OBASCO OBjects, ASpects, and COmponents

Head: Pierre Cointe

École des Mines de Nantes Department of Computer Science – OBASCO Group INRIA Research Centre Rennes - Bretagne Atlantique - LINA

09-2007 / Prague / Econet

OBASCO

History of OBASCO

Current Compositio

Objectives

Strategy

Results

1 History of OBASCO

2 Current Composition

3 Objectives

4 Strategy

5 Results

OBASCO

History of OBASCO

Current Compositio

Objectives

Strategy

Results

1 History of OBASCO

2 Current Composition

3 Objectives

4 Strategy

OBASCO

History of OBASCO

Current Compositio

Objectives

Strategy

Results

1 History of OBASCO

2 Current Composition

3 Objectives

4 Strategy

OBASCO

History of OBASCO

- Current Compositic
- Objectives
- Strategy
- Results

1 History of OBASCO

2 Current Composition

3 Objectives

History of

OBASCO

- Current Compositic
- Objectives
- Strategy
- Results

- **2** Current Composition
- **3** Objectives

History of OBASCO

OBASCO

Current Compositior

Objectives

Strategy

Results

• 1992: Creation of a group at EMN on object-oriented programming

- D. Badouel, I. Borne, A. Réquilé and J. Malenfant
- 1995/1999: Common laboratory with OTI/IBM (Jules Verne) about programming environments for Smalltalk and Java
 - P. Mulet, P. Krief, F. Rivard, and Y-G. Guéhéneuc
- 2002: OBASCO creation as a new INRIA project associated to UR Rennes
- 2003: OBASCO got the label "INRIA project"

History of OBASCO

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- 1992: Creation of a group at EMN on object-oriented programming
 - D. Badouel, I. Borne, A. Réquilé and J. Malenfant
- 1995/1999: Common laboratory with OTI/IBM (Jules Verne) about programming environments for Smalltalk and Java
 - P. Mulet, P. Krief, F. Rivard, and Y-G. Guéhéneuc
- 2002: OBASCO creation as a new INRIA project associated to UR Rennes
- 2003: OBASCO got the label "INRIA project"

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- 1992: Creation of a group at EMN on object-oriented programming
 - D. Badouel, I. Borne, A. Réquilé and J. Malenfant
- 1995/1999: Common laboratory with OTI/IBM (Jules Verne) about programming environments for Smalltalk and Java
 - P. Mulet, P. Krief, F. Rivard, and Y-G. Guéhéneuc
- 2002: OBASCO creation as a new INRIA project associated to UR Rennes
- 2003: OBASCO got the label "INRIA project"

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- 1992: Creation of a group at EMN on object-oriented programming
 - D. Badouel, I. Borne, A. Réquilé and J. Malenfant
- 1995/1999: Common laboratory with OTI/IBM (Jules Verne) about programming environments for Smalltalk and Java
 - P. Mulet, P. Krief, F. Rivard, and Y-G. Guéhéneuc
- 2002: OBASCO creation as a new INRIA project associated to UR Rennes
- 2003: OBASCO got the label "INRIA project"

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- 1992: Creation of a group at EMN on object-oriented programming
 - D. Badouel, I. Borne, A. Réquilé and J. Malenfant
- 1995/1999: Common laboratory with OTI/IBM (Jules Verne) about programming environments for Smalltalk and Java
 - P. Mulet, P. Krief, F. Rivard, and Y-G. Guéhéneuc
- 2002: OBASCO creation as a new INRIA project associated to UR Rennes
- 2003: OBASCO got the label "INRIA project"

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- 1992: Creation of a group at EMN on object-oriented programming
 - D. Badouel, I. Borne, A. Réquilé and J. Malenfant
- 1995/1999: Common laboratory with OTI/IBM (Jules Verne) about programming environments for Smalltalk and Java
 - P. Mulet, P. Krief, F. Rivard, and Y-G. Guéhéneuc
- 2002: OBASCO creation as a new INRIA project associated to UR Rennes
- 2003: OBASCO got the label "INRIA project"

History of OBASCO

Current Composition

Objectives

Strategy

Results

8 permanent staffs P. Cointe (PR 92) R. Douence (MA 98) T. Ledoux (MA 98) J-M. Menaud (MA 00) G. Muller (PR 02) J. Noyé (MA 96) M. Südholt (MA 97) J-C. Royer (PR 02)

