Probabilistic Abstraction and Verification of Nonlinear Dynamical Systems

David JULIEN david.julien@univ-nantes.fr

Nantes Université - LS2N (VELO) B. DELAHAYE, G. CANTIN, G. ARDOUREL

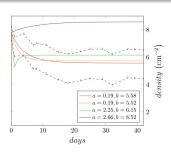
22 Mai 2025

Background & Definitions

Definitions

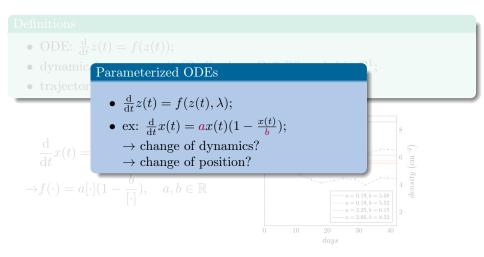
- ODE: $\frac{\mathrm{d}}{\mathrm{d}t}z(t) = f(z(t));$
- dynamical system: pair (Ω, f) where $\Omega \subseteq \mathbb{R}^n$ and f is \mathbb{C}^1 ;
- trajectory: solution $z:]a, b[\to \mathbb{R}^n$ to that ODE.

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = ax(t)(1 - \frac{b}{x(t)})$$
$$\to f(\cdot) = a[\cdot](1 - \frac{b}{[\cdot]}), \quad a, b \in \mathbb{R}$$



Simulations for the density of *Aurelia aurita* polyps.

Background & Definitions



Simulations for the density of Aurelia aurita polyps.

Hybrid Dynamical Systems

- a function f defining an ODE;
- a phase space Ω ;
- a parameter space Λ ;

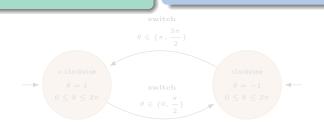
- continuous transition (internal evolution) according to f and λ ;
- discrete transition (external change of dynamics / position

Hybrid automaton modeling a watch hand

Hybrid Dynamical Systems

- a function f defining an ODE;
- a phase space Ω ;
- a parameter space Λ ;

- continuous transition (internal evolution) according to f and λ ;
- discrete transition (external change of dynamics / position)

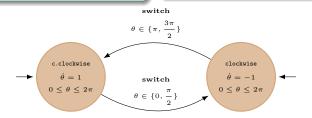


Hybrid automaton modeling a watch hand

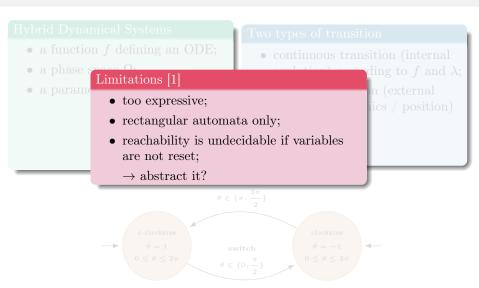
Hybrid Dynamical Systems

- a function f defining an ODE;
- a phase space Ω ;
- a parameter space Λ ;

- continuous transition (internal evolution) according to f and λ ;
- discrete transition (external change of dynamics / position)



Hybrid automaton modeling a watch hand.

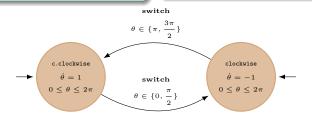


Hybrid automaton modeling a watch hand.

Hybrid Dynamical Systems

- a function f defining an ODE;
- a phase space Ω ;
- a parameter space Λ ;
- a discretization \mathcal{T} of the timeline;

- continuous transition (internal evolution) according to f and λ ;
- discrete transition (external change of dynamics / position)

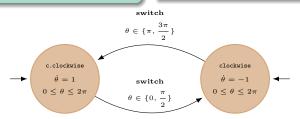


Hybrid automaton modeling a watch hand.

