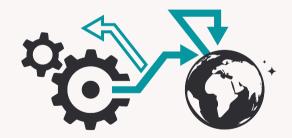
Probabilistic Abstraction and Verification of Hybrid Dynamical Systems

David Julien — <u>david.julien@univ-nantes.fr</u> Supervised by B. Delahaye (dir.), G. Ardourel, G. Cantin



1 - Context

Sound control

REFERENCE

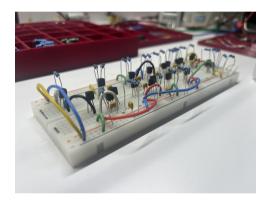
Röntgen: DIY fuzz pedal - source: Reddit

Sound control

REFERENCE

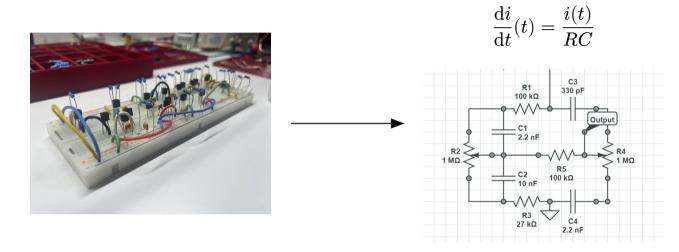
Röntgen: DIY fuzz pedal - source: Reddit

Three degrees of abstraction



Concrete level

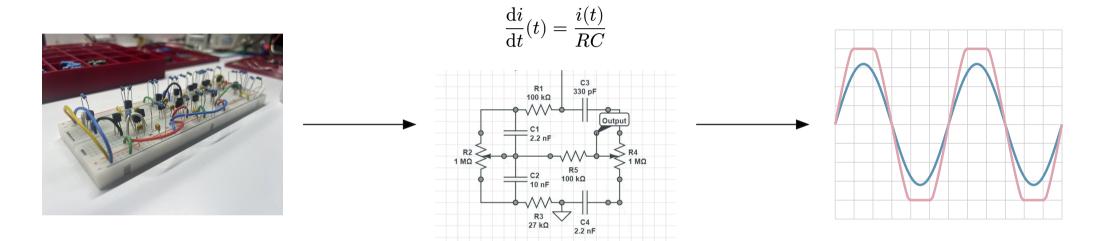
Three degrees of abstraction



Concrete level

Symbolic level

Three degrees of abstraction



Concrete level

Symbolic level

Simulation level

REFERENCE

- Left: Breadboard used for the design of a guitar pedal source: Reddit
- Middle: Schematics for the design of a tone control in a guitar pedal source: Reddit

Models, models everywhere

DEFINITION

A *model* is a formal representation of a phenomenon, which can be studied to infer information about the underlying phenomenon.

Models, models everywhere

DEFINITION

A *model* is a formal representation of a phenomenon, which can be studied to infer information about the underlying phenomenon.

REMARK

- Ubiquitous (Health, Biology, Economy, Physics, tabletop games, etc.);
- Cheap (usually);
- A Can be difficult to develop and/or use.

Models, models everywhere

DEFINITION

A *model* is a formal representation of a phenomenon, which can be studied to infer information about the underlying phenomenon.

REMARK

- Ubiquitous (Health, Biology, Economy, Physics, tabletop games, etc.);
- Cheap (usually);
- A Can be difficult to develop and/or use.

MOTIVATIONS

Provide formal guarantees and tools for building and analysing models that:

- can be used by any scientist;
- can be leveraged to answer real-life questions.

Verifying properties

DEFINITION

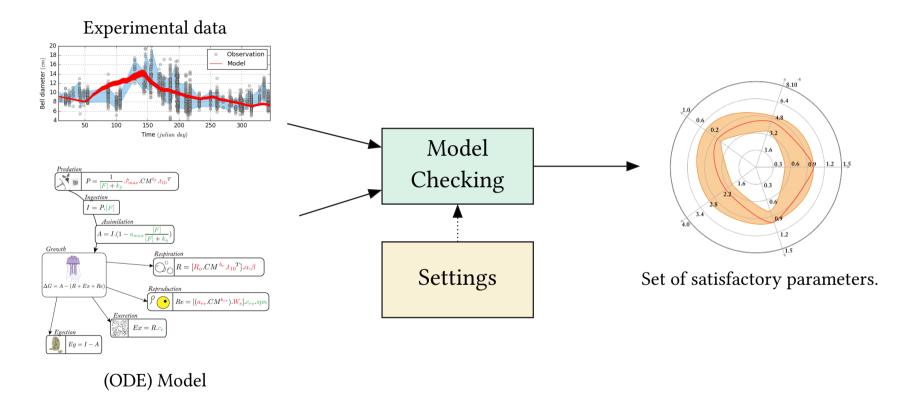
A *property* is a characteristic that an object may or may not have.

 \rightarrow may be expressed in natural language, translated in a formal language.

GOAL

- Ensure that a model satisfies a property;
- Evaluate a quantitative property;
- \rightarrow gather information.

Example: Parameterization of a jellyfish model [1]



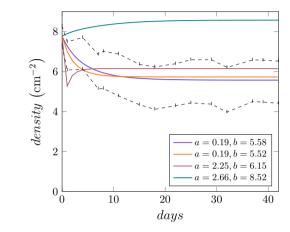
REFERENCE

[1]: S. Ramondenc, D. Eveillard, L. Guidi, F. Lombard, and B. Delahaye, "Probabilistic modeling to estimate jellyfish ecophysiological properties and size distributions," Scientific Reports, vol. 10, no. 1, Apr. 2020, doi: 10.1038/s41598-020-62357-5.

Properties of interest

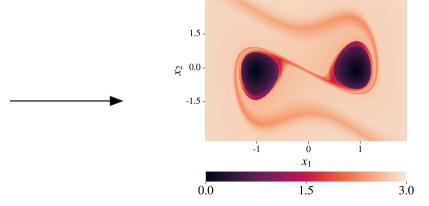
GOAL

Data adequation: finding parameter values such that the model output is consistent with the observed data.



GOAL

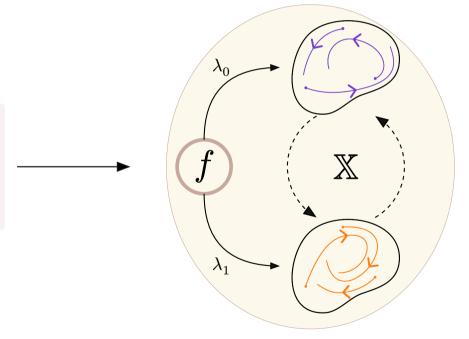
Stability analysis: finding initial conditions such that the model stays in the vicinity of equilibirum points.



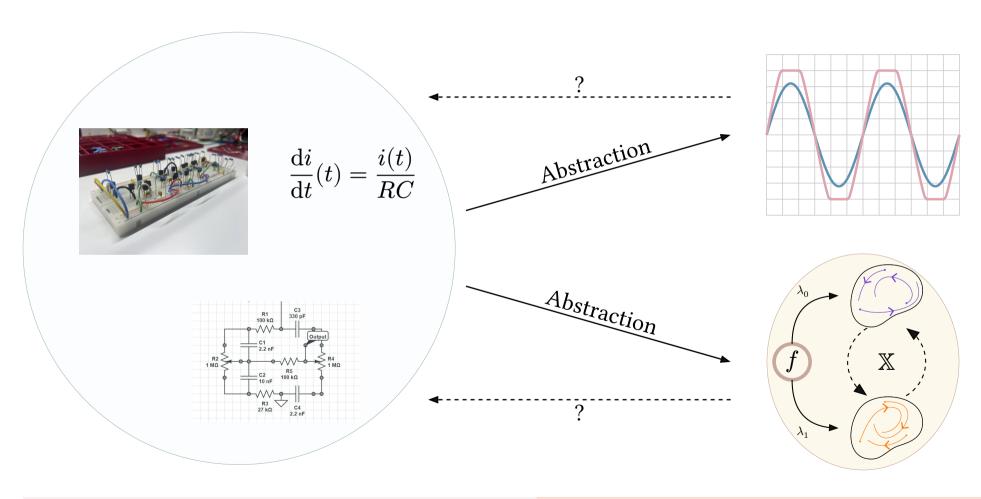
Questions of interest

GOAL

Controller design: devise a strategy such that the model satisfies a given property.



Outline



2 - Studying an ODE through simulations

Ordinary differential equations

DEFINITION

Equation of the form $\frac{dz}{dt} = f(z)$.

⚠ derivation w.r.t. a single variable!

Ordinary differential equations

DEFINITION

Equation of the form $\frac{dz}{dt} = f(z)$.

⚠ derivation w.r.t. a single variable!