- 1 associated staff
 H. Grall
- 1 regular invited J. Lawall (Diku)

Members

- 2 post PhDs • 18 PhD Students
 - C. Tavares

History of OBASCO

Current Composition

Objectives

Strategy

Results

8 permanent staffs P. Cointe (PR 92) R. Douence (MA 98) T. Ledoux (MA 98) J-M. Menaud (MA 00) G. Muller (PR 02) J. Noyé (MA 96) M. Südholt (MA 97) J-C. Royer (PR 02)

1 associated staff H. Grall

• 1 regular invited J. Lawall (Diku)

Members

- 2 post PhDs • 18 PhD Students
 - K. Garces
 - C. Tavares

Current Composition

8 permanent staffs P. Cointe (PR 92) R. Douence (MA 98) T. Ledoux (MA 98) J-M. Menaud (MA 00) G. Muller (PR 02) J. Nové (MA 96) M. Südholt (MA 97) J-C. Rover (PR 02)

1 associated staff H. Grall

- 1 regular invited
 - J. Lawall (Diku)

Members

- 2 post PhDs • 18 PhD Students

History of OBASCO

Current Composition

Objectives

Strategy

Results

8 permanent staffs P. Cointe (PR 92) R. Douence (MA 98) T. Ledoux (MA 98) J-M. Menaud (MA 00) G. Muller (PR 02) J. Noyé (MA 96) M. Südholt (MA 97) J-C. Royer (PR 02)

1 associated staff H. Grall

- 1 regular invited
 - J. Lawall (Diku)

Members

2 post PhDs

- P-C. David (Nantes)
- J. Noppen (Twente)
- **18 PhD Students**A. AssafC.F. BaligandL-S. DjokoF.F. HermenierH.M. LegerN.F. MinjatA.H. NguyenS.
 - R. Urunela

J. Berniolles

- C. Augier I-D. Bena F. Fernano I. Arboleo
- N. Loriant
- A. Nunez
- S. Pavel
- K. Garces
- C. Tavares

History of OBASCO

Current Composition

Objectives

Strategy

Results

8 permanent staffs P. Cointe (PR 92) R. Douence (MA 98) T. Ledoux (MA 98) J-M. Menaud (MA 00) G. Muller (PR 02) J. Noyé (MA 96) M. Südholt (MA 97) J-C. Royer (PR 02)

1 associated staff H. Grall

- 1 regular invited
 - J. Lawall (Diku)

Members

• 2 post PhDs

P-C. David (Nantes)

J. Noppen (Twente)

• 18 PhD Students

- A. Assaf F. Baligand
- S. Djoko
- F. Hermenier
- M. Leger
- F. Minjat
- H. Nguyen
- R. Urunela
- J. Berniolles

- C. Augier
- L-D. Bena
- F. Fernand
- H. Arboled
- N. Loriant
- A. Nunez
- S. Pavel
- K. Garces
- C. Tavares

History of OBASCO

OBASCO

Current Composition

Objectives

Strategy

Results

• To solve scalability problems in software engineering

- To improve software architectures adaptation
- Two main directions
 - Separation of concern: specific programs for specific problems
 - Correct composition of existing programming artefacts

History of OBASCO

OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- To solve scalability problems in software engineering
- To improve software architectures adaptation
- Two main directions
 - Separation of concern: specific programs for specific problems
 - Correct composition of existing programming artefacts

History of

OBASCO

Current Composition

Objectives

Strategy

Results

- To solve scalability problems in software engineering
- To improve software architectures adaptation
- Two main directions
 - Separation of concern: specific programs for specific problems
 - Correct composition of existing programming artefacts

OBASCO

History of OBASCO

Current Composition

Objectives

Strategy

Results

- To solve scalability problems in software engineering
- To improve software architectures adaptation
- Two main directions
 - Separation of concern: specific programs for specific problems
 - Correct composition of existing programming artefacts

OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- To solve scalability problems in software engineering
- To improve software architectures adaptation
- Two main directions
 - Separation of concern: specific programs for specific problems
 - Correct composition of existing programming artefacts