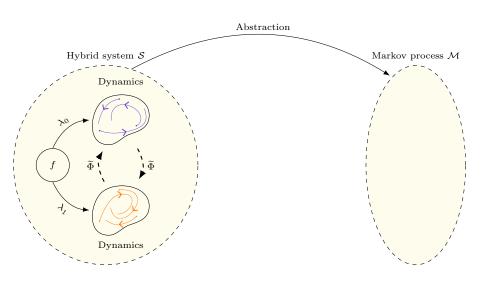
Hybrid Dynamical Systems

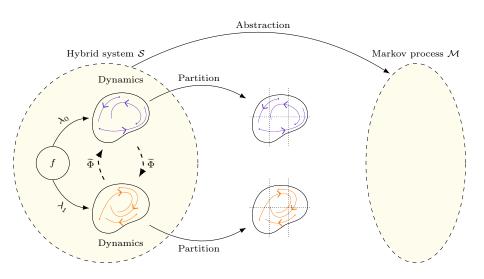
- a function f defining an ODE;
- a phase space Ω ;
- a parameter space Λ ;
- a discretization \mathcal{T} of the timeline;
- a finite set \mathcal{D} of distributions over Ω or Λ .

- continuous transition (internal evolution) according to f and λ ;
- discrete transition (external change of dynamics / position) through the realization of a probability distribution at timepoint $t_i \in \mathcal{T}$.

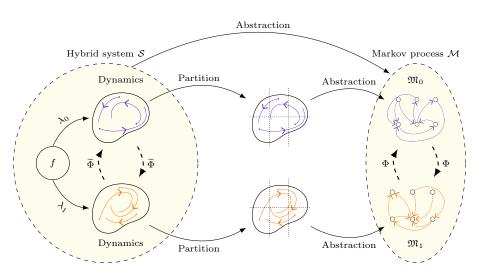


Hybrid automaton modeling a watch hand.









Main results • each Markov chain almost-simulates its ODE ODE; • \mathcal{M} almost-simulates \mathcal{S} ; • Φ for S can be derived from Φ for M in some cases.

Outline

1 A Markov chain *almost* simulates an ODE

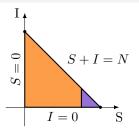
2 Almost-simulation?

3 A MDP almost-simulates a hybrid system

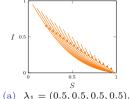
Case study: An epidemiological model [2]

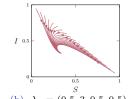
The SIR model

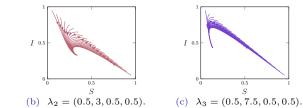
$$\begin{split} \frac{\mathrm{d}S}{\mathrm{d}t} &= \alpha - \delta S - \beta \frac{IS}{N}, \\ \frac{\mathrm{d}I}{\mathrm{d}t} &= \beta \frac{IS}{N} - (\gamma + \delta)I, \\ \frac{\mathrm{d}R}{\mathrm{d}t} &= \gamma I - \delta R, \\ N &= S + I + R \text{ is constant.} \end{split} \tag{1}$$



A partition of the phase space of the model.







Respective representations of the dynamics of the system induced by Eq. (1) and different values for $(\alpha, \beta, \gamma, \delta)$.

Building Markov chains

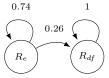
Densities as probabilities

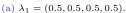
- Fix a duration $\tau > 0$.
- $p_{i,j} = \frac{\mu(\{x_0 \in R_i | x(x_0, \tau) \in R_j\})}{\mu(R_i)}$ $\Rightarrow x_0 \in R_i$ inducing a trajectory stopping in R_j .

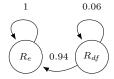
Building a Markov chain

 $(\mathfrak{Q}, \mathbb{P})$ with a set \mathfrak{Q} of states and a transition probability distribution \mathbb{P} ;

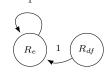
- \mathfrak{Q} = regions of the phase space;
- $\mathbb{P}(R_i, R_j) = p_{i,j}$.







(b)
$$\lambda_2 = (0.5, 3, 0.5, 0.5).$$



(c) $\lambda_3 = (0.5, 7.5, 0.5, 0.5)$.

Definition

 $\mathcal{R} \subseteq States(\mathcal{S}) \times States(\mathcal{M})$ such that:

- 1. for any initial state x_i for S, there exists an initial state R_i for M such that $(x_i, R_i) \in \mathcal{R}$;
- 2. for any pair $(x_{in}, R_{in}) \in \mathcal{R}$ and any successor x_{out} of x_{in} , there exists a successor R_{out} of R_{in} such that $(x_{out}, R_{out}) \in \mathcal{R}$.

$$\Rightarrow (x,R) \in \mathcal{R} \Leftrightarrow x \in R$$

Definition

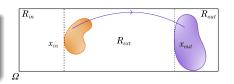
 $\mathcal{R} \subseteq States(\mathcal{S}) \times States(\mathcal{M})$ such that:

- 1. for any initial state x_i for S, there exists an initial state R_i for M such that $(x_i, R_i) \in \mathcal{R}$;
- 2. for any pair $(x_{in}, R_{in}) \in \mathcal{R}$ and any successor x_{out} of x_{in} , there exists a successor R_{out} of R_{in} such that $(x_{out}, R_{out}) \in \mathcal{R}$.

$$\Rightarrow (x,R) \in \mathcal{R} \Leftrightarrow x \in R$$

The border problem

 $R_{in} \to R_{out}$ in \mathcal{M} iff ball around x_{in} such that all trajectories stop in R_{out} .



