

Thesis Overview

Inductive logic programming for the identification of markers predisposing to hospital-acquired pneumonia

Juliette Audemard

Nantes Université, École Centrale Nantes, CNRS, LS2N

Thesis supervisors

Morgan Magnin (dir)

Nantes Université, École Centrale Nantes, CNRS, LS2N

Tony Ribeiro

Nantes Université, École Centrale Nantes, CNRS, LS2N

Homi-Lung Project Leader

Antoine Roquilly

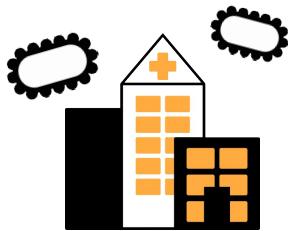
ACCPM, SFAR, Nantes Université, Inserm, CHU Nantes, UMR 1064

Homi-Lung is a European project deciphering the causal relationship between cardiovascular and respiratory diseases progression and the immune and microbiome alterations observed during and after pneumonia.

**Funded by
the European Union**

“Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or ERCEA. Neither the European Union nor the granting authority can be held responsible for them.”

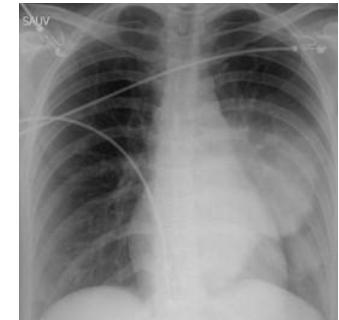
Homi-Lung – Hospital-acquired pneumonia (HAP)



Nosocomial respiratory infection acquired in hospital settings, more than 48h after hospital admission. Includes ventilator-associated pneumonia.

- **0.5%–1.7% of patients admitted in hospitals**
- **10%–20% mortality rate**
nearly fatal for vulnerable patients with comorbidities (organ transplant, immunodeficiency)
- **Culture-based diagnostics, systematic uses of antibiotics, commensal bacterium mistook for pathogens...**
 - HAP complexity can't be fully assessed without an integrative reasoning

*Lower-left lobe with hypoxemia from a Pneumococcus infection



Homi-Lung – Project context

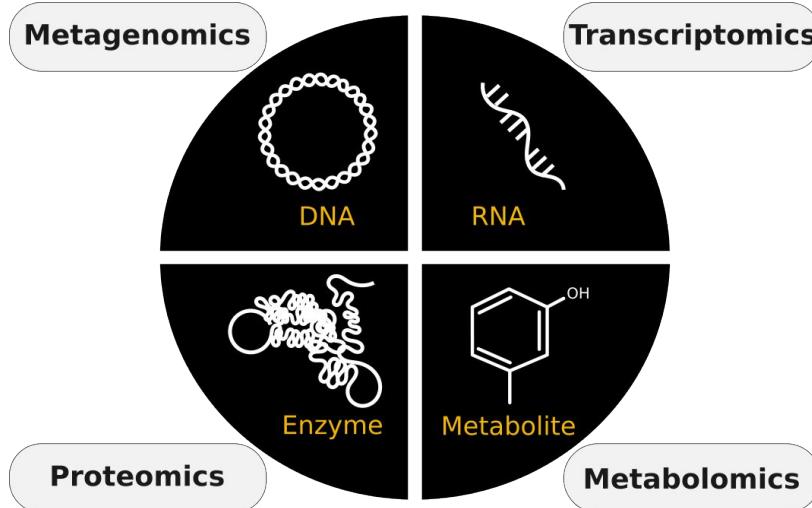
By integrating ecology, immunity, and time, HAP management can move from a reactive chase of pathogens to a proactive, personalised strategy, one that not only improves survival but also preserves resilience in the critically ill.

Martin-Loaches I., J Crit Care 2026

- **New paradigm focused on ecology and risk assessment**
- **Concept of *lungs interactome***
Molecular, cellular and microbial interactions network of the host lung cells, virus, commensal and pathogenic bacteria
- **Characterise key interactions in HAP patients lungs interactome**

Homi-Lung – Data

- From **HAP patients** and **healthy patients** (expected in the following weeks :D)
- Plasma, bronchoalveolar lavage samples

