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System abstraction

Abstraction of a Dynamical System

Systems (approximate) simulation
• Prove that two systems are (almost)

equivalent;
• Capture the behavior of the concrete

system with the abstract one;
• Conclude.

Simulation relation
• states sets X1 and X2 respective to

systems S1 and S2;
• (x1, x2) ∈ R ⊆ X1 × X2;
• for every x ′

1 ∈ Succ(x1), there exists
x ′

2 ∈ Succ(x2) such that x ′
1Rx ′

2.

TABUADA, Paulo. Verification and Control of Hybrid Systems. Springer US, 2009.
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System abstraction

Example of hybrid system
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System abstraction

Building an abstraction of a system

Deterministic blackbox
• transition relation ∆ is

unknown but deterministic;
• any finite amount of samples.

Alternating simulation
Prove that the systems capture
each other’s transitions with a
given precision.

DEVONPORT, A. et al. Symbolic Abstractions From Data: A PAC Learning
Approach. 2021 60th IEEE Conference on Decision and Control (CDC), 2021. p. 599-604.
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0-player games

ODE as a Dynamical System

Definitions
• ODE: d

dt ξ(t) = f (ξ(t));
• dynamical system: pair (Rn, f )

where f is regular and defines an
ODE;

• trajectory: map ξ :]t0, t1[→ Rn

such that ξ is a solution to the
ODE.

d
dt x(t) = ax(t)(1 − b

x(t) )

→ f (·) = a[·](1 − b
[·]
), a, b ∈ R

“Predictable” systems
Simple definition (one setting) of isolated systems.
→ Outcome completely determined at launch.
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0-player games

Probabilistic models

Markov chain
• oriented graph (E ,P) where

P = (pi,j)(i,j)∈E2 is a transition matrix
such that

∑
j pi,j = 1;

• transitions are solely determined by the
current state of the system;

Useful to describe random, autonomous systems (e.g., nuclear
fission or pseudo-random number generator)

Joxemai4, CC BY-SA 3.0, via Wikimedia Commons (retrieved Oct. 20, 2023)
D. JULIEN Abstracting an ODE as a Markov model 10 / 19

https://creativecommons.org/licenses/by-sa/3.0


0-player games

Probabilistic models

Markov chain
• oriented graph (E ,P) where

P = (pi,j)(i,j)∈E2 is a transition matrix
such that

∑
j pi,j = 1;

• transitions are solely determined by the
current state of the system;

Useful to describe random, autonomous systems (e.g., nuclear
fission or pseudo-random number generator)

Joxemai4, CC BY-SA 3.0, via Wikimedia Commons (retrieved Oct. 20, 2023)
D. JULIEN Abstracting an ODE as a Markov model 10 / 19

https://creativecommons.org/licenses/by-sa/3.0


0-player games

Building a MC with an ODE

Statistical Model Checking
• ϕi,j = “the simulation started in region i and stopped in region j”;

• one process per pair (i, j);

• caution: need to find the right partition.
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0-player games

Abstracting parametric ODEs with a MC

Problem definition
• hybrid system H (with modes);
• discrete time-step τ ;
• trajectory π = q0q1 . . . qN ;
• MC M = {(π,X ,PX)} where π is

a finite trajectory.

SMC procedure for MC construction
H satisfies φ ⇔ M satisfies φ.

GYORI, B. et al. Approximate probabilistic verification of hybrid systems.
International Workshop on Hybrid Systems Biology, 2015. p. 96–116.
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1-player games

Control systems

Markov Decision Process
• enhanced MC (E ,Act, {Pa});
• choose an action a ⇔ choose a probability

distribution Pa.

Pa =

[
1 − xa xa

ya 1 − ya

]

Control!
Useful to describe partly random systems on which a decision maker has some
control (e.g., coin toss or epidemic)
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1-player games

Building an MDP with an ODE...

SIR epidemiological model
dS
dt = Λ− µS − ω IS

N
dI
dt = ω IS

N − (γ + µ)I
dR
dt = γI − µR.

Different scenarios
Each scenario corresponds to a
quadruplet (Λ, µ, ω, γ)
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1-player games

... by switching between MCs
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σ1, σ2 are two actions that allow instant switching between states and MCs.

D. JULIEN Abstracting an ODE as a Markov model 16 / 19



1-player games

Bisimulations and MDP

Discrete-Time Stochastic Control
Systems and MDPs
• Φ = (X ,U , ς, f ) where

◦ X ⊆ Rn is a set of states;
◦ U ∈ Rm is a set of inputs;
◦ ς is a sequence of i.i.d.

random variables;
◦ f : X × U × Vς → X is a

measurable function.
• Φ̂ = (X̂ ,U , T̂x) is its

corresponding finite MDP.

Stochastic Bisimulation Function

S : X × X̂ → R+ ensures the expected distance between systems remains short
after a one-step-transition.

LAVAEI, A. et al. Constructing MDP abstractions using data with formal guarantees.
IEEE Control Systems Letters. 2022, vol 7, p. 460–465.
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1-player games

Future work

Applications
• Biology

Epidemic simulation. Each
pixel can infect its eight
immediate neighbors.

Extension
• Procedure simplification?
• PDE?
• partition?
• properties?

Visualisation of a solution to the 2D heat equation.

Beta212, CC BY-SA 3.0, via Wikimedia Commons
Nicoguaro, CC BY 4.0, via Wikimedia Commons
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1-player games

Thank you for your attention!
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