

projet de recherche

RECYPLAST DEMO

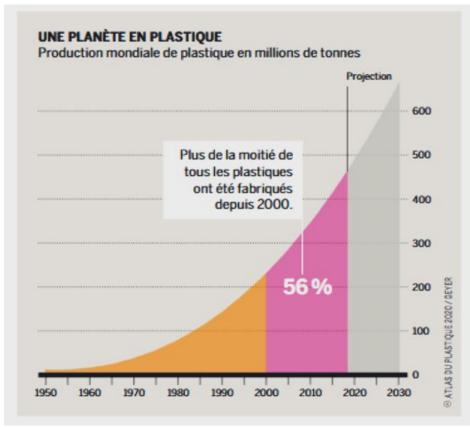
Développement d'un Jumeau Numérique pour l'Extrusion de Plastique Recyclé

Amira SOUILAH

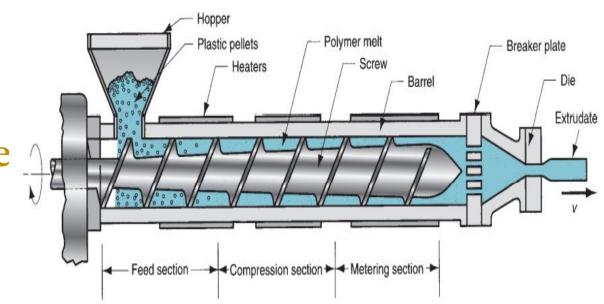
Nantes, jeudi 15 Février 2024

Sommaire

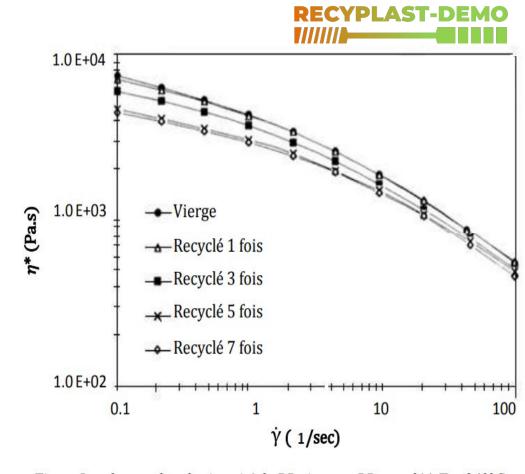
- 1. Contexte & Problématique
- 2. Méthodologie de Recherche
 - a. Étapes d'élaboration des prévisions
 - b. Collecte des données
 - c. Analyse de la série temporelle multivariée
- 3. Modèles Prédictifs et Résultats
 - a. modèle VAR
 - b. modèle LSTM
- 4. Bilan & Perspectives

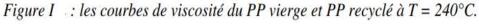


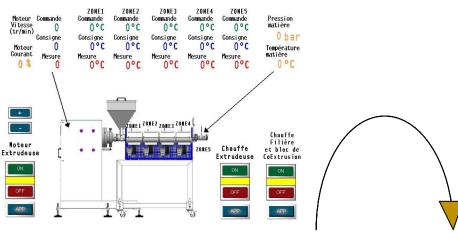
1. Utilisation de Plastiques

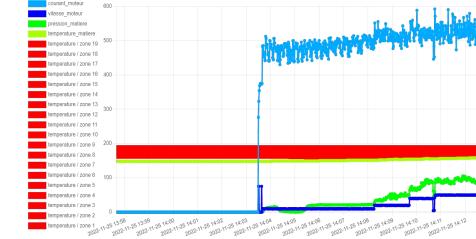


2. Le procédé d'extrusion de Plastique




3. Problématique

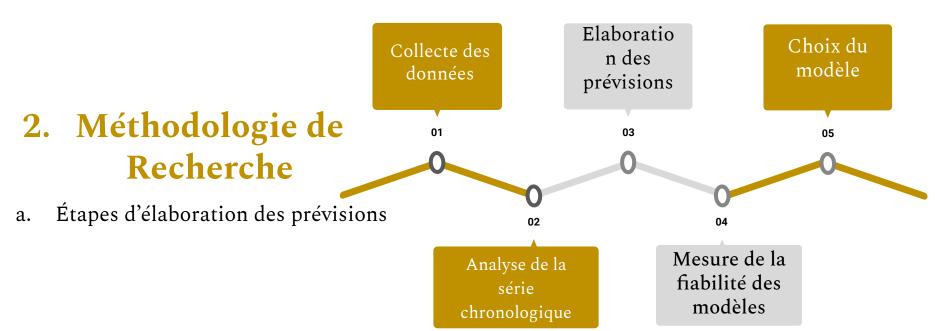




Objectifs:

- Construire des modèles à partir de la série temporelle multivariée
 - modèle statistique (VAR)
 - modèles d'apprentissage profond (Enc-Dec, LSTM)
- Évaluer la précision de ces modèles pour répondre à la question :