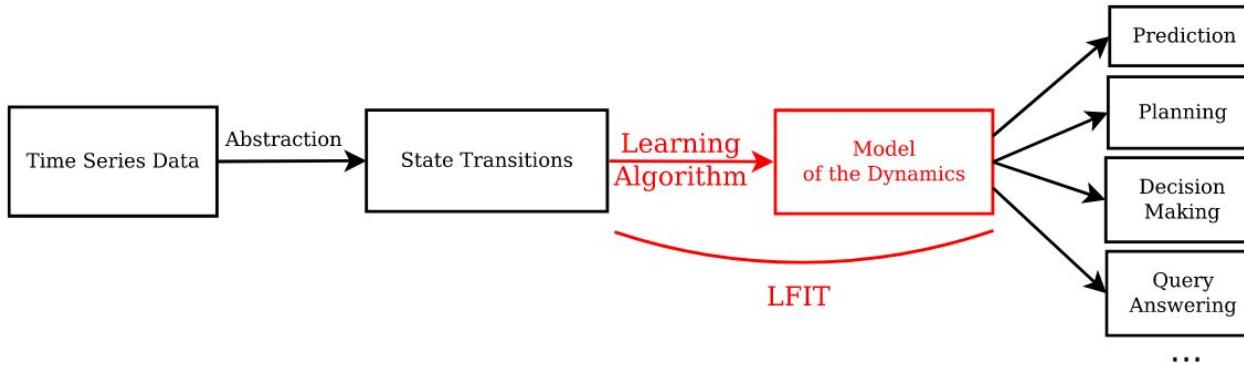


Multi-omics

- **Clinical** age, sex, comorbidity, ...
- **(Meta)genomics** bacterial 16S, taxa, relative abundance
- **(Meta)transcriptomics** RNAseq
- **Proteomics, lipidome, metabolome**

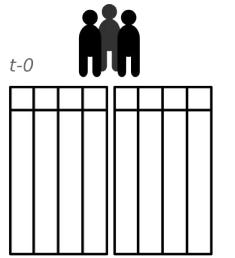
Noisy, highly dimensional, incomplete observations...

LFIT – Learning From Interpretation Transition



"Assuming a discretization of time series data of a system as state transitions, we propose a method to automatically model the system dynamics" Figure 1 from T. Ribeiro, M. Folschette, M. Magnin, and K. Inoue, "Learning any memory-less discrete semantics for dynamical systems represented by logic programs," Machine Learning, 2021

LFIT – Learning From Interpretation Transition

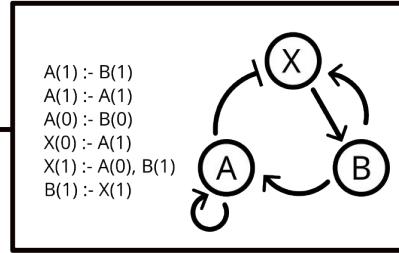
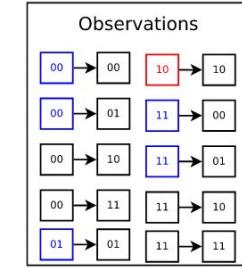
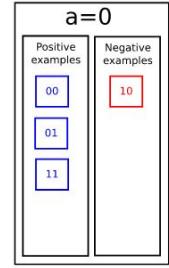


$B(0) \longrightarrow A(0)$

positive examples

$B(1) \cancel{\longrightarrow} X(0)$

negative examples

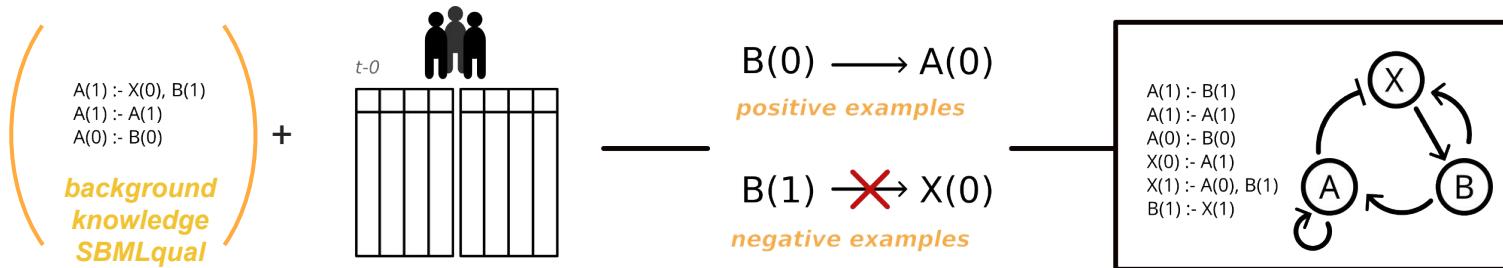


Inductive logic programming global framework, from clinical data to a set of logical rules and its representative Boolean network

- **Main algorithm**
 - GULA
 - PRIDE
- **From biological observation and background knowledge, learn relational structure and rules**
- **Infer and model explainable mechanisms hypothesis**
does not only focus on prediction of a given target, but extract hypothesis about relationships and their interdependence

*Preprocessing of the general semantics state transition into positive/negative example of occurrence of variable a_t^0

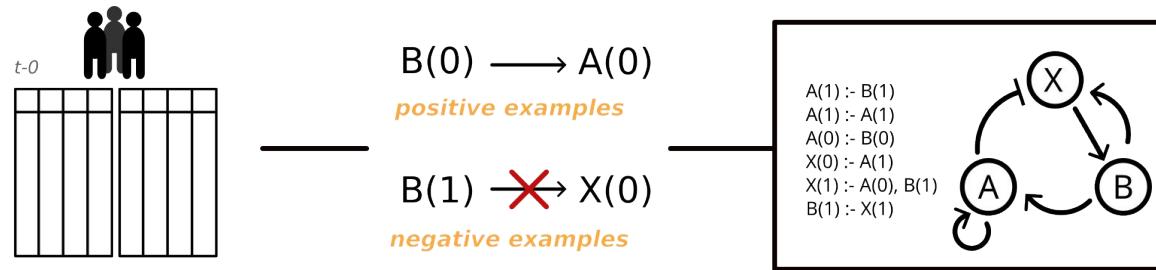
LFIT – Learning From Interpretation Transition



