Abstracting an ODE as a Markov model

David JULIEN
david.julien@univ-nantes.fr

Nantes Université - LS2N (VELO)
B. DELAHAYE, G. CANTIN, G. ARDOUREL

Oct. 26, 2023

Outline

(1) System abstraction
(2) 0-player games
(3) 1-player games

Outline

(1) System abstraction

3 1-player games

Reminder

Abstraction of a Dynamical System

Paulo Tabuada
Foreword by Rajeev Alur

Verification and Control of Hybrid Systems

A Symbolic Approach

Springer

Systems (approximate) simulation

- Prove that two systems are (almost) equivalent;
- Capture the behavior of the concrete system with the abstract one;
- Conclude.

TABUADA, Paulo. Verification and Control of Hybrid Systems. Springer US, 2009.

Abstraction of a Dynamical System

Paulo Tabuada
Foreword by Rajeev Alur
Systems (approximate) simulation

- Prove that two systems are (almost) equivalent;
- Capture the behavior of the concrete system with the abstract one;
- Conclude.

Simulation relation

- states sets X_{1} and X_{2} respective to systems S_{1} and S_{2};
- $\left(x_{1}, x_{2}\right) \in \mathcal{R} \subseteq X_{1} \times X_{2}$;
- for every $x_{1}^{\prime} \in \operatorname{Succ}\left(x_{1}\right)$, there exists $x_{2}^{\prime} \in \operatorname{Succ}\left(x_{2}\right)$ such that $x_{1}^{\prime} \mathcal{R} x_{2}^{\prime}$.

TABUADA, Paulo. Verification and Control of Hybrid Systems. Springer US, 2009.

Example of hybrid system

Fig. 7.1. Hybrid dynamical system modeling a windshield wiper.

Building an abstraction of a system

Deterministic blackbox

Symbolic Abstractions From Data: A PAC Learning Approach
Alex Devonport ${ }^{*}$, Adnane Saoud ${ }^{*}$, and Murat Arcak

[^0]- transition relation Δ is unknown but deterministic;
- any finite amount of samples.

DEVONPORT, A. et al. Symbolic Abstractions From Data: A PAC Learning Approach. 2021 60th IEEE Conference on Decision and Control (CDC), 2021. p. 599-604.

Building an abstraction of a system

Deterministic blackbox

Symbolic Abstractions From Data: A PAC Learning Approach
Alex Devonport ${ }^{*}$, Adnane Saoud ${ }^{*}$, and Murat Arcak

- transition relation Δ is unknown but deterministic;
- any finite amount of samples.

Alternating simulation

Prove that the systems capture each other's transitions with a given precision.

DEVONPORT, A. et al. Symbolic Abstractions From Data: A PAC Learning Approach. 2021 60th IEEE Conference on Decision and Control (CDC), 2021. p. 599-604.

Outline

(1) System abstraction

(2) 0-player games
(3) 1-player games

ODE as a Dynamical System

Definitions

- ODE: $\frac{\mathrm{d}}{\mathrm{d} t} \xi(t)=f(\xi(t))$;
- dynamical system: pair $\left(\mathbb{R}^{n}, f\right)$ where f is regular and defines an ODE;
- trajectory: map $\xi:] t_{0}, t_{1}\left[\rightarrow \mathbb{R}^{n}\right.$ such that ξ is a solution to the ODE.