Definition

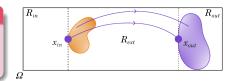
 $\mathcal{R} \subseteq States(\mathcal{S}) \times States(\mathcal{M})$ such that:

- 1. for any initial state x_i for S, there exists an initial state R_i for M such that $(x_i, R_i) \in \mathcal{R}$;
- 2. for any pair $(x_{in}, R_{in}) \in \mathcal{R}$ and any successor x_{out} of x_{in} , there exists a successor R_{out} of R_{in} such that $(x_{out}, R_{out}) \in \mathcal{R}$.

$$\Rightarrow (x,R) \in \mathcal{R} \Leftrightarrow x \in R$$

The border problem

 $R_{in} \to R_{out}$ in \mathcal{M} iff ball around x_{in} such that all trajectories stop in R_{out} . \Rightarrow not trivial if x_{in} on a border!



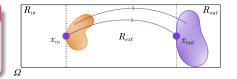
Definition

 $\mathcal{R} \subseteq States(\mathcal{S}) \times States(\mathcal{M})$ such that:

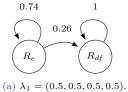
- 1. for any initial state x_i for S, there exists an initial state R_i for M such that $(x_i, R_i) \in \mathcal{R}$;
- 2. for any pair $(x_{in}, R_{in}) \in \mathcal{R}$ and any successor x_{out} of x_{in} , there exists a successor R_{out} of R_{in} such that $(x_{out}, R_{out}) \in \mathcal{R}$.
- 3. almost-simulation \Leftrightarrow 2. holds almost everywhere.
- $\Rightarrow (x,R) \in \mathcal{R} \Leftrightarrow x \in R$

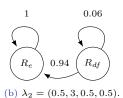
The border problem

 $R_{in} \to R_{out}$ in \mathcal{M} iff ball around x_{in} such that all trajectories stop in R_{out} . \Rightarrow not trivial if x_{in} on a border!

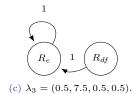


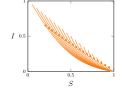
First result

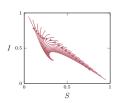


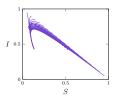


 \Downarrow







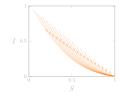


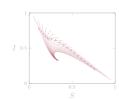
First result

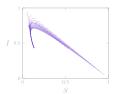
First result

The Markov chain \mathfrak{M} almost-simulates the ODE \mathfrak{S}_{λ} .

$$\Rightarrow \mathbb{P}(\varphi(\mathfrak{M})) = 1 \Rightarrow \mathbb{P}(\varphi(\mathfrak{S}_{\lambda})) = 1$$







Aggregating the chains

Building a Markov Decision Process

 $(\mathcal{Q}, \mathcal{A}, \mathbb{P})$ with a set \mathcal{Q} of states, a parameterizable transition probability distribution $\mathbb{P}(\cdot, \cdot, \cdot)$, a set \mathcal{A} of actions.

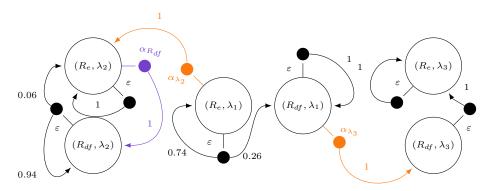
- $Q = \{(R, \lambda) \in \mathfrak{Q} \times \Lambda\};$
- actions a;
- for each a, a probability distribution $\mathbb{P}_a = \mathbb{P}(\cdot, a, \cdot)$ over the states of \mathcal{Q} ;

Three types of action

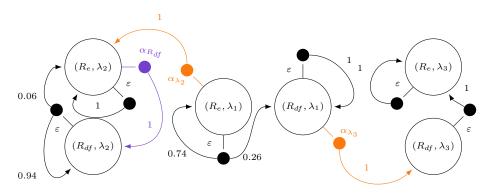
- ε : evolution according to current dynamics;
- $\alpha_{\mathbb{D}^{\mathfrak{Q}}}$: discrete reset of region according to $\mathbb{D}^{\mathfrak{Q}}$;
- $\alpha_{\mathbb{D}^{\Lambda}}$: discrete reset of dynamics according to \mathbb{D}^{Λ} .

an action $\alpha_{\mathbb{D}}$ corresponds to a distribution $\mathbb{D} \in \mathcal{D}$ for \mathcal{S} .

