Performance Evaluation of ??
Executable Domain-Specific Languages

Projet RODIC - RAPID RECONFIGURATION OF MANUFACTURING
SYSTEMS : A MODEL-BASED SOFTWARE ENGINEERING AND
HUMAN INTERACTION COUPLED APPROACH

OutLine

GENERAL CONTEXT

KPI DEFINITION AND COMPUTATION PROCESS
INTRODUCTION

IMPLEMENTATION
OVERALL ARCHITECTURE DIAGRAM

CoNcLUSION

General Context

Rapid Reconfiguration of Manufacturing Systems

@ Q The operator of the industry needs to :

e interact himself with the simulation,

e verify the correctness of the new
configuration,

e estimate its performance before the
deployment.

Transporter1

Processor1

Processor3

Introduction - J{0]0) (&4 (sl

RODIC Approach

Choose the

modules

Createa

configuration

s e £

1 MDE-based ' Create a test
! configuration : Model-based , scenario
control , performance !

system I assessment :

*] Visualize the
generation 1

| performance
! of the

I 3
| configuration
I

I

Configuration control
Sgiomaritess system
Figure 1. General scheme of RODIC project

Overall architecture diagram of RODIC

Softivare Avtifuce Internal comunication Internal comunication External comunication Automatique
Manually defined (one direction) (two directions) —p Generation
Artifact ”

Workpackage use
component Intaes] cofmporent Artifact o Conform to o
oy - - [0.%] Cardlnally. <<9Xte”,d,5,>,>¢
Configuration Language (xDSL) Configuration Library m

define use Configuration Language
a— » Abstract syntax Semantics J— oo Concepts
Language | t ' Configuration Language |
Semantics

engineer | !
! Conform to
Conﬁguration Model
use
A — 3
.) i 0..*] tests i Bl e
E it (T T KPls formulas « lqllkpls** ~7[— ! -+ Test scenarios Model
X user
v e
£ g
= ?
3
! send Kpis formulas if exist - 3
‘ d Koi send Model with the
1 Send i Test scenario if exist
ask to
evaluate

trace

i l ? | ! | l wP2
defie |

i Co icat
KPI Evaluation Language (xDSL) S Execution ‘- [k(.\ Simulator T2 5! Test Scenarios Language (xDSL)

Language i
engineer

Article core subject

KPI definition and computation process

Language Workbench

Simple Manufacturing System (SMS) (xDSL)

Trace
MetaModel
Creates the d
Language i
i Abstract syntax Operational
Language semantics .
. T
Engineer ©emf J
Conforms to Conforms to
Modeling Workbench
v

Execution
» Trace Manager >

Model trace

Creates model

Executes model

Compute KPIs for the model

Domain
expert

Import

SMS KPI Catalog

Throughput KPI

Machine
utilisation KPI

SMM
MetaModel

Conforms to

KPI results

model

Implementation

®
Abstract Syntax ¢ System model ¢ KPIresults

e Operational semantics e Execution trace

Abstract syntax

E ProductionLine

1 name : EString
3 simulationDuration : Eint

[0.1)

runtimestate

SimulationState |

(0.] elements

1..1) system

@ ProductionLineElement

3 name : EString
£ taskDuration : Eint

(1.1 pi

3 currentTime : EInt

[0.] elementsState

n.a)

7

N [0.7] Inpu

[E ProductTypeRet

[Machine]

|] container |

l 3 cardinality : EInt

= pendingDuration : EInt J

| £ capacity : Eint J

[0.*] types

L
[1..*] output

[0.) machine

[1..1] machineProductType

[Productrype

£ name : EString
£ IsFinal : EBoolean = false

[1..1] machine

r 3
g Conveyor

B ray

[0..1) tray|

[1.1] out

T[o.:] in

[0..%] tasks

H Task

3 startTime : EInt
1 endTime : Eint
£ state : TaskState

—_—

[H contal

N
InerState [

E Product

|

[1.1) contalnerstate

£ name : EString
3 IsMoving : EBoolean = false

Lo}

< Taskstate

[0.] parts

= IN_PROGRE:
- FROZEN
= FINISHED

SS

[1.1] type

Implementation

R Abstract Syntax

¢ System model

Operational semantics

¢ KPI results

e Execution trace

Operational semantics

Algorithm 1: The main loop of system operation

Inputs:
ProductionLine: the model of the system
begin
// Initialisation
foreach machine € ProductionLine.elements do