EXAMPLE

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \mathbf{a}x(t) \cdot \left(1 - \frac{x(t)}{\mathrm{b}}\right).$$

Ordinary differential equations

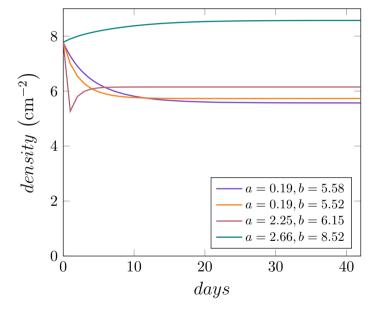
DEFINITION

Equation of the form $\frac{dz}{dt} = f(z)$.

⚠ derivation w.r.t. a single variable!

EXAMPLE

$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \mathbf{a}x(t) \cdot \left(1 - \frac{x(t)}{\mathbf{b}}\right).$$



Trajectories induced by different values for a, b.

Parameterization under variability

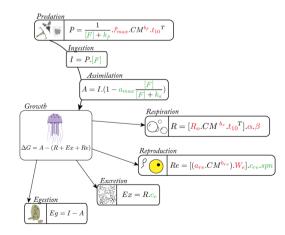
SETTING

- Several experiments
 - Data uncertainty, heterogeneity;
- Family of systems (rather than an average one)
 - Variations from individual to individual.

GOAL

- Model with probabilistic parameter values;
- Study under condition of variability (small variations of values).

Jellyfish individuals with different external characteristics.

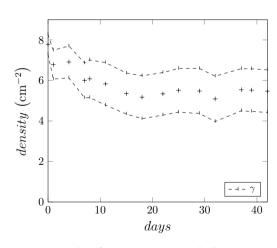


Differential model for the growth of *P. noctiluca*.

In the case of ODEs

EXAMPLE

- $\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \mathbf{a}x(t) \cdot \left(1 \frac{x(t)}{\mathbf{b}}\right);$
- γ = experimental data;

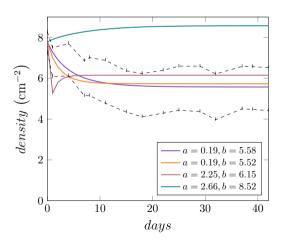


Tunnel of experimental data.

In the case of ODEs

EXAMPLE

- $\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \mathbf{a}x(t) \cdot \left(1 \frac{x(t)}{\mathrm{b}}\right);$
- γ = experimental data;
- \Rightarrow solution curve inside the dashed tunnel.

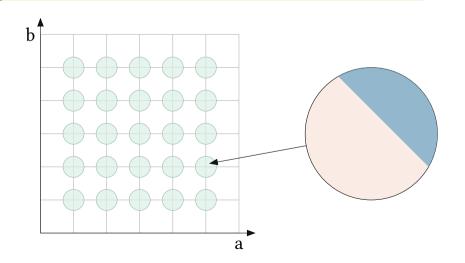


Each pair of parameter values yields one trajectory.

In the case of ODEs

EXAMPLE

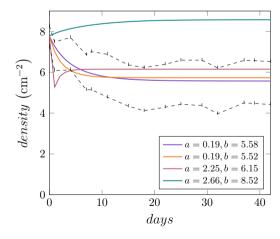
- $\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \mathbf{a}x(t) \cdot \left(1 \frac{x(t)}{\mathrm{b}}\right);$
- γ = experimental data;
- \Rightarrow solution curve inside the dashed tunnel.



SETTING

For each candidate value, study the trajectories induced by values within a green disc (variability);

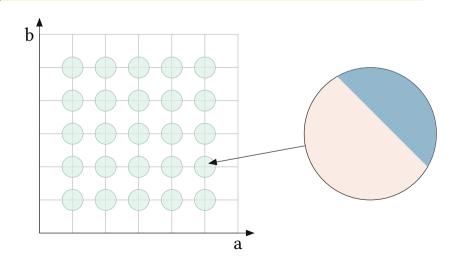
 \Rightarrow ratio of accepting trajectories.



Each pair of parameter values yields one trajectory.

EXAMPLE

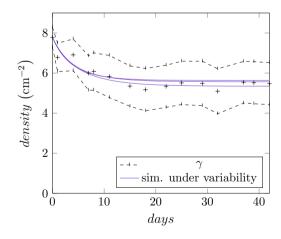
- $\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \mathbf{a}x(t) \cdot \left(1 \frac{x(t)}{\mathrm{b}}\right);$
- γ = experimental data;
- \Rightarrow solution curve inside the dashed tunnel.



SETTING

For each candidate value, study the trajectories induced by values within a green disc (variability);

 \Rightarrow ratio of accepting trajectories.



Trajectories under condition of variability.

Statistical Model Checking (ex: Monte-Carlo technique)

EXAMPLE

To estimate the ratio of accepting values:

- sample N parameter values $\lambda_1, \lambda_2, ..., \lambda_N$ within the disc;
- $v(\lambda_i) = \begin{cases} 1 \text{ , if the associated trajectory is accepted} \\ 0 \text{ otherwise;} \end{cases}$
- compute the empirical ratio $\hat{v} = \frac{\sum v_i}{N}$ of values that induce an accepted trajectory.



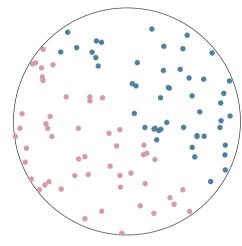
Sampling performed for one candidate value.

Statistical Model Checking (ex: Monte-Carlo technique)

EXAMPLE

To estimate the ratio of accepting values:

- sample N parameter values $\lambda_1, \lambda_2, ..., \lambda_N$ within the disc;
- $v(\lambda_i) = \begin{cases} 1 \text{ , if the associated trajectory is accepted} \\ 0 \text{ otherwise;} \end{cases}$
- compute the empirical ratio $\hat{v} = \frac{\sum v_i}{N}$ of values that induce an accepted trajectory.



Sampling performed for one candidate value, with accepted values in blue and rejected values in red.

Statistical Model Checking (ex: Monte-Carlo technique)

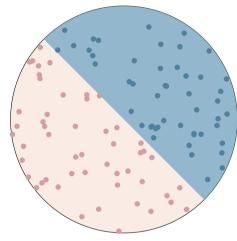
EXAMPLE

To estimate the ratio of accepting values:

- sample N parameter values $\lambda_1, \lambda_2, ..., \lambda_N$ within the disc;
- $v(\lambda_i) = \begin{cases} 1 \text{ , if the associated trajectory is accepted} \\ 0 \text{ otherwise;} \end{cases}$
- compute the empirical ratio $\hat{v} = \frac{\sum v_i}{N}$ of values that induce an accepted trajectory.

RESULT

- Empirical estimation of $\mathbb{E}[v]$;
- Central Limit Theorem: precision depends on the amount of samples.



Sampling performed for one candidate value, with accepted values in blue and rejected values in red.

RESULT

- $\hat{v} = \frac{49}{100} = 0.49;$ $\mathbb{E}[v] = 0.50.$

State of the art

EXAMPLE

Biochemical reactions involving an enzyme E, a substrate S and a product P:

$$S + E \underset{k_2}{\overset{k_1}{\rightleftharpoons}} B \underset{k_3}{\rightarrow} E + P$$

During the reaction, an intermediary compound B is produced.

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} = -k_1 \cdot S \cdot E + k_2 \cdot B, \\ \frac{\mathrm{d}E}{\mathrm{d}t} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot B, \\ \frac{\mathrm{d}B}{\mathrm{d}t} = -k_1 \cdot S \cdot E - (k_2 + k_3) \cdot B, \\ \frac{\mathrm{d}P}{\mathrm{d}t} = k_3 \cdot B. \end{cases}$$

REFERENCE

[2]: B. Liu, B. M. Gyori, and P. S. Thiagarajan, "Statistical Model Checking based Analysis of Biological Networks." arXiv, 2018. doi: 10.48550/ARXIV.1812.01091.

State of the art

EXAMPLE

Biochemical reactions involving an enzyme E, a substrate S and a product P:

$$S + E \underset{k_2}{\overset{k_1}{\rightleftharpoons}} B \underset{k_3}{\rightarrow} E + P$$

During the reaction, an intermediary compound B is produced.

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} = -k_1 \cdot S \cdot E + k_2 \cdot B, \\ \frac{\mathrm{d}E}{\mathrm{d}t} = -k_1 \cdot S \cdot E + (k_2 + k_3) \cdot B, \\ \frac{\mathrm{d}B}{\mathrm{d}t} = -k_1 \cdot S \cdot E - (k_2 + k_3) \cdot B, \\ \frac{\mathrm{d}P}{\mathrm{d}t} = k_3 \cdot B. \end{cases}$$

REMARK

No guarantee beyond that of SMC on trajectories.

REFERENCE

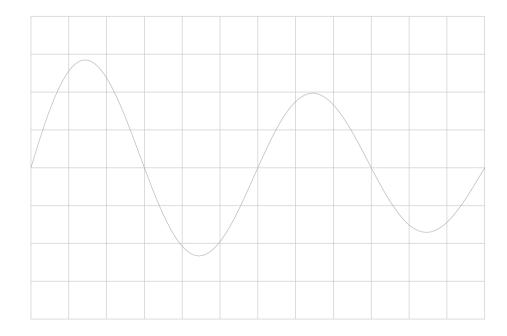
[2]: B. Liu, B. M. Gyori, and P. S. Thiagarajan, "Statistical Model Checking based Analysis of Biological Networks." arXiv, 2018. doi: 10.48550/ARXIV.1812.01091.

