- behavioral compatibility (with Lotos and MEC 4)
- generation of adaptors to correct some cases of behavioral incompatibility
- using pre/post conditions to detect inconsistencies in protocols

COSTO prototype for specifying Kmelia components and analyzing

- support Kmelia model
- internal verifications and use of existing tools
- command line, API and eclipse plugins (editors, viewers, wizards for creation,

(LINA - CNRS - Nantes University)

ECONET Workshop 2007

Component specification and verification with kmelia

• (Kmelia): service-based formal component model

- services behaviors expressed as extended LTS
- support for horizontal composition (nested services and behaviors) as well as vertical composition
- component protocols expressed as services composed of several other ones

techniques applied on Kmelia models:

- interface/behavior consistency
- behavioral compatibility (with Lotos and MEC 4)
- generation of adaptors to correct some cases of behavioral incompatibility
- using pre/post conditions to detect inconsistencies in protocols

COSTO prototype for specifying Kmelia components and analyzing properties

- support Kmelia model
- internal verifications and use of existing tools
- command line, API and eclipse plugins (editors, viewers, wizards for creation, verification...)

(LINA - CNRS - Nantes University)

ECONET Workshop 2007

9 / 11

Component specification and verification with kmelia

• (Kmelia): service-based formal component model

- services behaviors expressed as extended LTS
- support for horizontal composition (nested services and behaviors) as well as vertical composition
- component protocols expressed as services composed of several other ones

techniques applied on Kmelia models:

- interface/behavior consistency
- behavioral compatibility (with Lotos and MEC 4)
- generation of adaptors to correct some cases of behavioral incompatibility
- using pre/post conditions to detect inconsistencies in protocols

COSTO prototype for specifying Kmelia components and analyzing properties

- support Kmelia model
- internal verifications and use of existing tools
- command line, API and eclipse plugins (editors, viewers, wizards for creation, verification...)

WESC'05, OCM/LM0'05, Camode'05, ETAPS/SC'06, SC'07 MOSIM'06, WCAT'06, CAL'06, LMO'07

(LINA - CNRS - Nantes University)

ECONET Workshop 2007

Perspectives

Ongoing work:

- Extending the Kmelia data and assertion language
- Extending the COSTO Toolbox to deal with consistency using theorem proving
- Using the generic verification process for kmelia verifications
- Mechanizing proof obligations
- Connection with other tools (around Fractal, SOFA, etc)
- Real case studies by joining projects on reverse engineering and related models
- Getting more PhD students (Open PhD position on component and aspect models with the OBASCO Team)

Technical Presentation

Next:

Hierarchical Service Description with Kmelia and Analysis using COSTO

(LINA - CNRS - Nantes University)

ECONET Workshop 2007

Prague - September, 3-7 2007 11 / 11