ODE as a Dynamical System

Definitions

- ODE: $\frac{\mathrm{d}}{\mathrm{d} t} \xi(t)=f(\xi(t))$;
- dynamical system: pair $\left(\mathbb{R}^{n}, f\right)$ where f is regular and defines an ODE;
- trajectory: map $\xi:] t_{0}, t_{1}\left[\rightarrow \mathbb{R}^{n}\right.$ such that ξ is a solution to the ODE.

$$
\frac{\mathrm{d}}{\mathrm{~d} t} x(t)=a x(t)\left(1-\frac{b}{x(t)}\right)
$$

$$
\rightarrow f(\cdot)=a[\cdot]\left(1-\frac{b}{[\cdot]}\right), \quad a, b \in \mathbb{R}
$$

ODE as a Dynamical System

Definitions

- ODE: $\frac{\mathrm{d}}{\mathrm{d} t} \xi(t)=f(\xi(t))$;
- dynamical system: pair $\left(\mathbb{R}^{n}, f\right)$ where f is regular and defines an ODE;
- trajectory: map $\xi:] t_{0}, t_{1}\left[\rightarrow \mathbb{R}^{n}\right.$ such that ξ is a solution to the ODE.

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t} x(t)=a x(t)\left(1-\frac{b}{x(t)}\right) \\
\rightarrow f(\cdot)=a[\cdot]\left(1-\frac{b}{[\cdot]}\right), \quad a, b \in \mathbb{R}
\end{gathered}
$$

"Predictable" systems

Simple definition (one setting) of isolated systems.
\rightarrow Outcome completely determined at launch.

Probabilistic models

Markov chain

- oriented graph (E, \mathbb{P}) where $\mathbb{P}=\left(p_{i, j}\right)_{(i, j) \in E^{2}}$ is a transition matrix such that $\sum_{j} p_{i, j}=1$;
- transitions are solely determined by the current state of the system;

Joxemai4, CC BY-SA 3.0, via Wikimedia Commons (retrieved Oct. 20, 2023)

Probabilistic models

Markov chain

- oriented graph (E, \mathbb{P}) where $\mathbb{P}=\left(p_{i, j}\right)_{(i, j) \in E^{2}}$ is a transition matrix such that $\sum_{j} p_{i, j}=1$;
- transitions are solely determined by the current state of the system;

Useful to describe random, autonomous systems (e.g., nuclear fission or pseudo-random number generator)

Joxemai4, CC BY-SA 3.0, via Wikimedia Commons (retrieved Oct. 20, 2023)

Building a MC with an ODE

Statistical Model Checking

- $\varphi_{i, j}=$ "the simulation started in region i and stopped in region j ";
- one process per pair (i, j);
- caution: need to find the right partition.

Building a MC with an ODE

SW
S
SE

Statistical Model Checking

- $\varphi_{i, j}=$ "the simulation started in region i and stopped in region j ";
- one process per pair (i, j);
- caution: need to find the right partition.

Building a MC with an ODE

Statistical Model Checking

- $\varphi_{i, j}=$ "the simulation started in region i and stopped in region j ";
- one process per pair (i, j);
- caution: need to find the right partition.

Building a MC with an ODE

Statistical Model Checking

- $\varphi_{i, j}=$ "the simulation started in region i and stopped in region j ";
- one process per pair (i, j);
- caution: need to find the right partition.

Building a MC with an ODE

Statistical Model Checking

- $\varphi_{i, j}=$ "the simulation started in region i and stopped in region j ";
- one process per pair (i, j);
- caution: need to find the right partition.

Abstracting parametric ODEs with a MC

Problem definition

Approximate Probabilistic Verification of Hybrid Systems

Benjamin M. Gyori ${ }^{1}$, Bing Liu ${ }^{2}$, Soumya Paul ${ }^{3}$, R. Ramanathan ${ }^{4}$, and P.S. Thiagarajan ${ }^{1(\boxed{)}}$
${ }^{1}$ Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA benjamin gyoriohns.harvard.edu, psthiagu0gmail.con
${ }^{2}$ Department of Computational and Systems Biology, University of Pittsburgh, , Pittsiburgh, USA
Institute de Recherche En Informatique de Toulouse, 31062 Toulouse, France ${ }^{4}$ Department of Computer Science, National University of Singapore, Singapore, Singapore

- hybrid system H (with modes);
- discrete time-step τ;
- trajectory $\pi=q_{0} q_{1} \ldots q_{N}$;
- MC $M=\left\{\left(\pi, X, \mathbb{P}_{X}\right)\right\}$ where π is a finite trajectory.