ODE integration

REMARK

In general, an ODE may not be solved symbolically.

 \Rightarrow exact solution $z(t) = \dots$



ODE integration

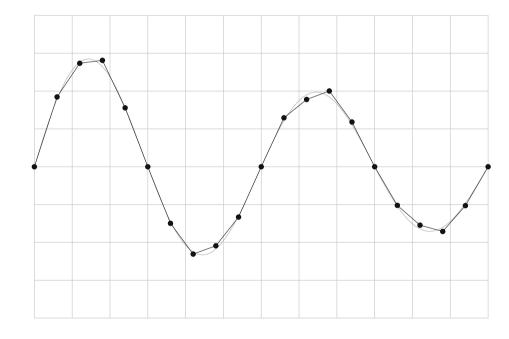
REMARK

In general, an ODE may not be solved symbolically.

 \Rightarrow exact solution $z(t) = \dots$

SOLUTION

Compute an approximate solution by sequentially computing the positions of points.

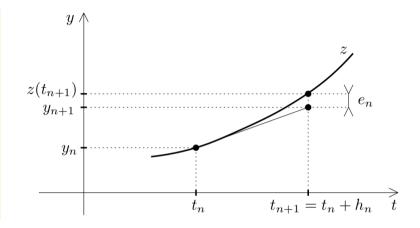


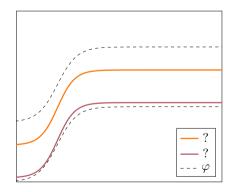
The problem with ODE

PROBLEM

Approximation errors are introduced at each step.

- \Rightarrow model $\not\simeq$ computed trajectory;
- \Rightarrow SMC estimation on the trajectories does not apply to the ODE model.



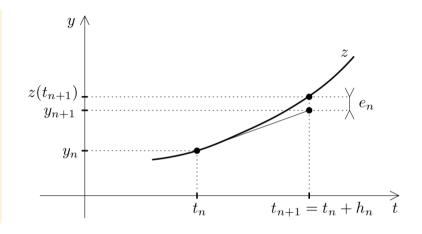


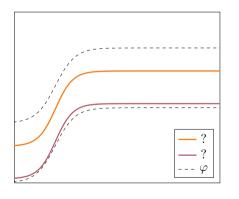
The problem with ODE

PROBLEM

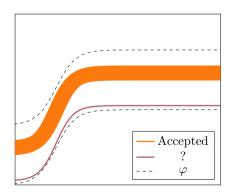
Approximation errors are introduced at each step.

- \Rightarrow model $\not\simeq$ computed trajectory;
- \Rightarrow SMC estimation on the trajectories does not apply to the ODE model.





Approximations

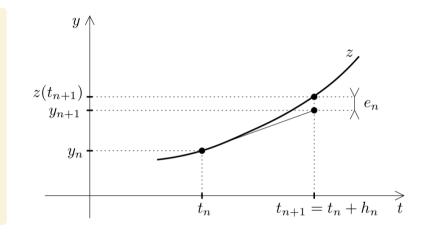


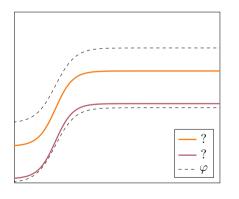
The problem with ODE

PROBLEM

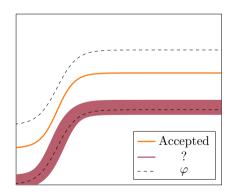
Approximation errors are introduced at each step.

- \Rightarrow model $\not\simeq$ computed trajectory;
- \Rightarrow SMC estimation on the trajectories does not apply to the ODE model.





Approximations



Solution: margins!

Proposition

The approximation error ε can be arbitrarily bounded for all trajectories:

- Define two tunnels $\varphi_{-}^{\varepsilon} = \varphi \varepsilon, \varphi_{+}^{\varepsilon} = \varphi + \varepsilon$;
- $v_{-,i}^{\varepsilon} = 1 \Leftrightarrow t_i \text{ satisfies } \varphi_{-}^{\varepsilon};$
- Conclude.

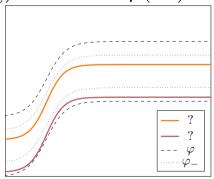
Solution: margins!

Proposition

The approximation error ε can be arbitrarily bounded for all trajectories:

- Define two tunnels $\varphi_{-}^{\varepsilon} = \varphi \varepsilon, \varphi_{+}^{\varepsilon} = \varphi + \varepsilon;$
- $v_{-,i}^{\varepsilon} = 1 \Leftrightarrow t_i \text{ satisfies } \varphi_{-}^{\varepsilon};$
- Conclude.

 $\varphi_{-}^{\varepsilon}(t_i)$ is true $\Rightarrow \varphi(M)$ is true



RESULT

- $\hat{v}_{-}^{\varepsilon} = \varphi_{-}^{\varepsilon}$ -accepting trajectories;
- $\hat{v}_{+}^{\varepsilon} = \varphi_{+}^{\varepsilon}$ -accepting trajectories;
- $\hat{v}_{-}^{\varepsilon} \leq \hat{v} \leq \hat{v}_{+}^{\varepsilon}$.

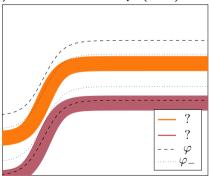
Solution: margins!

Proposition

The approximation error ε can be arbitrarily bounded for all trajectories:

- Define two tunnels $\varphi_{-}^{\varepsilon} = \varphi \varepsilon, \varphi_{+}^{\varepsilon} = \varphi + \varepsilon;$
- $v_{-,i}^{\varepsilon} = 1 \Leftrightarrow t_i \text{ satisfies } \varphi_{-}^{\varepsilon};$
- Conclude.

 $\varphi_{-}^{\varepsilon}(t_i)$ is true $\Rightarrow \varphi(M)$ is true



RESULT

- $\hat{v}_{-}^{\varepsilon} = \varphi_{-}^{\varepsilon}$ -accepting trajectories;
- $\hat{v}_{+}^{\varepsilon} = \varphi_{+}^{\varepsilon}$ -accepting trajectories;
- $\hat{v}_{-}^{\varepsilon} \leq \hat{v} \leq \hat{v}_{+}^{\varepsilon}$.

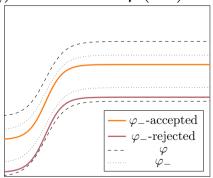
Solution: margins!

PROPOSITION

The approximation error ε can be arbitrarily bounded for all trajectories:

- Define two tunnels $\varphi_{-}^{\varepsilon} = \varphi \varepsilon, \varphi_{+}^{\varepsilon} = \varphi + \varepsilon;$
- $v_{-,i}^{\varepsilon} = 1 \Leftrightarrow t_i \text{ satisfies } \varphi_{-}^{\varepsilon};$
- Conclude.

 $\varphi_{-}^{\varepsilon}(t_i)$ is true $\Rightarrow \varphi(M)$ is true



RESULT

- $\hat{v}_{-}^{\varepsilon} = \varphi_{-}^{\varepsilon}$ -accepting trajectories;
- $\hat{v}_{+}^{\varepsilon} = \varphi_{+}^{\varepsilon}$ -accepting trajectories;
- $\hat{v}_{-}^{\varepsilon} \leq \hat{v} \leq \hat{v}_{+}^{\varepsilon}$.

Solution: margins!

Proposition

The approximation error ε can be arbitrarily bounded for all trajectories:

- Define two tunnels $\varphi_{-}^{\varepsilon} = \varphi \varepsilon, \varphi_{+}^{\varepsilon} = \varphi + \varepsilon;$
- $v_{-,i}^{\varepsilon} = 1 \Leftrightarrow t_i \text{ satisfies } \varphi_{-}^{\varepsilon};$
- Conclude.

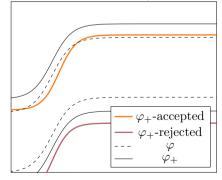
 $\varphi_{-}^{\varepsilon}(t_i)$ is true $\Rightarrow \varphi(M)$ is true



RESULT

- $\hat{v}_{-}^{\varepsilon} = \varphi_{-}^{\varepsilon}$ -accepting trajectories;
- $\hat{v}_{+}^{\varepsilon} = \varphi_{+}^{\varepsilon}$ -accepting trajectories;
- $\hat{v}_{-}^{\varepsilon} \leq \hat{v} \leq \hat{v}_{+}^{\varepsilon}$.

 $\varphi(M)$ is true $\Rightarrow \varphi_+^{\varepsilon}(t_i)$ is true



How many samples?

