
eLTS

Pascal Sotin

14 mai 2009

0.1 Definitions

For a given service s, we assume a set of services subs .

eLTS. An eLTS is a 8-uple1 〈Q ,G ,L, δ, q0,QF ,Φ,Ψ〉.
– Q is a finite set of states2.
– L is a set of basic labels containing at least ε.
– G is a set of guards containing at least true and false.
– δ : Q × G × L 7→ Q is the transition function by guarded basic label

(deterministic in state and label).
– Ψ : Q × G × subs 7→ Q is the transition function by guarded mandatory

subservice calls.
– q0 ∈ Q is the unique initial state. QF ⊆ Q are the final states.
– Φ : Q ↔ subs is a relation indicating the optional subservice calls.
Mandatory and optional subservice calls have to be done by the caller.

Graphic view. On the graphic view of an eLTS, the mandatory calls Ψ are
depicted by transitions labelled by [[ss]] where ss ∈ subs . The optional calls
Φ are depicted by labels on the states, of the form <<ss1, . . . , ss2>> where ssi ∈
subs . The guards are depicted by [g] in front of the transition, where g ∈ G .

LTS. A LTS is a 6-uple 〈Q ,G ,L, δ, q0,QF 〉. The description of the elements
of the tuple is the same as in an eLTS. The graphical representation is similar
to the one of an eLTS (but simpler).

Primitive transition system. A primitive transition system is a 5-uple
〈Σ,L,→, I ,F 〉. Σ is a (potentially infinite) set of states, but unlike the ones
of a LTS or eLTS, it can be infinite. L is still a set of label, with → a labelled
transition system. I ⊆ Σ and F ⊆ Σ are respectively the set of initial states and
final states.

1Originally, in SC07, the eLTS is first described by a 6-uple, without Ψ which was introdu-
ced latter on in the paper. This choice was made to preserve existing techniques and tools. For
simpler model manipulation, this paper includes Ψ in the tuple, exclude [[ss]] transitions
from δ and takes guards out of the labels.

2Originally, in SC07, the set Q of states was called S . This paper changes this convention
to avoid the confusion state/service.

1



0.2 Dynamic semantics

In this section we provide the dynamic semantics of primitive TS’s, LTS’s
and eLTS’s. The semantics of a primitive TS is a trace semantics. The semantics
of a LTS is a primitive TS. The semantics of a eLTS is a LTS.

Primitive TS. The trace semantics of a primitive transition system P =
〈Σ,L,→, I ,F 〉 is the set of partial traces [[P ]]tr.

[[P ]]tr = {[l0.1, l1.2, . . . , ln−1.n ] |σ0 ∈ I ∧ σi
li.i+1→ σi+1}

LTS. The operational semantics of a LTS 〈Q ,G ,L, δ, q0,QF 〉 is described
by the primitive transition system 〈Σ×Q ,L,→,ΣI × {q0},Σ×QF 〉 where Σ
is a set of possible environments3 (given by the variables of the component)
among which we distinguish ΣI , the set of possible initial environments (given
by the initializations).

(q1, [g]l , q2) ∈ δ
[[g ]]cond(σ)

σ′ ∈ [[l ]]exec(σ)

(σ, q1)
l→ (σ′, q2)

With [[]]cond : G → Σ → B giving the semantics of the guard in a given
environment and [[]]exec : L → Σ → P(Σ) giving the non-deterministic semantics
of the action of the basic labels on the environment.

We name prim the function that goes from an LTS to its primitive transition
system.

Property 1 (Soundness). If a service has a LTS ∆, for all monitoring of a call
to this service, their exists a trace t ∈ [[prim(∆)]]tr that matches the monitored
behavior.

Property 2 (Completeness). If a service has a LTS ∆, for all trace t ∈
[[prim(∆)]]tr, their exists an assembly containing a component containing this
service, such that at some point the monitoring of a call to this service matches
the trace t.

Property 1, that we call soundness, states that whatever the context, no be-
havior outside of the semantics can occur. Property 2, that we call completeness,
states that all the behaviors of the semantics can be observed, provided that we
can choose the context. We are talking here of abstract behaviors, and not of
concrete behaviors provided by an implementation of the abstract service seen
as a specification. The semantics discuss the behavior of the service only, but
we have the guarantee that in any context, if we focus on one invocation of the
service, no more (and no less) than the semantics can be obtained.

3We use the symbol Σ both for a state in a primitive transition system and for an environ-
ment in a LTS operational semantics

2



eLTS. The operational semantics of an eLTS of a service s within a com-
ponent containing the set of services S is defined by a LTS 〈Qu ,Gu ,Lu , δu , q0,QF 〉4.
For a given service s, the eLTS is 〈Qs ,Gs ,Ls , δs , q0(s),QF (s),Φs ,Ψs〉.

We write q1
[g]l
↪→ q2 for (q1, g , l , q2) ∈ δu and define this transition system by

the following four rules:

basic transition
(q1, g , l , q2) ∈ δs

c.(s : q1)
[g]l
↪→ c.(s : q2)

mandatory call
(q1, g , ss, q2) ∈ Ψs

c.(s : q1)
[g]??ss

↪→ c.(s : q2).(ss : q0(s))

optional call
(q1, ss) ∈ Φs

c.(s : q1)
[true]??ss

↪→ c.(s : q1).(ss : q0(s))

(sub)service end
q ∈ QF (s)

c.(s : q)
[true]ε

↪→ c

The initial state q0 of the LTS is τ.(s : q0(s)). The set of states, guards and
labels (Qu ,Gu ,Lu) are those collected from q0 by δu . The set of final states QF

is {τ}.
We note that any (q , ss) ∈ Φ can be replaced by (q , true, ss, q) ∈ Ψ.

4Subscript u stand for unfolded.

3