Abstracting parametric ODEs with a MC

Approximate Probabilistic Verification of Hybrid Systems

Benjamin M. Gyori ${ }^{1}$, Bing Liu ${ }^{2}$, Soumya Paul ${ }^{3}$, R. Ramanathan ${ }^{4}$, and P.S. Thiagarajan ${ }^{1(\boxtimes)}$
${ }^{1}$ Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA benjamin gyoriøhms.harvard.edu, psthiagu0gmail.con
${ }^{2}$ Department of Computational and Systems Biology, University of Pittsburgh, , Pittsiburgh, USA
${ }^{3}$ Institute de Recherche En Informatique de Toulouse, 31062 Toulouse, France ${ }^{4}$ Department of Computer Science, National University of Singapore, Singapore, Singapore

Abstract. Hybrid systems whose mode dynamics are governed by nonlinear ordinary differential equations (ODEs) are often a natural model for biological processes. However such models are difficult to analyze. To address this. we develod a probabilistic analvsis method bv approx-

Problem definition

- hybrid system H (with modes);
- discrete time-step τ;
- trajectory $\pi=q_{0} q_{1} \ldots q_{N}$;
- $\mathrm{MC} M=\left\{\left(\pi, X, \mathbb{P}_{X}\right)\right\}$ where π is a finite trajectory.

SMC procedure for MC construction

H satisfies $\phi \Leftrightarrow M$ satisfies ϕ.

[^1]
Outline

© System abstraction

(2) 0 -player games
(3) 1-player games

Control systems

Markov Decision Process

- enhanced MC $\left(E, A c t,\left\{\mathbb{P}_{a}\right\}\right)$;
- choose an action $a \Leftrightarrow$ choose a probability distribution \mathbb{P}_{a}.

Control systems

Markov Decision Process

- enhanced MC $\left(E, A c t,\left\{\mathbb{P}_{a}\right\}\right)$;
- choose an action $a \Leftrightarrow$ choose a probability distribution \mathbb{P}_{a}.

Control!

Useful to describe partly random systems on which a decision maker has some control (e.g., coin toss or epidemic)

Building an MDP with an ODE...

SIR epidemiological model

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} S}{\mathrm{~d} t}=\Lambda-\mu S-\omega \frac{I S}{N} \\
\frac{\mathrm{~d} I}{\mathrm{~d} t}=\omega \frac{I S}{N}-(\gamma+\mu) I \\
\frac{\mathrm{~d} R}{\mathrm{~d} t}=\gamma I-\mu R .
\end{array}\right.
$$

Different scenarios

Each scenario corresponds to a quadruplet $(\Lambda, \mu, \omega, \gamma)$

$$
\left(R_{0}>1\right)
$$

$$
\left(R_{0}<1\right)
$$

... by switching between MCs

σ_{1}, σ_{2} are two actions that allow instant switching between states and MCs.

Bisimulations and MDP

Constructing MDP Abstractions Using Data with Formal Guarantees*
Abolfazl Lavaei ${ }^{1}$, Sadegh Soudjani ${ }^{2}$. Emilio Frazzoli ${ }^{1}$, ame Majid Zamani ${ }^{3}$ ${ }^{1}$ Instituon for Dysarnie Systems and Control, ETH Zurich, Switzertend ${ }^{2}$ School of Computing. Nemeastle Unixrysity, United Kingdorn

Abstracr This paper is concened with a data-diviven lectrique for conatructing finte Markar decision proconss (MDPs) as finite abistmationss of diacrete time stochactic contol systems with unknown dynamios whilt

 ystem and those of finite MDP: In our proppreed setting, we first reformulate cerresponding covditions of SBF as a mobust convex program (RCP) Wis then propece a senario convex progran (SCP) nsexciated to the original RCC by collecting a finite number of data from trajertories of the system. We eltimately ronstruct an SBF betwen the data-diliven finite MDP and she unknown stochaster astem with a grven confidenec lewel
 difterent A.pprowiches fer the construction of inite MDPs form data. Wr illustrate the efficncy of cur results over a noribinere jet engine ecompressor with unknown dymanica. We construet a data-ditiven finite MDP as