LEMMA (HOEFFDING [3])

If
$$N \geq \frac{\log(\frac{2}{\theta})}{2\alpha^2}$$
 simulations are performed, then

$$\mathbb{P}(\mathbb{E}[v] \in [\hat{v} - \alpha, \hat{v} + \alpha]) \ge 1 - \theta.$$

REMARK

- SMC risk $\xi = 1 \sqrt{1 \theta} < \theta$;
- $N' = \frac{\log(\frac{2}{\xi})}{2\alpha^2} > N$ simulations.

$$\mathbb{P}(\mathbb{E}[v_{-}^{\varepsilon}] \in [\hat{v}_{-} - \alpha, \hat{v}_{-} + \alpha]) \ge 1 - \xi,$$

$$\mathbb{P}(\mathbb{E}[v_+^{\varepsilon}] \in [\hat{v}_+ - \alpha, \hat{v}_+ + \alpha]) \ge 1 - \xi.$$

How many samples?

LEMMA (HOEFFDING [3])

If $N \geq \frac{\log(\frac{2}{\theta})}{2\alpha^2}$ simulations are performed, then

$$\mathbb{P}(\mathbb{E}[v] \in [\hat{v} - \alpha, \hat{v} + \alpha]) \ge 1 - \theta.$$

REMARK

- SMC risk $\xi = 1 \sqrt{1 \theta} < \theta$;
- $N' = \frac{\log(\frac{2}{\xi})}{2\alpha^2} > N$ simulations.

$$\mathbb{P}(\mathbb{E}[v_{-}^{\varepsilon}] \in [\hat{v}_{-} - \alpha, \hat{v}_{-} + \alpha]) \ge 1 - \xi,$$

$$\mathbb{P}(\mathbb{E}[v_+^{\varepsilon}] \in [\hat{v}_+ - \alpha, \hat{v}_+ + \alpha]) \ge 1 - \xi.$$

CONTRIBUTION

There exists $\varepsilon > 0$, such that after performing n = 2N' simulations, the following statements hold:

- $\mathbb{P}(|\hat{v}_{-}^{\varepsilon} \hat{v}_{+}^{\varepsilon}| \le 3\alpha) \ge 1 \theta;$
- $\mathbb{P}(\mathbb{E}[v] \in [\hat{v}_{-}^{\varepsilon} \alpha, \hat{v}_{+}^{\varepsilon} + \alpha]) \ge 1 \theta.$

Case study: Aurelia aurita

EXAMPLE

Jellyfish species from the Adriatic Sea.

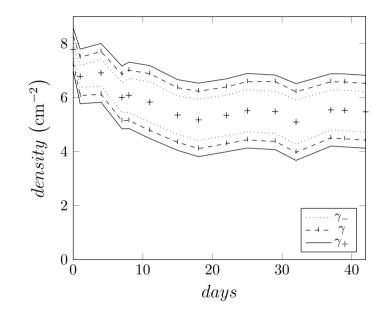
Population density model:

•
$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \mathrm{a}x(t) \cdot \left(1 - \frac{x(t)}{\mathrm{b}}\right);$$

• $\gamma = \text{mean} \pm \text{std-error}$ (see [4]).

GOAL

- a, b such that the solutions stay within the tunnel under condition of variability;
- $\alpha = 0.05, \theta = 0.05 \Rightarrow N = 874$ simulations.



REFERENCE

[4]: V. Melica, S. Invernizzi, and G. Caristi, "Logistic density-dependent growth of an Aurelia aurita polyps population," Ecological Modelling, vol. 291, pp. 1–5, 2014, doi: 10.1016/j.ecolmodel.2014.07.009.

Case study: Aurelia aurita

EXAMPLE

Jellyfish species from the Adriatic Sea.

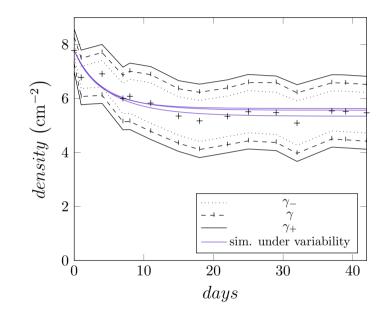
Population density model:

•
$$\frac{\mathrm{d}x}{\mathrm{d}t}(t) = \mathrm{a}x(t) \cdot \left(1 - \frac{x(t)}{\mathrm{b}}\right);$$

• $\gamma = \text{mean} \pm \text{std-error}$ (see [4]).

GOAL

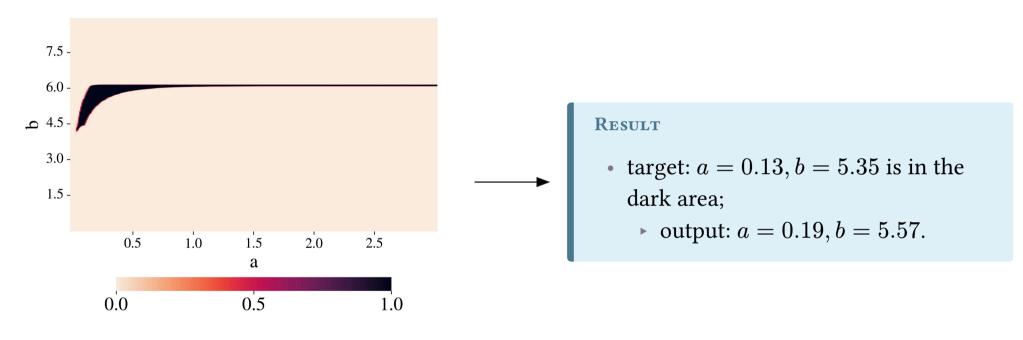
- a, b such that the solutions stay within the tunnel under condition of variability;
- $\alpha = 0.05, \theta = 0.05 \Rightarrow N = 874$ simulations.



REFERENCE

[4]: V. Melica, S. Invernizzi, and G. Caristi, "Logistic density-dependent growth of an Aurelia aurita polyps population," Ecological Modelling, vol. 291, pp. 1–5, 2014, doi: 10.1016/j.ecolmodel.2014.07.009.

Parameterization of the model [5]

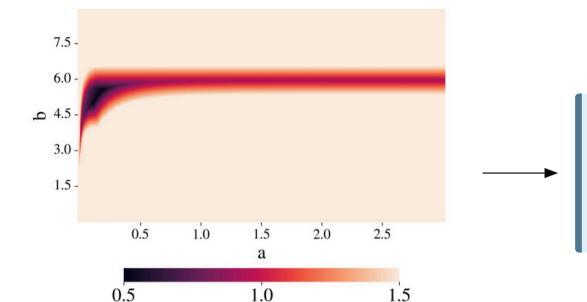


Expected probability that the trajectory stays within the tunnel.

CONTRIBUTION

[5]: <u>D. Julien</u>, G. Cantin, and B. Delahaye, "End-to-End Statistical Model Checking for Parametric ODE Models," in QEST: International Conference on Quantitative Evaluation of Systems, doi: 10.1007/978-3-031-16336-4_5.

Parameterization of the model [5]



RESULT

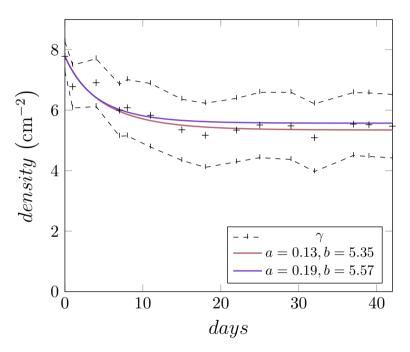
- target: a=0.13, b=5.35 is in the dark area;
 - output: a = 0.19, b = 5.57.

Expected distance to the data.

CONTRIBUTION

[5]: <u>D. Julien</u>, G. Cantin, and B. Delahaye, "End-to-End Statistical Model Checking for Parametric ODE Models," in QEST: International Conference on Quantitative Evaluation of Systems, doi: <u>10.1007/978-3-031-16336-4_5</u>.

Parameterization of the model [5]



Curves induced by computed pairs of values.

RESULT

- target: a=0.13, b=5.35 is in the dark area;
 - output: a = 0.19, b = 5.57.

Contribution

[5]: <u>D. Julien</u>, G. Cantin, and B. Delahaye, "End-to-End Statistical Model Checking for Parametric ODE Models," in QEST: International Conference on Quantitative Evaluation of Systems, doi: <u>10.1007/978-3-031-16336-4_5</u>.

Case study: Forest regrowth in Paracou (French Guyana)

Plot 3 Plot 4 Trajectory of the model Trajectory of the model 1990 1995 2000 2005 2010 2015 2020 1990 1995 2000 2005 2010 2015 2020 Time (years) Time (years) Plot 8 Plot 10 Cell 47 921 440 3 outliers 1990 1995 2000 2005 2010 2015 2020 1990 1995 2000 2005 2010 2015 2020 Time (years) Time (years)

Location of the forest.

Fitting plots for a particular parameter cell.