OBASCO

History of OBASCO

- Current Composition
- Objectives
- Strategy
- Results

• Buildings are constructed from several descriptions

- Architecture, Electricity, Heating, Air-Conditioning, Water, Network, ...
- Each of them described with the adequate tools and specific rules
- There are interactions and constraints between them
- To build means to compose them: a really complex process and that must be correct

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- Buildings are constructed from several descriptions
- Architecture, Electricity, Heating, Air-Conditioning, Water, Network, ...
- Each of them described with the adequate tools and specific rules
- There are interactions and constraints between them
- To build means to compose them: a really complex process and that must be correct

OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- Buildings are constructed from several descriptions
- Architecture, Electricity, Heating, Air-Conditioning, Water, Network, ...
- Each of them described with the adequate tools and specific rules
- There are interactions and constraints between them
- To build means to compose them: a really complex process and that must be correct

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- Buildings are constructed from several descriptions
- Architecture, Electricity, Heating, Air-Conditioning, Water, Network, ...
- Each of them described with the adequate tools and specific rules
- There are interactions and constraints between them
- To build means to compose them: a really complex process and that must be correct

History of OBASCO

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- Buildings are constructed from several descriptions
- Architecture, Electricity, Heating, Air-Conditioning, Water, Network, ...
- Each of them described with the adequate tools and specific rules
- There are interactions and constraints between them
- To build means to compose them: a really complex process and that must be correct

History of OBASCO

- Current Composition
- Objectives
- Strategy
- Results

Research Domain

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components
- Model driven engineering: transformation techniques
- ECOOP, OOPSLA, AOSD, GPCE, DOA, PEPM, ASE

Research Domain

History of OBASCO

Current Composition

Objectives

Strategy

Results

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components
- Model driven engineering: transformation techniques
- ECOOP, OOPSLA, AOSD, GPCE, DOA, PEPM, ASE

Research Domain

History of OBASCO

Current Compositior

Objectives

Strategy

Results

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components
- Model driven engineering: transformation techniques
- ECOOP, OOPSLA, AOSD, GPCE, DOA, PEPM, ASE

Research Domain

History of OBASCO

Current Compositior

Objectives

Strategy

Results

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components
- Model driven engineering: transformation techniques
- ECOOP, OOPSLA, AOSD, GPCE, DOA, PEPM, ASE

Research Domain

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Software Engineering

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components
- Model driven engineering: transformation techniques

Research Domain

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Software Engineering

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components
- Model driven engineering: transformation techniques

Research Domain

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Software Engineering

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components

Model driven engineering: transformation techniques

Research Domain

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Software Engineering

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components

Model driven engineering: transformation techniques
ECOOP, OOPSLA, AOSD, GPCE, DOA, PEPM, ASE

Research Domain

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Software Engineering

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components
- Model driven engineering: transformation techniques
Research Domain

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Software Engineering

- Software components and scalability
- Programming languages
- Post object-oriented programming
- Generative programming
 - Sequential, concurrent and distributed
 - Mechanism for separation and composition
 - Objects versus aspects versus components
- Model driven engineering: transformation techniques
- ECOOP, OOPSLA, AOSD, GPCE, DOA, PEPM, ASE

History of OBASCO

Current Compositio

Objectives

Strategy

Results

Three Swim Lanes

Aspect-oriented programming

- To explicit links between metaobject and aspect
- To formalize aspect-oriented models
- To design and implement a language
- Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Compositio
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Compositio
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Compositio
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Compositio
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

Current Compositio

Objectives

Strategy

Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Compositio
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Compositio
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- Aspect-oriented programming
 - To explicit links between metaobject and aspect
 - To formalize aspect-oriented models
 - To design and implement a language
 - Reverse engineering of legacy code with aspects
- Software component
 - Explicit protocols for components
 - Property verification for components and architectures
 - Understand relations between aspects and components
- Domain specific language
 - Expressiveness, extensibility and compilation
 - Aspect languages, composition and DSL

History of

OBASCO

- Current Compositio
- Objectives
- Strategy
- Results

· Formalization of aspect-oriented programming

- (C)EAOP: a formal (concurrent) model based on events
- Static analysis of aspect interactions
- CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

· Formalization of aspect-oriented programming

- (C)EAOP: a formal (concurrent) model based on events
- Static analysis of aspect interactions
- CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