Discrete-Time Stochastic Control Systems and MDPs

- $\Phi=(X, U, \varsigma, f)$ where
- $X \subseteq \mathbb{R}^{n}$ is a set of states;
- $U \in \mathbb{R}^{m}$ is a set of inputs;
- ς is a sequence of i.i.d. random variables;
- $f: X \times U \times \mathcal{V}_{\varsigma} \rightarrow X$ is a measurable function.
- $\hat{\Phi}=\left(\hat{X}, U, \hat{\mathbf{T}}_{x}\right)$ is its corresponding finite MDP.

Stochastic Bisimulation Function

$S: X \times \hat{X} \rightarrow \mathbb{R}_{+}$ensures the expected distance between systems remains short after a one-step-transition.

LAVAEI, A. et al. Constructing MDP abstractions using data with formal guarantees. IEEE Control Systems Letters. 2022, vol 7, p. 460-465.

Future work

Applications

- Biology

Epidemic simulation. Each pixel can infect its eight immediate neighbors.

Extension

- Procedure simplification?
- PDE?
- partition?
- properties?

Visualisation of a solution to the 2D heat equation.

Beta212, CC BY-SA 3.0, via Wikimedia Commons
Nicoguaro, CC BY 4.0, via Wikimedia Commons

Thank you for your attention!

[^0]: Aes logic speaifications. A critical step in these tecthnique a the construction of a symbolic (discrete) abstraction, a anitesiate sstems whise behaviour mimits that of a ghen
 cuntimous state system. The methods used to compute symbolic abstractions, however, require knowledge of an uccurate dasedform model. To geveralize them to systams with unkown
 ability to evaluate successors of each state uniler given inputs. To proside guarantees for the learned alstraction, we use the
 Probably Aproximath Correct (PAC) statitical frame Probably Approximately Correct (PAC) statistical framewort
 We first introduce a PAC style bchavioural relatinuship a an apporopriate refivenaent prokeclure. We then show how the symbolic athatractisn can be coumstructed to satisfy this new belhavioural relationship. Moreover, we provide PaC buends
 that dictute the number of data required to guaruntee a that dictute the number of data required to quarantee a
 prescrited level of accuracy and confidence. Finally, we present an illustrative example.

 Research at the interface between formal metbods and control theory has given riso to symbolic control [1]. [3], which deals with control of dynamical systems with logie specifications [4]. A key ingredient of symbolic control
 systems, such as feedhack-linearizable systems in [7]. lineartime invariant systems in [8], [9], [10], and address particulat types of specifications, such as sately in [11], stability in [12], [81, [7], [9], [13], and trajectory tracking in [10]. Learning a symbolic abstraction offers several benefits over the aforementioned results. First. our approach is universal and makes it possible to deal with general nonlinear systems
 subject to constraints. Second, we can deal wih complex specifications, such as those expressed in lincat temporal logic over finite traces [14]
 In this paper, we propose a data-driven approach to eonstruct system abstractions whose fidelity to the continuous system is guaranteed by a PAC bound [15]. In contras to classical asymplotic statistical guarantees, which only guarantec certain behaviours in the limiting case of infinite data, PAC bounds restriet the probability of error that a statistical estimate mukes with finite data. Adfitionally, PAC bounds are disuribution-free, meaning that the guarante problem. This makes PAC bounds a snitable type of guaran tec for statistical approuches to control theory, where randon variables are propasated through unknown functions (e.g. the

[^1]: GYORI, B. et al. Approximate probabilistic verification of hybrid systems. International Workshop on Hybrid Systems Biology, 2015. p. 96-116.