Inductive logic programming global framework, from clinical data to a set of logical rules and its representative Boolean network

- **Main algorithm**
 - GULA
 - PRIDE
- **From biological observation and background knowledge, learn relational structure and rules**
- **Infer and model explainable mechanisms hypothesis**
does not only focus on prediction of a given target, but extract hypothesis about influences and their interdependence

LFIT – ... and the lung interactome



Characterize misunderstood relationships between biological elements and processes of the pulmonary system

A naive approach, nonetheless guided by prior knowledge on relevant features and host / bacterial mechanisms

Probabilistic logic programming (PLP)

LFIT learn structures and rules... but

- Noisy omics measurements
- Partial, context-dependent mechanisms
- Multiple plausible explanations

Sato's Distribution Semantics

T. Sato, "A Statistical Learning Method for Logic Programs with Distribution Semantics," L. S. Sterling, Ed., The MIT Press, 1995

- uncertainty of facts, rules are deterministic
- queries are probabilistic inference

```
0.6 :: infected(p1).  
0.6 :: infected(p2).  
0.7 :: virulent(b1).  
  
pneumonia(P) :- infected(P), virulent(b1).
```

$$\begin{aligned} P(q) &:= \sum_{\substack{F' \subseteq F \\ \exists \theta F' \cup R \models q \theta}} P_F(F') \\ &= \sum_{\substack{F' \subseteq F \\ \exists \theta F' \cup R \models q \theta}} \prod_{f_i \in F'} p_i \cdot \prod_{f_i \in F \setminus F'} (1 - p_i) . \end{aligned}$$

q : query

R : logical rules

F : probabilistic facts

F' : true facts

$F \setminus F'$: false facts

PLP – PRISM and ProbLog

PRISM (Sato and Kameya, 1997), and ProbLog (De Raedt, 2007)

- adopt distribution semantics
- make the probability space explicit

PRISM

- No overlapping proofs
- uses of *random switches*

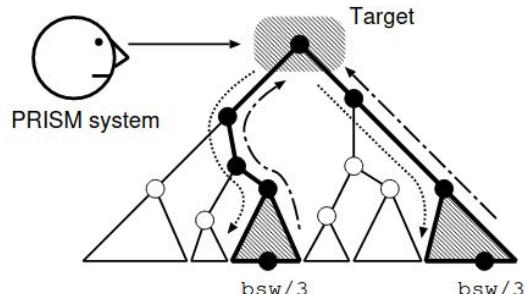
*Bloodtype exemple, from T. Sato, 1995

** PRISM program figure from T. Sato, 1995

```
gene(P,a):- bsw(1,P,1).  
    % Sample binary_switch_1,  
    % and if it is on, give gene a. Else  
gene(P,b):- bsw(1,P,0),bsw(2,P,1).  
    % sample binary_switch_2. If it is on,  
gene(P,o):- bsw(1,P,0),bsw(2,P,0).  
    % give gene b. Else give gene o.
```

*Random switches in a blood type program

Statistical Model: (proof tree)



- Probabilistic predicate ↣..... Learning phase
- Deterministic predicate ↣— Execution phase

**A PRISM program

PLP – PRISM and ProbLog

PRISM (Sato and Kameya, 1997), and ProbLog (De Raedt, 2007)

- adopt distribution semantics
- make the probability space explicit

PRISM

- **No overlapping proofs**
- **uses of random switches**

ProbLog

- **Accept overlapping proof**
- **Boolean monotone DNF**
- **Binary Decision Diagrams**

*Bloodtype exemple, from T. Sato, 1995

```
gene(P,a):- bsw(1,P,1).  
          % Sample binary_switch_1,  
          % and if it is on, give gene a. Else  
gene(P,b):- bsw(1,P,0),bsw(2,P,1).  
          % sample binary_switch_2. If it is on,  
gene(P,o):- bsw(1,P,0),bsw(2,P,0).  
          % give gene b. Else give gene o.
```

*Random switches in a blood type program

```
0.3::road(r1)  
0.9::road(r2)  
path :- road(r1)  
path :- road(r2)
```

A simple ProbLog program with overlapping proof

Aims and potential issues

Apply LFIT to homi-lungs data

- Identify discrepancies between healthy and HAP patients
- Characterize explainable relationships between clinical features and HAPs
- Evaluate interpretability of rules and structure
- Link with prior knowledge about relevant HAP actors

Bridge LFIT and probabilistic logic programs

- Link logical rules inference to PLP
- Support uncertain biological facts to assess new patients