• Formalization of aspect-oriented programming

- (C)EAOP: a formal (concurrent) model based on events
- Static analysis of aspect interactions
- CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

- Formalization of aspect-oriented programming
 - (C)EAOP: a formal (concurrent) model based on events
 - Static analysis of aspect interactions
 - CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

• Formalization of aspect-oriented programming

- (C)EAOP: a formal (concurrent) model based on events
- Static analysis of aspect interactions
- CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

- Formalization of aspect-oriented programming
 - (C)EAOP: a formal (concurrent) model based on events
 - Static analysis of aspect interactions
 - CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

- Formalization of aspect-oriented programming
 - (C)EAOP: a formal (concurrent) model based on events
 - Static analysis of aspect interactions
 - CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

• Formalization of aspect-oriented programming

- (C)EAOP: a formal (concurrent) model based on events
- Static analysis of aspect interactions
- CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects

Reverse engineering

Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

- Formalization of aspect-oriented programming
 - (C)EAOP: a formal (concurrent) model based on events
 - Static analysis of aspect interactions
 - CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

- Formalization of aspect-oriented programming
 - (C)EAOP: a formal (concurrent) model based on events
 - Static analysis of aspect interactions
 - CASB: Operational semantics for aspect-oriented language
- Aspect-oriented languages
 - Reflex: Reflexive kernel for AOP
 - Arachne: dynamic aspect weaver for C
 - AWED: Distributed aspects
- Reverse engineering
 - Aspects for design patterns in JHotDraw

History of OBASCO

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

Explicit protocols

- Compatibility and substitutability for components
- Component model with symbolic transition systems
- Verification based on boundedness
- Runtime and code generation support

Adaptation

- Fractal extension
- Specialization and component generation

History of OBASCO

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

Explicit protocols

- Compatibility and substitutability for components
- Component model with symbolic transition systems
- Verification based on boundedness
- Runtime and code generation support

Adaptation

- Fractal extension
- Specialization and component generation

History of OBASCO

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- Compatibility and substitutability for components
- Component model with symbolic transition systems
- Verification based on boundedness
- Runtime and code generation support
- Adaptation
 - Fractal extension
 - Specialization and component generation

History of OBASCO

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- Compatibility and substitutability for components
- Component model with symbolic transition systems
- Verification based on boundedness
- Runtime and code generation support
- Adaptation
 - Fractal extension
 - Specialization and component generation

History of

OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- Compatibility and substitutability for components
- Component model with symbolic transition systems
- Verification based on boundedness
- Runtime and code generation support
- Adaptation
 - Fractal extension
 - Specialization and component generation

OBASCO

History of OBASCO

- Current Composition
- Objectives
- Strategy
- Results

Explicit protocols

- Compatibility and substitutability for components
- Component model with symbolic transition systems
- Verification based on boundedness
- Runtime and code generation support

Adaptation

- Fractal extension
- Specialization and component generation

OBASCO

History of OBASCO

- Current Compositior
- Objectives

Strategy

Results

- Compatibility and substitutability for components
- Component model with symbolic transition systems
- Verification based on boundedness
- Runtime and code generation support
- Adaptation
 - Fractal extension
 - Specialization and component generation

OBASCO

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- Compatibility and substitutability for components
- Component model with symbolic transition systems
- · Verification based on boundedness
- Runtime and code generation support
- Adaptation
 - Fractal extension
 - Specialization and component generation

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Domain Specific Languages

- Modularization and aspects for Linux kernel
- DSL extensibility (hierarchy of schedulers)
- Verification
- Coccinelle
 - Description and implementation of Linux drivers
 evolution
- Compilation methods

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Domain Specific Languages

Bossa

Modularization and aspects for Linux kernel

- DSL extensibility (hierarchy of schedulers)
- Verification
- Coccinelle
 - Description and implementation of Linux drivers
 evolution
- Compilation methods

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Domain Specific Languages

- Modularization and aspects for Linux kernel
- DSL extensibility (hierarchy of schedulers)
- Verification
- Coccinelle
 - Description and implementation of Linux drivers evolution
- Compilation methods

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Domain Specific Languages

- Modularization and aspects for Linux kernel
- DSL extensibility (hierarchy of schedulers)
- Verification
- Coccinelle
 - Description and implementation of Linux drivers evolution
- Compilation methods