if machine.input.isEmpty then

| machine.start();

end
end
// The main loop
while exists(task / task.state == IN_PROGRESS) && currentTime < ProductionLine.simulationDuration do
// Update the current time
currentTime < minBy (task in progress/task.endTime);
ProductionLine.simulationstate.currentTime = currentTime;

// Finishing specific tasks

foreach (task /task.state == IN_PROGRESS & & task.endTime == currentTime) do
| task.finishTask();

end

// Asking elements to start working

foreach element € ProductionLine.elements do
| element start();

end

end

end

Implementation

R Abstract Syntax ! System model ¢ KPIresults

e Operational semantics e Execution trace

System model

GenHead

R

taskDuration == 2 uT
taskDuration == 2 uT l

tAutoActivation == 1 uT

Assembler
Tray 1 5 C
GenHandle taskDuratlon == 10 uT taskDurat|on ==2uT

S -I

taskDuration == 3 uT

tAutoActivation == 3 uT t@skDuration == 3 uT

Implementation

R Abstract Syntax ¢ System model ¢ KPIresults

e Operational semantics Execution trace
[]

The execution trace captures the
update information from one
state of the model to another.

Executiontrace ,® - m

GenHead at To

taskDuration == 2 uT

taskDuration == 2 uT
tAutoActivation == 1 uT l

Assembler GenHead > T

. taskDuration == 2 uT
I taskDuration == 10 uT taskD taskDuration == 2 uT l

[|
GenHandle tAutoActivation == 1 uT
g B Assembler
taskDuration == 3 uT - J

T taskDuration == 3 uT .
tAutoActivation == 3 uT GenHandle I taskDuration == 10 uT taskDuration == 2 uT

b

taskDuration == 3 uT \
tAutoActivation == 3 uT __ taskDuration == 3 uT

Implementation

R Abstract Syntax

¢ System model

e Operational semantics

®
KPI results

e Execution trace

KPI results

The execution trace is analysed to compute Different KPIs, then the results are stored in an

model of Structure Metrics Meta-Model (SMM).

https://uncloud.univ-nantes.fr/index.php/s/HmtNwgnmDbsAcvY

& smmModel.xmi X = 10

& model.pef
v 4 Smm Model smmModel
v < Observation #For Global KPI
< Observation Scope Global KPI
v < Observed Measure
< Direct Measurement Handle
< Direct Measurement Head
< Direct Measurement Hammer
< Direct Measurement Head
v < Observed Measure
< Direct Measurement throughput
> < Observed Measure
v < Observation #For Local KPI
< Observation Scope Local KPI
v <4 Observed Measure
< Direct Measurement throughput
< Direct Measurement throughput
< Direct Measurement throughput
< Direct Measurement throughput
< Direct Measurement throughput
< Direct Measurement throughput
> <4 Observed Measure
> < Observed Measure
> < Observed Measure
> <4 Measure Library smmModel
> @ platform:/resource/Models/ModelHammerProduction.abstractsyntax

= B | [Properties X
v |= platform:/resource/Models/gemoc-gen/execution/execution-2023052 Property

Value

Base Measurement1 Fron (=
Base Measurement2 Fron
Base Measurement From
Break Value

Description

Equivalent From
Equivalent To

Error

Measurand

Name

Ranking From

Recursive From
Recursive To

Refinement From
Refinement To
Requested Observations
Rescale To

Short Description

Value

https://uncloud.univ-nantes.fr/index.php/s/HmtNwgnmDbsAcyY

Conclusion

e We localized WP2 at the level of the
RODIC project.

We outline the approach followed to
evaluate the performance of an
industrial system.

We present the implementation
suggested and the computation KPI
results.

- —

Future work YOUF

e Annotate the xDSLs with concepts
needed to evaluate the performance.

e Personalize the performance
definition.