Building a MDP



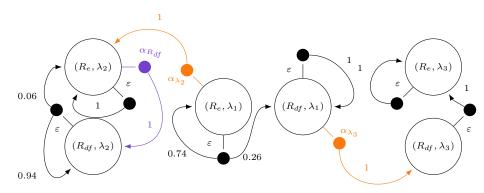
Building a MDP



Theorem

The produced MDP almost-simulates S.

Building a MDP



Theorem

The produced MDP *almost*-simulates \mathcal{S} .

Given a property φ , $\mathbb{P}(\varphi(\mathcal{M})) = 1 \Rightarrow \mathbb{P}((\varphi(\mathcal{S})) = 1.$

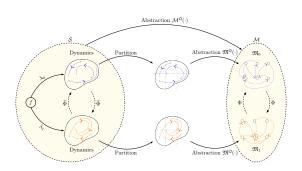
A strategy for $\mathcal M$ leads to a strategy for $\mathcal S$

	λ_1	λ_2	λ_3	$\lambda_3^{\leq 6}$	$\lambda_3^{\leq 4}$		λ_1	λ_2	λ_3	$\lambda_3^{\leq 6}$	$\lambda_3^{\leq 4}$
$R_{e,1}$	Ø	Ø	Ø	Ø	Ø	$R_{e,1}$	Ø	Ø	Ø	Ø	Ø
$R_{e,2}$	ε	ε	$\alpha_{R_{e,3}}$	Ø	Ø	$R_{e,2}$	τ	au	$\mathbb{D}_{\widetilde{x}_3}$	Ø	Ø
$R_{e,3}$	ε	α_{λ_1}	α_{λ_2}	α_{λ_2}	Ø	$R_{e,3}$	au	\mathbb{D}_{λ_1}	\mathbb{D}_{λ_2}	\mathbb{D}_{λ_2}	Ø
$R_{e,4}$	ε	α_{λ_1}	α_{λ_2}	α_{λ_2}	Ø	$R_{e,4}$	au	\mathbb{D}_{λ_1}	\mathbb{D}_{λ_2}	\mathbb{D}_{λ_2}	Ø
$R_{e,5}$	ε	α_{λ_1}	α_{λ_2}	$\alpha_{R_{df}}$	$\alpha_{R_{df}}$	$R_{e,5}$	au	\mathbb{D}_{λ_1}	\mathbb{D}_{λ_2}	$\mathbb{D}_{\widetilde{x}_{df}}$	$\mathbb{D}_{\widetilde{x}_{df}}$
R_{df}	ε	α_{λ_1}	α_{λ_1}	α_{λ_1}	α_{λ_1}	R_{df}	τ	\mathbb{D}_{λ_1}	\mathbb{D}_{λ_1}	\mathbb{D}_{λ_1}	$\mid \mathbb{D}_{\lambda_1} \mid$

Table 1: An example of winning strategy Φ for the studied property, where costs are introduced, so that ε -action is free, and α_R -actions are more expensive than α_{λ} -actions.

Table 2: An example of winning strategy $\widetilde{\Phi}$ for \mathcal{S} w.r.t. the studied property, where costs are introduced, so that τ -transition is free, and \mathbb{D}_R -transitions are more expensive than \mathbb{D}_{λ} -transitions.

Merci de votre attention



Bibliography

- [1] Thomas A. Henzinger et al. "What's Decidable about Hybrid Automata?" In: Journal of Computer and System Sciences 57.1 (Aug. 1998), pp. 94–124. ISSN: 0022-0000. DOI: 10.1006/jcss.1998.1581.
- [2] William O. Kermack and Anderson G. McKendrick. "Contributions to the mathematical theory of epidemics—II. The problem of endemicity". In: *Bulletin of Mathematical Biology* 53.1–2 (Mar. 1991), pp. 57–87. ISSN: 1522-9602. DOI: 10.1007/bf02464424.