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Domain Specific Languages

- Modularization and aspects for Linux kernel
- DSL extensibility (hierarchy of schedulers)
- Verification
- Coccinelle
 - Description and implementation of Linux drivers evolution
- Compilation methods
History of OBASCO

Current Compositior

Objectives

Strategy

Results

Domain Specific Languages

Bossa

- Modularization and aspects for Linux kernel
- DSL extensibility (hierarchy of schedulers)
- Verification
- Coccinelle
 - Description and implementation of Linux drivers
 evolution

< 日 > < 同 > < 回 > < 回 > < □ > <

Compilation methods

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Domain Specific Languages

Bossa

- Modularization and aspects for Linux kernel
- DSL extensibility (hierarchy of schedulers)
- Verification
- Coccinelle
 - Description and implementation of Linux drivers
 evolution
- Compilation methods

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

OOPLSA 03: UML vs Java 04: MOP Reflex

- ECOOP
 04: SOM with Reflex
- AOSD
 - O3: Cache and aspect
 - O4: Aspect intercation
 - O5: Arachne
 - O6: AWED
- GPCE
 - 04: Cflow, Bossa/DSL 05: GP/DSL, Bossa/modules, mutliple aspects

- PEPM
 - 04: Component specialisation, hierarchy of schedulers
- ASE
 03: Bossa verification, UML binary class
- DOA
 03: asynchronous STS
 04: Boundedness analysis
 06: AWED and web services
- EuroSys
 04: Bossa/component 06: Linux drivers
 12/15

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- OOPLSA
 03: UML vs Java
 04: MOP Reflex
- ECOOP
 04: SOM with Reflex
- AOSD
 - O3: Cache and aspect
 - O4: Aspect intercation
 - O5: Arachne
 - O6: AWED
- GPCE
 - 04: Cflow, Bossa/DSL 05: GP/DSL, Bossa/modules, mutliple aspects

- PEPM
 - 04: Component specialisation, hierarchy of schedulers
- ASE
 03: Bossa verification,
 UML binary class
- DOA
 03: asynchronous STS
 04: Boundedness analysis
 06: AWED and web
- EuroSys 04: Bossa/component 06: Linux drivers 12/15

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- OOPLSA
 03: UML vs Java
 04: MOP Reflex
- ECOOP
 04: SOM with Reflex
- AOSD
 - O3: Cache and aspect
 - O4: Aspect intercation
 - O5: Arachne
 - O6: AWED
- GPCE
 - 04: Cflow, Bossa/DSL 05: GP/DSL, Bossa/modules, mutliple aspects

- PEPM
 - 04: Component specialisation, hierarchy of schedulers
- ASE
 03: Bossa verification,
 UML binary class
- DOA
 03: asynchronous STS
 04: Boundedness analysis
 06: AWED and web
 - services
- EuroSys
 04: Bossa/component 06: Linux drivers
 12/15

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- OOPLSA
 03: UML vs Java
 04: MOP Reflex
- ECOOP
 04: SOM with Reflex
- AOSD
 - O3: Cache and aspect
 - O4: Aspect intercation
 - O5: Arachne
 - O6: AWED
- GPCE
 - 04: Cflow, Bossa/DSL 05: GP/DSL, Bossa/modules, mutliple aspects

- PEPM
 - 04: Component specialisation, hierarchy of schedulers
- ASE
 03: Bossa verification,
 UML binary class
- DOA
 03: asynchronous STS
 04: Boundedness
 - analysis
 - 06: AWED and web services
- EuroSys
 04: Bossa/component 06: Linux drivers
 12/15

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- OOPLSA
 03: UML vs Java
 04: MOP Reflex
- ECOOP
 04: SOM with Reflex
- AOSD
 - O3: Cache and aspect
 - O4: Aspect intercation
 - O5: Arachne
 - O6: AWED
- GPCE
 - 04: Cflow, Bossa/DSL 05: GP/DSL, Bossa/modules, mutliple aspects

- PEPM
 - 04: Component specialisation, hierarchy of schedulers
- ASE
 - 03: Bossa verification, UML binary class
- DOA
 03: asynchronous STS
 04: Boundedness
 - analysis
 - 06: AWED and web services
- EuroSys
 04: Bossa/component 06: Linux drivers
 12/15