CONTRIBUTION

[6]: G. Ardourel, G. Cantin, B. Delahaye, G. Derroire, B. M. Funatsu, and <u>D. Julien</u>, "Computational assessment of Amazon forest plots regrowth capacity under strong spatial variability for simulating logging scenarios," Ecological Modelling, vol. 495, p. 110812, Sept. 2024, doi: 10.1016/j.ecolmodel.2024.110812.

A study on stability

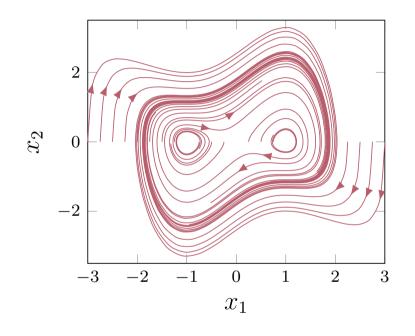
EXAMPLE

Dampened oscillator (see [7]).

$$\begin{cases} \frac{\mathrm{d}x_1}{\mathrm{d}t}(t) = x_2(t), \\ \frac{\mathrm{d}x_2}{\mathrm{d}t}(t) = -x_1(t) - x_2(t) + x_1^3(t) + x_1^2(t)x_2(t), \\ x_1(0) = x_{0,1}, \\ x_2(0) = x_{0,2}. \end{cases}$$

GOAL

Find $(x_{0,1},x_{0,2})$ such that the model is attracted to $x_l=(-1,0)$ or $x_r=(1,0)$.



Phase portrait of the system.

REFERENCE

[7]: P. J. Holmes and D. R. Rand, "Phase portraits and bifurcations of the non-linear oscillator: $\ddot{x} + \alpha \dot{x} + \gamma x^2 \dot{x} + \beta x + \delta x^3 = 0$ ", International Journal of Non-Linear Mechanics, vol. 15, no. 6, pp. 449–458, 1980, doi: 10.1016/0020-7462(80)90031-1

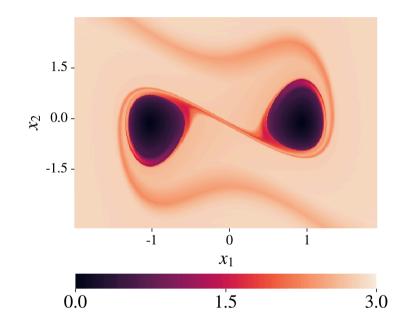
Parameterization of the model II [8]

SETTING

- $\alpha = 0.05, \theta = 0.05;$
 - N = 874 simulations;
- simulation duration T = 10 seconds.

RESULT

Empirical description of the basin of attraction.

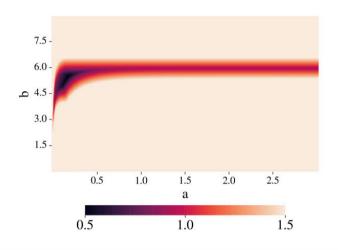


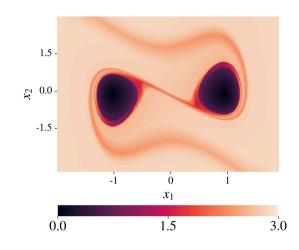
Expected distance to (-1,0) and (1,0).

Contribution

[8]: <u>D. Julien</u>, G. Ardourel, G. Cantin, and B. Delahaye, "End-to-End Statistical Model Checking for Parameterization and Stability Analysis of ODE Models," ACM Transactions on Modeling and Computer Simulation, vol. 34, no. 3, pp. 1–25, 2023, doi: <u>10.1145/3649438</u>.

Summary

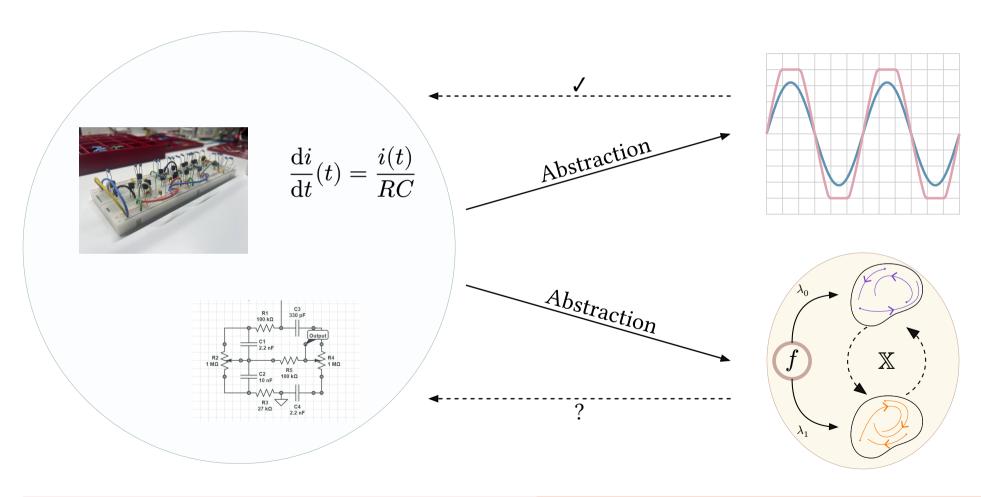




Contribution

- Adapted SMC method to the setting of ODEs;
 - Arbitrary bound for the approximation errors;
- Find suitable values for ODE parameters and initial conditions;
- Statistical guarantees for the result;
 - Appreciation left to the modellers (precision α , risk θ).

Outline



3 - Studying the model through its abstraction

Hybrid Dynamical Systems

DEFINITION

A Hybrid Dynamical System involves:

- a function *f* defining an ODE;
- a phase space Ω ;
- a parameter space Λ .

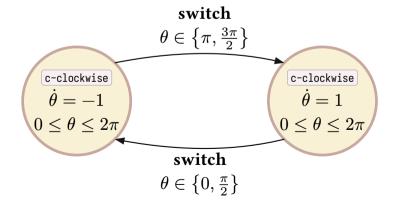
•

•

DEFINITION

Two types of transition:

- continuous transition (internal evolution) according to f and $\lambda \in \Lambda$, of duration $\tau > 0$;
- discrete transition (external change of dynamics / position)



Hybrid Dynamical Systems

DEFINITION

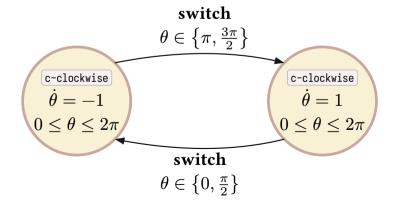
A Hybrid Dynamical System involves:

- a function *f* defining an ODE;
- a phase space Ω ;
- a parameter space Λ .
- a discretization \mathcal{T} of the timeline;
- a finite set \mathcal{D} of probability distribution over Ω and Λ .

DEFINITION

Two types of transition:

- continuous transition (internal evolution) according to f and $\lambda \in \Lambda$, of duration $\tau > 0$;
- discrete transition (external change of dynamics / position)



Hybrid Dynamical Systems

DEFINITION

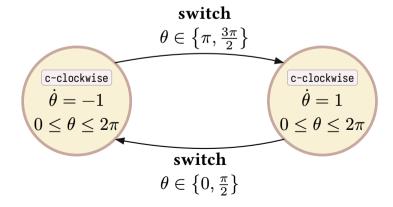
A Hybrid Dynamical System involves:

- a function *f* defining an ODE;
- a phase space Ω ;
- a parameter space Λ .
- a discretization \mathcal{T} of the timeline;
- a finite set \mathcal{D} of probability distribution over Ω and Λ .

DEFINITION

Two types of transition:

- continuous transition (internal evolution) according to f and $\lambda \in \Lambda$, of duration $\tau > 0$;
- discrete transition (external change of dynamics / position) through the realization of a probability distribution at timepoint $t \in \mathcal{T}$.



Hybrid Automata? [9]

REFERENCE

[9]: R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, "Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems," in Hybrid Systems, in Lecture Notes in Computer Science, vol. 736. Berlin, Germany: Springer-Verlag, Jan. 1993, pp. 209–229. doi: 10.1007/3-540-57318-6_30.

Hybrid Automata? [9]

REMARK

Limitations [10]:

- too expressive for being used in practice
 - state enumeration is impossible in the general case;
- restricted to rectangular automata
 - linear ODEs;
 - variable resets with each discrete transition.

REFERENCE

[9]: R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, "Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems," in Hybrid Systems, in Lecture Notes in Computer Science, vol. 736. Berlin, Germany: Springer-Verlag, Jan. 1993, pp. 209–229. doi: 10.1007/3-540-57318-6_30.

[10]: T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, "What's Decidable about Hybrid Automata?," Journal of Computer and System Sciences, vol. 57, no. 1, pp. 94–124, Aug. 1998, doi: 10.1006/jcss.1998.1581.

Hybrid Automata? [9]

REMARK

Limitations [10]:

- too expressive for being used in practice
 - state enumeration is impossible in the general case;
- restricted to rectangular automata
 - linear ODEs;
 - variable resets with each discrete transition.

SOLUTION

Abstract as Markov processes

- → verify properties;
- \rightarrow derive them to the system.