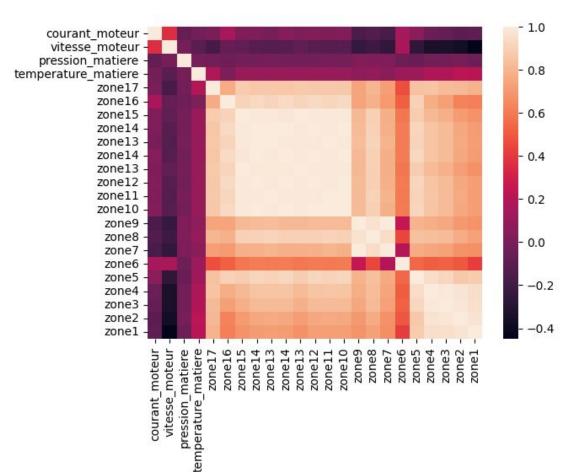
Est-il possible de construire prédictif modèle assez précis (accurate) piloter pour automatiquement le fonctionnement d'une extrudeuse?





2. Méthodologie de Recherche

b. Collecte des données



2. Méthodologie de Recherche

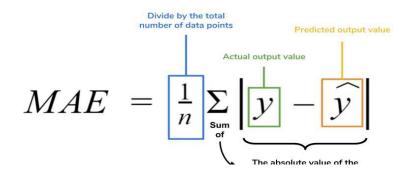
- Modèle 01 : Vecteur AutoRégressif (VAR)
 - Modèle 02 : Le réseau de Neurones Récurrent avec des couches LSTM
 - Modèle 03: Le réseau de Neurones Récurrent avec des couches LSTM + mécanisme d'attention

3. Modèles Prédictifs

et Résultats

Modèle 01: Vecteur AutoRégressif (VAR)

$$Y_{1,t} = \alpha_1 + \beta_{11,1} Y_{1,t-1} + \beta_{12,1} Y_{2,t-1} + \epsilon_{1,t}$$

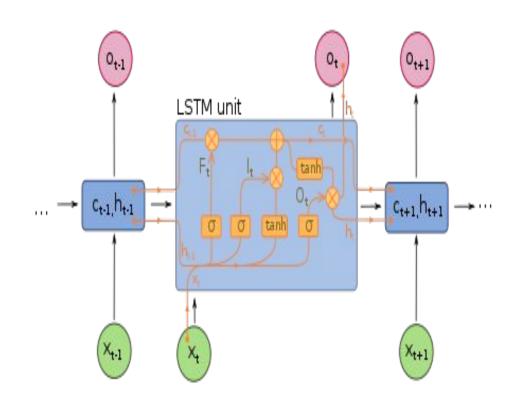

$$Y_{2,t} = \alpha_2 + \beta_{21,1} Y_{1,t-1} + \beta_{22,1} Y_{2,t-1} + \epsilon_{2,t}$$

Les métriques d'évaluation

$$R^{2} = 1 - \frac{unexplained\ variation}{total\ variation} = 1 - \frac{\sum_{i} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i} (y_{i} - \overline{y})^{2}}$$

Résultats du Modèle VAR

métrique d'évaluation	$ m R^2$	MAE	MSE
Vitesse_moteur	-0.3968	13.1812	449.1186
Zone1_5	-0.1418	4.9134	60.7353
Zone 6	-0.3996	2.3767	14.7825
Zone7_9	-0.3380	2.8243	19.3827
Z one10_17	-0.2187	1.4530	6.3984



Modèle 02 : Le réseau de Neurones Récurrents avec des couches LSTM

Résultats du Modèle LSTM

métrique d'évaluation	$ m R^2$	MAE	MSE
Vitesse_moteur	0.9790	1.5001	7.3863
Zone1_5	0.9906	1.3738	2.5931
Zone 6	0.9685	2.2123	9.4120
Zone7_9	0.9988	0.4386	0.4386
Zone10_17	0.9809	1.7204	4.4705

Pour optimiser les résultats

métrique d'évaluation	\mathbb{R}^2	MAE	MSE
Vitesse_moteu r	0.9802	0.0181	0.0014
Zone1_5	0.9915	0.0071	8.55 * 10^-05
Zone 6	0.9770	0.0136	0.0002
Zone7_9	0.9988	0.0083	9.93 * 10^-05
Zone10_17	0.9985	0.0039	2.32 * 10^-05

4. Bilan et Perspectives

modèle prédictif	VAR	LSTM + Mécanisme d'attention
Vitesse_moteur	×	+
Zone1_5	×	+
Zone 6	×	+
Zone7_9	×	+
Zone10_17	×	+

Bilan

- O Construction des modèles à partir de la série temporelle multivariée
 - modèle statistique (VAR) 🔻 🔻
 - modèles d'apprentissage profond (LSTM)

• Évaluation de la précision de ces modèles pour tirer la conclusion:

Les résultats obtenus par le modèle LSTM avec une couche d'attention indiquent qu'il pourrait être envisagé pour la pilotage d'une extrudeuse de plastique recyclé.

> Perspectives:

- Collecter une quantité importante de données de procédé d'extrusion de plastique grâce au planification d'essai à l'icam.
- Implémentation des mêmes modèles sur les nouvelles données (en cours)
- Optimiser l'architecture du réseau de neurones en ajustant les hyperparamètres et en accroissant sa complexité par l'ajout de neurones ou de couches.

Merci Pour Votre Attention