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- OOPLSA
 03: UML vs Java
 04: MOP Reflex
- ECOOP
 04: SOM with Reflex
- AOSD
 - O3: Cache and aspect
 - O4: Aspect intercation
 - O5: Arachne
 - O6: AWED
- GPCE
 - 04: Cflow, Bossa/DSL 05: GP/DSL, Bossa/modules, mutliple aspects

- PEPM
 - 04: Component specialisation, hierarchy of schedulers
- ASE
 03: Bossa verification,
 UML binary class
- DOA
 - 03: asynchronous STS 04: Boundedness analysis
 - 06: AWED and web
 - services
- EuroSys
 04: Bossa/component 06: Linux drivers
 12/15

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- OOPLSA
 03: UML vs Java
 04: MOP Reflex
- ECOOP
 04: SOM with Reflex
- AOSD
 - O3: Cache and aspect
 - O4: Aspect intercation
 - O5: Arachne
 - O6: AWED
- GPCE
 - 04: Cflow, Bossa/DSL 05: GP/DSL, Bossa/modules, mutliple
 - aspects

- PEPM
 - 04: Component specialisation, hierarchy of schedulers
- ASE
 03: Bossa verification,
 UML binary class
- DOA
 03: asynchronous STS
 04: Boundedness
 analysis
 06: AWED and web
 services
- EuroSys
 04: Bossa/component 06: Linux drivers 12/15

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- OOPLSA
 03: UML vs Java
 04: MOP Reflex
- ECOOP
 04: SOM with Reflex
- AOSD
 - O3: Cache and aspect
 - O4: Aspect intercation
 - O5: Arachne
 - O6: AWED
- GPCE
 - 04: Cflow, Bossa/DSL 05: GP/DSL, Bossa/modules, mutliple
 - aspects

- PEPM
 - 04: Component specialisation, hierarchy of schedulers
- ASE
 03: Bossa verification,
 UML binary class
- DOA
 03: asynchronous STS
 04: Boundedness
 analysis
 06: AWED and web
 services
- EuroSys
 04: Bossa/component 06: Linux drivers

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Bossa

- Safran
- Arachne
- AWED/JasCo
- Baton/Stratego/Reflex

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

Results

Bossa

Safran

Arachne

AWED/JasCo

• Baton/Stratego/Reflex

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

- Bossa
- Safran
- Arachne
- AWED/JasCo
- Baton/Stratego/Reflex

э

13/15

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

- Bossa
- Safran
- Arachne
- AWED/JasCo
- Baton/Stratego/Reflex

э

13/15

OBASCO

History of OBASCO

Current Compositior

Objectives

Strategy

- Bossa
- Safran
- Arachne
- AWED/JasCo
- Baton/Stratego/Reflex

International Contracts

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

• REX AOSD Europe 2004-2008

- STREP AMPLE 2006-2009
- IST EasyComp 2001-2003
- Alfa Elastex 2001-2003
- Econet 2007-2008
- Siemens 2006-2007
- Microsoft Research 2002-2004
- IBM Eclipse Fellowships 2002-2004

International Contracts

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

• REX AOSD Europe 2004-2008

- STREP AMPLE 2006-2009
- IST EasyComp 2001-2003
- Alfa Elastex 2001-2003
- Econet 2007-2008
- Siemens 2006-2007
- Microsoft Research 2002-2004
- IBM Eclipse Fellowships 2002-2004

International Contracts

- Current Compositior
- Objectives
- Strategy
- Results

- REX AOSD Europe 2004-2008
- STREP AMPLE 2006-2009
- IST EasyComp 2001-2003
- Alfa Elastex 2001-2003
- Econet 2007-2008
- Siemens 2006-2007
- Microsoft Research 2002-2004
- IBM Eclipse Fellowships 2002-2004

International Contracts

- Current Compositior
- Objectives
- Strategy
- Results

- REX AOSD Europe 2004-2008
- STREP AMPLE 2006-2009
- IST EasyComp 2001-2003
- Alfa Elastex 2001-2003
- Econet 2007-2008
- Siemens 2006-2007
- Microsoft Research 2002-2004
- IBM Eclipse Fellowships 2002-2004