REFERENCE

[9]: R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, "Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems," in Hybrid Systems, in Lecture Notes in Computer Science, vol. 736. Berlin, Germany: Springer-Verlag, Jan. 1993, pp. 209–229. doi: 10.1007/3-540-57318-6_30.

[10]: T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, "What's Decidable about Hybrid Automata?," Journal of Computer and System Sciences, vol. 57, no. 1, pp. 94–124, Aug. 1998, doi: 10.1006/jcss.1998.1581.

Case study: An epidemiological model [11]

EXAMPLE

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} = \mu - (\beta_A A(t) + \beta_I I(t)) S(t) - (\mu + \nu) S(t) + \mu R(t), \\ \frac{\mathrm{d}A}{\mathrm{d}t} = (\beta_A A(t) + \beta_I I(t)) S(t) - (\alpha + \delta_A + \mu) A(t), \\ \frac{\mathrm{d}I}{\mathrm{d}t} = \alpha A(t) - (\delta_I + \mu) I(t), \\ \frac{\mathrm{d}R}{\mathrm{d}t} = \delta_A A(t) + \delta_I I(t) + \nu S(t) - (\gamma + \mu) R(t). \end{cases}$$

- N = S + A + I + R is constant.
- focus on $\lambda = (\beta_A, \beta_I, \delta_A, \delta_I)$.
 - $\beta_A, \beta_I = \text{infectiosity}, \quad \delta_A, \delta_I = \text{health policies}.$

REFERENCE

[11]: S. Ottaviano, M. Sensi, and S. Sottile, "Global stability of SAIRS epidemic models," Nonlinear Analysis: Real World Applications, vol. 65, p. 103501, June 2022, doi: 10.1016/j.nonrwa.2021.103501.

Case study: An epidemiological model [11]

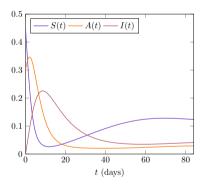
EXAMPLE

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} = \mu - (\beta_A A(t) + \beta_I I(t))S(t) - (\mu + \nu)S(t) + \mu R(t), \\ \frac{\mathrm{d}A}{\mathrm{d}t} = (\beta_A A(t) + \beta_I I(t))S(t) - (\alpha + \delta_A + \mu)A(t), \\ \frac{\mathrm{d}I}{\mathrm{d}t} = \alpha A(t) - (\delta_I + \mu)I(t), \\ \frac{\mathrm{d}R}{\mathrm{d}t} = \delta_A A(t) + \delta_I I(t) + \nu S(t) - (\gamma + \mu)R(t). \end{cases}$$

- N = S + A + I + R is constant.
- focus on $\lambda = (\beta_A, \beta_I, \delta_A, \delta_I)$.
 - $\beta_A, \beta_I = \text{infectiosity}, \quad \delta_A, \delta_I = \text{health policies}.$

SETTING

- S = Sensible people;
- A = Asymptomatic (infected) people;
- I = Symptomatic (infected) people;
- R = Recovered people.

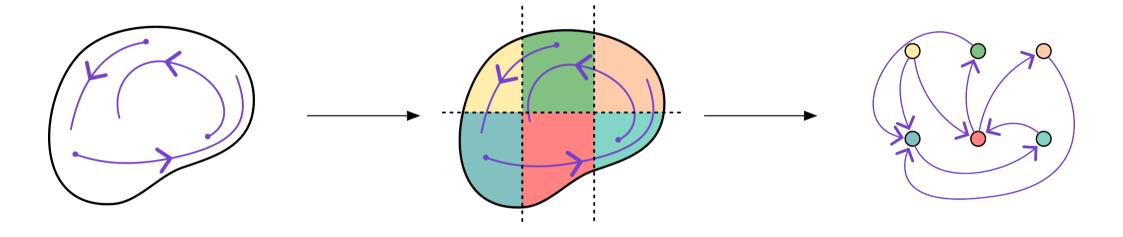


84-day simulation for $\lambda = (0.5, 0.5, 0.1, 0.1)$.

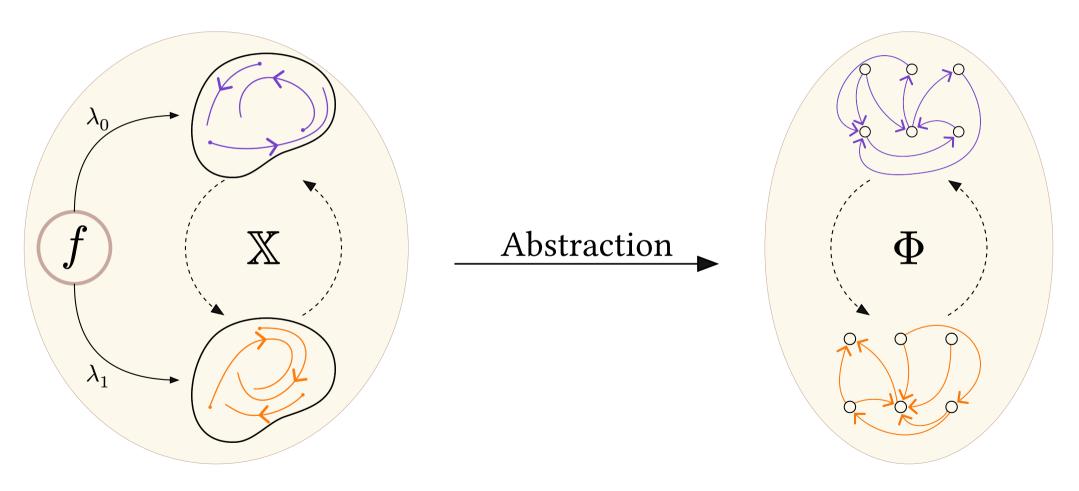
REFERENCE

[11]: S. Ottaviano, M. Sensi, and S. Sottile, "Global stability of SAIRS epidemic models," Nonlinear Analysis: Real World Applications, vol. 65, p. 103501, June 2022, doi: 10.1016/j.nonrwa.2021.103501.

Abstraction of an ODE as a Markov chain



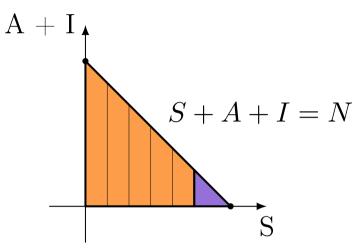
Intuition of the whole abstraction



Studying probabilistic models instead of hybrid systems

SETTING

- partition the phase space Ω as a set \mathbb{Q} of regions;
- fix a duration τ ;
- $p_{i,j}^{\tau}$ = proportion of trajectories of duration τ from R_i to R_j ;
 - identify them as probabilities;
- construct a Markov chain \mathbb{M} with regions as states and $p_{i,j}^{\tau}$ as transition probabilities.

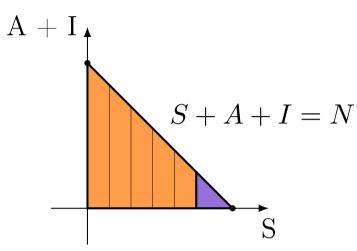


Projection of the phase space on \mathbb{R}^2 .

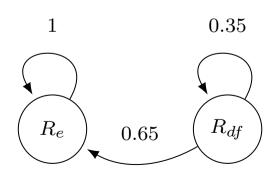
Studying probabilistic models instead of hybrid systems

SETTING

- partition the phase space Ω as a set \mathbb{Q} of regions;
- fix a duration τ ;
- $p_{i,j}^{\tau}$ = proportion of trajectories of duration τ from R_i to R_j ;
 - identify them as probabilities;
- construct a Markov chain \mathbb{M} with regions as states and $p_{i,j}^{\tau}$ as transition probabilities.



Projection of the phase space on \mathbb{R}^2 .



Resulting Markov chain.

