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General Context

Rapid Reconfiguration of Manufacturing Systems

@ Q The operator of the industry needs to :

e interact himself with the simulation,

e verify the correctness of the new
configuration,

e estimate its performance before the
deployment.
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Figure 1. General scheme of RODIC project




Overall architecture diagram of RODIC
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Article core subject

KPI definition and computation process




Language Workbench

Simple Manufacturing System (SMS) (xDSL)

Trace
MetaModel
Creates the d
Language i
i Abstract syntax Operational
Language semantics .
. T
Engineer ©emf J
Conforms to Conforms to
Modeling Workbench
v

Execution
» Trace Manager >

Model trace

Creates model

Executes model

Compute KPIs for the model

Domain
expert

Import

SMS KPI Catalog

Throughput KPI

Machine
utilisation KPI

SMM
MetaModel

Conforms to

KPI results

model



Implementation

®
Abstract Syntax ¢ System model ¢ KPIresults

e Operational semantics e Execution trace



Abstract syntax

E ProductionLine

1 name : EString
3 simulationDuration : Eint
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Operational semantics

Algorithm 1: The main loop of system operation

Inputs:
ProductionLine: the model of the system
begin
// Initialisation
foreach machine € ProductionLine.elements do

if machine.input.isEmpty then

|  machine.start();

end
end
// The main loop
while exists(task / task.state == IN_PROGRESS) && currentTime < ProductionLine.simulationDuration do
// Update the current time
currentTime < minBy (task in progress/task.endTime);
ProductionLine.simulationstate.currentTime = currentTime;

// Finishing specific tasks

foreach (task /task.state == IN_PROGRESS & & task.endTime == currentTime) do
| task.finishTask();

end

// Asking elements to start working

foreach element € ProductionLine.elements do
| element start();

end

end

end
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System model

GenHead

R

taskDuration == 2 uT
taskDuration == 2 uT l

tAutoActivation == 1 uT

Assembler
Tray 1 5 C
GenHandle taskDuratlon == 10 uT taskDurat|on ==2uT

S -I

taskDuration == 3 uT

tAutoActivation == 3 uT  t@skDuration == 3 uT



Implementation

R Abstract Syntax ¢ System model ¢ KPIresults

e Operational semantics Execution trace
[ ]



The execution trace captures the
update information from one
state of the model to another.
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KPI results

The execution trace is analysed to compute Different KPIs, then the results are stored in an

model of Structure Metrics Meta-Model (SMM).

https://uncloud.univ-nantes.fr/index.php/s/HmtNwgnmDbsAcvY

& smmModel.xmi X = 10

& model.pef
v 4 Smm Model smmModel
v < Observation #For Global KPI
< Observation Scope Global KPI
v < Observed Measure
< Direct Measurement Handle
< Direct Measurement Head
< Direct Measurement Hammer
< Direct Measurement Head
v < Observed Measure
< Direct Measurement throughput
> < Observed Measure
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Conclusion

e We localized WP2 at the level of the
RODIC project.

We outline the approach followed to
evaluate the performance of an
industrial system.

We present the implementation
suggested and the computation KPI
results.
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Future work YOUF

e Annotate the xDSLs with concepts
needed to evaluate the performance.

e Personalize the performance
definition.