International Contracts

- Current Compositior
- Objectives
- Strategy
- Results

- REX AOSD Europe 2004-2008
- STREP AMPLE 2006-2009
- IST EasyComp 2001-2003
- Alfa Elastex 2001-2003
- Econet 2007-2008
- Siemens 2006-2007
- Microsoft Research 2002-2004
- IBM Eclipse Fellowships 2002-2004

International Contracts

- Current Compositior
- Objectives
- Strategy
- Results

- REX AOSD Europe 2004-2008
- STREP AMPLE 2006-2009
- IST EasyComp 2001-2003
- Alfa Elastex 2001-2003
- Econet 2007-2008
- Siemens 2006-2007
- Microsoft Research 2002-2004
- IBM Eclipse Fellowships 2002-2004

International Contracts

- Current Compositior
- Objectives
- Strategy
- Results

- REX AOSD Europe 2004-2008
- STREP AMPLE 2006-2009
- IST EasyComp 2001-2003
- Alfa Elastex 2001-2003
- Econet 2007-2008
- Siemens 2006-2007
- Microsoft Research 2002-2004
- IBM Eclipse Fellowships 2002-2004

International Contracts

History of OBASCO

- Current Composition
- Objectives

Strategy

- REX AOSD Europe 2004-2008
- STREP AMPLE 2006-2009
- IST EasyComp 2001-2003
- Alfa Elastex 2001-2003
- Econet 2007-2008
- Siemens 2006-2007
- Microsoft Research 2002-2004
- IBM Eclipse Fellowships 2002-2004

History of OBASCO

OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

• ANR blanc FLFS 2006-2009

- ANR blanc Coccinelle 2005-2008
- ANR/RNTL SADAJ 2006-2009
- ANR/RNTL Selfware 2005-2008
- ACI sécurité CORSS 2003-2006
- ACI sécurité DISPO 2003-2006
- RNTL ARCAD 2000-2004

History of OBASCO

- Current Composition
- Objectives
- Strategy
- Results

- ANR blanc FLFS 2006-2009
- ANR blanc Coccinelle 2005-2008
- ANR/RNTL SADAJ 2006-2009
- ANR/RNTL Selfware 2005-2008
- ACI sécurité CORSS 2003-2006
- ACI sécurité DISPO 2003-2006
- RNTL ARCAD 2000-2004

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- ANR blanc FLFS 2006-2009
- ANR blanc Coccinelle 2005-2008
- ANR/RNTL SADAJ 2006-2009
- ANR/RNTL Selfware 2005-2008
- ACI sécurité CORSS 2003-2006
- ACI sécurité DISPO 2003-2006
- RNTL ARCAD 2000-2004

15/15

History of

- Current Composition
- Objectives
- Strategy
- Results

- ANR blanc FLFS 2006-2009
- ANR blanc Coccinelle 2005-2008
- ANR/RNTL SADAJ 2006-2009
- ANR/RNTL Selfware 2005-2008
- ACI sécurité CORSS 2003-2006
- ACI sécurité DISPO 2003-2006
- RNTL ARCAD 2000-2004

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- ANR blanc FLFS 2006-2009
- ANR blanc Coccinelle 2005-2008
- ANR/RNTL SADAJ 2006-2009
- ANR/RNTL Selfware 2005-2008
- ACI sécurité CORSS 2003-2006
- ACI sécurité DISPO 2003-2006
- RNTL ARCAD 2000-2004

15/15

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- ANR blanc FLFS 2006-2009
- ANR blanc Coccinelle 2005-2008
- ANR/RNTL SADAJ 2006-2009
- ANR/RNTL Selfware 2005-2008
- ACI sécurité CORSS 2003-2006
- ACI sécurité DISPO 2003-2006
- RNTL ARCAD 2000-2004

History of OBASCO

- Current Compositior
- Objectives
- Strategy
- Results

- ANR blanc FLFS 2006-2009
- ANR blanc Coccinelle 2005-2008
- ANR/RNTL SADAJ 2006-2009
- ANR/RNTL Selfware 2005-2008
- ACI sécurité CORSS 2003-2006
- ACI sécurité DISPO 2003-2006
- RNTL ARCAD 2000-2004