Intermediary result

$$\begin{cases} \frac{\mathrm{d}S}{\mathrm{d}t} = \mu - (\beta_A A(t) + \beta_I I(t)) S(t) - (\mu + \nu) S(t) + \mu R(t), \\ \frac{\mathrm{d}A}{\mathrm{d}t} = (\beta_A A(t) + \beta_I I(t)) S(t) - (\alpha + \delta_A + \mu) A(t), \\ \frac{\mathrm{d}I}{\mathrm{d}t} = \alpha A(t) - (\delta_I + \mu) I(t), \\ \frac{\mathrm{d}R}{\mathrm{d}t} = \delta_A A(t) + \delta_I I(t) + \nu S(t) - (\gamma + \mu) R(t). \end{cases}$$

$$(0.35)$$

$$R_e$$

$$0.65$$

$$R_{df}$$

$$R_{e}$$

$$0.65$$

$$R_{df}$$

$$R_{e}$$

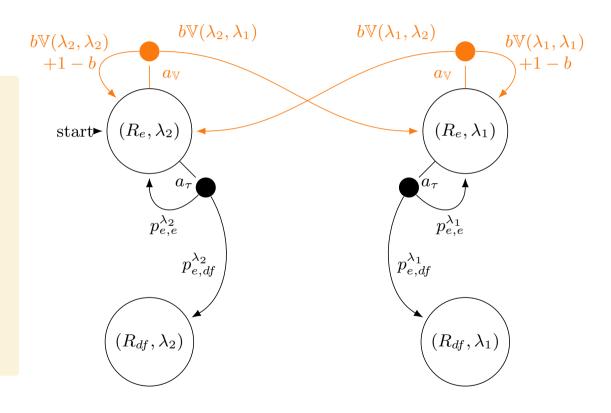
$$0.65$$

CONTRIBUTION

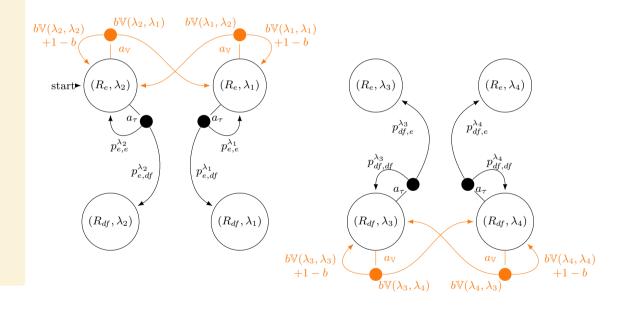
- The Markov chain \mathbb{M}_{λ} almost-simulates the ODE \mathfrak{s}_{λ} it abstracts.
 - the probability that a trajectory $s_{\rm in} \to s_{\rm out}$ in s_{λ} may not be matched in \mathbb{M}_{λ} is 0;
 - $\text{ if } \varphi \text{ is a reachability or safety property, } \mathbb{P}(\varphi(\mathbb{M}_{\lambda})) = 1 \overset{\text{a.s.}}{\Rightarrow} \mathbb{P}(\varphi(\mathfrak{s}_{\lambda})) = 1.$

- $\lambda = (\beta_A, \beta_I, \delta_A, \delta_I)$.
- a_{τ} : continuous evolution;
- $a_{\mathbb{V}}$: disease mutation (β_A, β_I)
 - new variant;
- $a_{\mathbb{D}}$: health policy (δ_A, δ_I)
 - lockdown, vaccines...

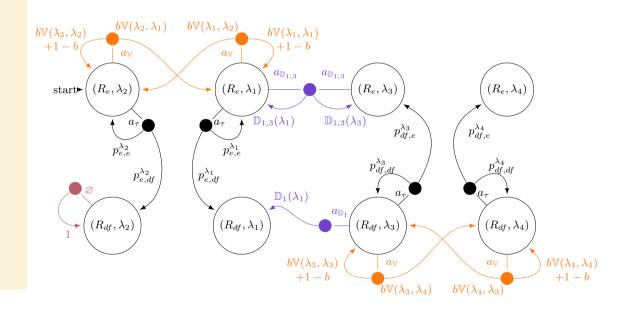
- $\lambda = (\beta_A, \beta_I, \delta_A, \delta_I)$.
- a_{τ} : continuous evolution;
- $a_{\mathbb{V}}$: disease mutation (β_A, β_I)
 - new variant;
- $a_{\mathbb{D}}$: health policy (δ_A, δ_I)
 - ▶ lockdown, vaccines...



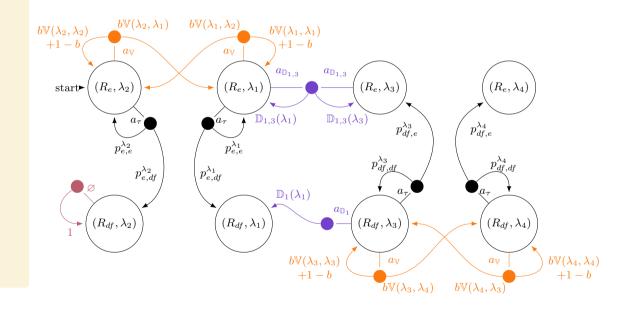
- $\lambda = (\beta_A, \beta_I, \delta_A, \delta_I)$.
- a_{τ} : continuous evolution;
- $a_{\mathbb{V}}$: disease mutation (β_A, β_I)
 - new variant;
- $a_{\mathbb{D}}$: health policy (δ_A, δ_I)
 - ▶ lockdown, vaccines...



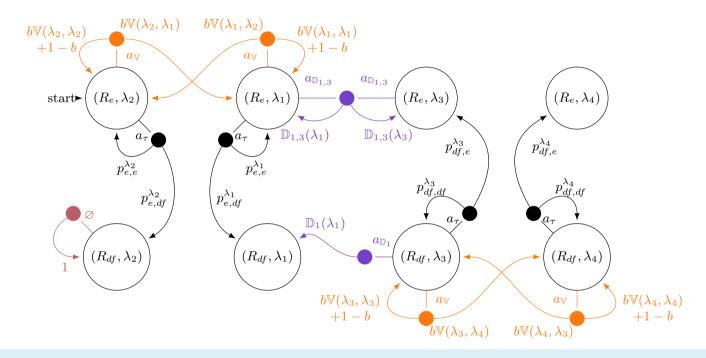
- $\lambda = (\beta_A, \beta_I, \delta_A, \delta_I)$.
- a_{τ} : continuous evolution;
- $a_{\mathbb{V}}$: disease mutation (β_A, β_I)
 - new variant;
- $a_{\mathbb{D}}$: health policy (δ_A, δ_I)
 - ▶ lockdown, vaccines...



- $\lambda = (\beta_A, \beta_I, \delta_A, \delta_I)$.
- a_{τ} : continuous evolution;
- $a_{\mathbb{V}}$: disease mutation (β_A, β_I)
 - new variant;
- $a_{\mathbb{D}}$: health policy (δ_A, δ_I)
 - lockdown, vaccines...
- \rightarrow control process to choose an action.



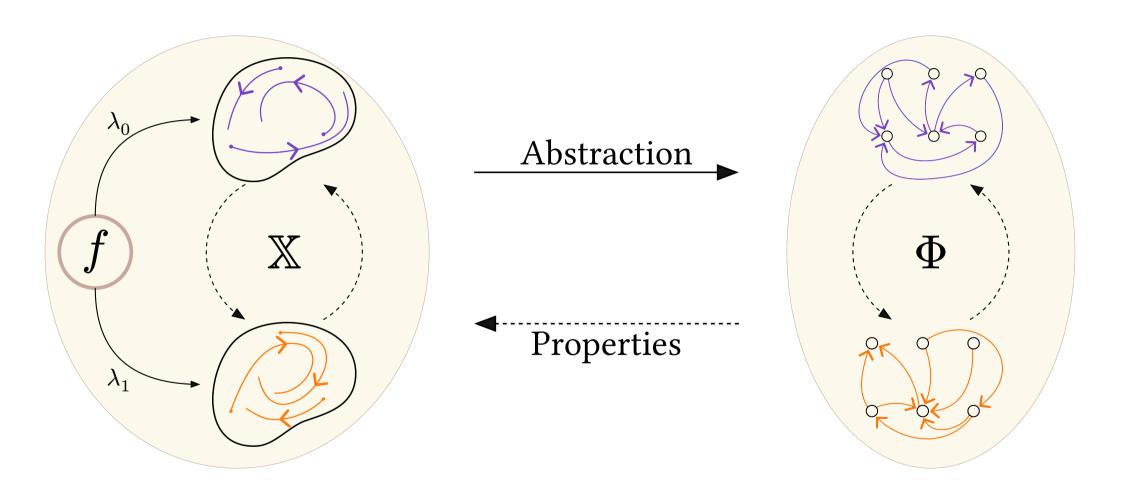
Abstracting the hybrid system



CONTRIBUTION

The produced MDP $\mathcal M$ almost-simulates $\mathcal S.$

 $\to \text{if } \varphi \text{ is a reachability or safety property, } \mathbb{P}(\varphi(\mathcal{M})) = 1 \overset{\text{a.s.}}{\Rightarrow} \mathbb{P}(\varphi(\mathcal{S})) = 1.$



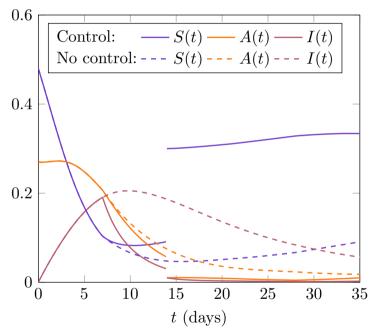
A controller for $\mathcal M$ is a controller for $\mathcal S$

A controller for \mathcal{M} .

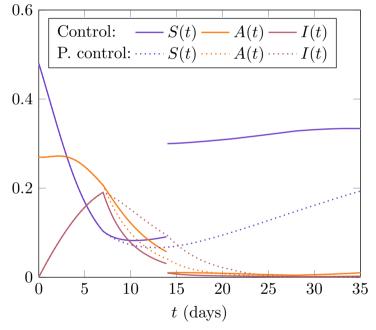
REMARK

Consider costs, "realisticness", restriction on the availability of actions, etc., in order to fine-tune the controller.

Controlling the hybrid system

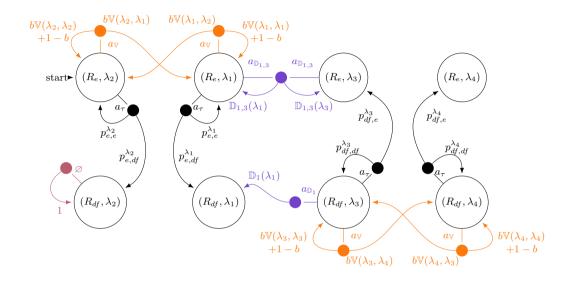


A set of trajectories with a winning strategy.



A set of trajectories with a more progressive winning strategy.

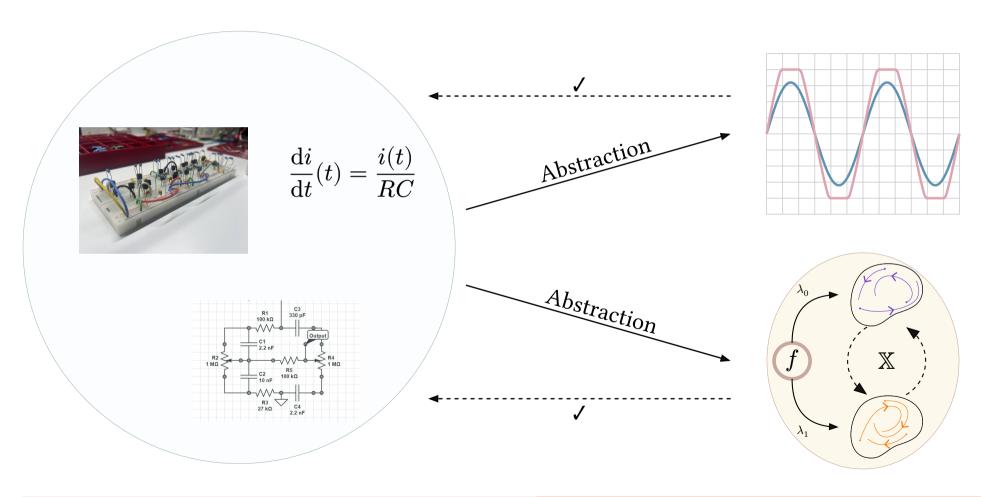
Summary



CONTRIBUTION

- Hybrid Dynamical Systems as "concrete" systems;
- Abstract them as Markov processes;
- Derive properties from the Markov process to the Hybrid Dynamical System
 - Devise control strategies.

Outline

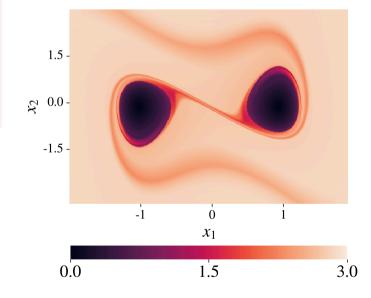


4 - Perspectives

Ordinary Differential Equations

REMARK

- confidence intervals (no absolute value);
- produced shapes are discrete;
- computations are imprecise.



Basin of attraction of Duffing's oscillator.

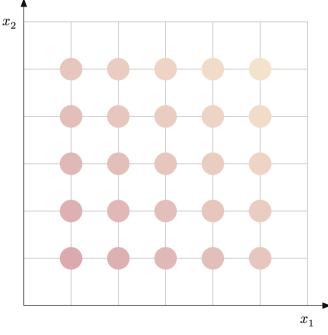
Ordinary Differential Equations

REMARK

- confidence intervals (no absolute value);
- produced shapes are discrete;
- computations are imprecise.

FUTURE WORK

- use continuity of ODE solution to gather more information;
- enhance ODE integration libraries.



Sampling setup for two variables x_1, x_2 .

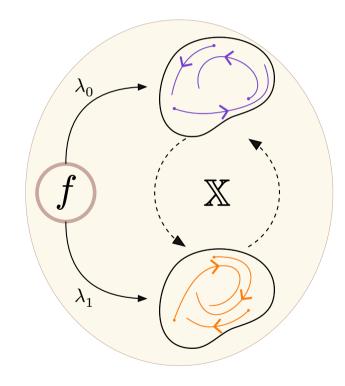
Hybrid Dynamical Systems

REMARK

- probabilistic simulation (\triangle only properties φ with $\mathbb{P}(\varphi)=1);$
 - trial and error.

FUTURE WORK

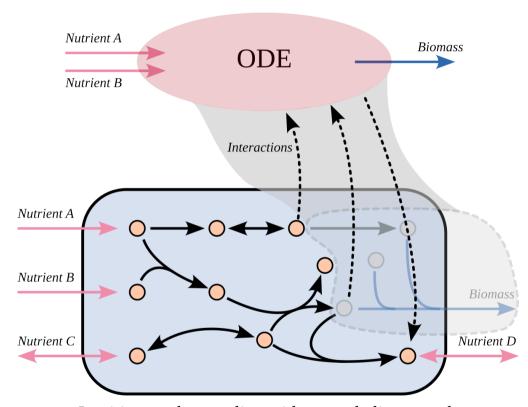
Refine abstraction.



Future work

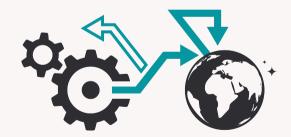
GOAL

- coupling ODEs with other formalisms;
- non-determinism in life modelling;
 - mutations, unstable reactions, etc.



Intuition on the coupling with a metabolic network.

Thank you!



Bibliography

- [1] S. Ramondenc, D. Eveillard, L. Guidi, F. Lombard, and B. Delahaye, "Probabilistic modeling to estimate jellyfish ecophysiological properties and size distributions," *Scientific Reports*, vol. 10, no. 1, Apr. 2020, doi: 10.1038/s41598-020-62357-5.
- [2] B. Liu, B. M. Gyori, and P. S. Thiagarajan, "Statistical Model Checking based Analysis of Biological Networks." arXiv, 2018. doi: 10.48550/ARXIV.1812.01091.
- [3] W. Hoeffding, "Probability inequalities for sums of bounded random variables," *Journal of the American Statistical Association*, vol. 58, no. 301, pp. 13–30, 1963, doi: 10.1080/01621459.1963.10500830.
- [4] V. Melica, S. Invernizzi, and G. Caristi, "Logistic density-dependent growth of an Aurelia aurita polyps population," *Ecological Modelling*, vol. 291, pp. 1–5, 2014, doi: 10.1016/j.ecolmodel.2014.07.009.
- [5] D. Julien, G. Cantin, and B. Delahaye, "End-to-End Statistical Model Checking for~Parametric ODE Models," in *QEST: International Conference on Quantitative Evaluation of Systems*, E. Ábrahám and M. Paolieri, Eds., in Lecture Notes in Computer Science, vol. 13479. Warsaw, Poland: Springer International Publishing, Sept. 2022, pp. 85–106. doi: 10.1007/978-3-031-16336-4_5.
- [6] G. Ardourel, G. Cantin, B. Delahaye, G. Derroire, B. M. Funatsu, and D. Julien, "Computational assessment of Amazon forest plots regrowth capacity under strong spatial variability for simulating logging scenarios," *Ecological Modelling*, vol. 495, p. 110812, Sept. 2024, doi: 10.1016/j.ecolmodel.2024.110812.

- [7] P. J. Holmes and D. R. Rand, "Phase portraits and bifurcations of the non-linear oscillator: $\ddot{x} + \alpha \dot{x} + \gamma x^2 \dot{x} + \beta x + \delta x^3 = 0$ ", International Journal of Non-Linear Mechanics, vol. 15, no. 6, pp. 449–458, 1980, doi: $\frac{10.1016/0020-7462(80)90031-1}{10.1016/0020-7462(80)90031-1}$
- [8] D. Julien, G. Ardourel, G. Cantin, and B. Delahaye, "End-to-End Statistical Model Checking for Parameterization and Stability Analysis of ODE Models," *ACM Transactions on Modeling and Computer Simulation*, vol. 34, no. 3, pp. 1–25, 2023, doi: 10.1145/3649438.
- [9] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, "Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems," in *Hybrid Systems*, in Lecture Notes in Computer Science, vol. 736. Berlin, Germany: Springer-Verlag, Jan. 1993, pp. 209–229. doi: 10.1007/3-540-57318-6_30.
- [10] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya, "What's Decidable about Hybrid Automata?," *Journal of Computer and System Sciences*, vol. 57, no. 1, pp. 94–124, Aug. 1998, doi: 10.1006/jcss.1998.1581.
- [11] S. Ottaviano, M. Sensi, and S. Sottile, "Global stability of SAIRS epidemic models," *Nonlinear Analysis: Real World Applications*, vol. 65, p. 103501, June 2022, doi: 10.1016/j.nonrwa.2021.103501.